Abstract

We performed ultra-multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopic imaging by using a CCD camera with a fast readout time (<1 ms). The ultra-multiplex CARS signal of a polystyrene bead was detected in the range 600–3600 cm-1 with resolution <10 cm-1. The pixel dwell time was approximately 1 ms, which was limited by the readout time of the CCD camera rather than the exposure time. CARS images of 161 × 161 pixels were obtained of the polymer beads with a total data-acquisition time of approximately 28 s even with the use of a cost-effective microchip laser source. Label-free and ultra-multiplex (18 colors) imaging of living cells was also performed with an effective exposure time of 1.8 ms based on the molecular fingerprint as well as the C-H and O-H stretching vibrational modes using a master oscillator fiber amplifier laser source.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-focus excitation coherent anti-Stokes Raman scattering (CARS) microscopy and its applications for real-time imaging

Takeo Minamikawa, Mamoru Hashimoto, Katsumasa Fujita, Satoshi Kawata, and Tsutomu Araki
Opt. Express 17(12) 9526-9536 (2009)

Compact and fully collinear light source for broadband multiplex CARS microscopy covering the fingerprint region

Hideharu Mikami, Manabu Shiozawa, Masataka Shirai, and Koichi Watanabe
Opt. Express 23(13) 17217-17222 (2015)

Three-color multiplex CARS for fast imaging and microspectroscopy in the entire CHn stretching vibrational region

Jae Yong Lee, Se-Hwa Kim, Dae Won Moon, and Eun Seong Lee
Opt. Express 17(25) 22281-22295 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
    [Crossref]
  2. H. Kano, “Molecular Spectroscopic Imaging Using a White-Light Laser Source,” Bull. Chem. Soc. Jpn. 83(7), 735–743 (2010).
    [Crossref]
  3. C. Zhang and J.-X. Cheng, “Perspective: Coherent Raman scattering microscopy, the future is bright,” APL Photonics 3(9), 090901 (2018).
    [Crossref]
  4. L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
    [Crossref]
  5. J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative Coherent Anti-Stokes Raman Scattering (CARS) Microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
    [Crossref]
  6. W. Min, C. W. Freudiger, S. J. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
    [Crossref]
  7. C. Y. Chung, J. Boik, and E. O. Potma, “Biomolecular Imaging with Coherent Nonlinear Vibrational Microscopy,” Annu. Rev. Phys. Chem. 64(1), 77–99 (2013).
    [Crossref]
  8. C. S. Liao and J. X. Cheng, “In Situ and In Vivo Molecular Analysis by Coherent Raman Scattering Microscopy,” Annu. Rev. Anal. Chem. 9(1), 69–93 (2016).
    [Crossref]
  9. C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
    [Crossref]
  10. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
    [Crossref]
  11. M. Muller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
    [Crossref]
  12. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004).
    [Crossref]
  13. H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500 cm(-1)) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
    [Crossref]
  14. G. I. Petrov and V. V. Yakovlev, “Enhancing red-shifted white-light continuum generation in optical fibers for applications in nonlinear Raman microscopy,” Opt. Express 13(4), 1299–1306 (2005).
    [Crossref]
  15. E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thogersen, and S. R. Keiding, “Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers,” J. Opt. Soc. Am. B 22(9), 1934–1938 (2005).
    [Crossref]
  16. C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues,” Nat. Photonics 8(8), 627–634 (2014).
    [Crossref]
  17. C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
    [Crossref]
  18. Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
    [Crossref]
  19. C.-S. Liao, K.-C. Huang, W. Hong, A. J. Chen, C. Karanja, P. Wang, G. Eakins, and J.-X. Cheng, “Stimulated Raman spectroscopic imaging by microsecond delay-line tuning,” Optica 3(12), 1377 (2016).
    [Crossref]
  20. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
    [Crossref]
  21. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(4), 480–482 (2006).
    [Crossref]
  22. K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6(1), 21036 (2016).
    [Crossref]
  23. K. Hashimoto, J. Omachi, and T. Ideguchi, “Ultra-broadband rapid-scan Fourier-transform CARS spectroscopy with sub-10-fs optical pulses,” Opt. Express 26(11), 14307–14314 (2018).
    [Crossref]
  24. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
    [Crossref]
  25. M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamaguchi, “Quantitative CARS Molecular Fingerprinting of Single Living Cells with the Use of the Maximum Entropy Method,” Angew. Chem. Int. Edit. 49(38), 6773–6777 (2010).
    [Crossref]
  26. K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Single-pulse coherent anti-Stokes Raman scattering microscopy employing an octave spanning pulse,” Opt. Express 17(14), 11259–11266 (2009).
    [Crossref]
  27. H. Segawa, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation),” Opt. Express 20(9), 9551–9557 (2012).
    [Crossref]
  28. H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, and H. Kano, “Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source,” J. Biophotonics 8(9), 705–713 (2015).
    [Crossref]
  29. C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Leveque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
    [Crossref]
  30. R. Vlijm, X. Li, M. Panic, D. Ruthnick, S. Hata, F. Herrmannsdorfer, T. Kuner, M. Heilemann, J. Engelhardt, S. W. Hell, and E. Schiebel, “STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles,” Proc. Natl. Acad. Sci. U. S. A. 115(10), E2246–E2253 (2018).
    [Crossref]
  31. T. Akiyama, A. Inoko, Y. Kaji, S. Yonemura, K. Kakiguchi, H. Segawa, K. Ishitsuka, M. Yoshida, O. Numata, P. Leproux, V. Couderc, T. Oshika, and H. Kano, “SHG-specificity of cellular Rootletin filaments enables naive imaging with universal conservation,” Sci. Rep. 7(1), 39967 (2017).
    [Crossref]
  32. H. Yoneyama, K. Sudo, P. Leproux, V. Couderc, A. Inoko, and H. Kano, “CARS molecular fingerprinting using sub-100-ps microchip laser source with fiber amplifier,” APL Photonics 3(9), 092408 (2018).
    [Crossref]
  33. M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Quantitative coherent anti-Stokes Raman scattering microspectroscopy using a nanosecond supercontinuum light source,” Opt. Fiber Technol. 18(5), 388–393 (2012).
    [Crossref]
  34. M. Lieber, G. Todaro, B. Smith, A. Szakal, and W. Nelson-Rees, “A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells,” Int. J. Cancer 17(1), 62–70 (1976).
    [Crossref]
  35. E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14(8), 3622–3630 (2006).
    [Crossref]
  36. H. W. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 108(9), 3809–3814 (2011).
    [Crossref]
  37. D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative Chemical Imaging with Multiplex Stimulated Raman Scattering Microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
    [Crossref]
  38. T. Shimanouchi, “Tables of molecular vibrational frequencies. Consolidated volume II,” J. Phys. Chem. Ref. Data 6(3), 993–1102 (1977).
    [Crossref]
  39. Q. Matthews, A. Brolo, J. Lum, X. Duan, and A. Jirasek, “Raman spectroscopy of single human tumour cells exposed to ionizing radiation in vitro,” Phys. Med. Biol. 56(1), 19–38 (2011).
    [Crossref]
  40. M. T. Cicerone and C. H. Camp, “Histological coherent Raman imaging: a prognostic review,” Analyst 143(1), 33–59 (2018).
    [Crossref]
  41. C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta, Part A 61(7), 1529–1535 (2005).
    [Crossref]
  42. B. W. Barry, H. G. M. Edwards, and A. C. Williams, “Fourier transform Raman and infrared vibrational study of human skin: Assignment of spectral bands,” J. Raman Spectrosc. 23(11), 641–645 (1992).
    [Crossref]
  43. H. Deng, V. A. Bloomfield, J. M. Benevides, and G. J. Thomas, “Dependence of the Raman signature of genomic B-DNA on nucleotide base sequence,” Biopolymers 50(6), 656–666 (1999).
    [Crossref]
  44. R. G. Snyder, H. L. Strauss, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains,” J. Phys. Chem. 86(26), 5145–5150 (1982).
    [Crossref]
  45. R. G. Snyder and J. R. Scherer, “Band structure in the C–H stretching region of the Raman spectrum of the extended polymethylene chain: Influence of Fermi resonance,” J. Chem. Phys. 71(8), 3221–3228 (1979).
    [Crossref]
  46. K. G. Brown, E. Bicknell-Brown, and M. Ladjadj, “Raman-active bands sensitive to motion and conformation at the chain termini and backbones of alkanes and lipids,” J. Phys. Chem. 91(12), 3436–3442 (1987).
    [Crossref]
  47. M. Ando and H. Hamaguchi, “Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra,” J. Biomed. Opt. 19(1), 011016 (2014).
    [Crossref]

