Abstract

In this work, we have proposed two different designs to improve the efficiency of a graphene-based electro-absorption modulator. The efficiency of the modulator is enhanced by increasing the overlap between the graphene layer and the optical mode of the waveguide. This is achieved by introducing the graphene layer between the silicon nitride cap and silicon waveguide. Using a single monolayer graphene configuration, a switching energy of 3.22 fJ/bit and maximum operating bandwidth of 10.89 GHz is achieved whereas the double monolayer graphene configuration allowed us to achieve a switching energy of 4.26 fJ/bit with a large operating bandwidth of 34 GHz at λ=1550 nm. Low energy consumption coupled with high bandwidth makes these modulator designs a potential candidate for use in on-chip optical communication.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design optimization of single and double layer Graphene phase modulators in SOI

Vito Sorianello, Michele Midrio, and Marco Romagnoli
Opt. Express 23(5) 6478-6490 (2015)

Switching energy limits of waveguide-coupled graphene-on-graphene optical modulators

Steven J. Koester, Huan Li, and Mo Li
Opt. Express 20(18) 20330-20341 (2012)

Graphene based low insertion loss electro-absorption modulator on SOI waveguide

Muhammad Mohsin, Daniel Schall, Martin Otto, Achim Noculak, Daniel Neumaier, and Heinrich Kurz
Opt. Express 22(12) 15292-15297 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Borkar, “Role of interconnects in the future of computing,” J. Lightwave Technol. 31(24), 3927–3933 (2013).
    [Crossref]
  2. D. A. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” J. Lightwave Technol. 35(3), 346–396 (2017).
    [Crossref]
  3. D. A. Miller, “Optical interconnects to electronic chips,” Appl. Opt. 49(25), F59–F70 (2010).
    [Crossref]
  4. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [Crossref]
  5. K. Debnath, D. J. Thomson, W. Zhang, A. Z. Khokhar, C. Littlejohns, J. Byers, L. Mastronardi, M. K. Husain, K. Ibukuro, F. Y. Gardes, and G. T. Reed, “All-silicon carrier accumulation modulator based on a lateral metal-oxide-semiconductor capacitor,” Photon. Res. 6(5), 373–379 (2018).
    [Crossref]
  6. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [Crossref]
  7. K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
    [Crossref]
  8. P. Chaisakul, D. Marris-Morini, M. S. Rouifed, G. Isella, D. Chrastina, J. Frigerio, X. Le Roux, S. Edmond, J. R. Coudevylle, and L. Vivien, “23 GHz Ge/SiGe multiple quantum well electro-absorption modulator,” Opt. Express 20(3), 3219–3224 (2012).
    [Crossref]
  9. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
    [Crossref]
  10. Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photon. Res. 6(4), 277–281 (2018).
    [Crossref]
  11. K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: from the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
    [Crossref]
  12. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref]
  13. Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. V. Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photon. Rev. 10(2), 307–316 (2016).
    [Crossref]
  14. M. Fan, H. Yang, P. Zheng, G. Hu, B. Yun, and Y. Cui, “Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide,” Opt. Express 25(18), 21619–21629 (2017).
    [Crossref]
  15. S. Qu, C. Ma, S. Wang, H. Liu, and L. Dong, “Modulation speed limits of a graphene-based modulator,” Opt. Quantum Electron. 50(2), 105 (2018).
    [Crossref]
  16. J. Luan, M. Fan, P. Zheng, H. Yang, G. Hu, B. Yun, and Y. Cui, “Design and Optimization of a Graphene Modulator Based on Hybrid Plasmonic Waveguide with Double Low-Index Slots,” Plasmonics1–6 (2018).
  17. D. Svintsov, V. Vyurkov, V. Ryzhii, and T. Otsuji, “Voltage-controlled surface plasmon-polaritons in double graphene layer structures,” J. Appl. Phys. 113(5), 053701 (2013).
    [Crossref]
  18. D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
    [Crossref]
  19. L. Yang, T. Hu, R. Hao, C. Qiu, C. Xu, H. Yu, Y. Xu, X. Jiang, Y. Li, and J. Yang, “Low-chirp high-extinction-ratio modulator based on graphene–silicon waveguide,” Opt. Lett. 38(14), 2512–2515 (2013).
    [Crossref]
  20. F. Xu, S. Das, Y. Gong, Q. Liu, H.-C. Chien, H.-Y. Chiu, J. Wu, and R. Hui, “Complex refractive index tunability of graphene at 1550 nm wavelength,” Appl. Phys. Lett. 106(3), 031109 (2015).
    [Crossref]
  21. G. Suchaneck, V. Norkus, and G. Gerlach, “Low-temperature PECVD-deposited silicon nitride thin films for sensor applications,” Surf. Coat. Technol. 142–144, 808–812 (2001).
    [Crossref]
  22. Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24(3), 1865–1872 (2016).
    [Crossref]
  23. L. A. Shiramin and D. V. Thourhout, “Graphene modulators and switches integrated on silicon and silicon nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 23(1), 94–100 (2017).
    [Crossref]
  24. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  25. L. Anzi, A. Mansouri, P. Pedrinazzi, E. Guerriero, M. Fiocco, A. Pesquera, A. Centeno, A. Zurutuza, A. Behnam, E.A. Carrion, and E. Pop, “Ultra-low contact resistance in graphene devices at the Dirac point,” 2D Mater. 5(2), 025014 (2018).
    [Crossref]
  26. S. M. Song, T. Y. Kim, O. J. Sul, W. C. Shin, and B. J. Cho, “Improvement of graphene–metal contact resistance by introducing edge contacts at graphene under metal,” Appl. Phys. Lett. 104(18), 183506 (2014).
    [Crossref]
  27. K. Yamada, K. Tomita, and T. Ohmi, “Formation of metal silicide-silicon contact with ultralow contact resistance by silicon-capping silicidation technique,” Appl. Phys. Lett. 64(25), 3449–3451 (1994).
    [Crossref]
  28. H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 GHz speed,” ACS Photonics 3(9), 1564–1568 (2016).
    [Crossref]

