Abstract

Vegetable oils provide some important components and health benefits for human nutrition and In this work, we have investigated the potential of laser-induced fluorescence (LIF) spectroscopy combined with the principal component analysis (PCA) method and partial least squares (PLS) model as a tool for the identification and quantification of vegetable oils adulterated with waste frying oil. Four types of vegetable oils (rapeseed, olive, peanut, and corn) were selected as the original oil samples, and a total of 210 sets samples were measured. By employing a PLS model, the values of prediction linearity greater than 0.995 were obtained when four types of vegetable oils were adulterated with waste frying oil with a mean square error less than 2%. The results indicate that the method proposed in this work is feasible for the detection and quantification of vegetable oil adulteration with waste frying oil.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improved continuous locality preserving projection for quantification of extra virgin olive oil adulteration by using laser-induced fluorescence

Yinchao Zhang, Ting Li, He Chen, Siying Chen, Pan Guo, and Yi Li
Appl. Opt. 58(9) 2340-2349 (2019)

Excitation wavelength analysis of a laser-induced fluorescence technique for quantification of extra virgin olive oil adulteration

Yinchao Zhang, Ting Li, He Chen, Siying Chen, Pan Guo, and Yi Li
Appl. Opt. 58(16) 4484-4491 (2019)

Laser-induced breakdown spectroscopy assisted chemometric methods for rice geographic origin classification

Ping Yang, Ran Zhou, Wen Zhang, Shisong Tang, Zhongqi Hao, Xiangyou Li, Yongfeng Lu, and Xiaoyan Zeng
Appl. Opt. 57(28) 8297-8302 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Sebastian, S. M. Ghazani, and A. G. Marangoni, “Quality and safety of frying oils used in restaurants,” Food Res. Int. 64, 420–423 (2014).
    [Crossref]
  2. A. Akrami, F. Nikaein, S. Babajafari, S. Faghih, and H. Yarmohammadi, “Comparison of the effects of flaxseed oil and sunflower seed oil consumption on serum glucose, lipid profile, blood pressure, and lipid peroxidation in patients with metabolic syndrome,” J. Clin. Lipidol. 12(1), 70–77 (2018).
    [Crossref]
  3. L. C. S. Bastos, E. A. de Almeida Costa, and P. A. P. Pereira, “Development, validation and application of an UFLC-DAD-ESI-MS method for determination of carbonyl compounds in soybean oil during continuous heating,” Food Chem. 218, 518–524 (2017).
    [Crossref]
  4. Y. L. Dréau, N. Dupuy, J. Artaud, D. Ollivier, and J. Kister, “Infrared study of aging of edible oils by oxidative spectroscopy index and MCR-ALS chemometric method,” Talanta 77(5), 1748–1756 (2009).
    [Crossref]
  5. F. Troya, M. J. Lerma-Garcia, J. M. Herrero-Martinez, and E. F. Simo-Alfonso, “Classification of vegetable oils according to their botanicalorigin using n-alkane profiles established by GC-MS,” Food Chem. 167, 36–39 (2015).
    [Crossref]
  6. P. Kadiroglu, F. Korel, and F. Tokatli, “Classification of turkish extra virgin olive oils by a SAW detector electronic nose,” J. Am. Oil Chem. Soc. 88(5), 639–645 (2011).
    [Crossref]
  7. M. C. C. Oliveros, J. L. P. Pavon, C. G. Pinto, M. E. F. Laespada, B. M. Cordero, and M. Forina, “Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils,” Anal. Chim. Acta 459(2), 219–228 (2002).
    [Crossref]
  8. G. Purcaro, L. Barp, M. Beccaria, and L. S. Conte, “Characterisation of minor components in vegetable oil by comprehensive gas chromatography with dual detection,” Food Chem. 212, 730–738 (2016).
    [Crossref]
  9. A. F. Siqueira, M. P. Melo, D. S. Giordani, D. R. V. Galhardi, B. B. Santos, P. S. Batista, and A. L. G. Ferreira, “Stochastic modeling of the transient regime of an electronic nose for waste cooking oil classification,” J. Food Eng. 221, 114–123 (2018).
    [Crossref]
  10. A. Dankowska, M. Małecka, and W. Kowalewski, “Discrimination of edible olive oils by means of synchronous fluorescence spectroscopy with multivariate data analysis,” Grasas Aceites 64(4), 425–431 (2013).
    [Crossref]
  11. E. Guzmán, V. Baeten, J. A. F. Pierna, and J. A. García-Mesa, “Evaluation of the overall quality of olive oil using fluorescence spectroscopy,” Food Chem. 173, 927–934 (2015).
    [Crossref]
  12. M. P. Ntakatsane, X. M. Liu, and P. Zhou, “Short communication: Rapid detection of milk fat adulteration with vegetable oil by fluorescence spectroscopy,” J. Dairy Sci. 96(4), 2130–2136 (2013).
    [Crossref]
  13. E. Sikorska, T. Górecki, and I. V. Khmelinskii, “Classification of edible oils using synchronous scanning fluorescence spectroscopy,” Food Chem. 89(2), 217–225 (2005).
    [Crossref]
  14. K. I. Poulli, G. A. Mousdis, and C. A. Georgiou, “Rapid synchronous fluorescence method for virgin olive oil adulteration assessment,” Food Chem. 105(1), 369–375 (2007).
    [Crossref]
  15. F. Mabood, R. Boqué, R. Folcarelli, O. Busto, A. Al-Harrasi, and J. Hussain, “Thermal oxidation process accelerates degradation of the olive oil mixed with sunflower oil and enables its discrimination using synchronous fluorescence spectroscopy and chemometric analysis,” Spectrochim. Acta, Part A 143, 298–303 (2015).
    [Crossref]
  16. K. D. T. M. Milanez, T. C. A. Nóbrega, D. S. Nascimento, M. Insausti, B. S. F. Band, and M. J. C. Pontes, “Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach,” LWT-Food Sci. Technol. 85, 9–15 (2017).
    [Crossref]
  17. C. E. Tanajura da Silva, V. L. Filardi, I. M. Pepe, M. A. Chaves, and C. M. S. Santos, “Classification of food vegetable oils by fluorimetry and artificial neural networks,” Food Control 47, 86–91 (2015).
    [Crossref]
  18. B. Öztürk, A. Ankan, and D. Özdemir, “Olive Oil Adulteration with Sunflower and Corn Oil Using Molecular Fluorescence Spectroscopy,” in Olives and Olive Oil in Health and Disease Prevention (Academic, 2010), pp. 451–461.
  19. P. Vrábel, P. Táborský, M. Ryvolová, J. Havel, and J. Preisler, “Sensitive detection and separation of fluorescent derivatives using capillary electrophoresis with laser-induced fluorescence detection with 532 nm Nd:YAG laser,” J. Lumin. 118(2), 283–292 (2006).
    [Crossref]
  20. T. T. Mu, S. Y. Chen, and Y. C. Zhang, “Portable Detection and Quantification of Olive Oil Adulteration by 473-nm Laser-Induced Fluorescence,” Food Anal. Methods 9(1), 275–279 (2016).
    [Crossref]

