Abstract

We demonstrate a quantum cascade laser (QCL) with a chirped sampling grating by altering the sampling duty cycle along the cavity. The chirped sampling grating structure, with an asymmetric coupling coefficient, can be realized by holographic exposure combined with optical photolithography. We simulated and compared three different types of sampling structures; the QCLs with a 1.5 mm chirped region and 0.5 mm uniform region can achieve an average output-power ratio of 1.71 between the front and rear facets. The proposed chirped sampling grating structure is helpful in realizing a single-mode QCL with improved power efficiency and low fabrication cost.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-wavelength sampled Bragg grating quantum cascade laser arrays

Xue-Feng Jia, Li-Jun Wang, Ning Zhuo, Jin-Chuan Zhang, Shen-Qiang Zhai, Jun-Qi Liu, Shu-Man Liu, Feng-Qi Liu, and Zhanguo Wang
Photon. Res. 6(7) 721-725 (2018)

Stable single-mode operation of a distributed feedback quantum cascade laser integrated with a distributed Bragg reflector

Feng-Min Cheng, Zhi-Wei Jia, Jin-Chuan Zhang, Ning Zhuo, Shen-Qiang Zhai, Li-Jun Wang, Jun-Qi Liu, Shu-Man Liu, Feng-Qi Liu, and Zhan-Guo Wang
Photon. Res. 5(4) 320-323 (2017)

Transverse modal control of wide-stripe high power semiconductor lasers using sampled grating

Lianyan Li, Yuechun Shi, Yong Zhao, Yunshan Zhang, Wenxuan Wang, Yitao Wu, Yinli Zhou, Xing Zhang, and Xiangfei Chen
Opt. Express 26(9) 11171-11180 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
    [Crossref]
  2. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [Crossref]
  3. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23(3), 219–221 (1998).
    [Crossref]
  4. S. Bartalini, M. S. Vitiello, and P. De Natale, “Quantum cascade lasers: a versatile source for precise measurements in the mid/far-infrared range,” Meas. Sci. Technol. 25(1), 012001 (2014).
    [Crossref]
  5. T. Matsuoka, Y. Yoshikuni, and G. Motosugi, “Dependence of single-longitudinal-mode probability on DFB laser facet structure,” Electron. Lett. 21(24), 1151–1152 (1985).
    [Crossref]
  6. H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, and S. Yamakoshi, “Stability on single longitudinal mode operation in CalnAsP/lnP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. 23(6), 804–814 (1987).
    [Crossref]
  7. O. K. Kwon, Y. A. Leem, D. H. Lee, C. W. Lee, Y. S. Baek, and Y. C. Chung, “Effects of asymmetric grating structures on output efficiency and single longitudinal mode operation in λ/4 shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
    [Crossref]
  8. S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, and R. Schatz, “DFB Laser with Nonuniform Coupling Coefficient Realized by Double-Layer Buried Grating,” IEEE Photonics Technol. Lett. 5(10), 1128–1131 (1993).
    [Crossref]
  9. D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A Novel Distributed Feedback Fiber Laser Based on Equivalent Phase Shift,” IEEE Photonics Technol. Lett. 16(12), 2598–2600 (2004).
    [Crossref]
  10. Y. Shi, S. Li, L. Li, R. Guo, T. Zhang, L. Rui, W. Li, L. Lu, T. Song, Y. Zhou, J. Li, and X. Chen, “Study of the Multiwavelength DFB Semiconductor Laser Array Based on the Reconstruction-Equivalent-Chirp Technique,” J. Lightwave Technol. 31(20), 3243–3250 (2013).
    [Crossref]
  11. Y. Shi, B. Cao, L. Li, S. Tang, J. Zheng, P. Zhang, T. Chen, and S. Liu, “Study of multiwavelength DFB semiconductor laser array with asymmetric structures based on sampling technique,” Appl. Opt. 53(29), 6804–6811 (2014).
    [Crossref]
  12. V. Jayaraman, Z. M. Chuang, and A. Larry, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
    [Crossref]
  13. J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
    [Crossref]
  14. X. Jia, L. Wang, N. Zhuo, Z. Jia, J. Zhang, F. Liu, J. Liu, S. Zhai, and Z. Wang, “Single-mode quantum cascade laser at 5.1 µm with slotted refractive index modulation,” IEEE Photonics Technol. Lett. 29(22), 1959–1962 (2017).
    [Crossref]

2017 (1)

