Abstract

The transient terahertz signal generated by electron diffusion that was excited by an ultrashort pulse was observed to vary with the potential structure around the surface. The formation of InAs quantum dots caused the strain field and the nitrogen atoms to further modify the potential structure around the quantum dots. The terahertz signal that was observed for various pump energies exhibited an interesting phase change. Further, the change in terahertz dynamics originated from the formation of a dilute nitrogen layer around the quantum dots. Furthermore, this change depends on the position of the nitrogen-doped layer. The results of this study provide important information for controlling the optical properties of quantum dots.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temperature dependence of surface photovoltage spectroscopy in vertically coupled self-organized InAs/GaAs quantum dots

C. H. Chan, Y. S. Huang, J. S Wang, and K. K. Tiong
Opt. Express 15(4) 1898-1906 (2007)

Confined photocarrier transport in InAs pyramidal quantum dots via terahertz time-domain spectroscopy

Jorge Michael M. Presto, Elizabeth Ann P. Prieto, Karim M. Omambac, Jessica Pauline C. Afalla, Deborah Anne O. Lumantas, Arnel A. Salvador, Armando S. Somintac, Elmer S. Estacio, Kohji Yamamoto, and Masahiko Tani
Opt. Express 23(11) 14532-14540 (2015)

Large enhancement of spontaneous emission rates of InAs quantum dots in GaAs microdisks

W. Fang, J. Y. Xu, A. Yamilov, H. Cao, Y. Ma, S. T. Ho, and G. S. Solomon
Opt. Lett. 27(11) 948-950 (2002)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Majid, D. T. D. Childs, K. Kennedy, R. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “O-band excited state quantum dot bilayer lasers,” Appl. Phys. Lett. 99(5), 051101 (2011).
    [Crossref]
  2. C. Liu, H. Wang, Q. Meng, B. Gao, and K. S. Ang, “Modal gain and photoluminescence investigation of two-state lasing in GaAs-based 1.3 $\mu$μm InAs/InGaAs quantum dot lasers,” Appl. Phys. Express 6(10), 102702 (2013).
    [Crossref]
  3. K. Akahane, N. Yamamoto, A. Kanno, K. Inagaki, T. Umezawa, T. Kawanishi, T. Endo, Y. Tomomatsu, and T. Yamanoi, “Stable two-mode emission from semiconductor quantum dot laser,” Appl. Phys. Express 6(10), 104001 (2013).
    [Crossref]
  4. V. B. Verma, M. J. Stevens, K. L. Silverman, N. L. Dias, A. Garg, J. J. Coleman, and R. P. Mirin, “Photon antibunching from a single lithographically defined InGaAs/GaAs quantum dot,” Opt. Express 19(5), 4182 (2011).
    [Crossref]
  5. C. Schneider, T. Heindel, A. Huggenberger, T. A. Niederstrasser, S. Reitzenstein, A. Forchel, Höfling, and M. Kamp, “Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot,” Appl. Phys. Lett. 100(9), 091108 (2012).
    [Crossref]
  6. Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
    [Crossref]
  7. D. Zhou, G. Sharma, S. F. Thomassen, T. W. Reenaas, and B. O. Fimland, “Optimization towards high density quantum dots for intermediate band solar cells grown by molecular beam epitaxy,” Appl. Phys. Lett. 96(6), 061913 (2010).
    [Crossref]
  8. D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96(20), 203507 (2010).
    [Crossref]
  9. S. Asahi, H. Teranishi, K. Kusaki, T. Kaizu, and T. Kita, “Two-step photon up-conversion solar cells,” Nat. Commun. 8, 14962 (2017).
    [Crossref]
  10. J. Persson, U. Håkanson, M. K.-J. Johansson, L. Samuelson, and M.-E. Pistol, “Strain effects on individual quantum dots: Dependence of cap layer thickness,” Phys. Rev. B 72(8), 085302 (2005).
    [Crossref]
  11. K. Akahane, N. Yamamoto, S. Gozu, and N. Ohtani, “Strong photoluminescence and laser operation of InAs quantum dots covered by a GaAsSb strain-reducing layer,” Phys. E 26(1-4), 395–399 (2005).
    [Crossref]
  12. V. V. Chaldyshev, N. A. Bert, A. L. Kolesnikova, and A. E. Romanov, “Stress relaxation scenario for buried quantum dots,” Phys. Rev. B 79(23), 233304 (2009).
    [Crossref]
  13. O. Brandt, L. Tapfer, K. Ploog, R. Bierwolf, and M. Hohenstein, “Effect of In segregation on the structural and optical properties of ultrathin InAs films in GaAs,” Appl. Phys. Lett. 61(23), 2814–2816 (1992).
    [Crossref]
  14. T. Walther, A. G. Cullis, D. J. Norris, and M. Hopkinson, “Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs,” Phys. Rev. Lett. 86(11), 2381–2384 (2001).
    [Crossref]
  15. T. Kaizu, T. Matsumura, and T. Kita, “Broadband control of emission wavelength of InAs/GaAs quantum dots by GaAs capping temperature,” J. Appl. Phys. 118(15), 154301 (2015).
    [Crossref]
  16. T. Kita, Y. Masuda, T. Mori, and O. Wada, “Long-wavelength emission from nitridized InAs quantum dots,” Appl. Phys. Lett. 83(20), 4152–4153 (2003).
    [Crossref]
  17. O. Schumann, L. Geelhaar, H. Riechert, H. Cerva, and G. Abstreiter, “Morphology and optical properties of InAs(N) quantum dots,” J. Appl. Phys. 96(5), 2832–2840 (2004).
    [Crossref]
  18. T. Kita, T. Mori, H. Seki, M. Matsushita, M. Kikuno, O. Wada, H. Ebe, M. Sugawara, Y. Arakawa, and Y. Nakata, “Extended wavelength emission to 1.3 $\mu$μm in nitrided InAs/GaAs self-assembled quantum dots,” J. Appl. Phys. 97(2), 024306 (2005).
    [Crossref]
  19. Y. D. Jang, N. J. Kim, J. S. Yim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Strong photoluminescence at 1.3 $\mu$μm with a narrow linewidth from nitridized InAs/GaAs quantum dots,” Appl. Phys. Lett. 88(23), 231907 (2006).
    [Crossref]
  20. T. Inoue, M. Mamizuka, H. Mizuno, O. Kojima, T. Kita, and O. Wada, “Effects of indium segregation on optical properties of nitrogen-doped InAs/GaAs quantum dots,” J. Appl. Phys. 104(10), 103532 (2008).
    [Crossref]
  21. M. Strauss, S. Höfling, and A. Forchel, “InAs/GaInAs(N) quantum dots on GaAs substrate for single photon emitters above 1300 nm,” Nanotechnology 20(50), 505601 (2009).
    [Crossref]
  22. D. Birkedal, O. Hansen, C. B. Sørensen, K. Jarasiunas, S. D. Brorson, and S. R. Keiding, “Terahertz radiation from delta-doped GaAs,” Appl. Phys. Lett. 65(1), 79–81 (1994).
    [Crossref]
  23. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).
    [Crossref]
  24. J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
    [Crossref]
  25. D. McBryde, M. E. Barnes, S. A. Berry, P. Gow, H. E. Beere, D. A. Ritchie, and V. Apostolopoulos, “Fluence and polarisation dependence of GaAs based Lateral Photo-Dember terahertz emitters,” Opt. Express 22(3), 3234–3243 (2014).
    [Crossref]
  26. O. Kojima, R. Izumi, and T. Kita, “Effect of lattice-mismatch strain on electron dynamics in InAs/GaAs quantum dots as seen by time-domain terahertz spectroscopy,” J. Phys. D: Appl. Phys. 51(30), 305102 (2018).
    [Crossref]
  27. M. Mamizuka, O. Kojima, T. Inoue, T. Kita, and O. Wada, “Exciton response controlled by introducing a spacer layer in nitrided InAs quantum dots,” Phys. Status Solidi C 6(S1), S146–S149 (2018).
    [Crossref]
  28. X. Liu, M.-E. Pistol, and L. Samuelson, “Excitons bound to nitrogen pairs in GaAs,” Phys. Rev. B 42(12), 7504–7512 (1990).
    [Crossref]
  29. S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75(11), 1538–1540 (1999).
    [Crossref]
  30. T. Kita and O. Wada, “Bound exciton states of isoelectronic centers in GaAs:N grown by an atomically controlled doping technique,” Phys. Rev. B 74(3), 035213 (2006).
    [Crossref]
  31. T. Kita, Y. Harada, and O. Wada, “Fine structure splitting of isoelectronic bound excitons in nitrogen-doped GaAs,” Phys. Rev. B 77(19), 193102 (2008).
    [Crossref]
  32. M. Bieler, K. Pierz, U. Siegner, and P. Dawson, “Shift currents from symmetry reduction and Coulomb effects in (110)-orientated GaAs/Al$_{0.3}$0.3Ga$_{0.7}$0.7As quantum wells,” Phys. Rev. B 76(16), 161304 (2007).
    [Crossref]
  33. S. Priyadarshi, M. Leidinger, K. Pierz, A. M. Racu, U. Siegner, M. Bieler, and P. Dawson, “Terahertz spectroscopy of shift currents resulting from asymmetric (110)-oriented GaAs/AlGaAs quantum wells,” Appl. Phys. Lett. 95(15), 151110 (2009).
    [Crossref]
  34. F. Ishikawa, S. Furuse, K. Sumiya, A. Kinoshita, and M. Morifuji, “Nitrogen $\delta$δ-doping for band engineering of GaAs-related quantum structures,” J. Appl. Phys. 111(5), 053512 (2012).
    [Crossref]
  35. Y. Ogawa, Y. Harada, T. Baba, T. Kaizu, and T. Kita, “Effects of rapid thermal annealing on two-dimensional delocalized electronic states of the epitaxial N $\delta$δ-doped layer in GaAs,” Appl. Phys. Lett. 108(11), 111905 (2016).
    [Crossref]
  36. W. Shan, K. M. Yu, W. Walukiewicz, and J. W. Ager III, “Reduction of band-gap energy in GaNAs and AlGaNAs synthesized by N$^+$+ implantation,” Appl. Phys. Lett. 75(10), 1410–1412 (1999).
    [Crossref]
  37. K. Matsuda, T. Saiki, M. Takahashi, A. Moto, and S. Takagishi, “Near-field photoluminescence study of GaNAs alloy epilayer at room and cryogenic temperature,” Appl. Phys. Lett. 78(11), 1508–1510 (2001).
    [Crossref]

