Abstract

We have demonstrated the first direct femtosecond vortex beam generation from a semiconductor saturable absorber mirror (SESAM) mode locked Yb:KYW oscillator, featuring a homemade defect-spot mirror. Experimentally, a Laguerre Gaussian LG01 vortex beam with a repetition rate of ∼103.5 MHz and a pulse duration of 298 fs has been obtained. Both the defect mirror induced spatial loss modulation and intra-cavity astigmatism are responsible for the doughnut mode generation. Further, the chirality of the vortex beam is controlled by slightly tilting the angle of the Yb:KYW crystal, which hence breaks the azimuthal symmetry inside the laser cavity and leads to differential losses for LG0,+1 and LG0,-1 modes. The potential of the vortex beam’s amplification by a 2-m long Yb-doped double cladding fiber (DCF) amplifier has also been demonstrated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Direct generation of vortex beams from a double-end polarized pumped Yb:KYW laser

Sha Wang, Shu-Lin Zhang, Hong-chao Qiao, Ping Li, Mei-hui Hao, Huo-Mu Yang, Jian Xie, Guo-Ying Feng, and Shou-huan Zhou
Opt. Express 26(21) 26925-26932 (2018)

Diode-pumped femtosecond Tm3+-doped LuScO3 laser near 2.1  μm

N. K. Stevenson, C. T. A. Brown, J.-M. Hopkins, M. D. Dawson, C. Kränkel, and A. A. Lagatsky
Opt. Lett. 43(6) 1287-1290 (2018)

Controlled switching of orbital angular momentum in an optical parametric oscillator