2018 (2)

A. Akrami, F. Nikaein, S. Babajafari, S. Faghih, and H. Yarmohammadi, “Comparison of the effects of flaxseed oil and sunflower seed oil consumption on serum glucose, lipid profile, blood pressure, and lipid peroxidation in patients with metabolic syndrome,” J. Clin. Lipidol. 12(1), 70–77 (2018).
[Crossref]

A. F. Siqueira, M. P. Melo, D. S. Giordani, D. R. V. Galhardi, B. B. Santos, P. S. Batista, and A. L. G. Ferreira, “Stochastic modeling of the transient regime of an electronic nose for waste cooking oil classification,” J. Food Eng. 221, 114–123 (2018).
[Crossref]

2017 (2)

L. C. S. Bastos, E. A. de Almeida Costa, and P. A. P. Pereira, “Development, validation and application of an UFLC-DAD-ESI-MS method for determination of carbonyl compounds in soybean oil during continuous heating,” Food Chem. 218, 518–524 (2017).
[Crossref]

K. D. T. M. Milanez, T. C. A. Nóbrega, D. S. Nascimento, M. Insausti, B. S. F. Band, and M. J. C. Pontes, “Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach,” LWT-Food Sci. Technol. 85, 9–15 (2017).
[Crossref]

2016 (2)

T. T. Mu, S. Y. Chen, and Y. C. Zhang, “Portable Detection and Quantification of Olive Oil Adulteration by 473-nm Laser-Induced Fluorescence,” Food Anal. Methods 9(1), 275–279 (2016).
[Crossref]

G. Purcaro, L. Barp, M. Beccaria, and L. S. Conte, “Characterisation of minor components in vegetable oil by comprehensive gas chromatography with dual detection,” Food Chem. 212, 730–738 (2016).
[Crossref]

2015 (4)

F. Troya, M. J. Lerma-Garcia, J. M. Herrero-Martinez, and E. F. Simo-Alfonso, “Classification of vegetable oils according to their botanicalorigin using n-alkane profiles established by GC-MS,” Food Chem. 167, 36–39 (2015).
[Crossref]

C. E. Tanajura da Silva, V. L. Filardi, I. M. Pepe, M. A. Chaves, and C. M. S. Santos, “Classification of food vegetable oils by fluorimetry and artificial neural networks,” Food Control 47, 86–91 (2015).
[Crossref]

E. Guzmán, V. Baeten, J. A. F. Pierna, and J. A. García-Mesa, “Evaluation of the overall quality of olive oil using fluorescence spectroscopy,” Food Chem. 173, 927–934 (2015).
[Crossref]

F. Mabood, R. Boqué, R. Folcarelli, O. Busto, A. Al-Harrasi, and J. Hussain, “Thermal oxidation process accelerates degradation of the olive oil mixed with sunflower oil and enables its discrimination using synchronous fluorescence spectroscopy and chemometric analysis,” Spectrochim. Acta, Part A 143, 298–303 (2015).
[Crossref]

2014 (1)

A. Sebastian, S. M. Ghazani, and A. G. Marangoni, “Quality and safety of frying oils used in restaurants,” Food Res. Int. 64, 420–423 (2014).
[Crossref]

2013 (2)

A. Dankowska, M. Małecka, and W. Kowalewski, “Discrimination of edible olive oils by means of synchronous fluorescence spectroscopy with multivariate data analysis,” Grasas Aceites 64(4), 425–431 (2013).
[Crossref]

M. P. Ntakatsane, X. M. Liu, and P. Zhou, “Short communication: Rapid detection of milk fat adulteration with vegetable oil by fluorescence spectroscopy,” J. Dairy Sci. 96(4), 2130–2136 (2013).
[Crossref]

2011 (1)

P. Kadiroglu, F. Korel, and F. Tokatli, “Classification of turkish extra virgin olive oils by a SAW detector electronic nose,” J. Am. Oil Chem. Soc. 88(5), 639–645 (2011).
[Crossref]

2009 (1)

