Abstract

By analyzing the temperature-dependent transmission spectrum of a Ta2O5 micro-ring resonator, the thermal-optical coefficient at the optical communication wavelength regime has been determined. The temperature-dependent resonance wavelength shift of the resonator with radius 50 µm was measured as 7.8 pm/K, and the thermal-optical coefficient at ∼1543 nm was estimated to be 6×10−6 /K. Furthermore, a power-dependent transmission of the micro-ring resonator was performed to characterize the effects of local heating and nonlinear absorption. No significant power-dependent wavelength shift and asymmetric response were observed in the optical wavelength up to 125 mW. This suggests the absence of nonlinear absorption and thermal expansion effects in the Ta2O5 ring resonator. The Ta2O5 waveguide is potentially a superior candidate for applications in optical communication systems or high-power nonlinear waveguides due to its thermal stability, thermal insensitivity, and absence of nonlinear absorption.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure

Chung-Lun Wu, Bo-Tsang Chen, Yuan-Yao Lin, Wei-Chen Tien, Gong-Ru Lin, Yi-Jen Chiu, Yung-Jr Hung, Ann-Kuo Chu, and Chao-Kuei Lee
Opt. Express 23(20) 26268-26275 (2015)

Fabrication and analysis of tantalum pentoxide optical waveguide resonator of high thermal stability

Ann-Kuo Chu, Yu-Yan Lu, and Yuan-Yao Lin
Opt. Express 27(5) 6629-6639 (2019)

High repetition rate flat coherent optical frequency comb generation based on the normal dispersion tantalum pentoxide optical waveguide

