Abstract

In this work, we demonstrate micro resonators made of liquid crystal blue phase (BP) microspheres, embedded in a polymer/water matrix. The omnidirectional 3D lasing from BPII and BPI microspheres and the temperature-controlled laser tuning within the range of 55 nm from the BPI microspheres were observed for the first time. The potential applications of BPs microlasers range from temperature-controllable, omnidirectional, coherent light micro sources to informational displays and micro sensing devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
3D microlasers from self-assembled cholesteric liquid-crystal microdroplets

M. Humar and I. Muševič
Opt. Express 18(26) 26995-27003 (2010)

Random lasing in blue phase liquid crystals

Chun-Wei Chen, Hung-Chang Jau, Chun-Ta Wang, Chun-Hong Lee, I. C. Khoo, and Tsung-Hsien Lin
Opt. Express 20(21) 23978-23984 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4(1-2), 145–158 (2008).
    [Crossref]
  2. S. K. Tang, R. Derda, Q. Quan, M. Lončar, and G. M. Whitesides, “Continuously tunable microdroplet-laser in a microfluidic channel,” Opt. Express 19(3), 2204–2215 (2011).
    [Crossref]
  3. Y. Wang, H. Li, L. Zhao, B. Wu, S. Liu, Y. Liu, and J. Yang, “A review of droplet resonators: Operation method and application,” Opt. Laser Technol. 86, 61–68 (2016).
    [Crossref]
  4. M.-J. Lee, Ch.-H. Chang, and W. Lee, “Label-free protein sensing by employing blue phase liquid crystal,” Biomed. Opt. Express 8(3), 1712–1720 (2017).
    [Crossref]
  5. I. Muševič, H. Peng, M. Nikkhou, and M. Humar, “Self-Assembled Liquid-Crystal Microlasers, Microresonators and Microfibres,” Proc. SPIE 8960, 896016 (2014).
    [Crossref]
  6. L.-J. Chen, L.-L. Gong, Y.-L. Lin, X.-Y. Jin, H.-Y. Li, S.-S. Li, K.-J. Che, Z.-P. Cai, and C. J. Yang, “Microfluidic Fabrication of Cholesteric Liquid Crystal Core-Shell Structures toward Magnetically Transportable Microlasers,” Lab Chip 16(7), 1206–1213 (2016).
    [Crossref]
  7. I. Muševič, “Liquid-crystal micro-photonics,” Liq. Cryst. Rev. 4(1), 1–34 (2016).
    [Crossref]
  8. M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
    [Crossref]
  9. Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S. Y. Lin, “High-quality-factor Bragg onion resonators with omnidirectional reflector cladding,” Opt. Lett. 28(22), 2144–2146 (2003).
    [Crossref]
  10. Y. Li, J. J.-Y. Suen, E. Prince, E. M. Larin, A. Klinkova, H. Thérien-Aubin, S. Zhu, B. Yang, A. S. Helmy, O. D. Lavrentovich, and E. Kumacheva, “Colloidal cholesteric liquid crystal in spherical confinement,” Nat. Commun. 7(1), 12520 (2016).
    [Crossref]
  11. G. Petriashvili, M. P. De Santo, R. J. Hernandez, R. Barberi, and G. Cipparrone, “Mixed emulsion of liquid crystals microresonators: towards white laser systems,” Soft Matter 13(36), 6227–6233 (2017).
    [Crossref]
  12. G. Petriashvili, M. D. L. Bruno, M. P. De Santo, and R. Barberi, “Temperature-tunable lasing from dye-doped chiral microdroplets encapsulated in a thin polymeric film,” Beilstein J. Nanotechnol. 9, 379–383 (2018).
    [Crossref]
  13. J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
    [Crossref]
  14. J. Yan and S.-T. Wu, “Polymer-stabilized blue phase liquid crystals: a tutorial [Invited],” Opt. Mater. Express 1(8), 1527–1535 (2011).
    [Crossref]
  15. G. Petriashvili and A. Chanishvili, “Liquid crystal blue phases interconversions based real-time thermal imaging device,” Opt. Express 27(9), 13526–13531 (2019).
    [Crossref]
  16. C.-W. Chen, H.-C. Jau, C.-T. Wang, C.-H. Lee, I. C. Khoo, and T.-H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express 20(21), 23978–23984 (2012).
    [Crossref]
  17. H. Coles and S. Morris, “A well-aligned simple cubic blue phase for a liquid crystal laser,” Nat. Photonics 4(10), 676–685 (2010).
    [Crossref]
  18. J.-D. Lin, Y.-M. Lin, T.-S. Mo, and C.-R. Lee, “Photosensitive and all-optically fast-controllable photonic bandgap device and laser in a dye doped blue phase with a low-concentration azobenzene liquid crystal,” Opt. Express 22(8), 9171–9181 (2014).
    [Crossref]
  19. W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
    [Crossref]
  20. A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
    [Crossref]