2018 (5)

C. Zhang and J.-X. Cheng, “Perspective: Coherent Raman scattering microscopy, the future is bright,” APL Photonics 3(9), 090901 (2018).
[Crossref]

K. Hashimoto, J. Omachi, and T. Ideguchi, “Ultra-broadband rapid-scan Fourier-transform CARS spectroscopy with sub-10-fs optical pulses,” Opt. Express 26(11), 14307–14314 (2018).
[Crossref]

R. Vlijm, X. Li, M. Panic, D. Ruthnick, S. Hata, F. Herrmannsdorfer, T. Kuner, M. Heilemann, J. Engelhardt, S. W. Hell, and E. Schiebel, “STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles,” Proc. Natl. Acad. Sci. U. S. A. 115(10), E2246–E2253 (2018).
[Crossref]

H. Yoneyama, K. Sudo, P. Leproux, V. Couderc, A. Inoko, and H. Kano, “CARS molecular fingerprinting using sub-100-ps microchip laser source with fiber amplifier,” APL Photonics 3(9), 092408 (2018).
[Crossref]

M. T. Cicerone and C. H. Camp, “Histological coherent Raman imaging: a prognostic review,” Analyst 143(1), 33–59 (2018).
[Crossref]

2017 (2)

T. Akiyama, A. Inoko, Y. Kaji, S. Yonemura, K. Kakiguchi, H. Segawa, K. Ishitsuka, M. Yoshida, O. Numata, P. Leproux, V. Couderc, T. Oshika, and H. Kano, “SHG-specificity of cellular Rootletin filaments enables naive imaging with universal conservation,” Sci. Rep. 7(1), 39967 (2017).
[Crossref]

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

2016 (4)

C. S. Liao and J. X. Cheng, “In Situ and In Vivo Molecular Analysis by Coherent Raman Scattering Microscopy,” Annu. Rev. Anal. Chem. 9(1), 69–93 (2016).
[Crossref]

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6(1), 21036 (2016).
[Crossref]

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Leveque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref]

C.-S. Liao, K.-C. Huang, W. Hong, A. J. Chen, C. Karanja, P. Wang, G. Eakins, and J.-X. Cheng, “Stimulated Raman spectroscopic imaging by microsecond delay-line tuning,” Optica 3(12), 1377 (2016).
[Crossref]

2015 (3)

H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, and H. Kano, “Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source,” J. Biophotonics 8(9), 705–713 (2015).
[Crossref]

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

J. X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref]

2014 (2)

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

M. Ando and H. Hamaguchi, “Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra,” J. Biomed. Opt. 19(1), 011016 (2014).
[Crossref]

2013 (2)

C. Y. Chung, J. Boik, and E. O. Potma, “Biomolecular Imaging with Coherent Nonlinear Vibrational Microscopy,” Annu. Rev. Phys. Chem. 64(1), 77–99 (2013).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

2012 (4)

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

H. Segawa, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation),” Opt. Express 20(9), 9551–9557 (2012).
[Crossref]

M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Quantitative coherent anti-Stokes Raman scattering microspectroscopy using a nanosecond supercontinuum light source,” Opt. Fiber Technol. 18(5), 388–393 (2012).
[Crossref]

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative Chemical Imaging with Multiplex Stimulated Raman Scattering Microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref]

2011 (5)

H. W. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 108(9), 3809–3814 (2011).
[Crossref]

Q. Matthews, A. Brolo, J. Lum, X. Duan, and A. Jirasek, “Raman spectroscopy of single human tumour cells exposed to ionizing radiation in vitro,” Phys. Med. Biol. 56(1), 19–38 (2011).
[Crossref]

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref]

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative Coherent Anti-Stokes Raman Scattering (CARS) Microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[Crossref]

W. Min, C. W. Freudiger, S. J. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref]

2010 (2)

H. Kano, “Molecular Spectroscopic Imaging Using a White-Light Laser Source,” Bull. Chem. Soc. Jpn. 83(7), 735–743 (2010).
[Crossref]

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamaguchi, “Quantitative CARS Molecular Fingerprinting of Single Living Cells with the Use of the Maximum Entropy Method,” Angew. Chem. Int. Edit. 49(38), 6773–6777 (2010).
[Crossref]

2009 (1)

2006 (2)

2005 (4)

C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta, Part A 61(7), 1529–1535 (2005).
[Crossref]

H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500 cm(-1)) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[Crossref]

G. I. Petrov and V. V. Yakovlev, “Enhancing red-shifted white-light continuum generation in optical fibers for applications in nonlinear Raman microscopy,” Opt. Express 13(4), 1299–1306 (2005).
[Crossref]

E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thogersen, and S. R. Keiding, “Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers,” J. Opt. Soc. Am. B 22(9), 1934–1938 (2005).
[Crossref]

2004 (2)

T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004).
[Crossref]

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

2002 (2)

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[Crossref]

M. Muller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[Crossref]

1999 (1)

H. Deng, V. A. Bloomfield, J. M. Benevides, and G. J. Thomas, “Dependence of the Raman signature of genomic B-DNA on nucleotide base sequence,” Biopolymers 50(6), 656–666 (1999).
[Crossref]

1992 (1)