A. Aadhi, G. K. Samanta, S. Chaitanya Kumar, and M. Ebrahim-Zadeh
Optica 4(3) 349-355 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Wang, “Advances in communications using optical vortices,” Photon. Res. 4(5), B14–B28 (2016).
    [Crossref]
  2. M. Ritschmarte, “Orbital angular momentum light in microscopy,” Philos. Trans. R. Soc., A 375(2087), 20150437 (2017).
    [Crossref]
  3. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827 (1996).
    [Crossref]
  4. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144–2151 (2010).
    [Crossref]
  5. J. Jj Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
    [Crossref]
  6. C. Hnatovsky, V. G. Shvedov, W. Krolikowski, and A. V. Rode, “Materials processing with a tightly focused femtosecond laser vortex pulse,” Opt. Lett. 35(20), 3417–3419 (2010).
    [Crossref]
  7. K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
    [Crossref]
  8. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
    [Crossref]
  9. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
    [Crossref]
  10. Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys. 6(12), 1005–1009 (2010).
    [Crossref]
  11. L. Ran, Z. Guo, and S. Qu, “Rotational motions of optically trapped microscopic particles by a vortex femtosecond laser,” Chin. Phys. B 21(10), 104206 (2012).
    [Crossref]
  12. N. Ac, A. Aadhi, M. V. Jabir, and G. K. Samanta, “Frequency-doubling characteristics of high-power, ultrafast vortex beams,” Opt. Lett. 40(11), 2614–2617 (2015).
    [Crossref]
  13. A. Vinçotte and L. Bergé, “Femtosecond Optical Vortices in Air,” Phys. Rev. Lett. 95(19), 193901 (2005).
    [Crossref]
  14. P. Polynkin, C. Ament, and J. V. Moloney, “Self-focusing of ultraintense femtosecond optical vortices in air,” Phys. Rev. Lett. 111(2), 023901 (2013).
    [Crossref]
  15. L. Ma, P. Zhang, Z. Li, C. Liu, X. Li, Y. Zhang, R. Zhang, and C. Cheng, “Spatiotemporal evolutions of ultrashort vortex pulses generated by spiral multi-pinhole plate,” Opt. Express 25(24), 29864–29873 (2017).
    [Crossref]
  16. V. G. Shvedov, C. Hnatovsky, W. Krolikowski, and A. V. Rode, “Efficient beam converter for the generation of high-power femtosecond vortices,” Opt. Lett. 35(15), 2660–2662 (2010).
    [Crossref]
  17. I. Mariyenko, J. Strohaber, and C. Uiterwaal, “Creation of optical vortices in femtosecond pulses,” Opt. Express 13(19), 7599–7608 (2005).
    [Crossref]
  18. K. Bezuhanov, A. Dreischuh, G. G. Paulus, M. G. Schäzel, H. Walther, D. Neshev, W. Królikowski, and Y. Kivshar, “Spatial phase dislocations in femtosecond laser pulses,” J. Opt. Soc. Am. B 23(1), 26–35 (2006).
    [Crossref]
  19. Z. Qiao, L. Kong, G. Xie, Z. Qin, P. Yuan, L. Qian, X. Xu, J. Xu, and D. Fan, “Ultraclean femtosecond vortices from a tunable high-order transverse-mode femtosecond laser,” Opt. Lett. 42(13), 2547 (2017).
    [Crossref]
  20. L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref]
  21. W. Zhang, K. Wei, D. Mao, H. Wang, F. Gao, L. Huang, T. Mei, and J. Zhao, “Generation of femtosecond optical vortex pulse in fiber based on an acoustically induced fiber grating,” Opt. Lett. 42(3), 454–457 (2017).
    [Crossref]
  22. A. Volyar, V. Shvedov, T. Fadeyeva, A. S. Desyatnikov, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Generation of single-charge optical vortices with an uniaxial crystal,” Opt. Express 14(9), 3724–3729 (2006).
    [Crossref]
  23. A. Ito, Y. Kozawa, and S. Sato, “Generation of hollow scalar and vector beams using a spot-defect mirror,” J. Opt. Soc. Am. A 27(9), 2072–2077 (2010).
    [Crossref]
  24. K. Kano, Y. Kozawa, and S. Sato, “Generation of a Purely Single Transverse Mode Vortex Beam from a He-Ne Laser Cavity with a Spot-Defect Mirror,” Int. J. Opt. 2012, 1–6 (2012).
    [Crossref]
  25. D. J. Kim and J. W. Kim, “Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser,” Opt. Lett. 40(3), 399–402 (2015).
    [Crossref]
  26. Y. Zhao, Z. Wang, H. Yu, S. Zhuang, H. Zhang, X. Xu, J. Xu, X. Xu, and J. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(3), 031113 (2012).
    [Crossref]
  27. M. Harris, C. A. Hill, and J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106(4-6), 161–166 (1994).
    [Crossref]
  28. R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Opt. Commun. 169(1-6), 115–121 (1999).
    [Crossref]
  29. S. Tan, C. Zhou, A. Shirakakwa, K. Ueda, and J. Li, “Vortex Ti:Sapphire laser by using an intracavity spot-defect spatial filter,” Opt. Laser Technol. 96, 76–80 (2017).
    [Crossref]
  30. T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, and X. Zeng, “Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler,” J. Lightwave Technol. 35(11), 2161–2166 (2017).
    [Crossref]
  31. S. Wang, S. Zhang, H. Yang, J. Xie, S. Jiang, G. Feng, and S. Zhou, “Direct emission of chirality controllable femtosecond LG01 vortex beam,” Appl. Phys. Lett. 112(20), 201110 (2018).
    [Crossref]
  32. I. A. Litvin, S. Ngcobo, D. Naidoo, K. Ait-Ameur, and A. Forbes, “Doughnut laser beam as an incoherent superposition of two petal beams,” Opt. Lett. 39(3), 704–707 (2014).
    [Crossref]
  33. Q. Liu, B. Zhang, S. Qi, Y. Li, X. Fan, Y. Zhao, W. Zhou, and D. Shen, “Integration of helicity-control and pulse-modulation for vortex laser based on a black phosphorus plate,” Opt. Express 24(26), 30031–30037 (2016).
    [Crossref]
  34. H. Hong-Sen, C. Zhen, L. Hong-Bin, and D. Jun, “Low-threshold, nanosecond, high-repetition-rate vortex pulses with controllable helicity generated in Cr,Nd:YAG self-Q-switched microchip laser,” Laser Phys. 28(5), 055802 (2018).
    [Crossref]
  35. D. Lin, J. M. O. Daniel, and W. A. Clarkson, “Controlling the handedness of directly excited Laguerre-Gaussian modes in a solid-state laser,” Opt. Lett. 39(13), 3903–3906 (2014).
    [Crossref]
  36. Q. Liu, Y. Zhao, W. Zhou, J. Zhang, L. Wang, W. Yao, and D. Shen, “Control of Vortex Helicity With a Quarter-Wave Plate in an Er:YAG Ceramic Solid State Laser,” IEEE Photon. J. 9(1), 1–8 (2017).
    [Crossref]
  37. Y. Zhao, Q. Liu, W. Zhou, and D. Shen, “∼1 mJ pulsed vortex laser at 1645 nm with well-defined helicity,” Opt. Express 24(14), 15596–15602 (2016).
    [Crossref]
  38. D. Lin, N. Baktash, M. Berendt, M. Beresna, P. G. Kazansky, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Radially and azimuthally polarized nanosecond Yb-doped fiber MOPA system incorporating temporal shaping,” Opt. Lett. 42(9), 1740–1743 (2017).
    [Crossref]

2018 (2)

S. Wang, S. Zhang, H. Yang, J. Xie, S. Jiang, G. Feng, and S. Zhou, “Direct emission of chirality controllable femtosecond LG01 vortex beam,” Appl. Phys. Lett. 112(20), 201110 (2018).
[Crossref]