2018 (2)

O. Kojima, R. Izumi, and T. Kita, “Effect of lattice-mismatch strain on electron dynamics in InAs/GaAs quantum dots as seen by time-domain terahertz spectroscopy,” J. Phys. D: Appl. Phys. 51(30), 305102 (2018).
[Crossref]

M. Mamizuka, O. Kojima, T. Inoue, T. Kita, and O. Wada, “Exciton response controlled by introducing a spacer layer in nitrided InAs quantum dots,” Phys. Status Solidi C 6(S1), S146–S149 (2018).
[Crossref]

2017 (1)

S. Asahi, H. Teranishi, K. Kusaki, T. Kaizu, and T. Kita, “Two-step photon up-conversion solar cells,” Nat. Commun. 8, 14962 (2017).
[Crossref]

2016 (1)

Y. Ogawa, Y. Harada, T. Baba, T. Kaizu, and T. Kita, “Effects of rapid thermal annealing on two-dimensional delocalized electronic states of the epitaxial N $\delta$δ-doped layer in GaAs,” Appl. Phys. Lett. 108(11), 111905 (2016).
[Crossref]

2015 (1)

T. Kaizu, T. Matsumura, and T. Kita, “Broadband control of emission wavelength of InAs/GaAs quantum dots by GaAs capping temperature,” J. Appl. Phys. 118(15), 154301 (2015).
[Crossref]

2014 (1)

2013 (3)

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref]

C. Liu, H. Wang, Q. Meng, B. Gao, and K. S. Ang, “Modal gain and photoluminescence investigation of two-state lasing in GaAs-based 1.3 $\mu$μm InAs/InGaAs quantum dot lasers,” Appl. Phys. Express 6(10), 102702 (2013).
[Crossref]

K. Akahane, N. Yamamoto, A. Kanno, K. Inagaki, T. Umezawa, T. Kawanishi, T. Endo, Y. Tomomatsu, and T. Yamanoi, “Stable two-mode emission from semiconductor quantum dot laser,” Appl. Phys. Express 6(10), 104001 (2013).
[Crossref]

2012 (2)

C. Schneider, T. Heindel, A. Huggenberger, T. A. Niederstrasser, S. Reitzenstein, A. Forchel, Höfling, and M. Kamp, “Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot,” Appl. Phys. Lett. 100(9), 091108 (2012).
[Crossref]

F. Ishikawa, S. Furuse, K. Sumiya, A. Kinoshita, and M. Morifuji, “Nitrogen $\delta$δ-doping for band engineering of GaAs-related quantum structures,” J. Appl. Phys. 111(5), 053512 (2012).
[Crossref]

2011 (2)

M. A. Majid, D. T. D. Childs, K. Kennedy, R. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “O-band excited state quantum dot bilayer lasers,” Appl. Phys. Lett. 99(5), 051101 (2011).
[Crossref]

V. B. Verma, M. J. Stevens, K. L. Silverman, N. L. Dias, A. Garg, J. J. Coleman, and R. P. Mirin, “Photon antibunching from a single lithographically defined InGaAs/GaAs quantum dot,” Opt. Express 19(5), 4182 (2011).
[Crossref]

2010 (2)

D. Zhou, G. Sharma, S. F. Thomassen, T. W. Reenaas, and B. O. Fimland, “Optimization towards high density quantum dots for intermediate band solar cells grown by molecular beam epitaxy,” Appl. Phys. Lett. 96(6), 061913 (2010).
[Crossref]

D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96(20), 203507 (2010).
[Crossref]

2009 (3)

V. V. Chaldyshev, N. A. Bert, A. L. Kolesnikova, and A. E. Romanov, “Stress relaxation scenario for buried quantum dots,” Phys. Rev. B 79(23), 233304 (2009).
[Crossref]

S. Priyadarshi, M. Leidinger, K. Pierz, A. M. Racu, U. Siegner, M. Bieler, and P. Dawson, “Terahertz spectroscopy of shift currents resulting from asymmetric (110)-oriented GaAs/AlGaAs quantum wells,” Appl. Phys. Lett. 95(15), 151110 (2009).
[Crossref]

M. Strauss, S. Höfling, and A. Forchel, “InAs/GaInAs(N) quantum dots on GaAs substrate for single photon emitters above 1300 nm,” Nanotechnology 20(50), 505601 (2009).
[Crossref]

2008 (2)

T. Inoue, M. Mamizuka, H. Mizuno, O. Kojima, T. Kita, and O. Wada, “Effects of indium segregation on optical properties of nitrogen-doped InAs/GaAs quantum dots,” J. Appl. Phys. 104(10), 103532 (2008).
[Crossref]

T. Kita, Y. Harada, and O. Wada, “Fine structure splitting of isoelectronic bound excitons in nitrogen-doped GaAs,” Phys. Rev. B 77(19), 193102 (2008).
[Crossref]

2007 (1)

M. Bieler, K. Pierz, U. Siegner, and P. Dawson, “Shift currents from symmetry reduction and Coulomb effects in (110)-orientated GaAs/Al$_{0.3}$0.3Ga$_{0.7}$0.7As quantum wells,” Phys. Rev. B 76(16), 161304 (2007).
[Crossref]

2006 (3)

T. Kita and O. Wada, “Bound exciton states of isoelectronic centers in GaAs:N grown by an atomically controlled doping technique,” Phys. Rev. B 74(3), 035213 (2006).
[Crossref]

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Y. D. Jang, N. J. Kim, J. S. Yim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Strong photoluminescence at 1.3 $\mu$μm with a narrow linewidth from nitridized InAs/GaAs quantum dots,” Appl. Phys. Lett. 88(23), 231907 (2006).
[Crossref]

2005 (3)

T. Kita, T. Mori, H. Seki, M. Matsushita, M. Kikuno, O. Wada, H. Ebe, M. Sugawara, Y. Arakawa, and Y. Nakata, “Extended wavelength emission to 1.3 $\mu$μm in nitrided InAs/GaAs self-assembled quantum dots,” J. Appl. Phys. 97(2), 024306 (2005).
[Crossref]

J. Persson, U. Håkanson, M. K.-J. Johansson, L. Samuelson, and M.-E. Pistol, “Strain effects on individual quantum dots: Dependence of cap layer thickness,” Phys. Rev. B 72(8), 085302 (2005).
[Crossref]

K. Akahane, N. Yamamoto, S. Gozu, and N. Ohtani, “Strong photoluminescence and laser operation of InAs quantum dots covered by a GaAsSb strain-reducing layer,” Phys. E 26(1-4), 395–399 (2005).
[Crossref]

2004 (1)

O. Schumann, L. Geelhaar, H. Riechert, H. Cerva, and G. Abstreiter, “Morphology and optical properties of InAs(N) quantum dots,” J. Appl. Phys. 96(5), 2832–2840 (2004).
[Crossref]

2003 (1)

T. Kita, Y. Masuda, T. Mori, and O. Wada, “Long-wavelength emission from nitridized InAs quantum dots,” Appl. Phys. Lett. 83(20), 4152–4153 (2003).
[Crossref]

2002 (1)

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).
[Crossref]

2001 (2)

T. Walther, A. G. Cullis, D. J. Norris, and M. Hopkinson, “Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs,” Phys. Rev. Lett. 86(11), 2381–2384 (2001).
[Crossref]

K. Matsuda, T. Saiki, M. Takahashi, A. Moto, and S. Takagishi, “Near-field photoluminescence study of GaNAs alloy epilayer at room and cryogenic temperature,” Appl. Phys. Lett. 78(11), 1508–1510 (2001).
[Crossref]

1999 (2)

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75(11), 1538–1540 (1999).
[Crossref]

W. Shan, K. M. Yu, W. Walukiewicz, and J. W. Ager III, “Reduction of band-gap energy in GaNAs and AlGaNAs synthesized by N$^+$+ implantation,” Appl. Phys. Lett. 75(10), 1410–1412 (1999).
[Crossref]

1994 (1)

D. Birkedal, O. Hansen, C. B. Sørensen, K. Jarasiunas, S. D. Brorson, and S. R. Keiding, “Terahertz radiation from delta-doped GaAs,” Appl. Phys. Lett. 65(1), 79–81 (1994).
[Crossref]

1992 (1)

O. Brandt, L. Tapfer, K. Ploog, R. Bierwolf, and M. Hohenstein, “Effect of In segregation on the structural and optical properties of ultrathin InAs films in GaAs,” Appl. Phys. Lett. 61(23), 2814–2816 (1992).
[Crossref]

1990 (1)

X. Liu, M.-E. Pistol, and L. Samuelson, “Excitons bound to nitrogen pairs in GaAs,” Phys. Rev. B 42(12), 7504–7512 (1990).
[Crossref]

Abstreiter, G.