Chunjiang Wu, Xuelin Ding, Zhifang Wu, and Suchun Feng
OSA Continuum 2(9) 2704-2717 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [Crossref]
  2. A. Li and W. Bogaerts, “Backcoupling manipulation in silicon ring resonators,” Photon. Res. 6(6), 620–629 (2018).
    [Crossref]
  3. G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
    [Crossref]
  4. T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, “50-Gb/s ring-resonator-based silicon modulator,” Opt. Express 21(10), 11869–11876 (2013).
    [Crossref]
  5. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005).
    [Crossref]
  6. M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach–Zehnder modulator for single lane 100  Gb/s applications,” Photon. Res. 6(2), 109–116 (2018).
    [Crossref]
  7. N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25 µm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010).
    [Crossref]
  8. T. Li, J. Zhang, H. Yi, W. Tan, Q. Long, Z. Zhou, X. Wang, and H. Wu, “Low-voltage, high speed, compact silicon modulator for BPSK modulation,” Opt. Express 21(20), 23410–23415 (2013).
    [Crossref]
  9. Y. Zhou, L. Zhou, H. Zhu, C. Wong, Y. Wen, L. Liu, X. Li, and J. Chen, “Modeling and optimization of a single-drive push–pull silicon Mach–Zehnder modulator,” Photon. Res. 4(4), 153–161 (2016).
    [Crossref]
  10. T. Ye, Y. Fu, L. Qiao, and T. Chu, “Low-crosstalk Si arrayed waveguide grating with parabolic tapers,” Opt. Express 22(26), 31899–31906 (2014).
    [Crossref]
  11. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
    [Crossref]
  12. S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett. 33(19), 2185–2187 (2008).
    [Crossref]
  13. M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26(13), 1352–1355 (2014).
    [Crossref]
  14. M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32(13), 1800–1802 (2007).
    [Crossref]
  15. F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3(5), 780–783 (2016).
    [Crossref]
  16. B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express 18(3), 1879–1887 (2010).
    [Crossref]
  17. P. Rabiei, A. Rao, J. Chiles, J. Ma, and S. Fathpour, “Low-loss and high index-contrast tantalum pentoxide microring resonators and grating couplers on silicon substrates,” Opt. Lett. 39(18), 5379–5382 (2014).
    [Crossref]
  18. C.-L. Wu, B.-T. Chen, Y.-Y. Lin, W.-C. Tien, G.-R. Lin, Y.-J. Chiu, Y.-J. Hung, A.-K. Chu, and C.-K. Lee, “Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure,” Opt. Express 23(20), 26268–26275 (2015).
    [Crossref]
  19. M. Belt, M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, “Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates,” Optica 4(5), 532–536 (2017).
    [Crossref]
  20. C.-Y. Tai, J. S. Wilkinson, N. M. B. Perney, M. C. Netti, F. Cattaneo, C. E. Finlayson, and J. J. Baumberg, “Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation,” Opt. Express 12(21), 5110–5116 (2004).
    [Crossref]
  21. R. Y. Chen, M. D. B. Charlton, and P. G. Lagoudakis, “Chi 3 dispersion in planar tantalum pentoxide waveguides in the telecommunications window,” Opt. Lett. 34(7), 1135–1137 (2009).
    [Crossref]
  22. C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529(3), 1600358 (2017).
    [Crossref]
  23. C.-L. Wu, J.-Y. Huang, D.-H. Ou, T.-W. Liao, Y.-J. Chiu, M.-H. Shih, Y.-Y. Lin, A.-K. Chu, and C.-K. Lee, “Efficient wavelength conversion with low operation power in a Ta2O5-based micro-ring resonator,” Opt. Lett. 42(23), 4804–4807 (2017).
    [Crossref]
  24. A.-K. Chu, H.-C. Lin, and W.-H. Cheng, “Temperature dependence of refractive index of Ta2O5 dielectric films,” J. Electron. Mater. 26(8), 889–892 (1997).
    [Crossref]
  25. A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013).
    [Crossref]
  26. J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
    [Crossref]
  27. V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
    [Crossref]
  28. J. J. Yang, M.-X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, “High switching endurance in TaOx memristive devices,” Appl. Phys. Lett. 97(23), 232102 (2010).
    [Crossref]
  29. M. Belt, M. L. Davenport, J. E. Bowers, and D. J. Blumenthal, “Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates,” Optica 4(5), 532–536 (2017).
    [Crossref]
  30. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
    [Crossref]
  31. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
    [Crossref]
  32. Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of siliconbetween 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
    [Crossref]
  33. V. B. Braginsky and A. A. Samoilenko, “Measurements of the optical mirror coating properties,” Phys. Lett. A 315(3–4), 175–177 (2003).
    [Crossref]
  34. Y.-J. Hung, C.-J. Wu, T.-H. Chen, T.-H. Yen, and Y.-C. Liang, “Superior temperature-sensing performance in cladding-modulated Si waveguide gratings,” J. Lightwave Technol. 34(18), 4329–4335 (2016).
    [Crossref]
  35. G. Priem, P. Dumon, W. Bogaerts, D. V. Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behavior in silicon-on-insulator ring resonator structures,” Opt. Express 13(23), 9623–9628 (2005).
    [Crossref]
  36. P. Sun and R. M. Reano, “Low-power optical bistability in a free-standing silicon ring resonator,” Opt. Lett. 35(8), 1124–1126 (2010).
    [Crossref]
  37. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett. 25(8), 554–556 (2000).
    [Crossref]

2018 (2)

2017 (4)

2016 (3)

2015 (1)

2014 (3)

P. Rabiei, A. Rao, J. Chiles, J. Ma, and S. Fathpour, “Low-loss and high index-contrast tantalum pentoxide microring resonators and grating couplers on silicon substrates,” Opt. Lett. 39(18), 5379–5382 (2014).
[Crossref]

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

T. Ye, Y. Fu, L. Qiao, and T. Chu, “Low-crosstalk Si arrayed waveguide grating with parabolic tapers,” Opt. Express 22(26), 31899–31906 (2014).
[Crossref]

2013 (5)

T. Li, J. Zhang, H. Yi, W. Tan, Q. Long, Z. Zhou, X. Wang, and H. Wu, “Low-voltage, high speed, compact silicon modulator for BPSK modulation,” Opt. Express 21(20), 23410–23415 (2013).
[Crossref]

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, “50-Gb/s ring-resonator-based silicon modulator,” Opt. Express 21(10), 11869–11876 (2013).
[Crossref]

A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013).
[Crossref]