B. W. Barry, H. G. M. Edwards, and A. C. Williams, “Fourier transform Raman and infrared vibrational study of human skin: Assignment of spectral bands,” J. Raman Spectrosc. 23(11), 641–645 (1992).
[Crossref]

1987 (1)

K. G. Brown, E. Bicknell-Brown, and M. Ladjadj, “Raman-active bands sensitive to motion and conformation at the chain termini and backbones of alkanes and lipids,” J. Phys. Chem. 91(12), 3436–3442 (1987).
[Crossref]

1982 (1)

R. G. Snyder, H. L. Strauss, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains,” J. Phys. Chem. 86(26), 5145–5150 (1982).
[Crossref]

1979 (1)

R. G. Snyder and J. R. Scherer, “Band structure in the C–H stretching region of the Raman spectrum of the extended polymethylene chain: Influence of Fermi resonance,” J. Chem. Phys. 71(8), 3221–3228 (1979).
[Crossref]

1977 (1)

T. Shimanouchi, “Tables of molecular vibrational frequencies. Consolidated volume II,” J. Phys. Chem. Ref. Data 6(3), 993–1102 (1977).
[Crossref]

1976 (1)

M. Lieber, G. Todaro, B. Smith, A. Szakal, and W. Nelson-Rees, “A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells,” Int. J. Cancer 17(1), 62–70 (1976).
[Crossref]

Akiyama, T.

T. Akiyama, A. Inoko, Y. Kaji, S. Yonemura, K. Kakiguchi, H. Segawa, K. Ishitsuka, M. Yoshida, O. Numata, P. Leproux, V. Couderc, T. Oshika, and H. Kano, “SHG-specificity of cellular Rootletin filaments enables naive imaging with universal conservation,” Sci. Rep. 7(1), 39967 (2017).
[Crossref]

Alexandrou, A.

Ando, M.

M. Ando and H. Hamaguchi, “Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra,” J. Biomed. Opt. 19(1), 011016 (2014).
[Crossref]

Andresen, E. R.

Anzalone, A. V.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

Barry, B. W.

B. W. Barry, H. G. M. Edwards, and A. C. Williams, “Fourier transform Raman and infrared vibrational study of human skin: Assignment of spectral bands,” J. Raman Spectrosc. 23(11), 641–645 (1992).
[Crossref]

Beaurepaire, E.

Benevides, J. M.

H. Deng, V. A. Bloomfield, J. M. Benevides, and G. J. Thomas, “Dependence of the Raman signature of genomic B-DNA on nucleotide base sequence,” Biopolymers 50(6), 656–666 (1999).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Bicknell-Brown, E.

K. G. Brown, E. Bicknell-Brown, and M. Ladjadj, “Raman-active bands sensitive to motion and conformation at the chain termini and backbones of alkanes and lipids,” J. Phys. Chem. 91(12), 3436–3442 (1987).
[Crossref]

Birkedal, V.

Blanquet, V.

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Leveque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref]

Bloomfield, V. A.

H. Deng, V. A. Bloomfield, J. M. Benevides, and G. J. Thomas, “Dependence of the Raman signature of genomic B-DNA on nucleotide base sequence,” Biopolymers 50(6), 656–666 (1999).
[Crossref]

Boik, J.

C. Y. Chung, J. Boik, and E. O. Potma, “Biomolecular Imaging with Coherent Nonlinear Vibrational Microscopy,” Annu. Rev. Phys. Chem. 64(1), 77–99 (2013).
[Crossref]

Bonn, M.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative Coherent Anti-Stokes Raman Scattering (CARS) Microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[Crossref]

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamaguchi, “Quantitative CARS Molecular Fingerprinting of Single Living Cells with the Use of the Maximum Entropy Method,” Angew. Chem. Int. Edit. 49(38), 6773–6777 (2010).
[Crossref]

E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14(8), 3622–3630 (2006).
[Crossref]

Book, L. D.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[Crossref]

Brolo, A.

Q. Matthews, A. Brolo, J. Lum, X. Duan, and A. Jirasek, “Raman spectroscopy of single human tumour cells exposed to ionizing radiation in vitro,” Phys. Med. Biol. 56(1), 19–38 (2011).
[Crossref]

Brown, K. G.

K. G. Brown, E. Bicknell-Brown, and M. Ladjadj, “Raman-active bands sensitive to motion and conformation at the chain termini and backbones of alkanes and lipids,” J. Phys. Chem. 91(12), 3436–3442 (1987).
[Crossref]

Camp, C. H.

M. T. Cicerone and C. H. Camp, “Histological coherent Raman imaging: a prognostic review,” Analyst 143(1), 33–59 (2018).
[Crossref]

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

Chen, A. J.

Chen, Z.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

Cheng, J. X.

C. S. Liao and J. X. Cheng, “In Situ and In Vivo Molecular Analysis by Coherent Raman Scattering Microscopy,” Annu. Rev. Anal. Chem. 9(1), 69–93 (2016).
[Crossref]

J. X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[Crossref]

Cheng, J.-X.

Chung, C. Y.

C. Y. Chung, J. Boik, and E. O. Potma, “Biomolecular Imaging with Coherent Nonlinear Vibrational Microscopy,” Annu. Rev. Phys. Chem. 64(1), 77–99 (2013).
[Crossref]

Cicerone, M. T.

M. T. Cicerone and C. H. Camp, “Histological coherent Raman imaging: a prognostic review,” Analyst 143(1), 33–59 (2018).
[Crossref]

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004).
[Crossref]

Cornish, V. W.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

Couderc, V.

H. Yoneyama, K. Sudo, P. Leproux, V. Couderc, A. Inoko, and H. Kano, “CARS molecular fingerprinting using sub-100-ps microchip laser source with fiber amplifier,” APL Photonics 3(9), 092408 (2018).
[Crossref]

T. Akiyama, A. Inoko, Y. Kaji, S. Yonemura, K. Kakiguchi, H. Segawa, K. Ishitsuka, M. Yoshida, O. Numata, P. Leproux, V. Couderc, T. Oshika, and H. Kano, “SHG-specificity of cellular Rootletin filaments enables naive imaging with universal conservation,” Sci. Rep. 7(1), 39967 (2017).
[Crossref]

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Leveque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref]

H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, and H. Kano, “Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source,” J. Biophotonics 8(9), 705–713 (2015).
[Crossref]

M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Quantitative coherent anti-Stokes Raman scattering microspectroscopy using a nanosecond supercontinuum light source,” Opt. Fiber Technol. 18(5), 388–393 (2012).
[Crossref]

H. Segawa, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation),” Opt. Express 20(9), 9551–9557 (2012).
[Crossref]

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamaguchi, “Quantitative CARS Molecular Fingerprinting of Single Living Cells with the Use of the Maximum Entropy Method,” Angew. Chem. Int. Edit. 49(38), 6773–6777 (2010).
[Crossref]

Dantus, M.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref]

Day, J. P. R.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative Coherent Anti-Stokes Raman Scattering (CARS) Microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[Crossref]

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamaguchi, “Quantitative CARS Molecular Fingerprinting of Single Living Cells with the Use of the Maximum Entropy Method,” Angew. Chem. Int. Edit. 49(38), 6773–6777 (2010).
[Crossref]

Deng, H.