O. Schumann, L. Geelhaar, H. Riechert, H. Cerva, and G. Abstreiter, “Morphology and optical properties of InAs(N) quantum dots,” J. Appl. Phys. 96(5), 2832–2840 (2004).
[Crossref]

Ager III, J. W.

W. Shan, K. M. Yu, W. Walukiewicz, and J. W. Ager III, “Reduction of band-gap energy in GaNAs and AlGaNAs synthesized by N$^+$+ implantation,” Appl. Phys. Lett. 75(10), 1410–1412 (1999).
[Crossref]

Airey, R.

M. A. Majid, D. T. D. Childs, K. Kennedy, R. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “O-band excited state quantum dot bilayer lasers,” Appl. Phys. Lett. 99(5), 051101 (2011).
[Crossref]

Akahane, K.

K. Akahane, N. Yamamoto, A. Kanno, K. Inagaki, T. Umezawa, T. Kawanishi, T. Endo, Y. Tomomatsu, and T. Yamanoi, “Stable two-mode emission from semiconductor quantum dot laser,” Appl. Phys. Express 6(10), 104001 (2013).
[Crossref]

K. Akahane, N. Yamamoto, S. Gozu, and N. Ohtani, “Strong photoluminescence and laser operation of InAs quantum dots covered by a GaAsSb strain-reducing layer,” Phys. E 26(1-4), 395–399 (2005).
[Crossref]

Ang, K. S.

C. Liu, H. Wang, Q. Meng, B. Gao, and K. S. Ang, “Modal gain and photoluminescence investigation of two-state lasing in GaAs-based 1.3 $\mu$μm InAs/InGaAs quantum dot lasers,” Appl. Phys. Express 6(10), 102702 (2013).
[Crossref]

Apostolopoulos, V.

Arakawa, Y.

D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96(20), 203507 (2010).
[Crossref]

T. Kita, T. Mori, H. Seki, M. Matsushita, M. Kikuno, O. Wada, H. Ebe, M. Sugawara, Y. Arakawa, and Y. Nakata, “Extended wavelength emission to 1.3 $\mu$μm in nitrided InAs/GaAs self-assembled quantum dots,” J. Appl. Phys. 97(2), 024306 (2005).
[Crossref]

Asahi, S.

S. Asahi, H. Teranishi, K. Kusaki, T. Kaizu, and T. Kita, “Two-step photon up-conversion solar cells,” Nat. Commun. 8, 14962 (2017).
[Crossref]

Atatüre, M.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref]

Baba, T.

Y. Ogawa, Y. Harada, T. Baba, T. Kaizu, and T. Kita, “Effects of rapid thermal annealing on two-dimensional delocalized electronic states of the epitaxial N $\delta$δ-doped layer in GaAs,” Appl. Phys. Lett. 108(11), 111905 (2016).
[Crossref]

Barnes, M. E.

Beere, H. E.

Berry, S. A.

Bert, N. A.

V. V. Chaldyshev, N. A. Bert, A. L. Kolesnikova, and A. E. Romanov, “Stress relaxation scenario for buried quantum dots,” Phys. Rev. B 79(23), 233304 (2009).
[Crossref]

Bieler, M.

S. Priyadarshi, M. Leidinger, K. Pierz, A. M. Racu, U. Siegner, M. Bieler, and P. Dawson, “Terahertz spectroscopy of shift currents resulting from asymmetric (110)-oriented GaAs/AlGaAs quantum wells,” Appl. Phys. Lett. 95(15), 151110 (2009).
[Crossref]

M. Bieler, K. Pierz, U. Siegner, and P. Dawson, “Shift currents from symmetry reduction and Coulomb effects in (110)-orientated GaAs/Al$_{0.3}$0.3Ga$_{0.7}$0.7As quantum wells,” Phys. Rev. B 76(16), 161304 (2007).
[Crossref]

Bierwolf, R.

O. Brandt, L. Tapfer, K. Ploog, R. Bierwolf, and M. Hohenstein, “Effect of In segregation on the structural and optical properties of ultrathin InAs films in GaAs,” Appl. Phys. Lett. 61(23), 2814–2816 (1992).
[Crossref]

Birkedal, D.

D. Birkedal, O. Hansen, C. B. Sørensen, K. Jarasiunas, S. D. Brorson, and S. R. Keiding, “Terahertz radiation from delta-doped GaAs,” Appl. Phys. Lett. 65(1), 79–81 (1994).
[Crossref]

Bordel, D.

D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96(20), 203507 (2010).
[Crossref]

Brandt, O.

O. Brandt, L. Tapfer, K. Ploog, R. Bierwolf, and M. Hohenstein, “Effect of In segregation on the structural and optical properties of ultrathin InAs films in GaAs,” Appl. Phys. Lett. 61(23), 2814–2816 (1992).
[Crossref]

Brorson, S. D.

D. Birkedal, O. Hansen, C. B. Sørensen, K. Jarasiunas, S. D. Brorson, and S. R. Keiding, “Terahertz radiation from delta-doped GaAs,” Appl. Phys. Lett. 65(1), 79–81 (1994).
[Crossref]

Castro-Camus, E.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Cerva, H.

O. Schumann, L. Geelhaar, H. Riechert, H. Cerva, and G. Abstreiter, “Morphology and optical properties of InAs(N) quantum dots,” J. Appl. Phys. 96(5), 2832–2840 (2004).
[Crossref]

Chaldyshev, V. V.

V. V. Chaldyshev, N. A. Bert, A. L. Kolesnikova, and A. E. Romanov, “Stress relaxation scenario for buried quantum dots,” Phys. Rev. B 79(23), 233304 (2009).
[Crossref]

Childs, D. T. D.

M. A. Majid, D. T. D. Childs, K. Kennedy, R. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “O-band excited state quantum dot bilayer lasers,” Appl. Phys. Lett. 99(5), 051101 (2011).
[Crossref]

Clarke, E.

M. A. Majid, D. T. D. Childs, K. Kennedy, R. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “O-band excited state quantum dot bilayer lasers,” Appl. Phys. Lett. 99(5), 051101 (2011).
[Crossref]

Coleman, J. J.

Corchia, A.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).
[Crossref]

Cullis, A. G.

T. Walther, A. G. Cullis, D. J. Norris, and M. Hopkinson, “Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs,” Phys. Rev. Lett. 86(11), 2381–2384 (2001).
[Crossref]

Davies, A. G.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).
[Crossref]

Dawson, P.

S. Priyadarshi, M. Leidinger, K. Pierz, A. M. Racu, U. Siegner, M. Bieler, and P. Dawson, “Terahertz spectroscopy of shift currents resulting from asymmetric (110)-oriented GaAs/AlGaAs quantum wells,” Appl. Phys. Lett. 95(15), 151110 (2009).
[Crossref]

M. Bieler, K. Pierz, U. Siegner, and P. Dawson, “Shift currents from symmetry reduction and Coulomb effects in (110)-orientated GaAs/Al$_{0.3}$0.3Ga$_{0.7}$0.7As quantum wells,” Phys. Rev. B 76(16), 161304 (2007).
[Crossref]

Dias, N. L.

Ebe, H.

T. Kita, T. Mori, H. Seki, M. Matsushita, M. Kikuno, O. Wada, H. Ebe, M. Sugawara, Y. Arakawa, and Y. Nakata, “Extended wavelength emission to 1.3 $\mu$μm in nitrided InAs/GaAs self-assembled quantum dots,” J. Appl. Phys. 97(2), 024306 (2005).
[Crossref]

Endo, T.

K. Akahane, N. Yamamoto, A. Kanno, K. Inagaki, T. Umezawa, T. Kawanishi, T. Endo, Y. Tomomatsu, and T. Yamanoi, “Stable two-mode emission from semiconductor quantum dot laser,” Appl. Phys. Express 6(10), 104001 (2013).
[Crossref]

Fimland, B. O.

D. Zhou, G. Sharma, S. F. Thomassen, T. W. Reenaas, and B. O. Fimland, “Optimization towards high density quantum dots for intermediate band solar cells grown by molecular beam epitaxy,” Appl. Phys. Lett. 96(6), 061913 (2010).
[Crossref]

Forchel, A.

C. Schneider, T. Heindel, A. Huggenberger, T. A. Niederstrasser, S. Reitzenstein, A. Forchel, Höfling, and M. Kamp, “Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot,” Appl. Phys. Lett. 100(9), 091108 (2012).
[Crossref]

M. Strauss, S. Höfling, and A. Forchel, “InAs/GaInAs(N) quantum dots on GaAs substrate for single photon emitters above 1300 nm,” Nanotechnology 20(50), 505601 (2009).
[Crossref]

Francoeur, S.

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75(11), 1538–1540 (1999).
[Crossref]

Fu, L.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Furuse, S.

F. Ishikawa, S. Furuse, K. Sumiya, A. Kinoshita, and M. Morifuji, “Nitrogen $\delta$δ-doping for band engineering of GaAs-related quantum structures,” J. Appl. Phys. 111(5), 053512 (2012).
[Crossref]

Gao, B.