2018 (4)

K. Debnath, D. J. Thomson, W. Zhang, A. Z. Khokhar, C. Littlejohns, J. Byers, L. Mastronardi, M. K. Husain, K. Ibukuro, F. Y. Gardes, and G. T. Reed, “All-silicon carrier accumulation modulator based on a lateral metal-oxide-semiconductor capacitor,” Photon. Res. 6(5), 373–379 (2018).
[Crossref]

Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photon. Res. 6(4), 277–281 (2018).
[Crossref]

S. Qu, C. Ma, S. Wang, H. Liu, and L. Dong, “Modulation speed limits of a graphene-based modulator,” Opt. Quantum Electron. 50(2), 105 (2018).
[Crossref]

L. Anzi, A. Mansouri, P. Pedrinazzi, E. Guerriero, M. Fiocco, A. Pesquera, A. Centeno, A. Zurutuza, A. Behnam, E.A. Carrion, and E. Pop, “Ultra-low contact resistance in graphene devices at the Dirac point,” 2D Mater. 5(2), 025014 (2018).
[Crossref]

2017 (3)

2016 (3)

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. V. Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photon. Rev. 10(2), 307–316 (2016).
[Crossref]

Z. Shao, Y. Chen, H. Chen, Y. Zhang, F. Zhang, J. Jian, Z. Fan, L. Liu, C. Yang, L. Zhou, and S. Yu, “Ultra-low temperature silicon nitride photonic integration platform,” Opt. Express 24(3), 1865–1872 (2016).
[Crossref]

H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 GHz speed,” ACS Photonics 3(9), 1564–1568 (2016).
[Crossref]

2015 (2)

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref]

F. Xu, S. Das, Y. Gong, Q. Liu, H.-C. Chien, H.-Y. Chiu, J. Wu, and R. Hui, “Complex refractive index tunability of graphene at 1550 nm wavelength,” Appl. Phys. Lett. 106(3), 031109 (2015).
[Crossref]

2014 (1)

S. M. Song, T. Y. Kim, O. J. Sul, W. C. Shin, and B. J. Cho, “Improvement of graphene–metal contact resistance by introducing edge contacts at graphene under metal,” Appl. Phys. Lett. 104(18), 183506 (2014).
[Crossref]

2013 (3)

2012 (3)

2011 (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

2010 (1)

2008 (1)

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[Crossref]

2007 (1)

2004 (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]

2001 (1)

G. Suchaneck, V. Norkus, and G. Gerlach, “Low-temperature PECVD-deposited silicon nitride thin films for sensor applications,” Surf. Coat. Technol. 142–144, 808–812 (2001).
[Crossref]

1994 (1)

K. Yamada, K. Tomita, and T. Ohmi, “Formation of metal silicide-silicon contact with ultralow contact resistance by silicon-capping silicidation technique,” Appl. Phys. Lett. 64(25), 3449–3451 (1994).
[Crossref]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Absil, P.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. V. Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photon. Rev. 10(2), 307–316 (2016).
[Crossref]

Ansell, D.