X. Jia, L. Wang, N. Zhuo, Z. Jia, J. Zhang, F. Liu, J. Liu, S. Zhai, and Z. Wang, “Single-mode quantum cascade laser at 5.1 µm with slotted refractive index modulation,” IEEE Photonics Technol. Lett. 29(22), 1959–1962 (2017).
[Crossref]

2014 (2)

Y. Shi, B. Cao, L. Li, S. Tang, J. Zheng, P. Zhang, T. Chen, and S. Liu, “Study of multiwavelength DFB semiconductor laser array with asymmetric structures based on sampling technique,” Appl. Opt. 53(29), 6804–6811 (2014).
[Crossref]

S. Bartalini, M. S. Vitiello, and P. De Natale, “Quantum cascade lasers: a versatile source for precise measurements in the mid/far-infrared range,” Meas. Sci. Technol. 25(1), 012001 (2014).
[Crossref]

2013 (2)

Y. Shi, S. Li, L. Li, R. Guo, T. Zhang, L. Rui, W. Li, L. Lu, T. Song, Y. Zhou, J. Li, and X. Chen, “Study of the Multiwavelength DFB Semiconductor Laser Array Based on the Reconstruction-Equivalent-Chirp Technique,” J. Lightwave Technol. 31(20), 3243–3250 (2013).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
[Crossref]

2012 (1)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

2011 (1)

O. K. Kwon, Y. A. Leem, D. H. Lee, C. W. Lee, Y. S. Baek, and Y. C. Chung, “Effects of asymmetric grating structures on output efficiency and single longitudinal mode operation in λ/4 shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

2004 (1)

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A Novel Distributed Feedback Fiber Laser Based on Equivalent Phase Shift,” IEEE Photonics Technol. Lett. 16(12), 2598–2600 (2004).
[Crossref]

1998 (1)

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
[Crossref]

1993 (2)

S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, and R. Schatz, “DFB Laser with Nonuniform Coupling Coefficient Realized by Double-Layer Buried Grating,” IEEE Photonics Technol. Lett. 5(10), 1128–1131 (1993).
[Crossref]

V. Jayaraman, Z. M. Chuang, and A. Larry, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

1987 (1)

H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, and S. Yamakoshi, “Stability on single longitudinal mode operation in CalnAsP/lnP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. 23(6), 804–814 (1987).
[Crossref]

1985 (1)

T. Matsuoka, Y. Yoshikuni, and G. Motosugi, “Dependence of single-longitudinal-mode probability on DFB laser facet structure,” Electron. Lett. 21(24), 1151–1152 (1985).
[Crossref]

Baek, Y. S.

O. K. Kwon, Y. A. Leem, D. H. Lee, C. W. Lee, Y. S. Baek, and Y. C. Chung, “Effects of asymmetric grating structures on output efficiency and single longitudinal mode operation in λ/4 shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

Bartalini, S.

S. Bartalini, M. S. Vitiello, and P. De Natale, “Quantum cascade lasers: a versatile source for precise measurements in the mid/far-infrared range,” Meas. Sci. Technol. 25(1), 012001 (2014).
[Crossref]

Cai, S.

Cao, B.

Capasso, F.

Chen, T.

Chen, X.

Cho, A. Y.

Chuang, Z. M.

V. Jayaraman, Z. M. Chuang, and A. Larry, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

Chung, Y. C.

O. K. Kwon, Y. A. Leem, D. H. Lee, C. W. Lee, Y. S. Baek, and Y. C. Chung, “Effects of asymmetric grating structures on output efficiency and single longitudinal mode operation in λ/4 shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

Dai, Y.

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A Novel Distributed Feedback Fiber Laser Based on Equivalent Phase Shift,” IEEE Photonics Technol. Lett. 16(12), 2598–2600 (2004).
[Crossref]

De Natale, P.

S. Bartalini, M. S. Vitiello, and P. De Natale, “Quantum cascade lasers: a versatile source for precise measurements in the mid/far-infrared range,” Meas. Sci. Technol. 25(1), 012001 (2014).
[Crossref]

Faist, J.

Gmachl, C.

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Guo, R.

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Ishikawa, H.

H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, and S. Yamakoshi, “Stability on single longitudinal mode operation in CalnAsP/lnP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. 23(6), 804–814 (1987).
[Crossref]

Jayaraman, V.

V. Jayaraman, Z. M. Chuang, and A. Larry, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

Jia, X.