H. Deng, V. A. Bloomfield, J. M. Benevides, and G. J. Thomas, “Dependence of the Raman signature of genomic B-DNA on nucleotide base sequence,” Biopolymers 50(6), 656–666 (1999).
[Crossref]

Domke, K. F.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative Coherent Anti-Stokes Raman Scattering (CARS) Microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[Crossref]

Duan, X.

Q. Matthews, A. Brolo, J. Lum, X. Duan, and A. Jirasek, “Raman spectroscopy of single human tumour cells exposed to ionizing radiation in vitro,” Phys. Med. Biol. 56(1), 19–38 (2011).
[Crossref]

Eakins, G.

Edwards, H. G. M.

B. W. Barry, H. G. M. Edwards, and A. C. Williams, “Fourier transform Raman and infrared vibrational study of human skin: Assignment of spectral bands,” J. Raman Spectrosc. 23(11), 641–645 (1992).
[Crossref]

Elliger, C. A.

R. G. Snyder, H. L. Strauss, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains,” J. Phys. Chem. 86(26), 5145–5150 (1982).
[Crossref]

Enejder, A. M. K.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Engelhardt, J.

R. Vlijm, X. Li, M. Panic, D. Ruthnick, S. Hata, F. Herrmannsdorfer, T. Kuner, M. Heilemann, J. Engelhardt, S. W. Hell, and E. Schiebel, “STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles,” Proc. Natl. Acad. Sci. U. S. A. 115(10), E2246–E2253 (2018).
[Crossref]

Freudiger, C.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative Chemical Imaging with Multiplex Stimulated Raman Scattering Microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref]

Freudiger, C. W.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref]

W. Min, C. W. Freudiger, S. J. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref]

Fu, D.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative Chemical Imaging with Multiplex Stimulated Raman Scattering Microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref]

Fukui, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Goda, K.

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6(1), 21036 (2016).
[Crossref]

Guelachvili, G.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Hamaguchi, H.

M. Ando and H. Hamaguchi, “Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra,” J. Biomed. Opt. 19(1), 011016 (2014).
[Crossref]

H. Segawa, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation),” Opt. Express 20(9), 9551–9557 (2012).
[Crossref]

M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Quantitative coherent anti-Stokes Raman scattering microspectroscopy using a nanosecond supercontinuum light source,” Opt. Fiber Technol. 18(5), 388–393 (2012).
[Crossref]

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative Coherent Anti-Stokes Raman Scattering (CARS) Microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[Crossref]

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamaguchi, “Quantitative CARS Molecular Fingerprinting of Single Living Cells with the Use of the Maximum Entropy Method,” Angew. Chem. Int. Edit. 49(38), 6773–6777 (2010).
[Crossref]

H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500 cm(-1)) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[Crossref]

Hansch, T. W.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Hartshorn, C. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

Hashimoto, H.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Single-pulse coherent anti-Stokes Raman scattering microscopy employing an octave spanning pulse,” Opt. Express 17(14), 11259–11266 (2009).
[Crossref]

Hashimoto, K.

K. Hashimoto, J. Omachi, and T. Ideguchi, “Ultra-broadband rapid-scan Fourier-transform CARS spectroscopy with sub-10-fs optical pulses,” Opt. Express 26(11), 14307–14314 (2018).
[Crossref]

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6(1), 21036 (2016).
[Crossref]

Hata, S.

R. Vlijm, X. Li, M. Panic, D. Ruthnick, S. Hata, F. Herrmannsdorfer, T. Kuner, M. Heilemann, J. Engelhardt, S. W. Hell, and E. Schiebel, “STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles,” Proc. Natl. Acad. Sci. U. S. A. 115(10), E2246–E2253 (2018).
[Crossref]

Heddleston, J. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

Heilemann, M.

R. Vlijm, X. Li, M. Panic, D. Ruthnick, S. Hata, F. Herrmannsdorfer, T. Kuner, M. Heilemann, J. Engelhardt, S. W. Hell, and E. Schiebel, “STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles,” Proc. Natl. Acad. Sci. U. S. A. 115(10), E2246–E2253 (2018).
[Crossref]

Hell, S. W.

R. Vlijm, X. Li, M. Panic, D. Ruthnick, S. Hata, F. Herrmannsdorfer, T. Kuner, M. Heilemann, J. Engelhardt, S. W. Hell, and E. Schiebel, “STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles,” Proc. Natl. Acad. Sci. U. S. A. 115(10), E2246–E2253 (2018).
[Crossref]

Hellerer, T.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Herrmannsdorfer, F.

R. Vlijm, X. Li, M. Panic, D. Ruthnick, S. Hata, F. Herrmannsdorfer, T. Kuner, M. Heilemann, J. Engelhardt, S. W. Hell, and E. Schiebel, “STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles,” Proc. Natl. Acad. Sci. U. S. A. 115(10), E2246–E2253 (2018).
[Crossref]

Hight Walker, A. R.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

Holtom, G.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative Chemical Imaging with Multiplex Stimulated Raman Scattering Microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref]

Holtom, G. R.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Hong, W.

Hu, F.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

Huang, K.-C.

Ideguchi, T.

K. Hashimoto, J. Omachi, and T. Ideguchi, “Ultra-broadband rapid-scan Fourier-transform CARS spectroscopy with sub-10-fs optical pulses,” Opt. Express 26(11), 14307–14314 (2018).
[Crossref]

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6(1), 21036 (2016).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Inoko, A.

H. Yoneyama, K. Sudo, P. Leproux, V. Couderc, A. Inoko, and H. Kano, “CARS molecular fingerprinting using sub-100-ps microchip laser source with fiber amplifier,” APL Photonics 3(9), 092408 (2018).
[Crossref]

T. Akiyama, A. Inoko, Y. Kaji, S. Yonemura, K. Kakiguchi, H. Segawa, K. Ishitsuka, M. Yoshida, O. Numata, P. Leproux, V. Couderc, T. Oshika, and H. Kano, “SHG-specificity of cellular Rootletin filaments enables naive imaging with universal conservation,” Sci. Rep. 7(1), 39967 (2017).
[Crossref]

Ishitsuka, K.

T. Akiyama, A. Inoko, Y. Kaji, S. Yonemura, K. Kakiguchi, H. Segawa, K. Ishitsuka, M. Yoshida, O. Numata, P. Leproux, V. Couderc, T. Oshika, and H. Kano, “SHG-specificity of cellular Rootletin filaments enables naive imaging with universal conservation,” Sci. Rep. 7(1), 39967 (2017).
[Crossref]

Isobe, K.

Itoh, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Jirasek, A.