H. Hong-Sen, C. Zhen, L. Hong-Bin, and D. Jun, “Low-threshold, nanosecond, high-repetition-rate vortex pulses with controllable helicity generated in Cr,Nd:YAG self-Q-switched microchip laser,” Laser Phys. 28(5), 055802 (2018).
[Crossref]

2017 (8)

Q. Liu, Y. Zhao, W. Zhou, J. Zhang, L. Wang, W. Yao, and D. Shen, “Control of Vortex Helicity With a Quarter-Wave Plate in an Er:YAG Ceramic Solid State Laser,” IEEE Photon. J. 9(1), 1–8 (2017).
[Crossref]

M. Ritschmarte, “Orbital angular momentum light in microscopy,” Philos. Trans. R. Soc., A 375(2087), 20150437 (2017).
[Crossref]

S. Tan, C. Zhou, A. Shirakakwa, K. Ueda, and J. Li, “Vortex Ti:Sapphire laser by using an intracavity spot-defect spatial filter,” Opt. Laser Technol. 96, 76–80 (2017).
[Crossref]

W. Zhang, K. Wei, D. Mao, H. Wang, F. Gao, L. Huang, T. Mei, and J. Zhao, “Generation of femtosecond optical vortex pulse in fiber based on an acoustically induced fiber grating,” Opt. Lett. 42(3), 454–457 (2017).
[Crossref]

D. Lin, N. Baktash, M. Berendt, M. Beresna, P. G. Kazansky, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Radially and azimuthally polarized nanosecond Yb-doped fiber MOPA system incorporating temporal shaping,” Opt. Lett. 42(9), 1740–1743 (2017).
[Crossref]

T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, and X. Zeng, “Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler,” J. Lightwave Technol. 35(11), 2161–2166 (2017).
[Crossref]

Z. Qiao, L. Kong, G. Xie, Z. Qin, P. Yuan, L. Qian, X. Xu, J. Xu, and D. Fan, “Ultraclean femtosecond vortices from a tunable high-order transverse-mode femtosecond laser,” Opt. Lett. 42(13), 2547 (2017).
[Crossref]

L. Ma, P. Zhang, Z. Li, C. Liu, X. Li, Y. Zhang, R. Zhang, and C. Cheng, “Spatiotemporal evolutions of ultrashort vortex pulses generated by spiral multi-pinhole plate,” Opt. Express 25(24), 29864–29873 (2017).
[Crossref]

2016 (4)

2015 (2)

2014 (3)

I. A. Litvin, S. Ngcobo, D. Naidoo, K. Ait-Ameur, and A. Forbes, “Doughnut laser beam as an incoherent superposition of two petal beams,” Opt. Lett. 39(3), 704–707 (2014).
[Crossref]

D. Lin, J. M. O. Daniel, and W. A. Clarkson, “Controlling the handedness of directly excited Laguerre-Gaussian modes in a solid-state laser,” Opt. Lett. 39(13), 3903–3906 (2014).
[Crossref]

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

2013 (2)

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

P. Polynkin, C. Ament, and J. V. Moloney, “Self-focusing of ultraintense femtosecond optical vortices in air,” Phys. Rev. Lett. 111(2), 023901 (2013).
[Crossref]

2012 (4)

K. Kano, Y. Kozawa, and S. Sato, “Generation of a Purely Single Transverse Mode Vortex Beam from a He-Ne Laser Cavity with a Spot-Defect Mirror,” Int. J. Opt. 2012, 1–6 (2012).
[Crossref]

Y. Zhao, Z. Wang, H. Yu, S. Zhuang, H. Zhang, X. Xu, J. Xu, X. Xu, and J. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(3), 031113 (2012).
[Crossref]

L. Ran, Z. Guo, and S. Qu, “Rotational motions of optically trapped microscopic particles by a vortex femtosecond laser,” Chin. Phys. B 21(10), 104206 (2012).
[Crossref]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

2010 (5)

2006 (2)

2005 (2)

A. Vinçotte and L. Bergé, “Femtosecond Optical Vortices in Air,” Phys. Rev. Lett. 95(19), 193901 (2005).
[Crossref]

I. Mariyenko, J. Strohaber, and C. Uiterwaal, “Creation of optical vortices in femtosecond pulses,” Opt. Express 13(19), 7599–7608 (2005).
[Crossref]

1999 (1)

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Opt. Commun. 169(1-6), 115–121 (1999).
[Crossref]

1996 (1)

1994 (1)

M. Harris, C. A. Hill, and J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106(4-6), 161–166 (1994).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Aadhi, A.

Ac, N.

Ait-Ameur, K.

Alam, S. U.

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Ament, C.

P. Polynkin, C. Ament, and J. V. Moloney, “Self-focusing of ultraintense femtosecond optical vortices in air,” Phys. Rev. Lett. 111(2), 023901 (2013).
[Crossref]

Amoruso, S.