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref]

Anzi, L.

L. Anzi, A. Mansouri, P. Pedrinazzi, E. Guerriero, M. Fiocco, A. Pesquera, A. Centeno, A. Zurutuza, A. Behnam, E.A. Carrion, and E. Pop, “Ultra-low contact resistance in graphene devices at the Dirac point,” 2D Mater. 5(2), 025014 (2018).
[Crossref]

Asselberghs, I.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. V. Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photon. Rev. 10(2), 307–316 (2016).
[Crossref]

Beals, M.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[Crossref]

Behnam, A.

L. Anzi, A. Mansouri, P. Pedrinazzi, E. Guerriero, M. Fiocco, A. Pesquera, A. Centeno, A. Zurutuza, A. Behnam, E.A. Carrion, and E. Pop, “Ultra-low contact resistance in graphene devices at the Dirac point,” 2D Mater. 5(2), 025014 (2018).
[Crossref]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Bernardis, S.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[Crossref]

Borkar, S.

Bozhevolnyi, S. I.

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref]

Brems, S.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. V. Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photon. Rev. 10(2), 307–316 (2016).
[Crossref]

Byers, J.

Carrion, E.A.

L. Anzi, A. Mansouri, P. Pedrinazzi, E. Guerriero, M. Fiocco, A. Pesquera, A. Centeno, A. Zurutuza, A. Behnam, E.A. Carrion, and E. Pop, “Ultra-low contact resistance in graphene devices at the Dirac point,” 2D Mater. 5(2), 025014 (2018).
[Crossref]

Centeno, A.

L. Anzi, A. Mansouri, P. Pedrinazzi, E. Guerriero, M. Fiocco, A. Pesquera, A. Centeno, A. Zurutuza, A. Behnam, E.A. Carrion, and E. Pop, “Ultra-low contact resistance in graphene devices at the Dirac point,” 2D Mater. 5(2), 025014 (2018).
[Crossref]

Chaisakul, P.

Chen, H.

Chen, Y.

Cheng, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[Crossref]

Chien, H.-C.

F. Xu, S. Das, Y. Gong, Q. Liu, H.-C. Chien, H.-Y. Chiu, J. Wu, and R. Hui, “Complex refractive index tunability of graphene at 1550 nm wavelength,” Appl. Phys. Lett. 106(3), 031109 (2015).
[Crossref]

Chiu, H.-Y.

F. Xu, S. Das, Y. Gong, Q. Liu, H.-C. Chien, H.-Y. Chiu, J. Wu, and R. Hui, “Complex refractive index tunability of graphene at 1550 nm wavelength,” Appl. Phys. Lett. 106(3), 031109 (2015).
[Crossref]

Cho, B. J.

S. M. Song, T. Y. Kim, O. J. Sul, W. C. Shin, and B. J. Cho, “Improvement of graphene–metal contact resistance by introducing edge contacts at graphene under metal,” Appl. Phys. Lett. 104(18), 183506 (2014).
[Crossref]

Chrastina, D.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]

Coudevylle, J. R.

Cui, Y.

M. Fan, H. Yang, P. Zheng, G. Hu, B. Yun, and Y. Cui, “Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide,” Opt. Express 25(18), 21619–21629 (2017).
[Crossref]

J. Luan, M. Fan, P. Zheng, H. Yang, G. Hu, B. Yun, and Y. Cui, “Design and Optimization of a Graphene Modulator Based on Hybrid Plasmonic Waveguide with Double Low-Index Slots,” Plasmonics1–6 (2018).

Dalir, H.

H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 GHz speed,” ACS Photonics 3(9), 1564–1568 (2016).
[Crossref]

Das, S.