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

2012 (2)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

2010 (5)

2009 (2)

2008 (1)

2007 (1)

2005 (3)

2004 (1)

2003 (1)

V. B. Braginsky and A. A. Samoilenko, “Measurements of the optical mirror coating properties,” Phys. Lett. A 315(3–4), 175–177 (2003).
[Crossref]

2000 (1)

1997 (1)

A.-K. Chu, H.-C. Lin, and W.-H. Cheng, “Temperature dependence of refractive index of Ta2O5 dielectric films,” J. Electron. Mater. 26(8), 889–892 (1997).
[Crossref]

1984 (1)

Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of siliconbetween 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
[Crossref]

Absil, P. P.

Akiyama, S.

Apsel, A. B.

Arbabi, A.

Asghari, M.

Baba, T.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

G. Priem, P. Dumon, W. Bogaerts, D. V. Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behavior in silicon-on-insulator ring resonator structures,” Opt. Express 13(23), 9623–9628 (2005).
[Crossref]

Baumberg, J. J.

Belt, M.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Blumenthal, D. J.

Bogaerts, W.

Bowers, J. E.

Braginsky, V. B.

V. B. Braginsky and A. A. Samoilenko, “Measurements of the optical mirror coating properties,” Phys. Lett. A 315(3–4), 175–177 (2003).
[Crossref]

Cattaneo, F.

Charlton, M. D. B.

Chen, B.-T.

Chen, J.

Chen, R. Y.

Chen, T.-H.

Cheng, W.-H.

A.-K. Chu, H.-C. Lin, and W.-H. Cheng, “Temperature dependence of refractive index of Ta2O5 dielectric films,” J. Electron. Mater. 26(8), 889–892 (1997).
[Crossref]

Chi, W.-C.

C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529(3), 1600358 (2017).
[Crossref]

Chiles, J.

Chiu, Y.-J.

Cho, P. S.

Chong, T. C.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Chu, A.-K.

C.-L. Wu, J.-Y. Huang, D.-H. Ou, T.-W. Liao, Y.-J. Chiu, M.-H. Shih, Y.-Y. Lin, A.-K. Chu, and C.-K. Lee, “Efficient wavelength conversion with low operation power in a Ta2O5-based micro-ring resonator,” Opt. Lett. 42(23), 4804–4807 (2017).
[Crossref]

C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529(3), 1600358 (2017).
[Crossref]

C.-L. Wu, B.-T. Chen, Y.-Y. Lin, W.-C. Tien, G.-R. Lin, Y.-J. Chiu, Y.-J. Hung, A.-K. Chu, and C.-K. Lee, “Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure,” Opt. Express 23(20), 26268–26275 (2015).
[Crossref]

A.-K. Chu, H.-C. Lin, and W.-H. Cheng, “Temperature dependence of refractive index of Ta2O5 dielectric films,” J. Electron. Mater. 26(8), 889–892 (1997).
[Crossref]

Chu, T.

Chua, E. K.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Cunningham, J. E.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25 µm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010).
[Crossref]

Davenport, M. L.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Dokania, R. K.

Dong, P.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

G. Priem, P. Dumon, W. Bogaerts, D. V. Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behavior in silicon-on-insulator ring resonator structures,” Opt. Express 13(23), 9623–9628 (2005).
[Crossref]

Fathpour, S.

Feng, D.

Feng, N.

Feng, N.-N.

Finlayson, C. E.

Franck, T.

Fu, Y.

Gardes, F. Y.

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

Goddard, L. L.

Gondarenko, A.

Guha, B.

Han, M.

Heinert, D.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Hirayama, N.

Ho, P.-T.

Hodge, D.

Hofmann, G.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Horikawa, T.

Hryniewicz, J. V.

Hsieh, C.-H.

C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529(3), 1600358 (2017).
[Crossref]

Huang, J.-Y.

Hung, Y.-J.

Imai, M.

Jiang, Y.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Joneckis, L. G.

Keil, U. D.

Kelley, R. D.

J. J. Yang, M.-X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, “High switching endurance in TaOx memristive devices,” Appl. Phys. Lett. 97(23), 232102 (2010).
[Crossref]

Khokhar, A. Z.