Y. L. Dréau, N. Dupuy, J. Artaud, D. Ollivier, and J. Kister, “Infrared study of aging of edible oils by oxidative spectroscopy index and MCR-ALS chemometric method,” Talanta 77(5), 1748–1756 (2009).
[Crossref]

2007 (1)

K. I. Poulli, G. A. Mousdis, and C. A. Georgiou, “Rapid synchronous fluorescence method for virgin olive oil adulteration assessment,” Food Chem. 105(1), 369–375 (2007).
[Crossref]

2006 (1)

P. Vrábel, P. Táborský, M. Ryvolová, J. Havel, and J. Preisler, “Sensitive detection and separation of fluorescent derivatives using capillary electrophoresis with laser-induced fluorescence detection with 532 nm Nd:YAG laser,” J. Lumin. 118(2), 283–292 (2006).
[Crossref]

2005 (1)

E. Sikorska, T. Górecki, and I. V. Khmelinskii, “Classification of edible oils using synchronous scanning fluorescence spectroscopy,” Food Chem. 89(2), 217–225 (2005).
[Crossref]

2002 (1)

M. C. C. Oliveros, J. L. P. Pavon, C. G. Pinto, M. E. F. Laespada, B. M. Cordero, and M. Forina, “Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils,” Anal. Chim. Acta 459(2), 219–228 (2002).
[Crossref]

Akrami, A.

A. Akrami, F. Nikaein, S. Babajafari, S. Faghih, and H. Yarmohammadi, “Comparison of the effects of flaxseed oil and sunflower seed oil consumption on serum glucose, lipid profile, blood pressure, and lipid peroxidation in patients with metabolic syndrome,” J. Clin. Lipidol. 12(1), 70–77 (2018).
[Crossref]

Al-Harrasi, A.

F. Mabood, R. Boqué, R. Folcarelli, O. Busto, A. Al-Harrasi, and J. Hussain, “Thermal oxidation process accelerates degradation of the olive oil mixed with sunflower oil and enables its discrimination using synchronous fluorescence spectroscopy and chemometric analysis,” Spectrochim. Acta, Part A 143, 298–303 (2015).
[Crossref]

Ankan, A.

B. Öztürk, A. Ankan, and D. Özdemir, “Olive Oil Adulteration with Sunflower and Corn Oil Using Molecular Fluorescence Spectroscopy,” in Olives and Olive Oil in Health and Disease Prevention (Academic, 2010), pp. 451–461.

Artaud, J.

Y. L. Dréau, N. Dupuy, J. Artaud, D. Ollivier, and J. Kister, “Infrared study of aging of edible oils by oxidative spectroscopy index and MCR-ALS chemometric method,” Talanta 77(5), 1748–1756 (2009).
[Crossref]

Babajafari, S.

A. Akrami, F. Nikaein, S. Babajafari, S. Faghih, and H. Yarmohammadi, “Comparison of the effects of flaxseed oil and sunflower seed oil consumption on serum glucose, lipid profile, blood pressure, and lipid peroxidation in patients with metabolic syndrome,” J. Clin. Lipidol. 12(1), 70–77 (2018).
[Crossref]

Baeten, V.

E. Guzmán, V. Baeten, J. A. F. Pierna, and J. A. García-Mesa, “Evaluation of the overall quality of olive oil using fluorescence spectroscopy,” Food Chem. 173, 927–934 (2015).
[Crossref]

Band, B. S. F.

K. D. T. M. Milanez, T. C. A. Nóbrega, D. S. Nascimento, M. Insausti, B. S. F. Band, and M. J. C. Pontes, “Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach,” LWT-Food Sci. Technol. 85, 9–15 (2017).
[Crossref]

Barp, L.

G. Purcaro, L. Barp, M. Beccaria, and L. S. Conte, “Characterisation of minor components in vegetable oil by comprehensive gas chromatography with dual detection,” Food Chem. 212, 730–738 (2016).
[Crossref]

Bastos, L. C. S.

L. C. S. Bastos, E. A. de Almeida Costa, and P. A. P. Pereira, “Development, validation and application of an UFLC-DAD-ESI-MS method for determination of carbonyl compounds in soybean oil during continuous heating,” Food Chem. 218, 518–524 (2017).
[Crossref]

Batista, P. S.

A. F. Siqueira, M. P. Melo, D. S. Giordani, D. R. V. Galhardi, B. B. Santos, P. S. Batista, and A. L. G. Ferreira, “Stochastic modeling of the transient regime of an electronic nose for waste cooking oil classification,” J. Food Eng. 221, 114–123 (2018).
[Crossref]

Beccaria, M.

G. Purcaro, L. Barp, M. Beccaria, and L. S. Conte, “Characterisation of minor components in vegetable oil by comprehensive gas chromatography with dual detection,” Food Chem. 212, 730–738 (2016).
[Crossref]

Boqué, R.

F. Mabood, R. Boqué, R. Folcarelli, O. Busto, A. Al-Harrasi, and J. Hussain, “Thermal oxidation process accelerates degradation of the olive oil mixed with sunflower oil and enables its discrimination using synchronous fluorescence spectroscopy and chemometric analysis,” Spectrochim. Acta, Part A 143, 298–303 (2015).
[Crossref]

Busto, O.

F. Mabood, R. Boqué, R. Folcarelli, O. Busto, A. Al-Harrasi, and J. Hussain, “Thermal oxidation process accelerates degradation of the olive oil mixed with sunflower oil and enables its discrimination using synchronous fluorescence spectroscopy and chemometric analysis,” Spectrochim. Acta, Part A 143, 298–303 (2015).
[Crossref]

Chaves, M. A.