F. Xu, S. Das, Y. Gong, Q. Liu, H.-C. Chien, H.-Y. Chiu, J. Wu, and R. Hui, “Complex refractive index tunability of graphene at 1550 nm wavelength,” Appl. Phys. Lett. 106(3), 031109 (2015).
[Crossref]

Debnath, K.

Dong, L.

S. Qu, C. Ma, S. Wang, H. Liu, and L. Dong, “Modulation speed limits of a graphene-based modulator,” Opt. Quantum Electron. 50(2), 105 (2018).
[Crossref]

Edmond, S.

Fan, M.

M. Fan, H. Yang, P. Zheng, G. Hu, B. Yun, and Y. Cui, “Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide,” Opt. Express 25(18), 21619–21629 (2017).
[Crossref]

J. Luan, M. Fan, P. Zheng, H. Yang, G. Hu, B. Yun, and Y. Cui, “Design and Optimization of a Graphene Modulator Based on Hybrid Plasmonic Waveguide with Double Low-Index Slots,” Plasmonics1–6 (2018).

Fan, Z.

Fiocco, M.

L. Anzi, A. Mansouri, P. Pedrinazzi, E. Guerriero, M. Fiocco, A. Pesquera, A. Centeno, A. Zurutuza, A. Behnam, E.A. Carrion, and E. Pop, “Ultra-low contact resistance in graphene devices at the Dirac point,” 2D Mater. 5(2), 025014 (2018).
[Crossref]

Frigerio, J.

Gao, Q.

Gardes, F. Y.

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Gerlach, G.

G. Suchaneck, V. Norkus, and G. Gerlach, “Low-temperature PECVD-deposited silicon nitride thin films for sensor applications,” Surf. Coat. Technol. 142–144, 808–812 (2001).
[Crossref]

Gong, Y.

F. Xu, S. Das, Y. Gong, Q. Liu, H.-C. Chien, H.-Y. Chiu, J. Wu, and R. Hui, “Complex refractive index tunability of graphene at 1550 nm wavelength,” Appl. Phys. Lett. 106(3), 031109 (2015).
[Crossref]

Grigorenko, A. N.

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref]

Guerriero, E.

L. Anzi, A. Mansouri, P. Pedrinazzi, E. Guerriero, M. Fiocco, A. Pesquera, A. Centeno, A. Zurutuza, A. Behnam, E.A. Carrion, and E. Pop, “Ultra-low contact resistance in graphene devices at the Dirac point,” 2D Mater. 5(2), 025014 (2018).
[Crossref]

Han, Z.

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref]

Hao, R.

Heinz, T. F.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: from the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

Hu, G.

M. Fan, H. Yang, P. Zheng, G. Hu, B. Yun, and Y. Cui, “Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide,” Opt. Express 25(18), 21619–21629 (2017).
[Crossref]

J. Luan, M. Fan, P. Zheng, H. Yang, G. Hu, B. Yun, and Y. Cui, “Design and Optimization of a Graphene Modulator Based on Hybrid Plasmonic Waveguide with Double Low-Index Slots,” Plasmonics1–6 (2018).

Hu, T.

Hu, Y.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. V. Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photon. Rev. 10(2), 307–316 (2016).
[Crossref]

Hui, R.

F. Xu, S. Das, Y. Gong, Q. Liu, H.-C. Chien, H.-Y. Chiu, J. Wu, and R. Hui, “Complex refractive index tunability of graphene at 1550 nm wavelength,” Appl. Phys. Lett. 106(3), 031109 (2015).
[Crossref]

Husain, M. K.

Huyghebaert, C.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. V. Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photon. Rev. 10(2), 307–316 (2016).
[Crossref]

Ibukuro, K.

Isella, G.

Jian, J.

Jiang, X.

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]

Ju, L.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: from the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Khokhar, A. Z.

Kim, T. Y.

S. M. Song, T. Y. Kim, O. J. Sul, W. C. Shin, and B. J. Cho, “Improvement of graphene–metal contact resistance by introducing edge contacts at graphene under metal,” Appl. Phys. Lett. 104(18), 183506 (2014).
[Crossref]

Kimerling, L. C.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[Crossref]

Krauss, T. F.

Le Roux, X.

Li, E.

Li, Y.

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]

Lipson, M.

Littlejohns, C.