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

Komma, J.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Krishnamoorthy, A. V.

Lagoudakis, P. G.

Lee, C.-K.

Levy, J. S.

Li, A.

Li, G.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25 µm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010).
[Crossref]

Li, M.

Li, M. H.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Li, T.

Li, X.

Liang, H.

Liang, Y.-C.

Liao, L.

Liao, S.

Liao, T.-W.

Lin, G.-R.

C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529(3), 1600358 (2017).
[Crossref]

C.-L. Wu, B.-T. Chen, Y.-Y. Lin, W.-C. Tien, G.-R. Lin, Y.-J. Chiu, Y.-J. Hung, A.-K. Chu, and C.-K. Lee, “Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure,” Opt. Express 23(20), 26268–26275 (2015).
[Crossref]

Lin, H.-C.

A.-K. Chu, H.-C. Lin, and W.-H. Cheng, “Temperature dependence of refractive index of Ta2O5 dielectric films,” J. Electron. Mater. 26(8), 889–892 (1997).
[Crossref]

Lin, Y.-Y.

Lipson, M.

Little, B. E.

Littlejohns, C. G.

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

Liu, A.

Liu, L.

Long, Q.

Luo, Y.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

Ma, J.

Maeda, D.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3(5), 780–783 (2016).
[Crossref]

Manipatruni, S.

Mashanovich, G. Z.

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

Medeiros-Ribeiro, G.

J. J. Yang, M.-X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, “High switching endurance in TaOx memristive devices,” Appl. Phys. Lett. 97(23), 232102 (2010).
[Crossref]

Miao, F.

J. J. Yang, M.-X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, “High switching endurance in TaOx memristive devices,” Appl. Phys. Lett. 97(23), 232102 (2010).
[Crossref]

Mitchell, C. J.

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

Miura, H.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3(5), 780–783 (2016).
[Crossref]

Morse, M.

Morthier, G.

Nawrodt, R.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Nedeljkovic, M.

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

Netti, M. C.

Noguchi, Y.

Odoi, K.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3(5), 780–783 (2016).
[Crossref]

Okada, Y.

Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of siliconbetween 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
[Crossref]

Ou, D.-H.

Ozawa, M.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3(5), 780–783 (2016).
[Crossref]

Pan, J. S.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Perney, N. M. B.

Pickett, M. D.

J. J. Yang, M.-X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, “High switching endurance in TaOx memristive devices,” Appl. Phys. Lett. 97(23), 232102 (2010).
[Crossref]

Poitras, C. B.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref]

Priem, G.

Qian, W.

Qiao, L.

Qiu, F.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3(5), 780–783 (2016).
[Crossref]

Rabiei, P.

Raj, K.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

Rao, A.

Reano, R. M.

Reed, G. T.

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

Reynolds, S. A.

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

Robertson, J.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Rubin, D.

Samara-Rubio, D.

Samoilenko, A. A.

V. B. Braginsky and A. A. Samoilenko, “Measurements of the optical mirror coating properties,” Phys. Lett. A 315(3–4), 175–177 (2003).
[Crossref]

Schmidt, B.

Schwarz, C.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Shafiiha, R.

Sherwood-Droz, N.

Shi, L. P.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Shih, M.-H.

C.-L. Wu, J.-Y. Huang, D.-H. Ou, T.-W. Liao, Y.-J. Chiu, M.-H. Shih, Y.-Y. Lin, A.-K. Chu, and C.-K. Lee, “Efficient wavelength conversion with low operation power in a Ta2O5-based micro-ring resonator,” Opt. Lett. 42(23), 4804–4807 (2017).
[Crossref]

C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529(3), 1600358 (2017).
[Crossref]

Shubin, I.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

Spring, A. M.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3(5), 780–783 (2016).
[Crossref]

Stankovic, S.

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

Strachan, J. P.

J. J. Yang, M.-X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, “High switching endurance in TaOx memristive devices,” Appl. Phys. Lett. 97(23), 232102 (2010).
[Crossref]

Sun, P.

Tai, C.-Y.