C. E. Tanajura da Silva, V. L. Filardi, I. M. Pepe, M. A. Chaves, and C. M. S. Santos, “Classification of food vegetable oils by fluorimetry and artificial neural networks,” Food Control 47, 86–91 (2015).
[Crossref]

Chen, S. Y.

T. T. Mu, S. Y. Chen, and Y. C. Zhang, “Portable Detection and Quantification of Olive Oil Adulteration by 473-nm Laser-Induced Fluorescence,” Food Anal. Methods 9(1), 275–279 (2016).
[Crossref]

Conte, L. S.

G. Purcaro, L. Barp, M. Beccaria, and L. S. Conte, “Characterisation of minor components in vegetable oil by comprehensive gas chromatography with dual detection,” Food Chem. 212, 730–738 (2016).
[Crossref]

Cordero, B. M.

M. C. C. Oliveros, J. L. P. Pavon, C. G. Pinto, M. E. F. Laespada, B. M. Cordero, and M. Forina, “Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils,” Anal. Chim. Acta 459(2), 219–228 (2002).
[Crossref]

Dankowska, A.

A. Dankowska, M. Małecka, and W. Kowalewski, “Discrimination of edible olive oils by means of synchronous fluorescence spectroscopy with multivariate data analysis,” Grasas Aceites 64(4), 425–431 (2013).
[Crossref]

de Almeida Costa, E. A.

L. C. S. Bastos, E. A. de Almeida Costa, and P. A. P. Pereira, “Development, validation and application of an UFLC-DAD-ESI-MS method for determination of carbonyl compounds in soybean oil during continuous heating,” Food Chem. 218, 518–524 (2017).
[Crossref]

Dréau, Y. L.

Y. L. Dréau, N. Dupuy, J. Artaud, D. Ollivier, and J. Kister, “Infrared study of aging of edible oils by oxidative spectroscopy index and MCR-ALS chemometric method,” Talanta 77(5), 1748–1756 (2009).
[Crossref]

Dupuy, N.

Y. L. Dréau, N. Dupuy, J. Artaud, D. Ollivier, and J. Kister, “Infrared study of aging of edible oils by oxidative spectroscopy index and MCR-ALS chemometric method,” Talanta 77(5), 1748–1756 (2009).
[Crossref]

Faghih, S.

A. Akrami, F. Nikaein, S. Babajafari, S. Faghih, and H. Yarmohammadi, “Comparison of the effects of flaxseed oil and sunflower seed oil consumption on serum glucose, lipid profile, blood pressure, and lipid peroxidation in patients with metabolic syndrome,” J. Clin. Lipidol. 12(1), 70–77 (2018).
[Crossref]

Ferreira, A. L. G.

A. F. Siqueira, M. P. Melo, D. S. Giordani, D. R. V. Galhardi, B. B. Santos, P. S. Batista, and A. L. G. Ferreira, “Stochastic modeling of the transient regime of an electronic nose for waste cooking oil classification,” J. Food Eng. 221, 114–123 (2018).
[Crossref]

Filardi, V. L.

C. E. Tanajura da Silva, V. L. Filardi, I. M. Pepe, M. A. Chaves, and C. M. S. Santos, “Classification of food vegetable oils by fluorimetry and artificial neural networks,” Food Control 47, 86–91 (2015).
[Crossref]

Folcarelli, R.

F. Mabood, R. Boqué, R. Folcarelli, O. Busto, A. Al-Harrasi, and J. Hussain, “Thermal oxidation process accelerates degradation of the olive oil mixed with sunflower oil and enables its discrimination using synchronous fluorescence spectroscopy and chemometric analysis,” Spectrochim. Acta, Part A 143, 298–303 (2015).
[Crossref]

Forina, M.

M. C. C. Oliveros, J. L. P. Pavon, C. G. Pinto, M. E. F. Laespada, B. M. Cordero, and M. Forina, “Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils,” Anal. Chim. Acta 459(2), 219–228 (2002).
[Crossref]

Galhardi, D. R. V.

A. F. Siqueira, M. P. Melo, D. S. Giordani, D. R. V. Galhardi, B. B. Santos, P. S. Batista, and A. L. G. Ferreira, “Stochastic modeling of the transient regime of an electronic nose for waste cooking oil classification,” J. Food Eng. 221, 114–123 (2018).
[Crossref]

García-Mesa, J. A.

E. Guzmán, V. Baeten, J. A. F. Pierna, and J. A. García-Mesa, “Evaluation of the overall quality of olive oil using fluorescence spectroscopy,” Food Chem. 173, 927–934 (2015).
[Crossref]

Georgiou, C. A.

K. I. Poulli, G. A. Mousdis, and C. A. Georgiou, “Rapid synchronous fluorescence method for virgin olive oil adulteration assessment,” Food Chem. 105(1), 369–375 (2007).
[Crossref]

Ghazani, S. M.

A. Sebastian, S. M. Ghazani, and A. G. Marangoni, “Quality and safety of frying oils used in restaurants,” Food Res. Int. 64, 420–423 (2014).
[Crossref]

Giordani, D. S.

A. F. Siqueira, M. P. Melo, D. S. Giordani, D. R. V. Galhardi, B. B. Santos, P. S. Batista, and A. L. G. Ferreira, “Stochastic modeling of the transient regime of an electronic nose for waste cooking oil classification,” J. Food Eng. 221, 114–123 (2018).
[Crossref]

Górecki, T.

E. Sikorska, T. Górecki, and I. V. Khmelinskii, “Classification of edible oils using synchronous scanning fluorescence spectroscopy,” Food Chem. 89(2), 217–225 (2005).
[Crossref]

Guzmán, E.