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]

Liu, H.

S. Qu, C. Ma, S. Wang, H. Liu, and L. Dong, “Modulation speed limits of a graphene-based modulator,” Opt. Quantum Electron. 50(2), 105 (2018).
[Crossref]

Liu, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[Crossref]

Liu, L.

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Liu, Q.

F. Xu, S. Das, Y. Gong, Q. Liu, H.-C. Chien, H.-Y. Chiu, J. Wu, and R. Hui, “Complex refractive index tunability of graphene at 1550 nm wavelength,” Appl. Phys. Lett. 106(3), 031109 (2015).
[Crossref]

Luan, J.

J. Luan, M. Fan, P. Zheng, H. Yang, G. Hu, B. Yun, and Y. Cui, “Design and Optimization of a Graphene Modulator Based on Hybrid Plasmonic Waveguide with Double Low-Index Slots,” Plasmonics1–6 (2018).

Ma, C.

S. Qu, C. Ma, S. Wang, H. Liu, and L. Dong, “Modulation speed limits of a graphene-based modulator,” Opt. Quantum Electron. 50(2), 105 (2018).
[Crossref]

Mak, K. F.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: from the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

Manipatruni, S.

Mansouri, A.

L. Anzi, A. Mansouri, P. Pedrinazzi, E. Guerriero, M. Fiocco, A. Pesquera, A. Centeno, A. Zurutuza, A. Behnam, E.A. Carrion, and E. Pop, “Ultra-low contact resistance in graphene devices at the Dirac point,” 2D Mater. 5(2), 025014 (2018).
[Crossref]

Marris-Morini, D.

Mastronardi, L.

Michel, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[Crossref]

Miller, D. A.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]

Norkus, V.

G. Suchaneck, V. Norkus, and G. Gerlach, “Low-temperature PECVD-deposited silicon nitride thin films for sensor applications,” Surf. Coat. Technol. 142–144, 808–812 (2001).
[Crossref]

O’Faolain, L.

Ohmi, T.

K. Yamada, K. Tomita, and T. Ohmi, “Formation of metal silicide-silicon contact with ultralow contact resistance by silicon-capping silicidation technique,” Appl. Phys. Lett. 64(25), 3449–3451 (1994).
[Crossref]

Otsuji, T.

D. Svintsov, V. Vyurkov, V. Ryzhii, and T. Otsuji, “Voltage-controlled surface plasmon-polaritons in double graphene layer structures,” J. Appl. Phys. 113(5), 053701 (2013).
[Crossref]

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]

Pantouvaki, M.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. V. Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photon. Rev. 10(2), 307–316 (2016).
[Crossref]

Pedrinazzi, P.

L. Anzi, A. Mansouri, P. Pedrinazzi, E. Guerriero, M. Fiocco, A. Pesquera, A. Centeno, A. Zurutuza, A. Behnam, E.A. Carrion, and E. Pop, “Ultra-low contact resistance in graphene devices at the Dirac point,” 2D Mater. 5(2), 025014 (2018).
[Crossref]

Pesquera, A.

L. Anzi, A. Mansouri, P. Pedrinazzi, E. Guerriero, M. Fiocco, A. Pesquera, A. Centeno, A. Zurutuza, A. Behnam, E.A. Carrion, and E. Pop, “Ultra-low contact resistance in graphene devices at the Dirac point,” 2D Mater. 5(2), 025014 (2018).
[Crossref]

Pomerene, A.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[Crossref]

Pop, E.

L. Anzi, A. Mansouri, P. Pedrinazzi, E. Guerriero, M. Fiocco, A. Pesquera, A. Centeno, A. Zurutuza, A. Behnam, E.A. Carrion, and E. Pop, “Ultra-low contact resistance in graphene devices at the Dirac point,” 2D Mater. 5(2), 025014 (2018).
[Crossref]

Qiu, C.

Qu, S.

S. Qu, C. Ma, S. Wang, H. Liu, and L. Dong, “Modulation speed limits of a graphene-based modulator,” Opt. Quantum Electron. 50(2), 105 (2018).
[Crossref]

Radko, I. P.

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref]

Reed, G. T.

Rodriguez, F. J.

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref]

Rouifed, M. S.

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]

Ryzhii, V.