Q. Matthews, A. Brolo, J. Lum, X. Duan, and A. Jirasek, “Raman spectroscopy of single human tumour cells exposed to ionizing radiation in vitro,” Phys. Med. Biol. 56(1), 19–38 (2011).
[Crossref]

Joffre, M.

Kaji, Y.

T. Akiyama, A. Inoko, Y. Kaji, S. Yonemura, K. Kakiguchi, H. Segawa, K. Ishitsuka, M. Yoshida, O. Numata, P. Leproux, V. Couderc, T. Oshika, and H. Kano, “SHG-specificity of cellular Rootletin filaments enables naive imaging with universal conservation,” Sci. Rep. 7(1), 39967 (2017).
[Crossref]

H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, and H. Kano, “Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source,” J. Biophotonics 8(9), 705–713 (2015).
[Crossref]

Kakiguchi, K.

T. Akiyama, A. Inoko, Y. Kaji, S. Yonemura, K. Kakiguchi, H. Segawa, K. Ishitsuka, M. Yoshida, O. Numata, P. Leproux, V. Couderc, T. Oshika, and H. Kano, “SHG-specificity of cellular Rootletin filaments enables naive imaging with universal conservation,” Sci. Rep. 7(1), 39967 (2017).
[Crossref]

Kannari, F.

Kano, H.

H. Yoneyama, K. Sudo, P. Leproux, V. Couderc, A. Inoko, and H. Kano, “CARS molecular fingerprinting using sub-100-ps microchip laser source with fiber amplifier,” APL Photonics 3(9), 092408 (2018).
[Crossref]

T. Akiyama, A. Inoko, Y. Kaji, S. Yonemura, K. Kakiguchi, H. Segawa, K. Ishitsuka, M. Yoshida, O. Numata, P. Leproux, V. Couderc, T. Oshika, and H. Kano, “SHG-specificity of cellular Rootletin filaments enables naive imaging with universal conservation,” Sci. Rep. 7(1), 39967 (2017).
[Crossref]

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Leveque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref]

H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, and H. Kano, “Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source,” J. Biophotonics 8(9), 705–713 (2015).
[Crossref]

M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Quantitative coherent anti-Stokes Raman scattering microspectroscopy using a nanosecond supercontinuum light source,” Opt. Fiber Technol. 18(5), 388–393 (2012).
[Crossref]

H. Segawa, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation),” Opt. Express 20(9), 9551–9557 (2012).
[Crossref]

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative Coherent Anti-Stokes Raman Scattering (CARS) Microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[Crossref]

H. Kano, “Molecular Spectroscopic Imaging Using a White-Light Laser Source,” Bull. Chem. Soc. Jpn. 83(7), 735–743 (2010).
[Crossref]

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamaguchi, “Quantitative CARS Molecular Fingerprinting of Single Living Cells with the Use of the Maximum Entropy Method,” Angew. Chem. Int. Edit. 49(38), 6773–6777 (2010).
[Crossref]

H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500 cm(-1)) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[Crossref]

Karanja, C.

Kawano, H.

Kee, T. W.

Keiding, S. R.

Krafft, C.

C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta, Part A 61(7), 1529–1535 (2005).
[Crossref]

Kuner, T.

R. Vlijm, X. Li, M. Panic, D. Ruthnick, S. Hata, F. Herrmannsdorfer, T. Kuner, M. Heilemann, J. Engelhardt, S. W. Hell, and E. Schiebel, “STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles,” Proc. Natl. Acad. Sci. U. S. A. 115(10), E2246–E2253 (2018).
[Crossref]

Ladjadj, M.

K. G. Brown, E. Bicknell-Brown, and M. Ladjadj, “Raman-active bands sensitive to motion and conformation at the chain termini and backbones of alkanes and lipids,” J. Phys. Chem. 91(12), 3436–3442 (1987).
[Crossref]

Lathia, J. D.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

Lee, Y. J.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

Lefort, C.

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Leveque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref]

Leproux, P.

H. Yoneyama, K. Sudo, P. Leproux, V. Couderc, A. Inoko, and H. Kano, “CARS molecular fingerprinting using sub-100-ps microchip laser source with fiber amplifier,” APL Photonics 3(9), 092408 (2018).
[Crossref]

T. Akiyama, A. Inoko, Y. Kaji, S. Yonemura, K. Kakiguchi, H. Segawa, K. Ishitsuka, M. Yoshida, O. Numata, P. Leproux, V. Couderc, T. Oshika, and H. Kano, “SHG-specificity of cellular Rootletin filaments enables naive imaging with universal conservation,” Sci. Rep. 7(1), 39967 (2017).
[Crossref]

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Leveque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref]

H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, and H. Kano, “Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source,” J. Biophotonics 8(9), 705–713 (2015).
[Crossref]

M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Quantitative coherent anti-Stokes Raman scattering microspectroscopy using a nanosecond supercontinuum light source,” Opt. Fiber Technol. 18(5), 388–393 (2012).
[Crossref]

H. Segawa, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation),” Opt. Express 20(9), 9551–9557 (2012).
[Crossref]

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamaguchi, “Quantitative CARS Molecular Fingerprinting of Single Living Cells with the Use of the Maximum Entropy Method,” Angew. Chem. Int. Edit. 49(38), 6773–6777 (2010).
[Crossref]

Leveque, P.

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Leveque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref]

Li, X.

R. Vlijm, X. Li, M. Panic, D. Ruthnick, S. Hata, F. Herrmannsdorfer, T. Kuner, M. Heilemann, J. Engelhardt, S. W. Hell, and E. Schiebel, “STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles,” Proc. Natl. Acad. Sci. U. S. A. 115(10), E2246–E2253 (2018).
[Crossref]

Liao, C. S.

C. S. Liao and J. X. Cheng, “In Situ and In Vivo Molecular Analysis by Coherent Raman Scattering Microscopy,” Annu. Rev. Anal. Chem. 9(1), 69–93 (2016).
[Crossref]

Liao, C.-S.

Lieber, M.

M. Lieber, G. Todaro, B. Smith, A. Szakal, and W. Nelson-Rees, “A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells,” Int. J. Cancer 17(1), 62–70 (1976).
[Crossref]

Long, R.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

Lu, F. K.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative Chemical Imaging with Multiplex Stimulated Raman Scattering Microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref]

Lu, S. J.

W. Min, C. W. Freudiger, S. J. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref]

Lum, J.

Q. Matthews, A. Brolo, J. Lum, X. Duan, and A. Jirasek, “Raman spectroscopy of single human tumour cells exposed to ionizing radiation in vitro,” Phys. Med. Biol. 56(1), 19–38 (2011).
[Crossref]

Magnol, L.

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Leveque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref]

Matthews, Q.

Q. Matthews, A. Brolo, J. Lum, X. Duan, and A. Jirasek, “Raman spectroscopy of single human tumour cells exposed to ionizing radiation in vitro,” Phys. Med. Biol. 56(1), 19–38 (2011).
[Crossref]

Midorikawa, K.