J. Jj Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
[Crossref]

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Anoop, K.

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Aoki, N.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

Baktash, N.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Berendt, M.

Beresna, M.

Bergé, L.

A. Vinçotte and L. Bergé, “Femtosecond Optical Vortices in Air,” Phys. Rev. Lett. 95(19), 193901 (2005).
[Crossref]

Bezuhanov, K.

Bruzzese, R.

J. Jj Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
[Crossref]

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Cheng, C.

Chujo, K.

Clarkson, W. A.

Daniel, J. M. O.

Danziger, Y.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Opt. Commun. 169(1-6), 115–121 (1999).
[Crossref]

Davidson, N.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Opt. Commun. 169(1-6), 115–121 (1999).
[Crossref]

Desyatnikov, A. S.

Dreischuh, A.

Fadeyeva, T.

Fan, D.

Fan, X.

Feng, G.

S. Wang, S. Zhang, H. Yang, J. Xie, S. Jiang, G. Feng, and S. Zhou, “Direct emission of chirality controllable femtosecond LG01 vortex beam,” Appl. Phys. Lett. 112(20), 201110 (2018).
[Crossref]

Fittipaldi, R.

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Forbes, A.

Friesem, A. A.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Opt. Commun. 169(1-6), 115–121 (1999).
[Crossref]

Gahagan, K. T.

Gao, F.

Guo, Z.

L. Ran, Z. Guo, and S. Qu, “Rotational motions of optically trapped microscopic particles by a vortex femtosecond laser,” Chin. Phys. B 21(10), 104206 (2012).
[Crossref]

Hamazaki, J.

Harris, M.

M. Harris, C. A. Hill, and J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106(4-6), 161–166 (1994).
[Crossref]

Hasman, E.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Opt. Commun. 169(1-6), 115–121 (1999).
[Crossref]

He, S.

J. Jj Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
[Crossref]

Hill, C. A.

M. Harris, C. A. Hill, and J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106(4-6), 161–166 (1994).
[Crossref]

Hnatovsky, C.

Hong-Bin, L.

H. Hong-Sen, C. Zhen, L. Hong-Bin, and D. Jun, “Low-threshold, nanosecond, high-repetition-rate vortex pulses with controllable helicity generated in Cr,Nd:YAG self-Q-switched microchip laser,” Laser Phys. 28(5), 055802 (2018).
[Crossref]

Hong-Sen, H.

H. Hong-Sen, C. Zhen, L. Hong-Bin, and D. Jun, “Low-threshold, nanosecond, high-repetition-rate vortex pulses with controllable helicity generated in Cr,Nd:YAG self-Q-switched microchip laser,” Laser Phys. 28(5), 055802 (2018).
[Crossref]

Huang, L.

Huang, S.

Ito, A.

Jabir, M. V.

Jiang, S.

S. Wang, S. Zhang, H. Yang, J. Xie, S. Jiang, G. Feng, and S. Zhou, “Direct emission of chirality controllable femtosecond LG01 vortex beam,” Appl. Phys. Lett. 112(20), 201110 (2018).
[Crossref]

Jiang, Y.

Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys. 6(12), 1005–1009 (2010).
[Crossref]

Jj Nivas, J.

J. Jj Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
[Crossref]

Jun, D.

H. Hong-Sen, C. Zhen, L. Hong-Bin, and D. Jun, “Low-threshold, nanosecond, high-repetition-rate vortex pulses with controllable helicity generated in Cr,Nd:YAG self-Q-switched microchip laser,” Laser Phys. 28(5), 055802 (2018).
[Crossref]

Kano, K.

K. Kano, Y. Kozawa, and S. Sato, “Generation of a Purely Single Transverse Mode Vortex Beam from a He-Ne Laser Cavity with a Spot-Defect Mirror,” Int. J. Opt. 2012, 1–6 (2012).
[Crossref]

Kazansky, P. G.

Kim, D. J.

Kim, J. W.

Kivshar, Y.

Kivshar, Y. S.

Kobayashi, Y.

Kong, L.

Kozawa, Y.

K. Kano, Y. Kozawa, and S. Sato, “Generation of a Purely Single Transverse Mode Vortex Beam from a He-Ne Laser Cavity with a Spot-Defect Mirror,” Int. J. Opt. 2012, 1–6 (2012).
[Crossref]

A. Ito, Y. Kozawa, and S. Sato, “Generation of hollow scalar and vector beams using a spot-defect mirror,” J. Opt. Soc. Am. A 27(9), 2072–2077 (2010).
[Crossref]

Krolikowski, W.

Królikowski, W.

Li, J.

S. Tan, C. Zhou, A. Shirakakwa, K. Ueda, and J. Li, “Vortex Ti:Sapphire laser by using an intracavity spot-defect spatial filter,” Opt. Laser Technol. 96, 76–80 (2017).
[Crossref]

Li, X.