D. Svintsov, V. Vyurkov, V. Ryzhii, and T. Otsuji, “Voltage-controlled surface plasmon-polaritons in double graphene layer structures,” J. Appl. Phys. 113(5), 053701 (2013).
[Crossref]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]

Schmidt, B.

Shakya, J.

Shao, Z.

Shin, W. C.

S. M. Song, T. Y. Kim, O. J. Sul, W. C. Shin, and B. J. Cho, “Improvement of graphene–metal contact resistance by introducing edge contacts at graphene under metal,” Appl. Phys. Lett. 104(18), 183506 (2014).
[Crossref]

Shiramin, L. A.

L. A. Shiramin and D. V. Thourhout, “Graphene modulators and switches integrated on silicon and silicon nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 23(1), 94–100 (2017).
[Crossref]

Song, S. M.

S. M. Song, T. Y. Kim, O. J. Sul, W. C. Shin, and B. J. Cho, “Improvement of graphene–metal contact resistance by introducing edge contacts at graphene under metal,” Appl. Phys. Lett. 104(18), 183506 (2014).
[Crossref]

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Steffan, A. G.

Suchaneck, G.

G. Suchaneck, V. Norkus, and G. Gerlach, “Low-temperature PECVD-deposited silicon nitride thin films for sensor applications,” Surf. Coat. Technol. 142–144, 808–812 (2001).
[Crossref]

Sul, O. J.

S. M. Song, T. Y. Kim, O. J. Sul, W. C. Shin, and B. J. Cho, “Improvement of graphene–metal contact resistance by introducing edge contacts at graphene under metal,” Appl. Phys. Lett. 104(18), 183506 (2014).
[Crossref]

Sun, R.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[Crossref]

Svintsov, D.

D. Svintsov, V. Vyurkov, V. Ryzhii, and T. Otsuji, “Voltage-controlled surface plasmon-polaritons in double graphene layer structures,” J. Appl. Phys. 113(5), 053701 (2013).
[Crossref]

Thomson, D. J.

Thourhout, D. V.

L. A. Shiramin and D. V. Thourhout, “Graphene modulators and switches integrated on silicon and silicon nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 23(1), 94–100 (2017).
[Crossref]

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. V. Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photon. Rev. 10(2), 307–316 (2016).
[Crossref]

Tomita, K.

K. Yamada, K. Tomita, and T. Ohmi, “Formation of metal silicide-silicon contact with ultralow contact resistance by silicon-capping silicidation technique,” Appl. Phys. Lett. 64(25), 3449–3451 (1994).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Van Campenhout, J.

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. V. Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photon. Rev. 10(2), 307–316 (2016).
[Crossref]

Vivien, L.

Vyurkov, V.

D. Svintsov, V. Vyurkov, V. Ryzhii, and T. Otsuji, “Voltage-controlled surface plasmon-polaritons in double graphene layer structures,” J. Appl. Phys. 113(5), 053701 (2013).
[Crossref]

Wang, A. X.

Wang, F.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: from the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Wang, S.

S. Qu, C. Ma, S. Wang, H. Liu, and L. Dong, “Modulation speed limits of a graphene-based modulator,” Opt. Quantum Electron. 50(2), 105 (2018).
[Crossref]

Wang, Y.

H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 GHz speed,” ACS Photonics 3(9), 1564–1568 (2016).
[Crossref]

Wu, J.

F. Xu, S. Das, Y. Gong, Q. Liu, H.-C. Chien, H.-Y. Chiu, J. Wu, and R. Hui, “Complex refractive index tunability of graphene at 1550 nm wavelength,” Appl. Phys. Lett. 106(3), 031109 (2015).
[Crossref]

Xia, Y.

H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 GHz speed,” ACS Photonics 3(9), 1564–1568 (2016).
[Crossref]

Xu, C.

Xu, F.

F. Xu, S. Das, Y. Gong, Q. Liu, H.-C. Chien, H.-Y. Chiu, J. Wu, and R. Hui, “Complex refractive index tunability of graphene at 1550 nm wavelength,” Appl. Phys. Lett. 106(3), 031109 (2015).
[Crossref]

Xu, Q.

Xu, Y.

Yamada, K.