2019 (1)

2018 (1)

G. Petriashvili, M. D. L. Bruno, M. P. De Santo, and R. Barberi, “Temperature-tunable lasing from dye-doped chiral microdroplets encapsulated in a thin polymeric film,” Beilstein J. Nanotechnol. 9, 379–383 (2018).
[Crossref]

2017 (2)

M.-J. Lee, Ch.-H. Chang, and W. Lee, “Label-free protein sensing by employing blue phase liquid crystal,” Biomed. Opt. Express 8(3), 1712–1720 (2017).
[Crossref]

G. Petriashvili, M. P. De Santo, R. J. Hernandez, R. Barberi, and G. Cipparrone, “Mixed emulsion of liquid crystals microresonators: towards white laser systems,” Soft Matter 13(36), 6227–6233 (2017).
[Crossref]

2016 (4)

L.-J. Chen, L.-L. Gong, Y.-L. Lin, X.-Y. Jin, H.-Y. Li, S.-S. Li, K.-J. Che, Z.-P. Cai, and C. J. Yang, “Microfluidic Fabrication of Cholesteric Liquid Crystal Core-Shell Structures toward Magnetically Transportable Microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref]

I. Muševič, “Liquid-crystal micro-photonics,” Liq. Cryst. Rev. 4(1), 1–34 (2016).
[Crossref]

Y. Wang, H. Li, L. Zhao, B. Wu, S. Liu, Y. Liu, and J. Yang, “A review of droplet resonators: Operation method and application,” Opt. Laser Technol. 86, 61–68 (2016).
[Crossref]

Y. Li, J. J.-Y. Suen, E. Prince, E. M. Larin, A. Klinkova, H. Thérien-Aubin, S. Zhu, B. Yang, A. S. Helmy, O. D. Lavrentovich, and E. Kumacheva, “Colloidal cholesteric liquid crystal in spherical confinement,” Nat. Commun. 7(1), 12520 (2016).
[Crossref]

2014 (2)

2012 (2)

C.-W. Chen, H.-C. Jau, C.-T. Wang, C.-H. Lee, I. C. Khoo, and T.-H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express 20(21), 23978–23984 (2012).
[Crossref]

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

2011 (3)

2010 (2)

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
[Crossref]

H. Coles and S. Morris, “A well-aligned simple cubic blue phase for a liquid crystal laser,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

2008 (1)

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4(1-2), 145–158 (2008).
[Crossref]

2003 (1)

2002 (1)

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref]

Barberi, R.

G. Petriashvili, M. D. L. Bruno, M. P. De Santo, and R. Barberi, “Temperature-tunable lasing from dye-doped chiral microdroplets encapsulated in a thin polymeric film,” Beilstein J. Nanotechnol. 9, 379–383 (2018).
[Crossref]

G. Petriashvili, M. P. De Santo, R. J. Hernandez, R. Barberi, and G. Cipparrone, “Mixed emulsion of liquid crystals microresonators: towards white laser systems,” Soft Matter 13(36), 6227–6233 (2017).
[Crossref]

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

Bruno, M. D. L.

G. Petriashvili, M. D. L. Bruno, M. P. De Santo, and R. Barberi, “Temperature-tunable lasing from dye-doped chiral microdroplets encapsulated in a thin polymeric film,” Beilstein J. Nanotechnol. 9, 379–383 (2018).
[Crossref]

Cai, Z.-P.

L.-J. Chen, L.-L. Gong, Y.-L. Lin, X.-Y. Jin, H.-Y. Li, S.-S. Li, K.-J. Che, Z.-P. Cai, and C. J. Yang, “Microfluidic Fabrication of Cholesteric Liquid Crystal Core-Shell Structures toward Magnetically Transportable Microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref]

Cao, W.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref]

Chang, Ch.-H.

Chanishvili, A.

Che, K.-J.