C. Liu, H. Wang, Q. Meng, B. Gao, and K. S. Ang, “Modal gain and photoluminescence investigation of two-state lasing in GaAs-based 1.3 $\mu$μm InAs/InGaAs quantum dot lasers,” Appl. Phys. Express 6(10), 102702 (2013).
[Crossref]

Garg, A.

Geelhaar, L.

O. Schumann, L. Geelhaar, H. Riechert, H. Cerva, and G. Abstreiter, “Morphology and optical properties of InAs(N) quantum dots,” J. Appl. Phys. 96(5), 2832–2840 (2004).
[Crossref]

Gow, P.

Gozu, S.

K. Akahane, N. Yamamoto, S. Gozu, and N. Ohtani, “Strong photoluminescence and laser operation of InAs quantum dots covered by a GaAsSb strain-reducing layer,” Phys. E 26(1-4), 395–399 (2005).
[Crossref]

Guimard, D.

D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96(20), 203507 (2010).
[Crossref]

Håkanson, U.

J. Persson, U. Håkanson, M. K.-J. Johansson, L. Samuelson, and M.-E. Pistol, “Strain effects on individual quantum dots: Dependence of cap layer thickness,” Phys. Rev. B 72(8), 085302 (2005).
[Crossref]

Hansen, O.

D. Birkedal, O. Hansen, C. B. Sørensen, K. Jarasiunas, S. D. Brorson, and S. R. Keiding, “Terahertz radiation from delta-doped GaAs,” Appl. Phys. Lett. 65(1), 79–81 (1994).
[Crossref]

Harada, Y.

Y. Ogawa, Y. Harada, T. Baba, T. Kaizu, and T. Kita, “Effects of rapid thermal annealing on two-dimensional delocalized electronic states of the epitaxial N $\delta$δ-doped layer in GaAs,” Appl. Phys. Lett. 108(11), 111905 (2016).
[Crossref]

T. Kita, Y. Harada, and O. Wada, “Fine structure splitting of isoelectronic bound excitons in nitrogen-doped GaAs,” Phys. Rev. B 77(19), 193102 (2008).
[Crossref]

He, Y.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref]

He, Y.-M.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref]

Heindel, T.

C. Schneider, T. Heindel, A. Huggenberger, T. A. Niederstrasser, S. Reitzenstein, A. Forchel, Höfling, and M. Kamp, “Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot,” Appl. Phys. Lett. 100(9), 091108 (2012).
[Crossref]

Höfling,

C. Schneider, T. Heindel, A. Huggenberger, T. A. Niederstrasser, S. Reitzenstein, A. Forchel, Höfling, and M. Kamp, “Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot,” Appl. Phys. Lett. 100(9), 091108 (2012).
[Crossref]

Höfling, S.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref]

M. Strauss, S. Höfling, and A. Forchel, “InAs/GaInAs(N) quantum dots on GaAs substrate for single photon emitters above 1300 nm,” Nanotechnology 20(50), 505601 (2009).
[Crossref]

Hogg, R. A.

M. A. Majid, D. T. D. Childs, K. Kennedy, R. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “O-band excited state quantum dot bilayer lasers,” Appl. Phys. Lett. 99(5), 051101 (2011).
[Crossref]

Hohenstein, M.

O. Brandt, L. Tapfer, K. Ploog, R. Bierwolf, and M. Hohenstein, “Effect of In segregation on the structural and optical properties of ultrathin InAs films in GaAs,” Appl. Phys. Lett. 61(23), 2814–2816 (1992).
[Crossref]

Hopkinson, M.

T. Walther, A. G. Cullis, D. J. Norris, and M. Hopkinson, “Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs,” Phys. Rev. Lett. 86(11), 2381–2384 (2001).
[Crossref]

Huggenberger, A.

C. Schneider, T. Heindel, A. Huggenberger, T. A. Niederstrasser, S. Reitzenstein, A. Forchel, Höfling, and M. Kamp, “Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot,” Appl. Phys. Lett. 100(9), 091108 (2012).
[Crossref]

Inagaki, K.

K. Akahane, N. Yamamoto, A. Kanno, K. Inagaki, T. Umezawa, T. Kawanishi, T. Endo, Y. Tomomatsu, and T. Yamanoi, “Stable two-mode emission from semiconductor quantum dot laser,” Appl. Phys. Express 6(10), 104001 (2013).
[Crossref]

Inoue, T.

M. Mamizuka, O. Kojima, T. Inoue, T. Kita, and O. Wada, “Exciton response controlled by introducing a spacer layer in nitrided InAs quantum dots,” Phys. Status Solidi C 6(S1), S146–S149 (2018).
[Crossref]

T. Inoue, M. Mamizuka, H. Mizuno, O. Kojima, T. Kita, and O. Wada, “Effects of indium segregation on optical properties of nitrogen-doped InAs/GaAs quantum dots,” J. Appl. Phys. 104(10), 103532 (2008).
[Crossref]

Ishikawa, F.

F. Ishikawa, S. Furuse, K. Sumiya, A. Kinoshita, and M. Morifuji, “Nitrogen $\delta$δ-doping for band engineering of GaAs-related quantum structures,” J. Appl. Phys. 111(5), 053512 (2012).
[Crossref]

Izumi, R.

O. Kojima, R. Izumi, and T. Kita, “Effect of lattice-mismatch strain on electron dynamics in InAs/GaAs quantum dots as seen by time-domain terahertz spectroscopy,” J. Phys. D: Appl. Phys. 51(30), 305102 (2018).
[Crossref]

Jagadish, C.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Jang, J. W.

Y. D. Jang, N. J. Kim, J. S. Yim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Strong photoluminescence at 1.3 $\mu$μm with a narrow linewidth from nitridized InAs/GaAs quantum dots,” Appl. Phys. Lett. 88(23), 231907 (2006).
[Crossref]

Jang, Y. D.

Y. D. Jang, N. J. Kim, J. S. Yim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Strong photoluminescence at 1.3 $\mu$μm with a narrow linewidth from nitridized InAs/GaAs quantum dots,” Appl. Phys. Lett. 88(23), 231907 (2006).
[Crossref]

Jarasiunas, K.

D. Birkedal, O. Hansen, C. B. Sørensen, K. Jarasiunas, S. D. Brorson, and S. R. Keiding, “Terahertz radiation from delta-doped GaAs,” Appl. Phys. Lett. 65(1), 79–81 (1994).
[Crossref]

Jeong, W. G.

Y. D. Jang, N. J. Kim, J. S. Yim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Strong photoluminescence at 1.3 $\mu$μm with a narrow linewidth from nitridized InAs/GaAs quantum dots,” Appl. Phys. Lett. 88(23), 231907 (2006).
[Crossref]

Jin, C.

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75(11), 1538–1540 (1999).
[Crossref]

Johansson, M. K.-J.

J. Persson, U. Håkanson, M. K.-J. Johansson, L. Samuelson, and M.-E. Pistol, “Strain effects on individual quantum dots: Dependence of cap layer thickness,” Phys. Rev. B 72(8), 085302 (2005).
[Crossref]

Johnston, M. B.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).
[Crossref]

Kaizu, T.

S. Asahi, H. Teranishi, K. Kusaki, T. Kaizu, and T. Kita, “Two-step photon up-conversion solar cells,” Nat. Commun. 8, 14962 (2017).
[Crossref]

Y. Ogawa, Y. Harada, T. Baba, T. Kaizu, and T. Kita, “Effects of rapid thermal annealing on two-dimensional delocalized electronic states of the epitaxial N $\delta$δ-doped layer in GaAs,” Appl. Phys. Lett. 108(11), 111905 (2016).
[Crossref]

T. Kaizu, T. Matsumura, and T. Kita, “Broadband control of emission wavelength of InAs/GaAs quantum dots by GaAs capping temperature,” J. Appl. Phys. 118(15), 154301 (2015).
[Crossref]

Kamp, M.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref]

C. Schneider, T. Heindel, A. Huggenberger, T. A. Niederstrasser, S. Reitzenstein, A. Forchel, Höfling, and M. Kamp, “Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot,” Appl. Phys. Lett. 100(9), 091108 (2012).
[Crossref]

Kanno, A.

K. Akahane, N. Yamamoto, A. Kanno, K. Inagaki, T. Umezawa, T. Kawanishi, T. Endo, Y. Tomomatsu, and T. Yamanoi, “Stable two-mode emission from semiconductor quantum dot laser,” Appl. Phys. Express 6(10), 104001 (2013).
[Crossref]

Kawanishi, T.

K. Akahane, N. Yamamoto, A. Kanno, K. Inagaki, T. Umezawa, T. Kawanishi, T. Endo, Y. Tomomatsu, and T. Yamanoi, “Stable two-mode emission from semiconductor quantum dot laser,” Appl. Phys. Express 6(10), 104001 (2013).
[Crossref]

Keiding, S. R.

D. Birkedal, O. Hansen, C. B. Sørensen, K. Jarasiunas, S. D. Brorson, and S. R. Keiding, “Terahertz radiation from delta-doped GaAs,” Appl. Phys. Lett. 65(1), 79–81 (1994).
[Crossref]

Kennedy, K.

M. A. Majid, D. T. D. Childs, K. Kennedy, R. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “O-band excited state quantum dot bilayer lasers,” Appl. Phys. Lett. 99(5), 051101 (2011).
[Crossref]

Kikuno, M.