K. Yamada, K. Tomita, and T. Ohmi, “Formation of metal silicide-silicon contact with ultralow contact resistance by silicon-capping silicidation technique,” Appl. Phys. Lett. 64(25), 3449–3451 (1994).
[Crossref]

Yang, C.

Yang, H.

M. Fan, H. Yang, P. Zheng, G. Hu, B. Yun, and Y. Cui, “Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide,” Opt. Express 25(18), 21619–21629 (2017).
[Crossref]

J. Luan, M. Fan, P. Zheng, H. Yang, G. Hu, B. Yun, and Y. Cui, “Design and Optimization of a Graphene Modulator Based on Hybrid Plasmonic Waveguide with Double Low-Index Slots,” Plasmonics1–6 (2018).

Yang, J.

Yang, L.

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Yu, H.

Yu, S.

Yun, B.

M. Fan, H. Yang, P. Zheng, G. Hu, B. Yun, and Y. Cui, “Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide,” Opt. Express 25(18), 21619–21629 (2017).
[Crossref]

J. Luan, M. Fan, P. Zheng, H. Yang, G. Hu, B. Yun, and Y. Cui, “Design and Optimization of a Graphene Modulator Based on Hybrid Plasmonic Waveguide with Double Low-Index Slots,” Plasmonics1–6 (2018).

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Zhang, F.

Zhang, W.

Zhang, X.

H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 GHz speed,” ACS Photonics 3(9), 1564–1568 (2016).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Zhang, Y.

Zheng, P.

M. Fan, H. Yang, P. Zheng, G. Hu, B. Yun, and Y. Cui, “Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide,” Opt. Express 25(18), 21619–21629 (2017).
[Crossref]

J. Luan, M. Fan, P. Zheng, H. Yang, G. Hu, B. Yun, and Y. Cui, “Design and Optimization of a Graphene Modulator Based on Hybrid Plasmonic Waveguide with Double Low-Index Slots,” Plasmonics1–6 (2018).

Zhou, L.

Zurutuza, A.

L. Anzi, A. Mansouri, P. Pedrinazzi, E. Guerriero, M. Fiocco, A. Pesquera, A. Centeno, A. Zurutuza, A. Behnam, E.A. Carrion, and E. Pop, “Ultra-low contact resistance in graphene devices at the Dirac point,” 2D Mater. 5(2), 025014 (2018).
[Crossref]

2D Mater. (1)

L. Anzi, A. Mansouri, P. Pedrinazzi, E. Guerriero, M. Fiocco, A. Pesquera, A. Centeno, A. Zurutuza, A. Behnam, E.A. Carrion, and E. Pop, “Ultra-low contact resistance in graphene devices at the Dirac point,” 2D Mater. 5(2), 025014 (2018).
[Crossref]

ACS Photonics (1)

H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 GHz speed,” ACS Photonics 3(9), 1564–1568 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

F. Xu, S. Das, Y. Gong, Q. Liu, H.-C. Chien, H.-Y. Chiu, J. Wu, and R. Hui, “Complex refractive index tunability of graphene at 1550 nm wavelength,” Appl. Phys. Lett. 106(3), 031109 (2015).
[Crossref]

S. M. Song, T. Y. Kim, O. J. Sul, W. C. Shin, and B. J. Cho, “Improvement of graphene–metal contact resistance by introducing edge contacts at graphene under metal,” Appl. Phys. Lett. 104(18), 183506 (2014).
[Crossref]

K. Yamada, K. Tomita, and T. Ohmi, “Formation of metal silicide-silicon contact with ultralow contact resistance by silicon-capping silicidation technique,” Appl. Phys. Lett. 64(25), 3449–3451 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. A. Shiramin and D. V. Thourhout, “Graphene modulators and switches integrated on silicon and silicon nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 23(1), 94–100 (2017).
[Crossref]

J. Appl. Phys. (1)

D. Svintsov, V. Vyurkov, V. Ryzhii, and T. Otsuji, “Voltage-controlled surface plasmon-polaritons in double graphene layer structures,” J. Appl. Phys. 113(5), 053701 (2013).
[Crossref]

J. Lightwave Technol. (2)

Laser Photon. Rev. (1)

Y. Hu, M. Pantouvaki, J. Van Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. V. Thourhout, “Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon,” Laser Photon. Rev. 10(2), 307–316 (2016).
[Crossref]

Nat. Commun. (1)