Min, W.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

W. Min, C. W. Freudiger, S. J. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref]

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref]

Miyawaki, A.

Mizuno, H.

Muller, M.

M. Muller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[Crossref]

Müller, M.

Nelson-Rees, W.

M. Lieber, G. Todaro, B. Smith, A. Szakal, and W. Nelson-Rees, “A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells,” Int. J. Cancer 17(1), 62–70 (1976).
[Crossref]

Neudert, L.

C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta, Part A 61(7), 1529–1535 (2005).
[Crossref]

Nishizawa, N.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Numata, O.

T. Akiyama, A. Inoko, Y. Kaji, S. Yonemura, K. Kakiguchi, H. Segawa, K. Ishitsuka, M. Yoshida, O. Numata, P. Leproux, V. Couderc, T. Oshika, and H. Kano, “SHG-specificity of cellular Rootletin filaments enables naive imaging with universal conservation,” Sci. Rep. 7(1), 39967 (2017).
[Crossref]

O’Connor, R. P.

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Leveque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref]

Ogilvie, J. P.

Okuno, M.

H. Segawa, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation),” Opt. Express 20(9), 9551–9557 (2012).
[Crossref]

M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Quantitative coherent anti-Stokes Raman scattering microspectroscopy using a nanosecond supercontinuum light source,” Opt. Fiber Technol. 18(5), 388–393 (2012).
[Crossref]

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamaguchi, “Quantitative CARS Molecular Fingerprinting of Single Living Cells with the Use of the Maximum Entropy Method,” Angew. Chem. Int. Edit. 49(38), 6773–6777 (2010).
[Crossref]

Oliver, A. E.

H. W. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 108(9), 3809–3814 (2011).
[Crossref]

Omachi, J.

Oshika, T.

T. Akiyama, A. Inoko, Y. Kaji, S. Yonemura, K. Kakiguchi, H. Segawa, K. Ishitsuka, M. Yoshida, O. Numata, P. Leproux, V. Couderc, T. Oshika, and H. Kano, “SHG-specificity of cellular Rootletin filaments enables naive imaging with universal conservation,” Sci. Rep. 7(1), 39967 (2017).
[Crossref]

H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, and H. Kano, “Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source,” J. Biophotonics 8(9), 705–713 (2015).
[Crossref]

Otsuka, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Ozawa, T.

H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, and H. Kano, “Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source,” J. Biophotonics 8(9), 705–713 (2015).
[Crossref]

Ozeki, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Panic, M.

R. Vlijm, X. Li, M. Panic, D. Ruthnick, S. Hata, F. Herrmannsdorfer, T. Kuner, M. Heilemann, J. Engelhardt, S. W. Hell, and E. Schiebel, “STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles,” Proc. Natl. Acad. Sci. U. S. A. 115(10), E2246–E2253 (2018).
[Crossref]

Parikh, A. N.

H. W. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 108(9), 3809–3814 (2011).
[Crossref]

Paulsen, H. N.

Pernik, D. R.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative Chemical Imaging with Multiplex Stimulated Raman Scattering Microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref]

Petrov, G. I.

Picque, N.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Potma, E. O.

C. Y. Chung, J. Boik, and E. O. Potma, “Biomolecular Imaging with Coherent Nonlinear Vibrational Microscopy,” Annu. Rev. Phys. Chem. 64(1), 77–99 (2013).
[Crossref]

Rago, G.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative Coherent Anti-Stokes Raman Scattering (CARS) Microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[Crossref]

Rich, J. N.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

Rinia, H. A.

Ruthnick, D.

R. Vlijm, X. Li, M. Panic, D. Ruthnick, S. Hata, F. Herrmannsdorfer, T. Kuner, M. Heilemann, J. Engelhardt, S. W. Hell, and E. Schiebel, “STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles,” Proc. Natl. Acad. Sci. U. S. A. 115(10), E2246–E2253 (2018).
[Crossref]

Salzer, R.

C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta, Part A 61(7), 1529–1535 (2005).
[Crossref]

Satoh, S.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Scherer, J. R.

R. G. Snyder and J. R. Scherer, “Band structure in the C–H stretching region of the Raman spectrum of the extended polymethylene chain: Influence of Fermi resonance,” J. Chem. Phys. 71(8), 3221–3228 (1979).
[Crossref]

Schiebel, E.

R. Vlijm, X. Li, M. Panic, D. Ruthnick, S. Hata, F. Herrmannsdorfer, T. Kuner, M. Heilemann, J. Engelhardt, S. W. Hell, and E. Schiebel, “STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles,” Proc. Natl. Acad. Sci. U. S. A. 115(10), E2246–E2253 (2018).
[Crossref]

Schins, J. M.

M. Muller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[Crossref]

Segawa, H.

T. Akiyama, A. Inoko, Y. Kaji, S. Yonemura, K. Kakiguchi, H. Segawa, K. Ishitsuka, M. Yoshida, O. Numata, P. Leproux, V. Couderc, T. Oshika, and H. Kano, “SHG-specificity of cellular Rootletin filaments enables naive imaging with universal conservation,” Sci. Rep. 7(1), 39967 (2017).
[Crossref]

H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, and H. Kano, “Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source,” J. Biophotonics 8(9), 705–713 (2015).
[Crossref]

H. Segawa, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation),” Opt. Express 20(9), 9551–9557 (2012).
[Crossref]

Shi, L.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

Shimanouchi, T.

T. Shimanouchi, “Tables of molecular vibrational frequencies. Consolidated volume II,” J. Phys. Chem. Ref. Data 6(3), 993–1102 (1977).
[Crossref]

Simat, T.

C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta, Part A 61(7), 1529–1535 (2005).
[Crossref]

Simmons, B. A.

H. W. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 108(9), 3809–3814 (2011).
[Crossref]

Singh, S.

H. W. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 108(9), 3809–3814 (2011).
[Crossref]

Smith, B.

M. Lieber, G. Todaro, B. Smith, A. Szakal, and W. Nelson-Rees, “A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells,” Int. J. Cancer 17(1), 62–70 (1976).
[Crossref]

Snyder, R. G.

R. G. Snyder, H. L. Strauss, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains,” J. Phys. Chem. 86(26), 5145–5150 (1982).
[Crossref]

R. G. Snyder and J. R. Scherer, “Band structure in the C–H stretching region of the Raman spectrum of the extended polymethylene chain: Influence of Fermi resonance,” J. Chem. Phys. 71(8), 3221–3228 (1979).
[Crossref]

Strauss, H. L.

R. G. Snyder, H. L. Strauss, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains,” J. Phys. Chem. 86(26), 5145–5150 (1982).
[Crossref]

Suda, A.

Sudo, K.

H. Yoneyama, K. Sudo, P. Leproux, V. Couderc, A. Inoko, and H. Kano, “CARS molecular fingerprinting using sub-100-ps microchip laser source with fiber amplifier,” APL Photonics 3(9), 092408 (2018).
[Crossref]

Sumimura, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Szakal, A.