E. Guzmán, V. Baeten, J. A. F. Pierna, and J. A. García-Mesa, “Evaluation of the overall quality of olive oil using fluorescence spectroscopy,” Food Chem. 173, 927–934 (2015).
[Crossref]

Havel, J.

P. Vrábel, P. Táborský, M. Ryvolová, J. Havel, and J. Preisler, “Sensitive detection and separation of fluorescent derivatives using capillary electrophoresis with laser-induced fluorescence detection with 532 nm Nd:YAG laser,” J. Lumin. 118(2), 283–292 (2006).
[Crossref]

Herrero-Martinez, J. M.

F. Troya, M. J. Lerma-Garcia, J. M. Herrero-Martinez, and E. F. Simo-Alfonso, “Classification of vegetable oils according to their botanicalorigin using n-alkane profiles established by GC-MS,” Food Chem. 167, 36–39 (2015).
[Crossref]

Hussain, J.

F. Mabood, R. Boqué, R. Folcarelli, O. Busto, A. Al-Harrasi, and J. Hussain, “Thermal oxidation process accelerates degradation of the olive oil mixed with sunflower oil and enables its discrimination using synchronous fluorescence spectroscopy and chemometric analysis,” Spectrochim. Acta, Part A 143, 298–303 (2015).
[Crossref]

Insausti, M.

K. D. T. M. Milanez, T. C. A. Nóbrega, D. S. Nascimento, M. Insausti, B. S. F. Band, and M. J. C. Pontes, “Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach,” LWT-Food Sci. Technol. 85, 9–15 (2017).
[Crossref]

Kadiroglu, P.

P. Kadiroglu, F. Korel, and F. Tokatli, “Classification of turkish extra virgin olive oils by a SAW detector electronic nose,” J. Am. Oil Chem. Soc. 88(5), 639–645 (2011).
[Crossref]

Khmelinskii, I. V.

E. Sikorska, T. Górecki, and I. V. Khmelinskii, “Classification of edible oils using synchronous scanning fluorescence spectroscopy,” Food Chem. 89(2), 217–225 (2005).
[Crossref]

Kister, J.

Y. L. Dréau, N. Dupuy, J. Artaud, D. Ollivier, and J. Kister, “Infrared study of aging of edible oils by oxidative spectroscopy index and MCR-ALS chemometric method,” Talanta 77(5), 1748–1756 (2009).
[Crossref]

Korel, F.

P. Kadiroglu, F. Korel, and F. Tokatli, “Classification of turkish extra virgin olive oils by a SAW detector electronic nose,” J. Am. Oil Chem. Soc. 88(5), 639–645 (2011).
[Crossref]

Kowalewski, W.

A. Dankowska, M. Małecka, and W. Kowalewski, “Discrimination of edible olive oils by means of synchronous fluorescence spectroscopy with multivariate data analysis,” Grasas Aceites 64(4), 425–431 (2013).
[Crossref]

Laespada, M. E. F.

M. C. C. Oliveros, J. L. P. Pavon, C. G. Pinto, M. E. F. Laespada, B. M. Cordero, and M. Forina, “Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils,” Anal. Chim. Acta 459(2), 219–228 (2002).
[Crossref]

Lerma-Garcia, M. J.

F. Troya, M. J. Lerma-Garcia, J. M. Herrero-Martinez, and E. F. Simo-Alfonso, “Classification of vegetable oils according to their botanicalorigin using n-alkane profiles established by GC-MS,” Food Chem. 167, 36–39 (2015).
[Crossref]

Liu, X. M.

M. P. Ntakatsane, X. M. Liu, and P. Zhou, “Short communication: Rapid detection of milk fat adulteration with vegetable oil by fluorescence spectroscopy,” J. Dairy Sci. 96(4), 2130–2136 (2013).
[Crossref]

Mabood, F.

F. Mabood, R. Boqué, R. Folcarelli, O. Busto, A. Al-Harrasi, and J. Hussain, “Thermal oxidation process accelerates degradation of the olive oil mixed with sunflower oil and enables its discrimination using synchronous fluorescence spectroscopy and chemometric analysis,” Spectrochim. Acta, Part A 143, 298–303 (2015).
[Crossref]

Malecka, M.

A. Dankowska, M. Małecka, and W. Kowalewski, “Discrimination of edible olive oils by means of synchronous fluorescence spectroscopy with multivariate data analysis,” Grasas Aceites 64(4), 425–431 (2013).
[Crossref]

Marangoni, A. G.

A. Sebastian, S. M. Ghazani, and A. G. Marangoni, “Quality and safety of frying oils used in restaurants,” Food Res. Int. 64, 420–423 (2014).
[Crossref]

Melo, M. P.

A. F. Siqueira, M. P. Melo, D. S. Giordani, D. R. V. Galhardi, B. B. Santos, P. S. Batista, and A. L. G. Ferreira, “Stochastic modeling of the transient regime of an electronic nose for waste cooking oil classification,” J. Food Eng. 221, 114–123 (2018).
[Crossref]

Milanez, K. D. T. M.

K. D. T. M. Milanez, T. C. A. Nóbrega, D. S. Nascimento, M. Insausti, B. S. F. Band, and M. J. C. Pontes, “Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach,” LWT-Food Sci. Technol. 85, 9–15 (2017).
[Crossref]

Mousdis, G. A.

K. I. Poulli, G. A. Mousdis, and C. A. Georgiou, “Rapid synchronous fluorescence method for virgin olive oil adulteration assessment,” Food Chem. 105(1), 369–375 (2007).
[Crossref]

Mu, T. T.