D. Ansell, I. P. Radko, Z. Han, F. J. Rodriguez, S. I. Bozhevolnyi, and A. N. Grigorenko, “Hybrid graphene plasmonic waveguide modulators,” Nat. Commun. 6(1), 8846 (2015).
[Crossref]

Nat. Photonics (1)

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[Crossref]

Nature (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

S. Qu, C. Ma, S. Wang, H. Liu, and L. Dong, “Modulation speed limits of a graphene-based modulator,” Opt. Quantum Electron. 50(2), 105 (2018).
[Crossref]

Photon. Res. (2)

Solid State Commun. (1)

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: from the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

Surf. Coat. Technol. (1)

G. Suchaneck, V. Norkus, and G. Gerlach, “Low-temperature PECVD-deposited silicon nitride thin films for sensor applications,” Surf. Coat. Technol. 142–144, 808–812 (2001).
[Crossref]

Other (1)

J. Luan, M. Fan, P. Zheng, H. Yang, G. Hu, B. Yun, and Y. Cui, “Design and Optimization of a Graphene Modulator Based on Hybrid Plasmonic Waveguide with Double Low-Index Slots,” Plasmonics1–6 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Mode profile of in-plane electric field |E2| for 3 cases. Position of graphene located (a) on the top of silicon TM mode waveguide (b) on the top of silicon TE mode waveguide (c) at the interface between top Si3N4 and bottom Si TE mode waveguide. The red dashed line represents the position of the graphene with respect to the waveguide
Fig. 2.
Fig. 2. Tuning of fermi level of graphene with applied drive voltage
Fig. 3.
Fig. 3. Variation of real and imaginary part of permittivity as a function of fermi level with scattering rate of graphene ħΓ=5 meV, dg=0.34 nm, T = 300 K
Fig. 4.
Fig. 4. (a) 2D Schematic of Proposed design 1 (b) Electrical equivalent representation of proposed design 1
Fig. 5.
Fig. 5. Variation of Extinction Ratio for TE mode as a function of (a) waveguide width for different oxide thickness (b) waveguide height for different oxide thickness
Fig. 6.
Fig. 6. Effect of variation of doping concentration of n doped silicon slab on the transmission loss curve
Fig. 7.
Fig. 7. Effect of variation of oxide thickness on Bandwidth and Switching Energy with Wg=700 nm, Hg=170 nm and doping concentration of n doped silicon slab as 4 × 1019 cm−3
Fig. 8.
Fig. 8. 2D Schematic of the proposed Design 2 that shows double layer graphene configuration
Fig. 9.
Fig. 9. Variation of Extinction Ratio for TE mode as a function of (b) waveguide width for different oxide thickness (c) waveguide height for different oxide thickness
Fig. 10.
Fig. 10. Effect of variation of oxide thickness on Bandwidth and Switching Energy with Wg=800 nm and Hg=120 nm
Fig. 11.
Fig. 11. Figure of Merit for both optimized single layer and double layer configuration for different oxide thickness

Tables (3)

Tables Icon

Table 1. Performance metrics for proposed design 1 for different oxide thickness

Tables Icon

Table 2. Performance metrics for proposed design 2 for different oxide thickness

Tables Icon

Table 3. Comparison on performance metrics of graphene integrated electro-absorption modulator

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E F = sgn ( n S ) υ F π n S = ± υ F π ε O ε o x ( V a p p l i e d + V O ) d o x e
σ ( ω , μ C , Γ , T ) = j e 2 ( ω j 2 Γ ) π 2 × [ 1 ( ω j 2 Γ ) 2 0 ε { f d ( ε ) ε f d ( ε ) ε } ε 0 { f d ( ε ) f d ( ε ) ( ω j 2 Γ ) 2 4 ( ε / ) 2 } ε ]
ε = 1 + j σ ω ε o d g
1 C t o t a l = 1 C o x + 1 C Q u a n
C o x = ε o ε o x W o v L D d o x
C Q u a n = 2 e 2 n S v F π W o v L D
f 3 d B = 1 2 π R S C t o t a l
R S = R G r S h e e t + R S i
E b i t = 1 4 C t o t a l V p p 2
1 C t o t a l = 1 C o x + 1 2 × C Q u a n
F O M = B W E b i t

Metrics