L.-J. Chen, L.-L. Gong, Y.-L. Lin, X.-Y. Jin, H.-Y. Li, S.-S. Li, K.-J. Che, Z.-P. Cai, and C. J. Yang, “Microfluidic Fabrication of Cholesteric Liquid Crystal Core-Shell Structures toward Magnetically Transportable Microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref]

Chen, C.-W.

Chen, L.-J.

L.-J. Chen, L.-L. Gong, Y.-L. Lin, X.-Y. Jin, H.-Y. Li, S.-S. Li, K.-J. Che, Z.-P. Cai, and C. J. Yang, “Microfluidic Fabrication of Cholesteric Liquid Crystal Core-Shell Structures toward Magnetically Transportable Microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref]

Cheng, H.-C.

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

Cipparrone, G.

G. Petriashvili, M. P. De Santo, R. J. Hernandez, R. Barberi, and G. Cipparrone, “Mixed emulsion of liquid crystals microresonators: towards white laser systems,” Soft Matter 13(36), 6227–6233 (2017).
[Crossref]

Coles, H.

H. Coles and S. Morris, “A well-aligned simple cubic blue phase for a liquid crystal laser,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

De Santo, M. P.

G. Petriashvili, M. D. L. Bruno, M. P. De Santo, and R. Barberi, “Temperature-tunable lasing from dye-doped chiral microdroplets encapsulated in a thin polymeric film,” Beilstein J. Nanotechnol. 9, 379–383 (2018).
[Crossref]

G. Petriashvili, M. P. De Santo, R. J. Hernandez, R. Barberi, and G. Cipparrone, “Mixed emulsion of liquid crystals microresonators: towards white laser systems,” Soft Matter 13(36), 6227–6233 (2017).
[Crossref]

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

Derda, R.

Fleming, J. G.

Gong, L.-L.

L.-J. Chen, L.-L. Gong, Y.-L. Lin, X.-Y. Jin, H.-Y. Li, S.-S. Li, K.-J. Che, Z.-P. Cai, and C. J. Yang, “Microfluidic Fabrication of Cholesteric Liquid Crystal Core-Shell Structures toward Magnetically Transportable Microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref]

Helmy, A. S.

Y. Li, J. J.-Y. Suen, E. Prince, E. M. Larin, A. Klinkova, H. Thérien-Aubin, S. Zhu, B. Yang, A. S. Helmy, O. D. Lavrentovich, and E. Kumacheva, “Colloidal cholesteric liquid crystal in spherical confinement,” Nat. Commun. 7(1), 12520 (2016).
[Crossref]

Hernandez, R. J.

G. Petriashvili, M. P. De Santo, R. J. Hernandez, R. Barberi, and G. Cipparrone, “Mixed emulsion of liquid crystals microresonators: towards white laser systems,” Soft Matter 13(36), 6227–6233 (2017).
[Crossref]

Humar, M.

I. Muševič, H. Peng, M. Nikkhou, and M. Humar, “Self-Assembled Liquid-Crystal Microlasers, Microresonators and Microfibres,” Proc. SPIE 8960, 896016 (2014).
[Crossref]

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
[Crossref]

Jau, H.-C.

Jiao, M.

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

Jin, X.-Y.

L.-J. Chen, L.-L. Gong, Y.-L. Lin, X.-Y. Jin, H.-Y. Li, S.-S. Li, K.-J. Che, Z.-P. Cai, and C. J. Yang, “Microfluidic Fabrication of Cholesteric Liquid Crystal Core-Shell Structures toward Magnetically Transportable Microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref]

Khoo, I. C.

Klinkova, A.

Y. Li, J. J.-Y. Suen, E. Prince, E. M. Larin, A. Klinkova, H. Thérien-Aubin, S. Zhu, B. Yang, A. S. Helmy, O. D. Lavrentovich, and E. Kumacheva, “Colloidal cholesteric liquid crystal in spherical confinement,” Nat. Commun. 7(1), 12520 (2016).
[Crossref]

Kumacheva, E.

Y. Li, J. J.-Y. Suen, E. Prince, E. M. Larin, A. Klinkova, H. Thérien-Aubin, S. Zhu, B. Yang, A. S. Helmy, O. D. Lavrentovich, and E. Kumacheva, “Colloidal cholesteric liquid crystal in spherical confinement,” Nat. Commun. 7(1), 12520 (2016).
[Crossref]

Larin, E. M.