Takahashi, H.

Tan, W.

Thacker, H.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

Thomson, D. J.

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

Thourhout, D. V.

Tien, W.-C.

Tokumaru, Y.

Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of siliconbetween 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
[Crossref]

Usuki, T.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Wang, A.

Wang, L.

Wang, X.

Wen, Y.

Wilkinson, J. S.

Williams, R. S.

J. J. Yang, M.-X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, “High switching endurance in TaOx memristive devices,” Appl. Phys. Lett. 97(23), 232102 (2010).
[Crossref]

Wilson, R. A.

Wong, C.

Wu, C.-J.

Wu, C.-L.

Wu, H.

Xiao, X.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref]

Yang, J. J.

J. J. Yang, M.-X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, “High switching endurance in TaOx memristive devices,” Appl. Phys. Lett. 97(23), 232102 (2010).
[Crossref]

Yao, J.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

Ye, T.

Yen, T.-H.

Yi, H.

Yokoyama, S.

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3(5), 780–783 (2016).
[Crossref]

Yu, S.

Zhang, J.

Zhang, M.-X.

J. J. Yang, M.-X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, “High switching endurance in TaOx memristive devices,” Appl. Phys. Lett. 97(23), 232102 (2010).
[Crossref]

Zhang, Z.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Zhao, R.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

Zheng, D.

Zheng, X.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
[Crossref]

Zhou, L.

Zhou, Y.

Zhou, Z.

Zhu, H.

Zhuo, V. Y.-Q.

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

ACS Photon. (1)

F. Qiu, A. M. Spring, H. Miura, D. Maeda, M. Ozawa, K. Odoi, and S. Yokoyama, “Athermal hybrid silicon/polymer ring resonator electro-optic modulator,” ACS Photon. 3(5), 780–783 (2016).
[Crossref]

Ann. Phys. (1)

C.-L. Wu, C.-H. Hsieh, G.-R. Lin, W.-C. Chi, Y.-J. Chiu, Y.-Y. Lin, Y.-J. Hung, M.-H. Shih, A.-K. Chu, and C.-K. Lee, “Tens of GHz tantalum pentoxide-based micro-ring all-optical modulator for Si photonics,” Ann. Phys. 529(3), 1600358 (2017).
[Crossref]

Appl. Phys. Lett. (3)

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

V. Y.-Q. Zhuo, Y. Jiang, M. H. Li, E. K. Chua, Z. Zhang, J. S. Pan, R. Zhao, L. P. Shi, T. C. Chong, and J. Robertson, “Band alignment between Ta2O5 and metals for resistive random access memory electrodes engineering,” Appl. Phys. Lett. 102(6), 062106 (2013).
[Crossref]

J. J. Yang, M.-X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, “High switching endurance in TaOx memristive devices,” Appl. Phys. Lett. 97(23), 232102 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Nedeljkovic, S. Stanković, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26(13), 1352–1355 (2014).
[Crossref]

J. Appl. Phys. (1)

Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of siliconbetween 300 and 1500 K,” J. Appl. Phys. 56(2), 314–320 (1984).
[Crossref]

J. Electron. Mater. (1)

A.-K. Chu, H.-C. Lin, and W.-H. Cheng, “Temperature dependence of refractive index of Ta2O5 dielectric films,” J. Electron. Mater. 26(8), 889–892 (1997).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6(1), 47–73 (2012).
[Crossref]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref]

Opt. Express (11)

P. Dong, W. Qian, H. Liang, R. Shafiiha, N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
[Crossref]

T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, “50-Gb/s ring-resonator-based silicon modulator,” Opt. Express 21(10), 11869–11876 (2013).
[Crossref]

T. Li, J. Zhang, H. Yi, W. Tan, Q. Long, Z. Zhou, X. Wang, and H. Wu, “Low-voltage, high speed, compact silicon modulator for BPSK modulation,” Opt. Express 21(20), 23410–23415 (2013).
[Crossref]

T. Ye, Y. Fu, L. Qiao, and T. Chu, “Low-crosstalk Si arrayed waveguide grating with parabolic tapers,” Opt. Express 22(26), 31899–31906 (2014).
[Crossref]