M. Lieber, G. Todaro, B. Smith, A. Szakal, and W. Nelson-Rees, “A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells,” Int. J. Cancer 17(1), 62–70 (1976).
[Crossref]

Takahashi, M.

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6(1), 21036 (2016).
[Crossref]

Tanaka, M.

Thogersen, J.

Thomas, G. J.

H. Deng, V. A. Bloomfield, J. M. Benevides, and G. J. Thomas, “Dependence of the Raman signature of genomic B-DNA on nucleotide base sequence,” Biopolymers 50(6), 656–666 (1999).
[Crossref]

Todaro, G.

M. Lieber, G. Todaro, B. Smith, A. Szakal, and W. Nelson-Rees, “A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells,” Int. J. Cancer 17(1), 62–70 (1976).
[Crossref]

Tombelaine, V.

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Leveque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref]

Umemura, W.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Vartiainen, E. M.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative Coherent Anti-Stokes Raman Scattering (CARS) Microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[Crossref]

E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14(8), 3622–3630 (2006).
[Crossref]

Vlijm, R.

R. Vlijm, X. Li, M. Panic, D. Ruthnick, S. Hata, F. Herrmannsdorfer, T. Kuner, M. Heilemann, J. Engelhardt, S. W. Hell, and E. Schiebel, “STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles,” Proc. Natl. Acad. Sci. U. S. A. 115(10), E2246–E2253 (2018).
[Crossref]

Volkmer, A.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[Crossref]

Volponi, J. V.

H. W. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 108(9), 3809–3814 (2011).
[Crossref]

Wang, P.

Wei, L.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

Williams, A. C.

B. W. Barry, H. G. M. Edwards, and A. C. Williams, “Fourier transform Raman and infrared vibrational study of human skin: Assignment of spectral bands,” J. Raman Spectrosc. 23(11), 641–645 (1992).
[Crossref]

Wu, H. W.

H. W. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 108(9), 3809–3814 (2011).
[Crossref]

Xie, X. S.

J. X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref]

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative Chemical Imaging with Multiplex Stimulated Raman Scattering Microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref]

W. Min, C. W. Freudiger, S. J. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref]

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[Crossref]

Xu, B.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref]

Yakovlev, V. V.

Yonemura, S.

T. Akiyama, A. Inoko, Y. Kaji, S. Yonemura, K. Kakiguchi, H. Segawa, K. Ishitsuka, M. Yoshida, O. Numata, P. Leproux, V. Couderc, T. Oshika, and H. Kano, “SHG-specificity of cellular Rootletin filaments enables naive imaging with universal conservation,” Sci. Rep. 7(1), 39967 (2017).
[Crossref]

Yoneyama, H.

H. Yoneyama, K. Sudo, P. Leproux, V. Couderc, A. Inoko, and H. Kano, “CARS molecular fingerprinting using sub-100-ps microchip laser source with fiber amplifier,” APL Photonics 3(9), 092408 (2018).
[Crossref]

Yoshida, M.

T. Akiyama, A. Inoko, Y. Kaji, S. Yonemura, K. Kakiguchi, H. Segawa, K. Ishitsuka, M. Yoshida, O. Numata, P. Leproux, V. Couderc, T. Oshika, and H. Kano, “SHG-specificity of cellular Rootletin filaments enables naive imaging with universal conservation,” Sci. Rep. 7(1), 39967 (2017).
[Crossref]

Yuste, R.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

Zhang, C.

C. Zhang and J.-X. Cheng, “Perspective: Coherent Raman scattering microscopy, the future is bright,” APL Photonics 3(9), 090901 (2018).
[Crossref]

Zhang, L.

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

Zhang, X.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative Chemical Imaging with Multiplex Stimulated Raman Scattering Microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref]

Zumbusch, A.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Analyst (1)

M. T. Cicerone and C. H. Camp, “Histological coherent Raman imaging: a prognostic review,” Analyst 143(1), 33–59 (2018).
[Crossref]

Angew. Chem. Int. Edit. (1)

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamaguchi, “Quantitative CARS Molecular Fingerprinting of Single Living Cells with the Use of the Maximum Entropy Method,” Angew. Chem. Int. Edit. 49(38), 6773–6777 (2010).
[Crossref]

Annu. Rev. Anal. Chem. (1)

C. S. Liao and J. X. Cheng, “In Situ and In Vivo Molecular Analysis by Coherent Raman Scattering Microscopy,” Annu. Rev. Anal. Chem. 9(1), 69–93 (2016).
[Crossref]

Annu. Rev. Phys. Chem. (2)

W. Min, C. W. Freudiger, S. J. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref]

C. Y. Chung, J. Boik, and E. O. Potma, “Biomolecular Imaging with Coherent Nonlinear Vibrational Microscopy,” Annu. Rev. Phys. Chem. 64(1), 77–99 (2013).
[Crossref]

APL Photonics (2)

C. Zhang and J.-X. Cheng, “Perspective: Coherent Raman scattering microscopy, the future is bright,” APL Photonics 3(9), 090901 (2018).
[Crossref]

H. Yoneyama, K. Sudo, P. Leproux, V. Couderc, A. Inoko, and H. Kano, “CARS molecular fingerprinting using sub-100-ps microchip laser source with fiber amplifier,” APL Photonics 3(9), 092408 (2018).
[Crossref]

Appl. Phys. Lett. (2)

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500 cm(-1)) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[Crossref]

Biopolymers (1)

H. Deng, V. A. Bloomfield, J. M. Benevides, and G. J. Thomas, “Dependence of the Raman signature of genomic B-DNA on nucleotide base sequence,” Biopolymers 50(6), 656–666 (1999).
[Crossref]

Bull. Chem. Soc. Jpn. (1)

H. Kano, “Molecular Spectroscopic Imaging Using a White-Light Laser Source,” Bull. Chem. Soc. Jpn. 83(7), 735–743 (2010).
[Crossref]

Int. J. Cancer (1)

M. Lieber, G. Todaro, B. Smith, A. Szakal, and W. Nelson-Rees, “A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells,” Int. J. Cancer 17(1), 62–70 (1976).
[Crossref]

J. Am. Chem. Soc. (1)

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative Chemical Imaging with Multiplex Stimulated Raman Scattering Microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref]

J. Biomed. Opt. (1)

M. Ando and H. Hamaguchi, “Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra,” J. Biomed. Opt. 19(1), 011016 (2014).
[Crossref]

J. Biophotonics (2)

H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, and H. Kano, “Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source,” J. Biophotonics 8(9), 705–713 (2015).
[Crossref]

C. Lefort, R. P. O’Connor, V. Blanquet, L. Magnol, H. Kano, V. Tombelaine, P. Leveque, V. Couderc, and P. Leproux, “Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source,” J. Biophotonics 9(7), 709–714 (2016).
[Crossref]