T. Kita, T. Mori, H. Seki, M. Matsushita, M. Kikuno, O. Wada, H. Ebe, M. Sugawara, Y. Arakawa, and Y. Nakata, “Extended wavelength emission to 1.3 $\mu$μm in nitrided InAs/GaAs self-assembled quantum dots,” J. Appl. Phys. 97(2), 024306 (2005).
[Crossref]

Kim, N. J.

Y. D. Jang, N. J. Kim, J. S. Yim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Strong photoluminescence at 1.3 $\mu$μm with a narrow linewidth from nitridized InAs/GaAs quantum dots,” Appl. Phys. Lett. 88(23), 231907 (2006).
[Crossref]

Kinoshita, A.

F. Ishikawa, S. Furuse, K. Sumiya, A. Kinoshita, and M. Morifuji, “Nitrogen $\delta$δ-doping for band engineering of GaAs-related quantum structures,” J. Appl. Phys. 111(5), 053512 (2012).
[Crossref]

Kita, T.

O. Kojima, R. Izumi, and T. Kita, “Effect of lattice-mismatch strain on electron dynamics in InAs/GaAs quantum dots as seen by time-domain terahertz spectroscopy,” J. Phys. D: Appl. Phys. 51(30), 305102 (2018).
[Crossref]

M. Mamizuka, O. Kojima, T. Inoue, T. Kita, and O. Wada, “Exciton response controlled by introducing a spacer layer in nitrided InAs quantum dots,” Phys. Status Solidi C 6(S1), S146–S149 (2018).
[Crossref]

S. Asahi, H. Teranishi, K. Kusaki, T. Kaizu, and T. Kita, “Two-step photon up-conversion solar cells,” Nat. Commun. 8, 14962 (2017).
[Crossref]

Y. Ogawa, Y. Harada, T. Baba, T. Kaizu, and T. Kita, “Effects of rapid thermal annealing on two-dimensional delocalized electronic states of the epitaxial N $\delta$δ-doped layer in GaAs,” Appl. Phys. Lett. 108(11), 111905 (2016).
[Crossref]

T. Kaizu, T. Matsumura, and T. Kita, “Broadband control of emission wavelength of InAs/GaAs quantum dots by GaAs capping temperature,” J. Appl. Phys. 118(15), 154301 (2015).
[Crossref]

T. Kita, Y. Harada, and O. Wada, “Fine structure splitting of isoelectronic bound excitons in nitrogen-doped GaAs,” Phys. Rev. B 77(19), 193102 (2008).
[Crossref]

T. Inoue, M. Mamizuka, H. Mizuno, O. Kojima, T. Kita, and O. Wada, “Effects of indium segregation on optical properties of nitrogen-doped InAs/GaAs quantum dots,” J. Appl. Phys. 104(10), 103532 (2008).
[Crossref]

T. Kita and O. Wada, “Bound exciton states of isoelectronic centers in GaAs:N grown by an atomically controlled doping technique,” Phys. Rev. B 74(3), 035213 (2006).
[Crossref]

T. Kita, T. Mori, H. Seki, M. Matsushita, M. Kikuno, O. Wada, H. Ebe, M. Sugawara, Y. Arakawa, and Y. Nakata, “Extended wavelength emission to 1.3 $\mu$μm in nitrided InAs/GaAs self-assembled quantum dots,” J. Appl. Phys. 97(2), 024306 (2005).
[Crossref]

T. Kita, Y. Masuda, T. Mori, and O. Wada, “Long-wavelength emission from nitridized InAs quantum dots,” Appl. Phys. Lett. 83(20), 4152–4153 (2003).
[Crossref]

Kojima, O.

M. Mamizuka, O. Kojima, T. Inoue, T. Kita, and O. Wada, “Exciton response controlled by introducing a spacer layer in nitrided InAs quantum dots,” Phys. Status Solidi C 6(S1), S146–S149 (2018).
[Crossref]

O. Kojima, R. Izumi, and T. Kita, “Effect of lattice-mismatch strain on electron dynamics in InAs/GaAs quantum dots as seen by time-domain terahertz spectroscopy,” J. Phys. D: Appl. Phys. 51(30), 305102 (2018).
[Crossref]

T. Inoue, M. Mamizuka, H. Mizuno, O. Kojima, T. Kita, and O. Wada, “Effects of indium segregation on optical properties of nitrogen-doped InAs/GaAs quantum dots,” J. Appl. Phys. 104(10), 103532 (2008).
[Crossref]

Kolesnikova, A. L.

V. V. Chaldyshev, N. A. Bert, A. L. Kolesnikova, and A. E. Romanov, “Stress relaxation scenario for buried quantum dots,” Phys. Rev. B 79(23), 233304 (2009).
[Crossref]

Kusaki, K.

S. Asahi, H. Teranishi, K. Kusaki, T. Kaizu, and T. Kita, “Two-step photon up-conversion solar cells,” Nat. Commun. 8, 14962 (2017).
[Crossref]

Lee, D.

Y. D. Jang, N. J. Kim, J. S. Yim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Strong photoluminescence at 1.3 $\mu$μm with a narrow linewidth from nitridized InAs/GaAs quantum dots,” Appl. Phys. Lett. 88(23), 231907 (2006).
[Crossref]

Leidinger, M.

S. Priyadarshi, M. Leidinger, K. Pierz, A. M. Racu, U. Siegner, M. Bieler, and P. Dawson, “Terahertz spectroscopy of shift currents resulting from asymmetric (110)-oriented GaAs/AlGaAs quantum wells,” Appl. Phys. Lett. 95(15), 151110 (2009).
[Crossref]

Linfield, E. H.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).
[Crossref]

Liu, C.

C. Liu, H. Wang, Q. Meng, B. Gao, and K. S. Ang, “Modal gain and photoluminescence investigation of two-state lasing in GaAs-based 1.3 $\mu$μm InAs/InGaAs quantum dot lasers,” Appl. Phys. Express 6(10), 102702 (2013).
[Crossref]

Liu, X.

X. Liu, M.-E. Pistol, and L. Samuelson, “Excitons bound to nitrogen pairs in GaAs,” Phys. Rev. B 42(12), 7504–7512 (1990).
[Crossref]

Lloyd-Hughes, J.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Lu, C.-Y.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref]

Majid, M. A.

M. A. Majid, D. T. D. Childs, K. Kennedy, R. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “O-band excited state quantum dot bilayer lasers,” Appl. Phys. Lett. 99(5), 051101 (2011).
[Crossref]

Mamizuka, M.

M. Mamizuka, O. Kojima, T. Inoue, T. Kita, and O. Wada, “Exciton response controlled by introducing a spacer layer in nitrided InAs quantum dots,” Phys. Status Solidi C 6(S1), S146–S149 (2018).
[Crossref]

T. Inoue, M. Mamizuka, H. Mizuno, O. Kojima, T. Kita, and O. Wada, “Effects of indium segregation on optical properties of nitrogen-doped InAs/GaAs quantum dots,” J. Appl. Phys. 104(10), 103532 (2008).
[Crossref]

Masuda, Y.

T. Kita, Y. Masuda, T. Mori, and O. Wada, “Long-wavelength emission from nitridized InAs quantum dots,” Appl. Phys. Lett. 83(20), 4152–4153 (2003).
[Crossref]

Matsuda, K.

K. Matsuda, T. Saiki, M. Takahashi, A. Moto, and S. Takagishi, “Near-field photoluminescence study of GaNAs alloy epilayer at room and cryogenic temperature,” Appl. Phys. Lett. 78(11), 1508–1510 (2001).
[Crossref]

Matsumura, T.

T. Kaizu, T. Matsumura, and T. Kita, “Broadband control of emission wavelength of InAs/GaAs quantum dots by GaAs capping temperature,” J. Appl. Phys. 118(15), 154301 (2015).
[Crossref]

Matsushita, M.

T. Kita, T. Mori, H. Seki, M. Matsushita, M. Kikuno, O. Wada, H. Ebe, M. Sugawara, Y. Arakawa, and Y. Nakata, “Extended wavelength emission to 1.3 $\mu$μm in nitrided InAs/GaAs self-assembled quantum dots,” J. Appl. Phys. 97(2), 024306 (2005).
[Crossref]

McBryde, D.

Meng, Q.

C. Liu, H. Wang, Q. Meng, B. Gao, and K. S. Ang, “Modal gain and photoluminescence investigation of two-state lasing in GaAs-based 1.3 $\mu$μm InAs/InGaAs quantum dot lasers,” Appl. Phys. Express 6(10), 102702 (2013).
[Crossref]

Merchant, S. K. E.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Mirin, R. P.

Mizuno, H.

T. Inoue, M. Mamizuka, H. Mizuno, O. Kojima, T. Kita, and O. Wada, “Effects of indium segregation on optical properties of nitrogen-doped InAs/GaAs quantum dots,” J. Appl. Phys. 104(10), 103532 (2008).
[Crossref]

Mori, T.

T. Kita, T. Mori, H. Seki, M. Matsushita, M. Kikuno, O. Wada, H. Ebe, M. Sugawara, Y. Arakawa, and Y. Nakata, “Extended wavelength emission to 1.3 $\mu$μm in nitrided InAs/GaAs self-assembled quantum dots,” J. Appl. Phys. 97(2), 024306 (2005).
[Crossref]

T. Kita, Y. Masuda, T. Mori, and O. Wada, “Long-wavelength emission from nitridized InAs quantum dots,” Appl. Phys. Lett. 83(20), 4152–4153 (2003).
[Crossref]

Morifuji, M.