C.-L. Wu, B.-T. Chen, Y.-Y. Lin, W.-C. Tien, G.-R. Lin, Y.-J. Chiu, Y.-J. Hung, A.-K. Chu, and C.-K. Lee, “Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure,” Opt. Express 23(20), 26268–26275 (2015).
[Crossref]

C.-Y. Tai, J. S. Wilkinson, N. M. B. Perney, M. C. Netti, F. Cattaneo, C. E. Finlayson, and J. J. Baumberg, “Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation,” Opt. Express 12(21), 5110–5116 (2004).
[Crossref]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13(8), 3129–3135 (2005).
[Crossref]

G. Priem, P. Dumon, W. Bogaerts, D. V. Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behavior in silicon-on-insulator ring resonator structures,” Opt. Express 13(23), 9623–9628 (2005).
[Crossref]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[Crossref]

B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express 18(3), 1879–1887 (2010).
[Crossref]

N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25 µm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010).
[Crossref]

Opt. Lett. (8)

P. Sun and R. M. Reano, “Low-power optical bistability in a free-standing silicon ring resonator,” Opt. Lett. 35(8), 1124–1126 (2010).
[Crossref]

M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32(13), 1800–1802 (2007).
[Crossref]

S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett. 33(19), 2185–2187 (2008).
[Crossref]

R. Y. Chen, M. D. B. Charlton, and P. G. Lagoudakis, “Chi 3 dispersion in planar tantalum pentoxide waveguides in the telecommunications window,” Opt. Lett. 34(7), 1135–1137 (2009).
[Crossref]

P. Rabiei, A. Rao, J. Chiles, J. Ma, and S. Fathpour, “Low-loss and high index-contrast tantalum pentoxide microring resonators and grating couplers on silicon substrates,” Opt. Lett. 39(18), 5379–5382 (2014).
[Crossref]

A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013).
[Crossref]

P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett. 25(8), 554–556 (2000).
[Crossref]

C.-L. Wu, J.-Y. Huang, D.-H. Ou, T.-W. Liao, Y.-J. Chiu, M.-H. Shih, Y.-Y. Lin, A.-K. Chu, and C.-K. Lee, “Efficient wavelength conversion with low operation power in a Ta2O5-based micro-ring resonator,” Opt. Lett. 42(23), 4804–4807 (2017).
[Crossref]

Optica (2)

Photon. Res. (3)

Phys. Lett. A (1)

V. B. Braginsky and A. A. Samoilenko, “Measurements of the optical mirror coating properties,” Phys. Lett. A 315(3–4), 175–177 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Illustration and SEM images of the Ta2O5 micro-ring resonator. (b) Experimental setup for measuring the transmission spectrum of the Ta2O5 micro-ring resonator.
Fig. 2.
Fig. 2. Transmission spectrum of the Ta2O5 ring resonator at a substrate temperature of 20°C and the red line represents the corresponding fitting result.
Fig. 3.
Fig. 3. (a) Temperature-dependent transmission spectrum of the Ta2O5 ring resonator. (b) Relationship between the resonance wavelength and the substrate temperature of the Ta2O5 micro-ring resonator. (c) Temperature-dependent effective index of the Ta2O5 micro-ring resonator deduced from Eq. (2).
Fig. 4.
Fig. 4. (a) Temperature-dependent transmission spectrum of a Si ring resonator. (b) Relation between the resonance wavelength and the substrate temperature of the Si micro-ring resonator. (c) Temperature-dependent effective index of the Si micro-ring resonator deduced using Eq. (2).
Fig. 5.
Fig. 5. Power-dependent transmission spectra of (a) Ta2O5 micro-ring resonator and (b) Si micro-ring resonator.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T ( λ ) = 1 [ 1 exp ( α r i n g L ) ] [ 1 t 2 ] [ 1 t exp ( α r i n g L 2 ) ] 2 + 4 t exp ( α r i n g L 2 ) sin 2 ( π n g L λ ) ,
ϕ  =  β L = n e f f 2 π λ c L = m 2 π ,

Metrics