Y. Li, J. J.-Y. Suen, E. Prince, E. M. Larin, A. Klinkova, H. Thérien-Aubin, S. Zhu, B. Yang, A. S. Helmy, O. D. Lavrentovich, and E. Kumacheva, “Colloidal cholesteric liquid crystal in spherical confinement,” Nat. Commun. 7(1), 12520 (2016).
[Crossref]

Lavrentovich, O. D.

Y. Li, J. J.-Y. Suen, E. Prince, E. M. Larin, A. Klinkova, H. Thérien-Aubin, S. Zhu, B. Yang, A. S. Helmy, O. D. Lavrentovich, and E. Kumacheva, “Colloidal cholesteric liquid crystal in spherical confinement,” Nat. Commun. 7(1), 12520 (2016).
[Crossref]

Lee, C.-H.

Lee, C.-R.

Lee, M.-J.

Lee, W.

Li, H.

Y. Wang, H. Li, L. Zhao, B. Wu, S. Liu, Y. Liu, and J. Yang, “A review of droplet resonators: Operation method and application,” Opt. Laser Technol. 86, 61–68 (2016).
[Crossref]

Li, H.-Y.

L.-J. Chen, L.-L. Gong, Y.-L. Lin, X.-Y. Jin, H.-Y. Li, S.-S. Li, K.-J. Che, Z.-P. Cai, and C. J. Yang, “Microfluidic Fabrication of Cholesteric Liquid Crystal Core-Shell Structures toward Magnetically Transportable Microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref]

Li, S.-S.

L.-J. Chen, L.-L. Gong, Y.-L. Lin, X.-Y. Jin, H.-Y. Li, S.-S. Li, K.-J. Che, Z.-P. Cai, and C. J. Yang, “Microfluidic Fabrication of Cholesteric Liquid Crystal Core-Shell Structures toward Magnetically Transportable Microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref]

Li, Y.

Y. Li, J. J.-Y. Suen, E. Prince, E. M. Larin, A. Klinkova, H. Thérien-Aubin, S. Zhu, B. Yang, A. S. Helmy, O. D. Lavrentovich, and E. Kumacheva, “Colloidal cholesteric liquid crystal in spherical confinement,” Nat. Commun. 7(1), 12520 (2016).
[Crossref]

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

Li, Z.

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4(1-2), 145–158 (2008).
[Crossref]

Liang, W.

Lin, J.-D.

Lin, S. Y.

Lin, T.-H.

Lin, Y.-L.

L.-J. Chen, L.-L. Gong, Y.-L. Lin, X.-Y. Jin, H.-Y. Li, S.-S. Li, K.-J. Che, Z.-P. Cai, and C. J. Yang, “Microfluidic Fabrication of Cholesteric Liquid Crystal Core-Shell Structures toward Magnetically Transportable Microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref]

Lin, Y.-M.

Liu, S.

Y. Wang, H. Li, L. Zhao, B. Wu, S. Liu, Y. Liu, and J. Yang, “A review of droplet resonators: Operation method and application,” Opt. Laser Technol. 86, 61–68 (2016).
[Crossref]

Liu, Y.

Y. Wang, H. Li, L. Zhao, B. Wu, S. Liu, Y. Liu, and J. Yang, “A review of droplet resonators: Operation method and application,” Opt. Laser Technol. 86, 61–68 (2016).
[Crossref]

Loncar, M.

Matranga, M. A.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

Mazzulla, A.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

Mo, T.-S.

Morris, S.

H. Coles and S. Morris, “A well-aligned simple cubic blue phase for a liquid crystal laser,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Munoz, A.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref]

Muševic, I.

I. Muševič, “Liquid-crystal micro-photonics,” Liq. Cryst. Rev. 4(1), 1–34 (2016).
[Crossref]

I. Muševič, H. Peng, M. Nikkhou, and M. Humar, “Self-Assembled Liquid-Crystal Microlasers, Microresonators and Microfibres,” Proc. SPIE 8960, 896016 (2014).
[Crossref]

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18(26), 26995–27003 (2010).
[Crossref]

Nikkhou, M.

I. Muševič, H. Peng, M. Nikkhou, and M. Humar, “Self-Assembled Liquid-Crystal Microlasers, Microresonators and Microfibres,” Proc. SPIE 8960, 896016 (2014).
[Crossref]

Palffy-Muhoray, P.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref]

Peng, H.

I. Muševič, H. Peng, M. Nikkhou, and M. Humar, “Self-Assembled Liquid-Crystal Microlasers, Microresonators and Microfibres,” Proc. SPIE 8960, 896016 (2014).
[Crossref]

Petriashvili, G.