J. Chem. Phys. (1)

R. G. Snyder and J. R. Scherer, “Band structure in the C–H stretching region of the Raman spectrum of the extended polymethylene chain: Influence of Fermi resonance,” J. Chem. Phys. 71(8), 3221–3228 (1979).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (2)

K. G. Brown, E. Bicknell-Brown, and M. Ladjadj, “Raman-active bands sensitive to motion and conformation at the chain termini and backbones of alkanes and lipids,” J. Phys. Chem. 91(12), 3436–3442 (1987).
[Crossref]

R. G. Snyder, H. L. Strauss, and C. A. Elliger, “Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains,” J. Phys. Chem. 86(26), 5145–5150 (1982).
[Crossref]

J. Phys. Chem. B (3)

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[Crossref]

M. Muller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[Crossref]

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative Coherent Anti-Stokes Raman Scattering (CARS) Microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[Crossref]

J. Phys. Chem. Ref. Data (1)

T. Shimanouchi, “Tables of molecular vibrational frequencies. Consolidated volume II,” J. Phys. Chem. Ref. Data 6(3), 993–1102 (1977).
[Crossref]

J. Raman Spectrosc. (1)

B. W. Barry, H. G. M. Edwards, and A. C. Williams, “Fourier transform Raman and infrared vibrational study of human skin: Assignment of spectral bands,” J. Raman Spectrosc. 23(11), 641–645 (1992).
[Crossref]

Nat. Photonics (4)

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref]

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[Crossref]

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

Nature (2)

L. Wei, Z. Chen, L. Shi, R. Long, A. V. Anzalone, L. Zhang, F. Hu, R. Yuste, V. W. Cornish, and W. Min, “Super-multiplex vibrational imaging,” Nature 544(7651), 465–470 (2017).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Quantitative coherent anti-Stokes Raman scattering microspectroscopy using a nanosecond supercontinuum light source,” Opt. Fiber Technol. 18(5), 388–393 (2012).
[Crossref]

Opt. Lett. (2)

Optica (1)

Phys. Med. Biol. (1)

Q. Matthews, A. Brolo, J. Lum, X. Duan, and A. Jirasek, “Raman spectroscopy of single human tumour cells exposed to ionizing radiation in vitro,” Phys. Med. Biol. 56(1), 19–38 (2011).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (2)

H. W. Wu, J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh, “In vivo lipidomics using single-cell Raman spectroscopy,” Proc. Natl. Acad. Sci. U. S. A. 108(9), 3809–3814 (2011).
[Crossref]

R. Vlijm, X. Li, M. Panic, D. Ruthnick, S. Hata, F. Herrmannsdorfer, T. Kuner, M. Heilemann, J. Engelhardt, S. W. Hell, and E. Schiebel, “STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles,” Proc. Natl. Acad. Sci. U. S. A. 115(10), E2246–E2253 (2018).
[Crossref]

Sci. Rep. (2)

T. Akiyama, A. Inoko, Y. Kaji, S. Yonemura, K. Kakiguchi, H. Segawa, K. Ishitsuka, M. Yoshida, O. Numata, P. Leproux, V. Couderc, T. Oshika, and H. Kano, “SHG-specificity of cellular Rootletin filaments enables naive imaging with universal conservation,” Sci. Rep. 7(1), 39967 (2017).
[Crossref]

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6(1), 21036 (2016).
[Crossref]

Science (1)

J. X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref]

Spectrochim. Acta, Part A (1)

C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta, Part A 61(7), 1529–1535 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Experimental setup of ultra-multiplex spectroscopic CARS system.
Fig. 2.
Fig. 2. CARS measurements using the MOFA laser source and the CCD camera with a fast readout time: (a) CARS spectra of a polystyrene bead (intensity uncorrected); (b) Dependence of the exposure time on the CARS signal (solid circles) at 1003 cm−1, which corresponds to the vibrational mode associated with breathing of the phenyl ring and the fitted result (solid line).
Fig. 3.
Fig. 3. CARS images in the phenyl-ring breathing vibrational mode (1003 cm−1) at different depth positions; the images were obtained using the passively Q-switched microchip Nd:YAG laser and the CCD camera with a fast readout time. The exposure time was set to 0 ms using software. The resolution of image was 161 × 161 pixels, and the total data-acquisition time was approximately 28 s.
Fig. 4.
Fig. 4. (a) Optical image of an A549 cell; (b) CARS intensity mapping at 2850 cm−1; (c) Spectral profiles of the raw CARS signal indicated at the two positions in (b) using red and blue crosses. The images were obtained using the MOFA laser source and a CCD camera with a fast readout time.
Fig. 5.
Fig. 5. Spontaneous-Raman-equivalent Im[χ(3)] spectra at the two intracellular positions indicated as red and blue crosses in Fig. 4(b). The inset shows enlarged spectral profiles in the fingerprint region. The dips indicated by “*” are artifacts due to the CARS spectral correction process, in which the CARS signal at each spatial point was divided by the nonresonant background of the coverslip underneath the suspension cell.
Fig. 6.
Fig. 6. Fitted results of the Im[χ(3)] spectrum in the CH stretching vibrational modes. Seven Gaussian functions centered at 2854, 2872, 2902, 2921, 2940, 2953, and 3017 cm-1 reproduced the experimentally obtained Im[χ(3)] spectrum well.
Fig. 7.
Fig. 7. CARS images of an A549 cell in G1 phase at (a) 3427, (b) 3200, (c) 3066, (d) 3017, (e) 2953, (f) 2939, (g) 2921, (h) 2902, (i) 2872, (j) 2854, (k) 1744, (l) 1657, (m) 1451, (n) 1438, (o) 1303, (p) l284, (q) 1265, and (r) 1009 cm-1, respectively. The exposure time per pixel was 10 ms. The images were obtained using the MOFA laser source and the CCD camera with a fast readout time.
Fig. 8.
Fig. 8. CARS images of A549 cells at (a) 3427, (b) 3200, (c) 3066, (d) 3017, (e) 2953, (f) 2939, (g) 2921, (h) 2902, (i) 2872, (j) 2854, (k) 1744, (l) 1657, (m) 1451, (n) 1438, (o) 1303, (p) l284, (q) 1265, and (r) 1009 cm-1, respectively. The exposure time per pixel was ∼1.8 ms. The images were obtained using the MOFA laser source and the CCD camera with a fast readout time.
Fig. 9.
Fig. 9. (a) CARS image of A549 cells at 2939 cm-1 (the same as in Fig. 8(f)); Enlargements of the CARS images in the red (b) and green (c) boxes in (a); Im[χ(3)] spectra at position A (red cross in (b)) (d), B (blue cross in (b)) (e), C (red cross in (c)) (f), and D (blue cross in (c)) (g)

Tables (1)

Tables Icon

Table 1. Vibrational bands and their assignments for the intracellular Im[χ(3)] spectrum [3846]

Metrics