Li, Y.

Li, Z.

Lin, D.

Litvin, I. A.

Liu, C.

Liu, Q.

Ma, L.

Mao, D.

Mariyenko, I.

Marrucci, L.

J. Jj Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
[Crossref]

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Mei, T.

Miyamoto, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

Moloney, J. V.

P. Polynkin, C. Ament, and J. V. Moloney, “Self-focusing of ultraintense femtosecond optical vortices in air,” Phys. Rev. Lett. 111(2), 023901 (2013).
[Crossref]

Morita, R.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144–2151 (2010).
[Crossref]

Naidoo, D.

Narushima, T.

Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys. 6(12), 1005–1009 (2010).
[Crossref]

Neshev, D.

Neshev, D. N.

Ngcobo, S.

Okamoto, H.

Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys. 6(12), 1005–1009 (2010).
[Crossref]

Omatsu, T.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144–2151 (2010).
[Crossref]

Oron, R.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Opt. Commun. 169(1-6), 115–121 (1999).
[Crossref]

Pang, F.

Paparo, D.

J. Jj Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
[Crossref]

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Paulus, G. G.

Polynkin, P.

P. Polynkin, C. Ament, and J. V. Moloney, “Self-focusing of ultraintense femtosecond optical vortices in air,” Phys. Rev. Lett. 111(2), 023901 (2013).
[Crossref]

Qi, S.

Qian, L.

Qiao, Z.

Qin, Z.

Qu, S.

L. Ran, Z. Guo, and S. Qu, “Rotational motions of optically trapped microscopic particles by a vortex femtosecond laser,” Chin. Phys. B 21(10), 104206 (2012).
[Crossref]

Ran, L.

L. Ran, Z. Guo, and S. Qu, “Rotational motions of optically trapped microscopic particles by a vortex femtosecond laser,” Chin. Phys. B 21(10), 104206 (2012).
[Crossref]

Richardson, D. J.

Ritschmarte, M.

M. Ritschmarte, “Orbital angular momentum light in microscopy,” Philos. Trans. R. Soc., A 375(2087), 20150437 (2017).
[Crossref]

Rode, A. V.

Rubano, A.

J. Jj Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
[Crossref]

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Samanta, G. K.

Sato, S.

K. Kano, Y. Kozawa, and S. Sato, “Generation of a Purely Single Transverse Mode Vortex Beam from a He-Ne Laser Cavity with a Spot-Defect Mirror,” Int. J. Opt. 2012, 1–6 (2012).
[Crossref]

A. Ito, Y. Kozawa, and S. Sato, “Generation of hollow scalar and vector beams using a spot-defect mirror,” J. Opt. Soc. Am. A 27(9), 2072–2077 (2010).
[Crossref]

Schäzel, M. G.

Shen, D.

Shi, F.

Shirakakwa, A.

S. Tan, C. Zhou, A. Shirakakwa, K. Ueda, and J. Li, “Vortex Ti:Sapphire laser by using an intracavity spot-defect spatial filter,” Opt. Laser Technol. 96, 76–80 (2017).
[Crossref]

Shvedov, V.

Shvedov, V. G.

Spreeuw, R. J.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Strohaber, J.

Swartzlander, G. A.

Takahashi, F.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

Takizawa, S.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

Tan, S.

S. Tan, C. Zhou, A. Shirakakwa, K. Ueda, and J. Li, “Vortex Ti:Sapphire laser by using an intracavity spot-defect spatial filter,” Opt. Laser Technol. 96, 76–80 (2017).
[Crossref]

Tanda, S.

Tokizane, Y.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

Toyoda, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

Ueda, K.

S. Tan, C. Zhou, A. Shirakakwa, K. Ueda, and J. Li, “Vortex Ti:Sapphire laser by using an intracavity spot-defect spatial filter,” Opt. Laser Technol. 96, 76–80 (2017).
[Crossref]

Uiterwaal, C.

Vaughan, J. M.

M. Harris, C. A. Hill, and J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106(4-6), 161–166 (1994).
[Crossref]

Vecchione, A.

J. Jj Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
[Crossref]

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Vinçotte, A.

A. Vinçotte and L. Bergé, “Femtosecond Optical Vortices in Air,” Phys. Rev. Lett. 95(19), 193901 (2005).
[Crossref]

Volyar, A.

Walther, H.

Wang, F.

Wang, H.

Wang, J.

J. Wang, “Advances in communications using optical vortices,” Photon. Res. 4(5), B14–B28 (2016).
[Crossref]

Y. Zhao, Z. Wang, H. Yu, S. Zhuang, H. Zhang, X. Xu, J. Xu, X. Xu, and J. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(3), 031113 (2012).
[Crossref]

Wang, L.