G. Petriashvili and A. Chanishvili, “Liquid crystal blue phases interconversions based real-time thermal imaging device,” Opt. Express 27(9), 13526–13531 (2019).
[Crossref]

G. Petriashvili, M. D. L. Bruno, M. P. De Santo, and R. Barberi, “Temperature-tunable lasing from dye-doped chiral microdroplets encapsulated in a thin polymeric film,” Beilstein J. Nanotechnol. 9, 379–383 (2018).
[Crossref]

G. Petriashvili, M. P. De Santo, R. J. Hernandez, R. Barberi, and G. Cipparrone, “Mixed emulsion of liquid crystals microresonators: towards white laser systems,” Soft Matter 13(36), 6227–6233 (2017).
[Crossref]

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

Prince, E.

Y. Li, J. J.-Y. Suen, E. Prince, E. M. Larin, A. Klinkova, H. Thérien-Aubin, S. Zhu, B. Yang, A. S. Helmy, O. D. Lavrentovich, and E. Kumacheva, “Colloidal cholesteric liquid crystal in spherical confinement,” Nat. Commun. 7(1), 12520 (2016).
[Crossref]

Psaltis, D.

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4(1-2), 145–158 (2008).
[Crossref]

Quan, Q.

Rao, L.

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

Suen, J. J.-Y.

Y. Li, J. J.-Y. Suen, E. Prince, E. M. Larin, A. Klinkova, H. Thérien-Aubin, S. Zhu, B. Yang, A. S. Helmy, O. D. Lavrentovich, and E. Kumacheva, “Colloidal cholesteric liquid crystal in spherical confinement,” Nat. Commun. 7(1), 12520 (2016).
[Crossref]

Taheri, B.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref]

Tang, S. K.

Thérien-Aubin, H.

Y. Li, J. J.-Y. Suen, E. Prince, E. M. Larin, A. Klinkova, H. Thérien-Aubin, S. Zhu, B. Yang, A. S. Helmy, O. D. Lavrentovich, and E. Kumacheva, “Colloidal cholesteric liquid crystal in spherical confinement,” Nat. Commun. 7(1), 12520 (2016).
[Crossref]

Wang, C.-T.

Wang, Y.

Y. Wang, H. Li, L. Zhao, B. Wu, S. Liu, Y. Liu, and J. Yang, “A review of droplet resonators: Operation method and application,” Opt. Laser Technol. 86, 61–68 (2016).
[Crossref]

Whitesides, G. M.

Wu, B.

Y. Wang, H. Li, L. Zhao, B. Wu, S. Liu, Y. Liu, and J. Yang, “A review of droplet resonators: Operation method and application,” Opt. Laser Technol. 86, 61–68 (2016).
[Crossref]

Wu, S.-T.

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

J. Yan and S.-T. Wu, “Polymer-stabilized blue phase liquid crystals: a tutorial [Invited],” Opt. Mater. Express 1(8), 1527–1535 (2011).
[Crossref]

Xu, Y.

Yan, J.

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

J. Yan and S.-T. Wu, “Polymer-stabilized blue phase liquid crystals: a tutorial [Invited],” Opt. Mater. Express 1(8), 1527–1535 (2011).
[Crossref]

Yang, B.

Y. Li, J. J.-Y. Suen, E. Prince, E. M. Larin, A. Klinkova, H. Thérien-Aubin, S. Zhu, B. Yang, A. S. Helmy, O. D. Lavrentovich, and E. Kumacheva, “Colloidal cholesteric liquid crystal in spherical confinement,” Nat. Commun. 7(1), 12520 (2016).
[Crossref]

Yang, C. J.

L.-J. Chen, L.-L. Gong, Y.-L. Lin, X.-Y. Jin, H.-Y. Li, S.-S. Li, K.-J. Che, Z.-P. Cai, and C. J. Yang, “Microfluidic Fabrication of Cholesteric Liquid Crystal Core-Shell Structures toward Magnetically Transportable Microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref]

Yang, J.

Y. Wang, H. Li, L. Zhao, B. Wu, S. Liu, Y. Liu, and J. Yang, “A review of droplet resonators: Operation method and application,” Opt. Laser Technol. 86, 61–68 (2016).
[Crossref]

Yariv, A.

Zhao, L.

Y. Wang, H. Li, L. Zhao, B. Wu, S. Liu, Y. Liu, and J. Yang, “A review of droplet resonators: Operation method and application,” Opt. Laser Technol. 86, 61–68 (2016).
[Crossref]

Zhu, S.