F. Ishikawa, S. Furuse, K. Sumiya, A. Kinoshita, and M. Morifuji, “Nitrogen $\delta$δ-doping for band engineering of GaAs-related quantum structures,” J. Appl. Phys. 111(5), 053512 (2012).
[Crossref]

Morihara, R.

D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96(20), 203507 (2010).
[Crossref]

Moto, A.

K. Matsuda, T. Saiki, M. Takahashi, A. Moto, and S. Takagishi, “Near-field photoluminescence study of GaNAs alloy epilayer at room and cryogenic temperature,” Appl. Phys. Lett. 78(11), 1508–1510 (2001).
[Crossref]

Murray, R.

M. A. Majid, D. T. D. Childs, K. Kennedy, R. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “O-band excited state quantum dot bilayer lasers,” Appl. Phys. Lett. 99(5), 051101 (2011).
[Crossref]

Nakata, Y.

T. Kita, T. Mori, H. Seki, M. Matsushita, M. Kikuno, O. Wada, H. Ebe, M. Sugawara, Y. Arakawa, and Y. Nakata, “Extended wavelength emission to 1.3 $\mu$μm in nitrided InAs/GaAs self-assembled quantum dots,” J. Appl. Phys. 97(2), 024306 (2005).
[Crossref]

Niederstrasser, T. A.

C. Schneider, T. Heindel, A. Huggenberger, T. A. Niederstrasser, S. Reitzenstein, A. Forchel, Höfling, and M. Kamp, “Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot,” Appl. Phys. Lett. 100(9), 091108 (2012).
[Crossref]

Nikishin, S. A.

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75(11), 1538–1540 (1999).
[Crossref]

Nishioka, M.

D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96(20), 203507 (2010).
[Crossref]

Norris, D. J.

T. Walther, A. G. Cullis, D. J. Norris, and M. Hopkinson, “Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs,” Phys. Rev. Lett. 86(11), 2381–2384 (2001).
[Crossref]

Ogawa, Y.

Y. Ogawa, Y. Harada, T. Baba, T. Kaizu, and T. Kita, “Effects of rapid thermal annealing on two-dimensional delocalized electronic states of the epitaxial N $\delta$δ-doped layer in GaAs,” Appl. Phys. Lett. 108(11), 111905 (2016).
[Crossref]

Ohtani, N.

K. Akahane, N. Yamamoto, S. Gozu, and N. Ohtani, “Strong photoluminescence and laser operation of InAs quantum dots covered by a GaAsSb strain-reducing layer,” Phys. E 26(1-4), 395–399 (2005).
[Crossref]

Pan, J.-W.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref]

Persson, J.

J. Persson, U. Håkanson, M. K.-J. Johansson, L. Samuelson, and M.-E. Pistol, “Strain effects on individual quantum dots: Dependence of cap layer thickness,” Phys. Rev. B 72(8), 085302 (2005).
[Crossref]

Pierz, K.

S. Priyadarshi, M. Leidinger, K. Pierz, A. M. Racu, U. Siegner, M. Bieler, and P. Dawson, “Terahertz spectroscopy of shift currents resulting from asymmetric (110)-oriented GaAs/AlGaAs quantum wells,” Appl. Phys. Lett. 95(15), 151110 (2009).
[Crossref]

M. Bieler, K. Pierz, U. Siegner, and P. Dawson, “Shift currents from symmetry reduction and Coulomb effects in (110)-orientated GaAs/Al$_{0.3}$0.3Ga$_{0.7}$0.7As quantum wells,” Phys. Rev. B 76(16), 161304 (2007).
[Crossref]

Pistol, M.-E.

J. Persson, U. Håkanson, M. K.-J. Johansson, L. Samuelson, and M.-E. Pistol, “Strain effects on individual quantum dots: Dependence of cap layer thickness,” Phys. Rev. B 72(8), 085302 (2005).
[Crossref]

X. Liu, M.-E. Pistol, and L. Samuelson, “Excitons bound to nitrogen pairs in GaAs,” Phys. Rev. B 42(12), 7504–7512 (1990).
[Crossref]

Ploog, K.

O. Brandt, L. Tapfer, K. Ploog, R. Bierwolf, and M. Hohenstein, “Effect of In segregation on the structural and optical properties of ultrathin InAs films in GaAs,” Appl. Phys. Lett. 61(23), 2814–2816 (1992).
[Crossref]

Priyadarshi, S.

S. Priyadarshi, M. Leidinger, K. Pierz, A. M. Racu, U. Siegner, M. Bieler, and P. Dawson, “Terahertz spectroscopy of shift currents resulting from asymmetric (110)-oriented GaAs/AlGaAs quantum wells,” Appl. Phys. Lett. 95(15), 151110 (2009).
[Crossref]

Pyun, S. H.

Y. D. Jang, N. J. Kim, J. S. Yim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Strong photoluminescence at 1.3 $\mu$μm with a narrow linewidth from nitridized InAs/GaAs quantum dots,” Appl. Phys. Lett. 88(23), 231907 (2006).
[Crossref]

Qiu, Y.

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75(11), 1538–1540 (1999).
[Crossref]

Racu, A. M.

S. Priyadarshi, M. Leidinger, K. Pierz, A. M. Racu, U. Siegner, M. Bieler, and P. Dawson, “Terahertz spectroscopy of shift currents resulting from asymmetric (110)-oriented GaAs/AlGaAs quantum wells,” Appl. Phys. Lett. 95(15), 151110 (2009).
[Crossref]

Reenaas, T. W.

D. Zhou, G. Sharma, S. F. Thomassen, T. W. Reenaas, and B. O. Fimland, “Optimization towards high density quantum dots for intermediate band solar cells grown by molecular beam epitaxy,” Appl. Phys. Lett. 96(6), 061913 (2010).
[Crossref]

Reitzenstein, S.

C. Schneider, T. Heindel, A. Huggenberger, T. A. Niederstrasser, S. Reitzenstein, A. Forchel, Höfling, and M. Kamp, “Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot,” Appl. Phys. Lett. 100(9), 091108 (2012).
[Crossref]

Riechert, H.

O. Schumann, L. Geelhaar, H. Riechert, H. Cerva, and G. Abstreiter, “Morphology and optical properties of InAs(N) quantum dots,” J. Appl. Phys. 96(5), 2832–2840 (2004).
[Crossref]

Ritchie, D. A.

Romanov, A. E.

V. V. Chaldyshev, N. A. Bert, A. L. Kolesnikova, and A. E. Romanov, “Stress relaxation scenario for buried quantum dots,” Phys. Rev. B 79(23), 233304 (2009).
[Crossref]

Saiki, T.

K. Matsuda, T. Saiki, M. Takahashi, A. Moto, and S. Takagishi, “Near-field photoluminescence study of GaNAs alloy epilayer at room and cryogenic temperature,” Appl. Phys. Lett. 78(11), 1508–1510 (2001).
[Crossref]

Samuelson, L.

J. Persson, U. Håkanson, M. K.-J. Johansson, L. Samuelson, and M.-E. Pistol, “Strain effects on individual quantum dots: Dependence of cap layer thickness,” Phys. Rev. B 72(8), 085302 (2005).
[Crossref]

X. Liu, M.-E. Pistol, and L. Samuelson, “Excitons bound to nitrogen pairs in GaAs,” Phys. Rev. B 42(12), 7504–7512 (1990).
[Crossref]

Schneider, C.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref]

C. Schneider, T. Heindel, A. Huggenberger, T. A. Niederstrasser, S. Reitzenstein, A. Forchel, Höfling, and M. Kamp, “Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot,” Appl. Phys. Lett. 100(9), 091108 (2012).
[Crossref]

Schumann, O.

O. Schumann, L. Geelhaar, H. Riechert, H. Cerva, and G. Abstreiter, “Morphology and optical properties of InAs(N) quantum dots,” J. Appl. Phys. 96(5), 2832–2840 (2004).
[Crossref]

Seki, H.

T. Kita, T. Mori, H. Seki, M. Matsushita, M. Kikuno, O. Wada, H. Ebe, M. Sugawara, Y. Arakawa, and Y. Nakata, “Extended wavelength emission to 1.3 $\mu$μm in nitrided InAs/GaAs self-assembled quantum dots,” J. Appl. Phys. 97(2), 024306 (2005).
[Crossref]

Shan, W.

W. Shan, K. M. Yu, W. Walukiewicz, and J. W. Ager III, “Reduction of band-gap energy in GaNAs and AlGaNAs synthesized by N$^+$+ implantation,” Appl. Phys. Lett. 75(10), 1410–1412 (1999).
[Crossref]

Sharma, G.

D. Zhou, G. Sharma, S. F. Thomassen, T. W. Reenaas, and B. O. Fimland, “Optimization towards high density quantum dots for intermediate band solar cells grown by molecular beam epitaxy,” Appl. Phys. Lett. 96(6), 061913 (2010).
[Crossref]

Siegner, U.