Q. Liu, Y. Zhao, W. Zhou, J. Zhang, L. Wang, W. Yao, and D. Shen, “Control of Vortex Helicity With a Quarter-Wave Plate in an Er:YAG Ceramic Solid State Laser,” IEEE Photon. J. 9(1), 1–8 (2017).
[Crossref]

Wang, S.

S. Wang, S. Zhang, H. Yang, J. Xie, S. Jiang, G. Feng, and S. Zhou, “Direct emission of chirality controllable femtosecond LG01 vortex beam,” Appl. Phys. Lett. 112(20), 201110 (2018).
[Crossref]

Wang, T.

Wang, X.

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Wang, Z.

Y. Zhao, Z. Wang, H. Yu, S. Zhuang, H. Zhang, X. Xu, J. Xu, X. Xu, and J. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(3), 031113 (2012).
[Crossref]

Wei, K.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Xie, G.

Xie, J.

S. Wang, S. Zhang, H. Yang, J. Xie, S. Jiang, G. Feng, and S. Zhou, “Direct emission of chirality controllable femtosecond LG01 vortex beam,” Appl. Phys. Lett. 112(20), 201110 (2018).
[Crossref]

Xu, J.

Z. Qiao, L. Kong, G. Xie, Z. Qin, P. Yuan, L. Qian, X. Xu, J. Xu, and D. Fan, “Ultraclean femtosecond vortices from a tunable high-order transverse-mode femtosecond laser,” Opt. Lett. 42(13), 2547 (2017).
[Crossref]

Y. Zhao, Z. Wang, H. Yu, S. Zhuang, H. Zhang, X. Xu, J. Xu, X. Xu, and J. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(3), 031113 (2012).
[Crossref]

Xu, X.

Z. Qiao, L. Kong, G. Xie, Z. Qin, P. Yuan, L. Qian, X. Xu, J. Xu, and D. Fan, “Ultraclean femtosecond vortices from a tunable high-order transverse-mode femtosecond laser,” Opt. Lett. 42(13), 2547 (2017).
[Crossref]

Y. Zhao, Z. Wang, H. Yu, S. Zhuang, H. Zhang, X. Xu, J. Xu, X. Xu, and J. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(3), 031113 (2012).
[Crossref]

Y. Zhao, Z. Wang, H. Yu, S. Zhuang, H. Zhang, X. Xu, J. Xu, X. Xu, and J. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(3), 031113 (2012).
[Crossref]

Yang, H.

S. Wang, S. Zhang, H. Yang, J. Xie, S. Jiang, G. Feng, and S. Zhou, “Direct emission of chirality controllable femtosecond LG01 vortex beam,” Appl. Phys. Lett. 112(20), 201110 (2018).
[Crossref]

Yao, W.

Q. Liu, Y. Zhao, W. Zhou, J. Zhang, L. Wang, W. Yao, and D. Shen, “Control of Vortex Helicity With a Quarter-Wave Plate in an Er:YAG Ceramic Solid State Laser,” IEEE Photon. J. 9(1), 1–8 (2017).
[Crossref]

Yu, H.

Y. Zhao, Z. Wang, H. Yu, S. Zhuang, H. Zhang, X. Xu, J. Xu, X. Xu, and J. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(3), 031113 (2012).
[Crossref]

Yuan, P.

Zeng, X.

Zhang, B.

Zhang, H.

Y. Zhao, Z. Wang, H. Yu, S. Zhuang, H. Zhang, X. Xu, J. Xu, X. Xu, and J. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(3), 031113 (2012).
[Crossref]

Zhang, J.

Q. Liu, Y. Zhao, W. Zhou, J. Zhang, L. Wang, W. Yao, and D. Shen, “Control of Vortex Helicity With a Quarter-Wave Plate in an Er:YAG Ceramic Solid State Laser,” IEEE Photon. J. 9(1), 1–8 (2017).
[Crossref]

Zhang, P.

Zhang, R.

Zhang, S.

S. Wang, S. Zhang, H. Yang, J. Xie, S. Jiang, G. Feng, and S. Zhou, “Direct emission of chirality controllable femtosecond LG01 vortex beam,” Appl. Phys. Lett. 112(20), 201110 (2018).
[Crossref]

Zhang, W.

Zhang, Y.

Zhao, J.

Zhao, Y.