X. Jia, L. Wang, N. Zhuo, Z. Jia, J. Zhang, F. Liu, J. Liu, S. Zhai, and Z. Wang, “Single-mode quantum cascade laser at 5.1 µm with slotted refractive index modulation,” IEEE Photonics Technol. Lett. 29(22), 1959–1962 (2017).
[Crossref]

Jia, Z.

X. Jia, L. Wang, N. Zhuo, Z. Jia, J. Zhang, F. Liu, J. Liu, S. Zhai, and Z. Wang, “Single-mode quantum cascade laser at 5.1 µm with slotted refractive index modulation,” IEEE Photonics Technol. Lett. 29(22), 1959–1962 (2017).
[Crossref]

Jiang, D.

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A Novel Distributed Feedback Fiber Laser Based on Equivalent Phase Shift,” IEEE Photonics Technol. Lett. 16(12), 2598–2600 (2004).
[Crossref]

Kjellberg, T.

S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, and R. Schatz, “DFB Laser with Nonuniform Coupling Coefficient Realized by Double-Layer Buried Grating,” IEEE Photonics Technol. Lett. 5(10), 1128–1131 (1993).
[Crossref]

Klinga, T.

S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, and R. Schatz, “DFB Laser with Nonuniform Coupling Coefficient Realized by Double-Layer Buried Grating,” IEEE Photonics Technol. Lett. 5(10), 1128–1131 (1993).
[Crossref]

Kotaki, Y.

H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, and S. Yamakoshi, “Stability on single longitudinal mode operation in CalnAsP/lnP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. 23(6), 804–814 (1987).
[Crossref]

Kwon, O. K.

O. K. Kwon, Y. A. Leem, D. H. Lee, C. W. Lee, Y. S. Baek, and Y. C. Chung, “Effects of asymmetric grating structures on output efficiency and single longitudinal mode operation in λ/4 shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

Larry, A.

V. Jayaraman, Z. M. Chuang, and A. Larry, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

Lee, C. W.

O. K. Kwon, Y. A. Leem, D. H. Lee, C. W. Lee, Y. S. Baek, and Y. C. Chung, “Effects of asymmetric grating structures on output efficiency and single longitudinal mode operation in λ/4 shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

Lee, D. H.

O. K. Kwon, Y. A. Leem, D. H. Lee, C. W. Lee, Y. S. Baek, and Y. C. Chung, “Effects of asymmetric grating structures on output efficiency and single longitudinal mode operation in λ/4 shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

Leem, Y. A.

O. K. Kwon, Y. A. Leem, D. H. Lee, C. W. Lee, Y. S. Baek, and Y. C. Chung, “Effects of asymmetric grating structures on output efficiency and single longitudinal mode operation in λ/4 shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

Li, J.

Li, L.

Li, S.

Li, W.

Liu, F.

X. Jia, L. Wang, N. Zhuo, Z. Jia, J. Zhang, F. Liu, J. Liu, S. Zhai, and Z. Wang, “Single-mode quantum cascade laser at 5.1 µm with slotted refractive index modulation,” IEEE Photonics Technol. Lett. 29(22), 1959–1962 (2017).
[Crossref]

Liu, F. Q.

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
[Crossref]

Liu, H.

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A Novel Distributed Feedback Fiber Laser Based on Equivalent Phase Shift,” IEEE Photonics Technol. Lett. 16(12), 2598–2600 (2004).
[Crossref]

Liu, J.

X. Jia, L. Wang, N. Zhuo, Z. Jia, J. Zhang, F. Liu, J. Liu, S. Zhai, and Z. Wang, “Single-mode quantum cascade laser at 5.1 µm with slotted refractive index modulation,” IEEE Photonics Technol. Lett. 29(22), 1959–1962 (2017).
[Crossref]

Liu, J. Q.

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
[Crossref]

Liu, S.

Lu, L.

Matsuoka, T.

T. Matsuoka, Y. Yoshikuni, and G. Motosugi, “Dependence of single-longitudinal-mode probability on DFB laser facet structure,” Electron. Lett. 21(24), 1151–1152 (1985).
[Crossref]

Motosugi, G.

T. Matsuoka, Y. Yoshikuni, and G. Motosugi, “Dependence of single-longitudinal-mode probability on DFB laser facet structure,” Electron. Lett. 21(24), 1151–1152 (1985).
[Crossref]

Namjou, K.

Nilsson, S.

S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, and R. Schatz, “DFB Laser with Nonuniform Coupling Coefficient Realized by Double-Layer Buried Grating,” IEEE Photonics Technol. Lett. 5(10), 1128–1131 (1993).
[Crossref]

Rui, L.