Y. Li, J. J.-Y. Suen, E. Prince, E. M. Larin, A. Klinkova, H. Thérien-Aubin, S. Zhu, B. Yang, A. S. Helmy, O. D. Lavrentovich, and E. Kumacheva, “Colloidal cholesteric liquid crystal in spherical confinement,” Nat. Commun. 7(1), 12520 (2016).
[Crossref]

Beilstein J. Nanotechnol. (1)

G. Petriashvili, M. D. L. Bruno, M. P. De Santo, and R. Barberi, “Temperature-tunable lasing from dye-doped chiral microdroplets encapsulated in a thin polymeric film,” Beilstein J. Nanotechnol. 9, 379–383 (2018).
[Crossref]

Biomed. Opt. Express (1)

J. Mater. Chem. (1)

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

Lab Chip (1)

L.-J. Chen, L.-L. Gong, Y.-L. Lin, X.-Y. Jin, H.-Y. Li, S.-S. Li, K.-J. Che, Z.-P. Cai, and C. J. Yang, “Microfluidic Fabrication of Cholesteric Liquid Crystal Core-Shell Structures toward Magnetically Transportable Microlasers,” Lab Chip 16(7), 1206–1213 (2016).
[Crossref]

Liq. Cryst. Rev. (1)

I. Muševič, “Liquid-crystal micro-photonics,” Liq. Cryst. Rev. 4(1), 1–34 (2016).
[Crossref]

Microfluid. Nanofluid. (1)

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4(1-2), 145–158 (2008).
[Crossref]

Nat. Commun. (1)

Y. Li, J. J.-Y. Suen, E. Prince, E. M. Larin, A. Klinkova, H. Thérien-Aubin, S. Zhu, B. Yang, A. S. Helmy, O. D. Lavrentovich, and E. Kumacheva, “Colloidal cholesteric liquid crystal in spherical confinement,” Nat. Commun. 7(1), 12520 (2016).
[Crossref]

Nat. Mater. (1)

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref]

Nat. Photonics (1)

H. Coles and S. Morris, “A well-aligned simple cubic blue phase for a liquid crystal laser,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

Y. Wang, H. Li, L. Zhao, B. Wu, S. Liu, Y. Liu, and J. Yang, “A review of droplet resonators: Operation method and application,” Opt. Laser Technol. 86, 61–68 (2016).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Proc. SPIE (1)

I. Muševič, H. Peng, M. Nikkhou, and M. Humar, “Self-Assembled Liquid-Crystal Microlasers, Microresonators and Microfibres,” Proc. SPIE 8960, 896016 (2014).
[Crossref]

Soft Matter (2)

G. Petriashvili, M. P. De Santo, R. J. Hernandez, R. Barberi, and G. Cipparrone, “Mixed emulsion of liquid crystals microresonators: towards white laser systems,” Soft Matter 13(36), 6227–6233 (2017).
[Crossref]

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Positions of the central wavelength of the reflection peaks versus temperature for the mixture 50wt % ZLI-1939 + 45wt % CB-15 + 5wt % MLC-6248, during the cooling process (a). Polarized optical microscopy image of the BPII, BPI and CLC phases (b).
Fig. 2.
Fig. 2. Dispersion of BPI (red droplets) and BPII (green droplets) microspheres in PVA/Water solutions. The photo was taken under crossed polarizers.
Fig. 3.
Fig. 3. the temperature-dependent phase transition in BP microsphere emulsified in PVA/Water solution. The temperature of the left (red) microsphere is 22.5° C and the temperature of the right (green) microsphere is 26.5° C.
Fig. 4.
Fig. 4. Schematic of the experimental setup (a), Nitrogen laser (1), optical lens (2), cuvette filed with BP/PVA/Water emulsion (3), a band-stop filter (4), and spectrometer (5). Images showing the tracks of pumping laser beam and the optically excited BPII and BPI microspheres (b).
Fig. 5.
Fig. 5. Laser lines emitted from BPII and BPI microspheres at 517 nm and 629 nm respectively (a). Lasing spectral tuning by increasing the temperature. Laser emissions from BPI were recorded at 574 nm, 608 nm, 620 nm, and 629 nm, corresponding to a wavelength tuning range of about 55 nm, (b).
Fig. 6.
Fig. 6. Lasing threshold and intensity as a function of pump energy for BPII (a) and BPI samples (b) respectively.