Q. Liu, Y. Zhao, W. Zhou, J. Zhang, L. Wang, W. Yao, and D. Shen, “Control of Vortex Helicity With a Quarter-Wave Plate in an Er:YAG Ceramic Solid State Laser,” IEEE Photon. J. 9(1), 1–8 (2017).
[Crossref]

Y. Zhao, Q. Liu, W. Zhou, and D. Shen, “∼1 mJ pulsed vortex laser at 1645 nm with well-defined helicity,” Opt. Express 24(14), 15596–15602 (2016).
[Crossref]

Q. Liu, B. Zhang, S. Qi, Y. Li, X. Fan, Y. Zhao, W. Zhou, and D. Shen, “Integration of helicity-control and pulse-modulation for vortex laser based on a black phosphorus plate,” Opt. Express 24(26), 30031–30037 (2016).
[Crossref]

Y. Zhao, Z. Wang, H. Yu, S. Zhuang, H. Zhang, X. Xu, J. Xu, X. Xu, and J. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(3), 031113 (2012).
[Crossref]

Zhen, C.

H. Hong-Sen, C. Zhen, L. Hong-Bin, and D. Jun, “Low-threshold, nanosecond, high-repetition-rate vortex pulses with controllable helicity generated in Cr,Nd:YAG self-Q-switched microchip laser,” Laser Phys. 28(5), 055802 (2018).
[Crossref]

Zhou, C.

S. Tan, C. Zhou, A. Shirakakwa, K. Ueda, and J. Li, “Vortex Ti:Sapphire laser by using an intracavity spot-defect spatial filter,” Opt. Laser Technol. 96, 76–80 (2017).
[Crossref]

Zhou, S.

S. Wang, S. Zhang, H. Yang, J. Xie, S. Jiang, G. Feng, and S. Zhou, “Direct emission of chirality controllable femtosecond LG01 vortex beam,” Appl. Phys. Lett. 112(20), 201110 (2018).
[Crossref]

Zhou, W.

Zhuang, S.

Y. Zhao, Z. Wang, H. Yu, S. Zhuang, H. Zhang, X. Xu, J. Xu, X. Xu, and J. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(3), 031113 (2012).
[Crossref]

Appl. Phys. Lett. (3)

K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, and S. Amoruso, “Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate,” Appl. Phys. Lett. 104(24), 241604 (2014).
[Crossref]

Y. Zhao, Z. Wang, H. Yu, S. Zhuang, H. Zhang, X. Xu, J. Xu, X. Xu, and J. Wang, “Direct generation of optical vortex pulses,” Appl. Phys. Lett. 101(3), 031113 (2012).
[Crossref]

S. Wang, S. Zhang, H. Yang, J. Xie, S. Jiang, G. Feng, and S. Zhou, “Direct emission of chirality controllable femtosecond LG01 vortex beam,” Appl. Phys. Lett. 112(20), 201110 (2018).
[Crossref]

Chin. Phys. B (1)

L. Ran, Z. Guo, and S. Qu, “Rotational motions of optically trapped microscopic particles by a vortex femtosecond laser,” Chin. Phys. B 21(10), 104206 (2012).
[Crossref]

IEEE Photon. J. (1)

Q. Liu, Y. Zhao, W. Zhou, J. Zhang, L. Wang, W. Yao, and D. Shen, “Control of Vortex Helicity With a Quarter-Wave Plate in an Er:YAG Ceramic Solid State Laser,” IEEE Photon. J. 9(1), 1–8 (2017).
[Crossref]

Int. J. Opt. (1)

K. Kano, Y. Kozawa, and S. Sato, “Generation of a Purely Single Transverse Mode Vortex Beam from a He-Ne Laser Cavity with a Spot-Defect Mirror,” Int. J. Opt. 2012, 1–6 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

H. Hong-Sen, C. Zhen, L. Hong-Bin, and D. Jun, “Low-threshold, nanosecond, high-repetition-rate vortex pulses with controllable helicity generated in Cr,Nd:YAG self-Q-switched microchip laser,” Laser Phys. 28(5), 055802 (2018).
[Crossref]

Nano Lett. (1)

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

Nat. Phys. (1)

Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys. 6(12), 1005–1009 (2010).
[Crossref]

Opt. Commun. (2)

M. Harris, C. A. Hill, and J. M. Vaughan, “Optical helices and spiral interference fringes,” Opt. Commun. 106(4-6), 161–166 (1994).
[Crossref]

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Opt. Commun. 169(1-6), 115–121 (1999).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

S. Tan, C. Zhou, A. Shirakakwa, K. Ueda, and J. Li, “Vortex Ti:Sapphire laser by using an intracavity spot-defect spatial filter,” Opt. Laser Technol. 96, 76–80 (2017).
[Crossref]

Opt. Lett. (10)

K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827 (1996).
[Crossref]

W. Zhang, K. Wei, D. Mao, H. Wang, F. Gao, L. Huang, T. Mei, and J. Zhao, “Generation of femtosecond optical vortex pulse in fiber based on an acoustically induced fiber grating,” Opt. Lett. 42(3), 454–457 (2017).
[Crossref]

D. Lin, N. Baktash, M. Berendt, M. Beresna, P. G. Kazansky, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Radially and azimuthally polarized nanosecond Yb-doped fiber MOPA system incorporating temporal shaping,” Opt. Lett. 42(9), 1740–1743 (2017).
[Crossref]