Schatz, R.

S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, and R. Schatz, “DFB Laser with Nonuniform Coupling Coefficient Realized by Double-Layer Buried Grating,” IEEE Photonics Technol. Lett. 5(10), 1128–1131 (1993).
[Crossref]

Shi, Y.

Sivco, D. L.

Soda, H.

H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, and S. Yamakoshi, “Stability on single longitudinal mode operation in CalnAsP/lnP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. 23(6), 804–814 (1987).
[Crossref]

Song, T.

Streubel, K.

S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, and R. Schatz, “DFB Laser with Nonuniform Coupling Coefficient Realized by Double-Layer Buried Grating,” IEEE Photonics Technol. Lett. 5(10), 1128–1131 (1993).
[Crossref]

Sudo, H.

H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, and S. Yamakoshi, “Stability on single longitudinal mode operation in CalnAsP/lnP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. 23(6), 804–814 (1987).
[Crossref]

Tang, S.

Vitiello, M. S.

S. Bartalini, M. S. Vitiello, and P. De Natale, “Quantum cascade lasers: a versatile source for precise measurements in the mid/far-infrared range,” Meas. Sci. Technol. 25(1), 012001 (2014).
[Crossref]

Wallin, J.

S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, and R. Schatz, “DFB Laser with Nonuniform Coupling Coefficient Realized by Double-Layer Buried Grating,” IEEE Photonics Technol. Lett. 5(10), 1128–1131 (1993).
[Crossref]

Wang, L.

X. Jia, L. Wang, N. Zhuo, Z. Jia, J. Zhang, F. Liu, J. Liu, S. Zhai, and Z. Wang, “Single-mode quantum cascade laser at 5.1 µm with slotted refractive index modulation,” IEEE Photonics Technol. Lett. 29(22), 1959–1962 (2017).
[Crossref]

Wang, L. J.

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
[Crossref]

Wang, Z.

X. Jia, L. Wang, N. Zhuo, Z. Jia, J. Zhang, F. Liu, J. Liu, S. Zhai, and Z. Wang, “Single-mode quantum cascade laser at 5.1 µm with slotted refractive index modulation,” IEEE Photonics Technol. Lett. 29(22), 1959–1962 (2017).
[Crossref]

Wang, Z. G.

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
[Crossref]

Whittaker, E. A.

Xie, S.

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A Novel Distributed Feedback Fiber Laser Based on Equivalent Phase Shift,” IEEE Photonics Technol. Lett. 16(12), 2598–2600 (2004).
[Crossref]

Yamakoshi, S.

H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, and S. Yamakoshi, “Stability on single longitudinal mode operation in CalnAsP/lnP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. 23(6), 804–814 (1987).
[Crossref]

Yao, D. Y.

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
[Crossref]

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Yoshikuni, Y.

T. Matsuoka, Y. Yoshikuni, and G. Motosugi, “Dependence of single-longitudinal-mode probability on DFB laser facet structure,” Electron. Lett. 21(24), 1151–1152 (1985).
[Crossref]

Zhai, S.

X. Jia, L. Wang, N. Zhuo, Z. Jia, J. Zhang, F. Liu, J. Liu, S. Zhai, and Z. Wang, “Single-mode quantum cascade laser at 5.1 µm with slotted refractive index modulation,” IEEE Photonics Technol. Lett. 29(22), 1959–1962 (2017).
[Crossref]

Zhang, J.

X. Jia, L. Wang, N. Zhuo, Z. Jia, J. Zhang, F. Liu, J. Liu, S. Zhai, and Z. Wang, “Single-mode quantum cascade laser at 5.1 µm with slotted refractive index modulation,” IEEE Photonics Technol. Lett. 29(22), 1959–1962 (2017).
[Crossref]

Zhang, J. C.

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
[Crossref]

Zhang, P.

Zhang, T.

Zheng, J.

Zhou, Y.

Zhuo, N.