T. T. Mu, S. Y. Chen, and Y. C. Zhang, “Portable Detection and Quantification of Olive Oil Adulteration by 473-nm Laser-Induced Fluorescence,” Food Anal. Methods 9(1), 275–279 (2016).
[Crossref]

Nascimento, D. S.

K. D. T. M. Milanez, T. C. A. Nóbrega, D. S. Nascimento, M. Insausti, B. S. F. Band, and M. J. C. Pontes, “Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach,” LWT-Food Sci. Technol. 85, 9–15 (2017).
[Crossref]

Nikaein, F.

A. Akrami, F. Nikaein, S. Babajafari, S. Faghih, and H. Yarmohammadi, “Comparison of the effects of flaxseed oil and sunflower seed oil consumption on serum glucose, lipid profile, blood pressure, and lipid peroxidation in patients with metabolic syndrome,” J. Clin. Lipidol. 12(1), 70–77 (2018).
[Crossref]

Nóbrega, T. C. A.

K. D. T. M. Milanez, T. C. A. Nóbrega, D. S. Nascimento, M. Insausti, B. S. F. Band, and M. J. C. Pontes, “Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach,” LWT-Food Sci. Technol. 85, 9–15 (2017).
[Crossref]

Ntakatsane, M. P.

M. P. Ntakatsane, X. M. Liu, and P. Zhou, “Short communication: Rapid detection of milk fat adulteration with vegetable oil by fluorescence spectroscopy,” J. Dairy Sci. 96(4), 2130–2136 (2013).
[Crossref]

Oliveros, M. C. C.

M. C. C. Oliveros, J. L. P. Pavon, C. G. Pinto, M. E. F. Laespada, B. M. Cordero, and M. Forina, “Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils,” Anal. Chim. Acta 459(2), 219–228 (2002).
[Crossref]

Ollivier, D.

Y. L. Dréau, N. Dupuy, J. Artaud, D. Ollivier, and J. Kister, “Infrared study of aging of edible oils by oxidative spectroscopy index and MCR-ALS chemometric method,” Talanta 77(5), 1748–1756 (2009).
[Crossref]

Özdemir, D.

B. Öztürk, A. Ankan, and D. Özdemir, “Olive Oil Adulteration with Sunflower and Corn Oil Using Molecular Fluorescence Spectroscopy,” in Olives and Olive Oil in Health and Disease Prevention (Academic, 2010), pp. 451–461.

Öztürk, B.

B. Öztürk, A. Ankan, and D. Özdemir, “Olive Oil Adulteration with Sunflower and Corn Oil Using Molecular Fluorescence Spectroscopy,” in Olives and Olive Oil in Health and Disease Prevention (Academic, 2010), pp. 451–461.

Pavon, J. L. P.

M. C. C. Oliveros, J. L. P. Pavon, C. G. Pinto, M. E. F. Laespada, B. M. Cordero, and M. Forina, “Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils,” Anal. Chim. Acta 459(2), 219–228 (2002).
[Crossref]

Pepe, I. M.

C. E. Tanajura da Silva, V. L. Filardi, I. M. Pepe, M. A. Chaves, and C. M. S. Santos, “Classification of food vegetable oils by fluorimetry and artificial neural networks,” Food Control 47, 86–91 (2015).
[Crossref]

Pereira, P. A. P.

L. C. S. Bastos, E. A. de Almeida Costa, and P. A. P. Pereira, “Development, validation and application of an UFLC-DAD-ESI-MS method for determination of carbonyl compounds in soybean oil during continuous heating,” Food Chem. 218, 518–524 (2017).
[Crossref]

Pierna, J. A. F.

E. Guzmán, V. Baeten, J. A. F. Pierna, and J. A. García-Mesa, “Evaluation of the overall quality of olive oil using fluorescence spectroscopy,” Food Chem. 173, 927–934 (2015).
[Crossref]

Pinto, C. G.

M. C. C. Oliveros, J. L. P. Pavon, C. G. Pinto, M. E. F. Laespada, B. M. Cordero, and M. Forina, “Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils,” Anal. Chim. Acta 459(2), 219–228 (2002).
[Crossref]

Pontes, M. J. C.

K. D. T. M. Milanez, T. C. A. Nóbrega, D. S. Nascimento, M. Insausti, B. S. F. Band, and M. J. C. Pontes, “Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach,” LWT-Food Sci. Technol. 85, 9–15 (2017).
[Crossref]

Poulli, K. I.

K. I. Poulli, G. A. Mousdis, and C. A. Georgiou, “Rapid synchronous fluorescence method for virgin olive oil adulteration assessment,” Food Chem. 105(1), 369–375 (2007).
[Crossref]

Preisler, J.

P. Vrábel, P. Táborský, M. Ryvolová, J. Havel, and J. Preisler, “Sensitive detection and separation of fluorescent derivatives using capillary electrophoresis with laser-induced fluorescence detection with 532 nm Nd:YAG laser,” J. Lumin. 118(2), 283–292 (2006).
[Crossref]

Purcaro, G.

G. Purcaro, L. Barp, M. Beccaria, and L. S. Conte, “Characterisation of minor components in vegetable oil by comprehensive gas chromatography with dual detection,” Food Chem. 212, 730–738 (2016).
[Crossref]

Ryvolová, M.

P. Vrábel, P. Táborský, M. Ryvolová, J. Havel, and J. Preisler, “Sensitive detection and separation of fluorescent derivatives using capillary electrophoresis with laser-induced fluorescence detection with 532 nm Nd:YAG laser,” J. Lumin. 118(2), 283–292 (2006).
[Crossref]

Santos, B. B.