S. Priyadarshi, M. Leidinger, K. Pierz, A. M. Racu, U. Siegner, M. Bieler, and P. Dawson, “Terahertz spectroscopy of shift currents resulting from asymmetric (110)-oriented GaAs/AlGaAs quantum wells,” Appl. Phys. Lett. 95(15), 151110 (2009).
[Crossref]

M. Bieler, K. Pierz, U. Siegner, and P. Dawson, “Shift currents from symmetry reduction and Coulomb effects in (110)-orientated GaAs/Al$_{0.3}$0.3Ga$_{0.7}$0.7As quantum wells,” Phys. Rev. B 76(16), 161304 (2007).
[Crossref]

Silverman, K. L.

Sørensen, C. B.

D. Birkedal, O. Hansen, C. B. Sørensen, K. Jarasiunas, S. D. Brorson, and S. R. Keiding, “Terahertz radiation from delta-doped GaAs,” Appl. Phys. Lett. 65(1), 79–81 (1994).
[Crossref]

Spencer, P.

M. A. Majid, D. T. D. Childs, K. Kennedy, R. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “O-band excited state quantum dot bilayer lasers,” Appl. Phys. Lett. 99(5), 051101 (2011).
[Crossref]

Stevens, M. J.

Strauss, M.

M. Strauss, S. Höfling, and A. Forchel, “InAs/GaInAs(N) quantum dots on GaAs substrate for single photon emitters above 1300 nm,” Nanotechnology 20(50), 505601 (2009).
[Crossref]

Sugawara, M.

T. Kita, T. Mori, H. Seki, M. Matsushita, M. Kikuno, O. Wada, H. Ebe, M. Sugawara, Y. Arakawa, and Y. Nakata, “Extended wavelength emission to 1.3 $\mu$μm in nitrided InAs/GaAs self-assembled quantum dots,” J. Appl. Phys. 97(2), 024306 (2005).
[Crossref]

Sumiya, K.

F. Ishikawa, S. Furuse, K. Sumiya, A. Kinoshita, and M. Morifuji, “Nitrogen $\delta$δ-doping for band engineering of GaAs-related quantum structures,” J. Appl. Phys. 111(5), 053512 (2012).
[Crossref]

Takagishi, S.

K. Matsuda, T. Saiki, M. Takahashi, A. Moto, and S. Takagishi, “Near-field photoluminescence study of GaNAs alloy epilayer at room and cryogenic temperature,” Appl. Phys. Lett. 78(11), 1508–1510 (2001).
[Crossref]

Takahashi, M.

K. Matsuda, T. Saiki, M. Takahashi, A. Moto, and S. Takagishi, “Near-field photoluminescence study of GaNAs alloy epilayer at room and cryogenic temperature,” Appl. Phys. Lett. 78(11), 1508–1510 (2001).
[Crossref]

Tan, H. H.

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

Tanabe, K.

D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96(20), 203507 (2010).
[Crossref]

Tapfer, L.

O. Brandt, L. Tapfer, K. Ploog, R. Bierwolf, and M. Hohenstein, “Effect of In segregation on the structural and optical properties of ultrathin InAs films in GaAs,” Appl. Phys. Lett. 61(23), 2814–2816 (1992).
[Crossref]

Temkin, H.

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75(11), 1538–1540 (1999).
[Crossref]

Teranishi, H.

S. Asahi, H. Teranishi, K. Kusaki, T. Kaizu, and T. Kita, “Two-step photon up-conversion solar cells,” Nat. Commun. 8, 14962 (2017).
[Crossref]

Thomassen, S. F.

D. Zhou, G. Sharma, S. F. Thomassen, T. W. Reenaas, and B. O. Fimland, “Optimization towards high density quantum dots for intermediate band solar cells grown by molecular beam epitaxy,” Appl. Phys. Lett. 96(6), 061913 (2010).
[Crossref]

Tomomatsu, Y.

K. Akahane, N. Yamamoto, A. Kanno, K. Inagaki, T. Umezawa, T. Kawanishi, T. Endo, Y. Tomomatsu, and T. Yamanoi, “Stable two-mode emission from semiconductor quantum dot laser,” Appl. Phys. Express 6(10), 104001 (2013).
[Crossref]

Umezawa, T.

K. Akahane, N. Yamamoto, A. Kanno, K. Inagaki, T. Umezawa, T. Kawanishi, T. Endo, Y. Tomomatsu, and T. Yamanoi, “Stable two-mode emission from semiconductor quantum dot laser,” Appl. Phys. Express 6(10), 104001 (2013).
[Crossref]

Verma, V. B.

Wada, O.

M. Mamizuka, O. Kojima, T. Inoue, T. Kita, and O. Wada, “Exciton response controlled by introducing a spacer layer in nitrided InAs quantum dots,” Phys. Status Solidi C 6(S1), S146–S149 (2018).
[Crossref]

T. Kita, Y. Harada, and O. Wada, “Fine structure splitting of isoelectronic bound excitons in nitrogen-doped GaAs,” Phys. Rev. B 77(19), 193102 (2008).
[Crossref]

T. Inoue, M. Mamizuka, H. Mizuno, O. Kojima, T. Kita, and O. Wada, “Effects of indium segregation on optical properties of nitrogen-doped InAs/GaAs quantum dots,” J. Appl. Phys. 104(10), 103532 (2008).
[Crossref]

T. Kita and O. Wada, “Bound exciton states of isoelectronic centers in GaAs:N grown by an atomically controlled doping technique,” Phys. Rev. B 74(3), 035213 (2006).
[Crossref]

T. Kita, T. Mori, H. Seki, M. Matsushita, M. Kikuno, O. Wada, H. Ebe, M. Sugawara, Y. Arakawa, and Y. Nakata, “Extended wavelength emission to 1.3 $\mu$μm in nitrided InAs/GaAs self-assembled quantum dots,” J. Appl. Phys. 97(2), 024306 (2005).
[Crossref]

T. Kita, Y. Masuda, T. Mori, and O. Wada, “Long-wavelength emission from nitridized InAs quantum dots,” Appl. Phys. Lett. 83(20), 4152–4153 (2003).
[Crossref]

Wakayama, Y.

D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96(20), 203507 (2010).
[Crossref]

Walther, T.

T. Walther, A. G. Cullis, D. J. Norris, and M. Hopkinson, “Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs,” Phys. Rev. Lett. 86(11), 2381–2384 (2001).
[Crossref]

Walukiewicz, W.

W. Shan, K. M. Yu, W. Walukiewicz, and J. W. Ager III, “Reduction of band-gap energy in GaNAs and AlGaNAs synthesized by N$^+$+ implantation,” Appl. Phys. Lett. 75(10), 1410–1412 (1999).
[Crossref]

Wang, H.

C. Liu, H. Wang, Q. Meng, B. Gao, and K. S. Ang, “Modal gain and photoluminescence investigation of two-state lasing in GaAs-based 1.3 $\mu$μm InAs/InGaAs quantum dot lasers,” Appl. Phys. Express 6(10), 102702 (2013).
[Crossref]

Wei, Y.-J.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref]

Whittaker, D. M.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).
[Crossref]

Wu, D.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref]

Yamamoto, N.

K. Akahane, N. Yamamoto, A. Kanno, K. Inagaki, T. Umezawa, T. Kawanishi, T. Endo, Y. Tomomatsu, and T. Yamanoi, “Stable two-mode emission from semiconductor quantum dot laser,” Appl. Phys. Express 6(10), 104001 (2013).
[Crossref]

K. Akahane, N. Yamamoto, S. Gozu, and N. Ohtani, “Strong photoluminescence and laser operation of InAs quantum dots covered by a GaAsSb strain-reducing layer,” Phys. E 26(1-4), 395–399 (2005).
[Crossref]

Yamanoi, T.

K. Akahane, N. Yamamoto, A. Kanno, K. Inagaki, T. Umezawa, T. Kawanishi, T. Endo, Y. Tomomatsu, and T. Yamanoi, “Stable two-mode emission from semiconductor quantum dot laser,” Appl. Phys. Express 6(10), 104001 (2013).
[Crossref]

Yim, J. S.

Y. D. Jang, N. J. Kim, J. S. Yim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Strong photoluminescence at 1.3 $\mu$μm with a narrow linewidth from nitridized InAs/GaAs quantum dots,” Appl. Phys. Lett. 88(23), 231907 (2006).
[Crossref]

Yu, K. M.

W. Shan, K. M. Yu, W. Walukiewicz, and J. W. Ager III, “Reduction of band-gap energy in GaNAs and AlGaNAs synthesized by N$^+$+ implantation,” Appl. Phys. Lett. 75(10), 1410–1412 (1999).
[Crossref]

Zhou, D.