X. Jia, L. Wang, N. Zhuo, Z. Jia, J. Zhang, F. Liu, J. Liu, S. Zhai, and Z. Wang, “Single-mode quantum cascade laser at 5.1 µm with slotted refractive index modulation,” IEEE Photonics Technol. Lett. 29(22), 1959–1962 (2017).
[Crossref]

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

T. Matsuoka, Y. Yoshikuni, and G. Motosugi, “Dependence of single-longitudinal-mode probability on DFB laser facet structure,” Electron. Lett. 21(24), 1151–1152 (1985).
[Crossref]

IEEE J. Quantum Electron. (3)

H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, and S. Yamakoshi, “Stability on single longitudinal mode operation in CalnAsP/lnP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. 23(6), 804–814 (1987).
[Crossref]

O. K. Kwon, Y. A. Leem, D. H. Lee, C. W. Lee, Y. S. Baek, and Y. C. Chung, “Effects of asymmetric grating structures on output efficiency and single longitudinal mode operation in λ/4 shifted DFB laser,” IEEE J. Quantum Electron. 47(9), 1185–1194 (2011).
[Crossref]

V. Jayaraman, Z. M. Chuang, and A. Larry, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

IEEE Photonics Technol. Lett. (3)

S. Nilsson, T. Kjellberg, T. Klinga, J. Wallin, K. Streubel, and R. Schatz, “DFB Laser with Nonuniform Coupling Coefficient Realized by Double-Layer Buried Grating,” IEEE Photonics Technol. Lett. 5(10), 1128–1131 (1993).
[Crossref]

D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, “A Novel Distributed Feedback Fiber Laser Based on Equivalent Phase Shift,” IEEE Photonics Technol. Lett. 16(12), 2598–2600 (2004).
[Crossref]

X. Jia, L. Wang, N. Zhuo, Z. Jia, J. Zhang, F. Liu, J. Liu, S. Zhai, and Z. Wang, “Single-mode quantum cascade laser at 5.1 µm with slotted refractive index modulation,” IEEE Photonics Technol. Lett. 29(22), 1959–1962 (2017).
[Crossref]

J. Appl. Phys. (1)

J. C. Zhang, F. Q. Liu, D. Y. Yao, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “High power buried sampled grating distributed feedback quantum cascade lasers,” J. Appl. Phys. 113(15), 153101 (2013).
[Crossref]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

S. Bartalini, M. S. Vitiello, and P. De Natale, “Quantum cascade lasers: a versatile source for precise measurements in the mid/far-infrared range,” Meas. Sci. Technol. 25(1), 012001 (2014).
[Crossref]

Nat. Photonics (1)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Opt. Lett. (1)

Science (1)

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Relation between Δn and the duty cycle for the 1st sampling order; (b)Relation between the reflectivity and the duty cycle with the length of 600µm for the equivalent front facet.
Fig. 2.
Fig. 2. Schematic diagram of the chirped sampling grating structure.
Fig. 3.
Fig. 3. SEM images of the sampled grating (a) in the chirped region; (b) in the uniform region.
Fig. 4.
Fig. 4. Output powers measured from the front and rear facets (black squares and red dots) and their ratios (blue triangles) for: (a) 10 lasers with 2 mm uniform region; (b) 10 lasers with 1 mm uniform region and 1 mm chirped region; (c) 10 lasers with 0.5 mm uniform region and 1.5 mm chirped region. Black dashes and red dotted lines represent for the average of the front facet maximum power and rear facet maximum power of the 10 lasers, respectively.
Fig. 5.
Fig. 5. (a) Calculated mirror loss as a function of wavelength for the lasers with 1 mm chirped region (red curve) and 1.5 mm chirped region (blue curve), respectively. The two adjacent minima (A and B) correspond to two modes for the laser with 1.5 mm chirped region; (b) The optical field distribution along the cavity for A mode; (c) The optical field distribution along the cavity for B mode.
Fig. 6.
Fig. 6. Characterization of #3 QCL with 1.5 mm chirped region and 0.5 mm uniform region: (a) the measured temperature-dependent spectra at different heat sink temperatures from 15-45 oC. The inset shows the tuning of the peak wavenumber with temperature; (b) the measured P-I-V curves. The red and blue lines are optical powers taken from the front and rear facets, respectively. The insert is the P-I-V curve of #3 QCL with 1 mm chirped region and 1 mm uniform region; (c) the far-field profile in ridge-width direction at the injection current of 600 mA.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

κ = π λ B Δ n + i Δ α 2
n ( x ) s ( x ) = + Δ n ( k m ) exp ( i k m x ) d k
Δ n ( k m ) = 1 2 π 0 L n ( x ) s ( x ) exp ( i k m x ) d x
s ( x ) = { 1 , N P < x N P + σ P 0 , N P + σ P < x ( N + 1 ) P ,   N = 0 , 1 , 2
k m = n e f f 2 π λ m = π ( 1 Λ 0 + m P ) ,   m = 0 , 1 , 2