A. F. Siqueira, M. P. Melo, D. S. Giordani, D. R. V. Galhardi, B. B. Santos, P. S. Batista, and A. L. G. Ferreira, “Stochastic modeling of the transient regime of an electronic nose for waste cooking oil classification,” J. Food Eng. 221, 114–123 (2018).
[Crossref]

Santos, C. M. S.

C. E. Tanajura da Silva, V. L. Filardi, I. M. Pepe, M. A. Chaves, and C. M. S. Santos, “Classification of food vegetable oils by fluorimetry and artificial neural networks,” Food Control 47, 86–91 (2015).
[Crossref]

Sebastian, A.

A. Sebastian, S. M. Ghazani, and A. G. Marangoni, “Quality and safety of frying oils used in restaurants,” Food Res. Int. 64, 420–423 (2014).
[Crossref]

Sikorska, E.

E. Sikorska, T. Górecki, and I. V. Khmelinskii, “Classification of edible oils using synchronous scanning fluorescence spectroscopy,” Food Chem. 89(2), 217–225 (2005).
[Crossref]

Simo-Alfonso, E. F.

F. Troya, M. J. Lerma-Garcia, J. M. Herrero-Martinez, and E. F. Simo-Alfonso, “Classification of vegetable oils according to their botanicalorigin using n-alkane profiles established by GC-MS,” Food Chem. 167, 36–39 (2015).
[Crossref]

Siqueira, A. F.

A. F. Siqueira, M. P. Melo, D. S. Giordani, D. R. V. Galhardi, B. B. Santos, P. S. Batista, and A. L. G. Ferreira, “Stochastic modeling of the transient regime of an electronic nose for waste cooking oil classification,” J. Food Eng. 221, 114–123 (2018).
[Crossref]

Táborský, P.

P. Vrábel, P. Táborský, M. Ryvolová, J. Havel, and J. Preisler, “Sensitive detection and separation of fluorescent derivatives using capillary electrophoresis with laser-induced fluorescence detection with 532 nm Nd:YAG laser,” J. Lumin. 118(2), 283–292 (2006).
[Crossref]

Tanajura da Silva, C. E.

C. E. Tanajura da Silva, V. L. Filardi, I. M. Pepe, M. A. Chaves, and C. M. S. Santos, “Classification of food vegetable oils by fluorimetry and artificial neural networks,” Food Control 47, 86–91 (2015).
[Crossref]

Tokatli, F.

P. Kadiroglu, F. Korel, and F. Tokatli, “Classification of turkish extra virgin olive oils by a SAW detector electronic nose,” J. Am. Oil Chem. Soc. 88(5), 639–645 (2011).
[Crossref]

Troya, F.

F. Troya, M. J. Lerma-Garcia, J. M. Herrero-Martinez, and E. F. Simo-Alfonso, “Classification of vegetable oils according to their botanicalorigin using n-alkane profiles established by GC-MS,” Food Chem. 167, 36–39 (2015).
[Crossref]

Vrábel, P.

P. Vrábel, P. Táborský, M. Ryvolová, J. Havel, and J. Preisler, “Sensitive detection and separation of fluorescent derivatives using capillary electrophoresis with laser-induced fluorescence detection with 532 nm Nd:YAG laser,” J. Lumin. 118(2), 283–292 (2006).
[Crossref]

Yarmohammadi, H.

A. Akrami, F. Nikaein, S. Babajafari, S. Faghih, and H. Yarmohammadi, “Comparison of the effects of flaxseed oil and sunflower seed oil consumption on serum glucose, lipid profile, blood pressure, and lipid peroxidation in patients with metabolic syndrome,” J. Clin. Lipidol. 12(1), 70–77 (2018).
[Crossref]

Zhang, Y. C.

T. T. Mu, S. Y. Chen, and Y. C. Zhang, “Portable Detection and Quantification of Olive Oil Adulteration by 473-nm Laser-Induced Fluorescence,” Food Anal. Methods 9(1), 275–279 (2016).
[Crossref]

Zhou, P.

M. P. Ntakatsane, X. M. Liu, and P. Zhou, “Short communication: Rapid detection of milk fat adulteration with vegetable oil by fluorescence spectroscopy,” J. Dairy Sci. 96(4), 2130–2136 (2013).
[Crossref]

Anal. Chim. Acta (1)

M. C. C. Oliveros, J. L. P. Pavon, C. G. Pinto, M. E. F. Laespada, B. M. Cordero, and M. Forina, “Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils,” Anal. Chim. Acta 459(2), 219–228 (2002).
[Crossref]

Food Anal. Methods (1)

T. T. Mu, S. Y. Chen, and Y. C. Zhang, “Portable Detection and Quantification of Olive Oil Adulteration by 473-nm Laser-Induced Fluorescence,” Food Anal. Methods 9(1), 275–279 (2016).
[Crossref]

Food Chem. (6)

G. Purcaro, L. Barp, M. Beccaria, and L. S. Conte, “Characterisation of minor components in vegetable oil by comprehensive gas chromatography with dual detection,” Food Chem. 212, 730–738 (2016).
[Crossref]

F. Troya, M. J. Lerma-Garcia, J. M. Herrero-Martinez, and E. F. Simo-Alfonso, “Classification of vegetable oils according to their botanicalorigin using n-alkane profiles established by GC-MS,” Food Chem. 167, 36–39 (2015).
[Crossref]