D. Zhou, G. Sharma, S. F. Thomassen, T. W. Reenaas, and B. O. Fimland, “Optimization towards high density quantum dots for intermediate band solar cells grown by molecular beam epitaxy,” Appl. Phys. Lett. 96(6), 061913 (2010).
[Crossref]

Appl. Phys. Express (2)

C. Liu, H. Wang, Q. Meng, B. Gao, and K. S. Ang, “Modal gain and photoluminescence investigation of two-state lasing in GaAs-based 1.3 $\mu$μm InAs/InGaAs quantum dot lasers,” Appl. Phys. Express 6(10), 102702 (2013).
[Crossref]

K. Akahane, N. Yamamoto, A. Kanno, K. Inagaki, T. Umezawa, T. Kawanishi, T. Endo, Y. Tomomatsu, and T. Yamanoi, “Stable two-mode emission from semiconductor quantum dot laser,” Appl. Phys. Express 6(10), 104001 (2013).
[Crossref]

Appl. Phys. Lett. (14)

Y. Ogawa, Y. Harada, T. Baba, T. Kaizu, and T. Kita, “Effects of rapid thermal annealing on two-dimensional delocalized electronic states of the epitaxial N $\delta$δ-doped layer in GaAs,” Appl. Phys. Lett. 108(11), 111905 (2016).
[Crossref]

W. Shan, K. M. Yu, W. Walukiewicz, and J. W. Ager III, “Reduction of band-gap energy in GaNAs and AlGaNAs synthesized by N$^+$+ implantation,” Appl. Phys. Lett. 75(10), 1410–1412 (1999).
[Crossref]

K. Matsuda, T. Saiki, M. Takahashi, A. Moto, and S. Takagishi, “Near-field photoluminescence study of GaNAs alloy epilayer at room and cryogenic temperature,” Appl. Phys. Lett. 78(11), 1508–1510 (2001).
[Crossref]

M. A. Majid, D. T. D. Childs, K. Kennedy, R. Airey, R. A. Hogg, E. Clarke, P. Spencer, and R. Murray, “O-band excited state quantum dot bilayer lasers,” Appl. Phys. Lett. 99(5), 051101 (2011).
[Crossref]

J. Lloyd-Hughes, S. K. E. Merchant, L. Fu, H. H. Tan, C. Jagadish, E. Castro-Camus, and M. B. Johnston, “Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs,” Appl. Phys. Lett. 89(23), 232102 (2006).
[Crossref]

S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, and H. Temkin, “Excitons bound to nitrogen clusters in GaAsN,” Appl. Phys. Lett. 75(11), 1538–1540 (1999).
[Crossref]

D. Zhou, G. Sharma, S. F. Thomassen, T. W. Reenaas, and B. O. Fimland, “Optimization towards high density quantum dots for intermediate band solar cells grown by molecular beam epitaxy,” Appl. Phys. Lett. 96(6), 061913 (2010).
[Crossref]

D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, “Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage,” Appl. Phys. Lett. 96(20), 203507 (2010).
[Crossref]

C. Schneider, T. Heindel, A. Huggenberger, T. A. Niederstrasser, S. Reitzenstein, A. Forchel, Höfling, and M. Kamp, “Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot,” Appl. Phys. Lett. 100(9), 091108 (2012).
[Crossref]

O. Brandt, L. Tapfer, K. Ploog, R. Bierwolf, and M. Hohenstein, “Effect of In segregation on the structural and optical properties of ultrathin InAs films in GaAs,” Appl. Phys. Lett. 61(23), 2814–2816 (1992).
[Crossref]

T. Kita, Y. Masuda, T. Mori, and O. Wada, “Long-wavelength emission from nitridized InAs quantum dots,” Appl. Phys. Lett. 83(20), 4152–4153 (2003).
[Crossref]

Y. D. Jang, N. J. Kim, J. S. Yim, D. Lee, S. H. Pyun, W. G. Jeong, and J. W. Jang, “Strong photoluminescence at 1.3 $\mu$μm with a narrow linewidth from nitridized InAs/GaAs quantum dots,” Appl. Phys. Lett. 88(23), 231907 (2006).
[Crossref]

D. Birkedal, O. Hansen, C. B. Sørensen, K. Jarasiunas, S. D. Brorson, and S. R. Keiding, “Terahertz radiation from delta-doped GaAs,” Appl. Phys. Lett. 65(1), 79–81 (1994).
[Crossref]

S. Priyadarshi, M. Leidinger, K. Pierz, A. M. Racu, U. Siegner, M. Bieler, and P. Dawson, “Terahertz spectroscopy of shift currents resulting from asymmetric (110)-oriented GaAs/AlGaAs quantum wells,” Appl. Phys. Lett. 95(15), 151110 (2009).
[Crossref]

J. Appl. Phys. (5)

F. Ishikawa, S. Furuse, K. Sumiya, A. Kinoshita, and M. Morifuji, “Nitrogen $\delta$δ-doping for band engineering of GaAs-related quantum structures,” J. Appl. Phys. 111(5), 053512 (2012).
[Crossref]

T. Inoue, M. Mamizuka, H. Mizuno, O. Kojima, T. Kita, and O. Wada, “Effects of indium segregation on optical properties of nitrogen-doped InAs/GaAs quantum dots,” J. Appl. Phys. 104(10), 103532 (2008).
[Crossref]

O. Schumann, L. Geelhaar, H. Riechert, H. Cerva, and G. Abstreiter, “Morphology and optical properties of InAs(N) quantum dots,” J. Appl. Phys. 96(5), 2832–2840 (2004).
[Crossref]

T. Kita, T. Mori, H. Seki, M. Matsushita, M. Kikuno, O. Wada, H. Ebe, M. Sugawara, Y. Arakawa, and Y. Nakata, “Extended wavelength emission to 1.3 $\mu$μm in nitrided InAs/GaAs self-assembled quantum dots,” J. Appl. Phys. 97(2), 024306 (2005).
[Crossref]

T. Kaizu, T. Matsumura, and T. Kita, “Broadband control of emission wavelength of InAs/GaAs quantum dots by GaAs capping temperature,” J. Appl. Phys. 118(15), 154301 (2015).
[Crossref]

J. Phys. D: Appl. Phys. (1)

O. Kojima, R. Izumi, and T. Kita, “Effect of lattice-mismatch strain on electron dynamics in InAs/GaAs quantum dots as seen by time-domain terahertz spectroscopy,” J. Phys. D: Appl. Phys. 51(30), 305102 (2018).
[Crossref]

Nanotechnology (1)

M. Strauss, S. Höfling, and A. Forchel, “InAs/GaInAs(N) quantum dots on GaAs substrate for single photon emitters above 1300 nm,” Nanotechnology 20(50), 505601 (2009).
[Crossref]

Nat. Commun. (1)

S. Asahi, H. Teranishi, K. Kusaki, T. Kaizu, and T. Kita, “Two-step photon up-conversion solar cells,” Nat. Commun. 8, 14962 (2017).
[Crossref]

Nat. Nanotechnol. (1)

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref]

Opt. Express (2)

Phys. E (1)

K. Akahane, N. Yamamoto, S. Gozu, and N. Ohtani, “Strong photoluminescence and laser operation of InAs quantum dots covered by a GaAsSb strain-reducing layer,” Phys. E 26(1-4), 395–399 (2005).
[Crossref]

Phys. Rev. B (7)

V. V. Chaldyshev, N. A. Bert, A. L. Kolesnikova, and A. E. Romanov, “Stress relaxation scenario for buried quantum dots,” Phys. Rev. B 79(23), 233304 (2009).
[Crossref]

J. Persson, U. Håkanson, M. K.-J. Johansson, L. Samuelson, and M.-E. Pistol, “Strain effects on individual quantum dots: Dependence of cap layer thickness,” Phys. Rev. B 72(8), 085302 (2005).
[Crossref]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65(16), 165301 (2002).
[Crossref]

X. Liu, M.-E. Pistol, and L. Samuelson, “Excitons bound to nitrogen pairs in GaAs,” Phys. Rev. B 42(12), 7504–7512 (1990).
[Crossref]

T. Kita and O. Wada, “Bound exciton states of isoelectronic centers in GaAs:N grown by an atomically controlled doping technique,” Phys. Rev. B 74(3), 035213 (2006).
[Crossref]

T. Kita, Y. Harada, and O. Wada, “Fine structure splitting of isoelectronic bound excitons in nitrogen-doped GaAs,” Phys. Rev. B 77(19), 193102 (2008).
[Crossref]

M. Bieler, K. Pierz, U. Siegner, and P. Dawson, “Shift currents from symmetry reduction and Coulomb effects in (110)-orientated GaAs/Al$_{0.3}$0.3Ga$_{0.7}$0.7As quantum wells,” Phys. Rev. B 76(16), 161304 (2007).
[Crossref]

Phys. Rev. Lett. (1)

T. Walther, A. G. Cullis, D. J. Norris, and M. Hopkinson, “Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs,” Phys. Rev. Lett. 86(11), 2381–2384 (2001).
[Crossref]

Phys. Status Solidi C (1)

M. Mamizuka, O. Kojima, T. Inoue, T. Kita, and O. Wada, “Exciton response controlled by introducing a spacer layer in nitrided InAs quantum dots,” Phys. Status Solidi C 6(S1), S146–S149 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Image of sample structure. The NQD sample does not include the spacer layer.
Fig. 2.
Fig. 2. Schematic diagram of the THz-wave measurement system.
Fig. 3.
Fig. 3. Dependence of the THz signal on the pump energy for the (a) NQD and (b) NQD(5 nm) samples.
Fig. 4.
Fig. 4. Dependence of $\Delta A$ on the pump energy for the NQD and (b) NQD(5 nm) samples plotted using triangle and circles, respectively. The vertical dotted line indicates the phase inversion energy for the reference QD sample.
Fig. 5.
Fig. 5. The FT intensities for NQD and NQD(5 nm) plotted as a function of pump energy by triangles and open circles, respectively. The closed circles indicate the intensities obtained for the reference QD sample [26].
Fig. 6.
Fig. 6. The PL and PL excitation spectra of the reference QD, NQD, and NQD(5 nm) samples from top to bottom as denoted by dotted curves and marks, respectively. The arrows indicate the energy of the phase inversion of the THz signal.
Fig. 7.
Fig. 7. The PL spectra measured for different excitation intensities; the dashed and the solid curves represent the low and high excitation densities, respectively. A continuous laser was used.

Metrics