Z. Qiao, L. Kong, G. Xie, Z. Qin, P. Yuan, L. Qian, X. Xu, J. Xu, and D. Fan, “Ultraclean femtosecond vortices from a tunable high-order transverse-mode femtosecond laser,” Opt. Lett. 42(13), 2547 (2017).
[Crossref]

V. G. Shvedov, C. Hnatovsky, W. Krolikowski, and A. V. Rode, “Efficient beam converter for the generation of high-power femtosecond vortices,” Opt. Lett. 35(15), 2660–2662 (2010).
[Crossref]

C. Hnatovsky, V. G. Shvedov, W. Krolikowski, and A. V. Rode, “Materials processing with a tightly focused femtosecond laser vortex pulse,” Opt. Lett. 35(20), 3417–3419 (2010).
[Crossref]

I. A. Litvin, S. Ngcobo, D. Naidoo, K. Ait-Ameur, and A. Forbes, “Doughnut laser beam as an incoherent superposition of two petal beams,” Opt. Lett. 39(3), 704–707 (2014).
[Crossref]

D. Lin, J. M. O. Daniel, and W. A. Clarkson, “Controlling the handedness of directly excited Laguerre-Gaussian modes in a solid-state laser,” Opt. Lett. 39(13), 3903–3906 (2014).
[Crossref]

D. J. Kim and J. W. Kim, “Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser,” Opt. Lett. 40(3), 399–402 (2015).
[Crossref]

N. Ac, A. Aadhi, M. V. Jabir, and G. K. Samanta, “Frequency-doubling characteristics of high-power, ultrafast vortex beams,” Opt. Lett. 40(11), 2614–2617 (2015).
[Crossref]

Philos. Trans. R. Soc., A (1)

M. Ritschmarte, “Orbital angular momentum light in microscopy,” Philos. Trans. R. Soc., A 375(2087), 20150437 (2017).
[Crossref]

Photon. Res. (1)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Phys. Rev. Lett. (3)

A. Vinçotte and L. Bergé, “Femtosecond Optical Vortices in Air,” Phys. Rev. Lett. 95(19), 193901 (2005).
[Crossref]

P. Polynkin, C. Ament, and J. V. Moloney, “Self-focusing of ultraintense femtosecond optical vortices in air,” Phys. Rev. Lett. 111(2), 023901 (2013).
[Crossref]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref]

Sci. Rep. (1)

J. Jj Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate,” Sci. Rep. 5(1), 17929 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental setup of a Semiconductor Saturable Absorber Mirror (SESAM) mode locked Yb:KYW oscillator using a defect-spot mirror and its double-clad fiber (DCF) amplifier. LD, laser diode. DM: dichroic mirror. OC: output coupler. DCF: double cladding fiber. HWP: half wave plate. L: lens. M: mirror. NPBS: non-polarization beamsplitter. CCD: Charge-Coupled Device camera. The curved arrow above the laser gain medium shows the possibility of Yb:KYW crystal rotation. The laser crystal is mounted on a rotation stage, which can be rotated about the axis perpendicular to the optical table.
Fig. 2.
Fig. 2. (a) Picture of the defect-spot mirror with defect spots, with diameters ranging from 150 μm to 300 μm (50 μm step). The circled one is the defect spot of 150 μm we used in the experiments, (b) Optical microscope image of the circular spot defect with a diameter of 150 μm on the mirror; (c) Recorded beam profile of the doughnut beam by a CCD camera; (d) Intensity profile of the doughnut beam corresponding to Fig. 2(c). Dotted lines and red solid lines are experimental and fitted results.
Fig. 3.
Fig. 3. Interference patterns of (a) LG0,+1 mode; (b) incoherent superposition of LG0,+1 mode and LG0,-1 mode; (c) LG0,-1 mode.
Fig. 4.
Fig. 4. Laser output power as a function of the pump power. Yellow part: output laser beam with HG01-like shape; pink part: output laser beam with LG0,+1 mode; two dashed line indicates the mode locking and multi-pulse mode locking range respectively.
Fig. 5.
Fig. 5. Measured (a) oscilloscope trace of the mode locked pulses in a short period of 160 ns; (b) oscilloscope trace of the mode locked pulses in a long period of 200 μs; (c) laser emission spectrum; (d) measured autocorrelation trace.
Fig. 6.
Fig. 6. Measured (a) intensity distribution of the amplified output beam; (b) the intensity profile across the beam center: -○- experimental results, — fitting curve; (c) interference pattern of the amplified output beam.
Fig. 7.
Fig. 7. Measured (a) Output power as a function of launched pump power; (b) Output spectrum after amplification at pump power of 5.26 W.

Metrics