L. C. S. Bastos, E. A. de Almeida Costa, and P. A. P. Pereira, “Development, validation and application of an UFLC-DAD-ESI-MS method for determination of carbonyl compounds in soybean oil during continuous heating,” Food Chem. 218, 518–524 (2017).
[Crossref]

E. Guzmán, V. Baeten, J. A. F. Pierna, and J. A. García-Mesa, “Evaluation of the overall quality of olive oil using fluorescence spectroscopy,” Food Chem. 173, 927–934 (2015).
[Crossref]

E. Sikorska, T. Górecki, and I. V. Khmelinskii, “Classification of edible oils using synchronous scanning fluorescence spectroscopy,” Food Chem. 89(2), 217–225 (2005).
[Crossref]

K. I. Poulli, G. A. Mousdis, and C. A. Georgiou, “Rapid synchronous fluorescence method for virgin olive oil adulteration assessment,” Food Chem. 105(1), 369–375 (2007).
[Crossref]

Food Control (1)

C. E. Tanajura da Silva, V. L. Filardi, I. M. Pepe, M. A. Chaves, and C. M. S. Santos, “Classification of food vegetable oils by fluorimetry and artificial neural networks,” Food Control 47, 86–91 (2015).
[Crossref]

Food Res. Int. (1)

A. Sebastian, S. M. Ghazani, and A. G. Marangoni, “Quality and safety of frying oils used in restaurants,” Food Res. Int. 64, 420–423 (2014).
[Crossref]

Grasas Aceites (1)

A. Dankowska, M. Małecka, and W. Kowalewski, “Discrimination of edible olive oils by means of synchronous fluorescence spectroscopy with multivariate data analysis,” Grasas Aceites 64(4), 425–431 (2013).
[Crossref]

J. Am. Oil Chem. Soc. (1)

P. Kadiroglu, F. Korel, and F. Tokatli, “Classification of turkish extra virgin olive oils by a SAW detector electronic nose,” J. Am. Oil Chem. Soc. 88(5), 639–645 (2011).
[Crossref]

J. Clin. Lipidol. (1)

A. Akrami, F. Nikaein, S. Babajafari, S. Faghih, and H. Yarmohammadi, “Comparison of the effects of flaxseed oil and sunflower seed oil consumption on serum glucose, lipid profile, blood pressure, and lipid peroxidation in patients with metabolic syndrome,” J. Clin. Lipidol. 12(1), 70–77 (2018).
[Crossref]

J. Dairy Sci. (1)

M. P. Ntakatsane, X. M. Liu, and P. Zhou, “Short communication: Rapid detection of milk fat adulteration with vegetable oil by fluorescence spectroscopy,” J. Dairy Sci. 96(4), 2130–2136 (2013).
[Crossref]

J. Food Eng. (1)

A. F. Siqueira, M. P. Melo, D. S. Giordani, D. R. V. Galhardi, B. B. Santos, P. S. Batista, and A. L. G. Ferreira, “Stochastic modeling of the transient regime of an electronic nose for waste cooking oil classification,” J. Food Eng. 221, 114–123 (2018).
[Crossref]

J. Lumin. (1)

P. Vrábel, P. Táborský, M. Ryvolová, J. Havel, and J. Preisler, “Sensitive detection and separation of fluorescent derivatives using capillary electrophoresis with laser-induced fluorescence detection with 532 nm Nd:YAG laser,” J. Lumin. 118(2), 283–292 (2006).
[Crossref]

LWT-Food Sci. Technol. (1)

K. D. T. M. Milanez, T. C. A. Nóbrega, D. S. Nascimento, M. Insausti, B. S. F. Band, and M. J. C. Pontes, “Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach,” LWT-Food Sci. Technol. 85, 9–15 (2017).
[Crossref]

Spectrochim. Acta, Part A (1)

F. Mabood, R. Boqué, R. Folcarelli, O. Busto, A. Al-Harrasi, and J. Hussain, “Thermal oxidation process accelerates degradation of the olive oil mixed with sunflower oil and enables its discrimination using synchronous fluorescence spectroscopy and chemometric analysis,” Spectrochim. Acta, Part A 143, 298–303 (2015).
[Crossref]

Talanta (1)

Y. L. Dréau, N. Dupuy, J. Artaud, D. Ollivier, and J. Kister, “Infrared study of aging of edible oils by oxidative spectroscopy index and MCR-ALS chemometric method,” Talanta 77(5), 1748–1756 (2009).
[Crossref]

Other (1)

B. Öztürk, A. Ankan, and D. Özdemir, “Olive Oil Adulteration with Sunflower and Corn Oil Using Molecular Fluorescence Spectroscopy,” in Olives and Olive Oil in Health and Disease Prevention (Academic, 2010), pp. 451–461.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of the experimental setup. OS: oil samples, OF: optical fiber, SP: spectrometer
Fig. 2.
Fig. 2. The fluorescence spectra of different oil samples: rapeseed oil (A), olive oil (B), peanut oil (C), corn oil (D), and waste frying oil (E).
Fig. 3.
Fig. 3. PCA of six types of oil samples: rapeseed oil (A), olive oil (B), peanut oil (C), corn oil (D), waste frying oil (E) and blend oil(F).
Fig. 4.
Fig. 4. The fluorescence spectra of four types of vegetable oils adulterated with waste frying oil range from 5 to 50%: rapeseed oil (a), olive oil (b), peanut oil (c) and corn oil (d).
Fig. 5.
Fig. 5. The calculated concentration obtained from PLSR model vs actual concentration: rapeseed oil (a), olive oil (b), peanut oil (c) and corn oil (d).

Metrics