Abstract

We report the fabrication of cavity resonator-integrated guided-mode resonance filters (CRIGFs) using a hybrid lithium-niobate/silicon oxynitride technological platform that allows the exploitation of lithium niobate advantageous material properties while maintaining standard nanoprocessing techniques. The beneficial use of this approach is illustrated with the first demonstration of thermal tuning of a CRIGF.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Determination of cavity length of cavity-resonator-integrated guided-mode resonance filter

Junichi Inoue, Tomohiro Kondo, Kenji Kintaka, Kenzo Nishio, and Shogo Ura
Opt. Express 23(3) 3020-3026 (2015)

Tunable graded cavity resonator integrated grating filters

S. Augé, A. Monmayrant, S. Pelloquin, J. B. Doucet, and O. Gauthier-Lafaye
Opt. Express 25(11) 12415-12420 (2017)

Cavity-resonator-integrated guided-mode resonance filter for aperture miniaturization

Kenji Kintaka, Tatsuya Majima, Junichi Inoue, Koji Hatanaka, Junji Nishii, and Shogo Ura
Opt. Express 20(2) 1444-1449 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Kintaka, T. Majima, J. Inoue, K. Hatanaka, J. Nishii, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter for aperture miniaturization,” Opt. Express 20(2), 1444–1449 (2012).
    [Crossref]
  2. X. Buet, E. Daran, D. Belharet, F. Lozes-Dupuy, A. Monmayrant, and O. Gauthier-Lafaye, “High angular tolerance and reflectivity with narrow bandwidth cavity-resonator-integrated guided-mode resonance filter,” Opt. Express 20(8), 9322–9327 (2012).
    [Crossref]
  3. R. Laberdesque, O. Gauthier-Lafaye, H. Camon, A. Monmayrant, M. Petit, O. Demichel, and B. Cluzel, “High-order modes in cavity-resonator-integrated guided-mode resonance filters (CRIGFs),” J. Opt. Soc. Am. A 32(11), 1973 (2015).
    [Crossref]
  4. N. Rassem, A.-L. Fehrembach, and E. Popov, “Waveguide mode in the box with an extraordinary flat dispersion curve,” J. Opt. Soc. Am. A 32(3), 420 (2015).
    [Crossref]
  5. X. Buet, A. Guelmami, A. Monmayrant, S. Calvez, C. Tourte, F. Lozes-Dupuy, and O. Gauthier-Lafaye, “Wavelength-stabilised external-cavity laser diode using cavity resonator integrated guided mode filter,” Electron. Lett. 48(25), 1619–1621 (2012).
    [Crossref]
  6. A. Monmayrant, L. Ferrières, V. Lecocq, E. Feuillet, S. Denet, O. Gauthier-Lafaye, and B. Faure, “Performances of a Butterfly-packaged External cavity laser diode with CRIGF mirror,” in European Conference on Lasers and Electro-Optics (2019), p. CB-P.1 MON.
  7. A. Monmayrant, S. Augé, S. Gluchko, A.-L. Fehrembach, E. Popov, T. Antoni, S. Pelloquin, A. Arnoult, G. Maisons, and O. Gauthier-Lafaye, “Wavelength stabilized External Cavity Quantum Cascade Lasers using Cavity Resonator Integrated Grating Filters,” in European Conference on Lasers and Electro-Optics (2019), p. CB-7.4 WED.
  8. S. Augé, A. Monmayrant, S. Pelloquin, J. B. Doucet, and O. Gauthier-Lafaye, “Tunable graded cavity resonator integrated grating filters,” Opt. Express 25(11), 12415 (2017).
    [Crossref]
  9. O. Gauthier-Lafaye, S. Augé, X. Buet, and A. Monmayrant, “Graded CRIGF filters for tunable external cavity lasers,” in Conference on Lasers and Electro-Optics (OSA, 2016), p. JTh2A.109.
  10. A. Sharon, H. G. Weber, H. Engel, D. Rosenblatt, A. A. Friesem, and R. Steingrueber, “Light modulation with resonant grating–waveguide structures,” Opt. Lett. 21(19), 1564 (1996).
    [Crossref]
  11. A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable Liquid Crystal-Resonant Grating Filter Fabricated by Nanoimprint Lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
    [Crossref]
  12. T. Katchalski, G. Levy-Yurista, A. A. Friesem, G. Martin, R. Hierle, and J. Zyss, “Light modulation with electro-optic polymer-based resonant grating waveguide structures,” Opt. Express 13(12), 4645 (2005).
    [Crossref]
  13. G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
    [Crossref]
  14. M. J. Uddin and R. Magnusson, “Guided-Mode Resonant Thermo-Optic Tunable Filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
    [Crossref]
  15. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
    [Crossref]
  16. A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
    [Crossref]
  17. L. Chang, M. H. P. Pfeiffer, N. Volet, M. Zervas, J. D. Peters, C. L. Manganelli, E. J. Stanton, Y. Li, T. J. Kippenberg, and J. E. Bowers, “Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon,” Opt. Lett. 42(4), 803 (2017).
    [Crossref]
  18. P. C. Chaumet, G. Demésy, O. Gauthier-Lafaye, A. Sentenac, E. Popov, and A.-L. Fehrembach, “Electromagnetic modeling of large subwavelength-patterned highly resonant structures,” Opt. Lett. 41(10), 2358 (2016).
    [Crossref]
  19. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Optical Engineering (Wiley, 1995).
  20. L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
    [Crossref]
  21. A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si_3N_4 and SiO_x using microring resonances,” Opt. Lett. 38(19), 3878 (2013).
    [Crossref]
  22. H. E. Li and K. Iga, eds., Vertical-Cavity Surface-Emitting Laser Devices, Springer Series in Photonics No. v. 6 (Springer, 2003).
  23. N. Rassem, E. Popov, and A.-L. Fehrembach, “Numerical modeling of long sub-wavelength patterned structures,” Opt. Quantum Electron. 47(9), 3171–3180 (2015).
    [Crossref]
  24. S. Pelloquin, S. Augé, K. Sharshavina, J.-B. Doucet, A. Héliot, H. Camon, A. Monmayrant, and O. Gauthier-Lafaye, “Soft mold NanoImprint Lithography: a versatile tool for sub-wavelength grating applications,” Microsyst. Technol.1–8 (2018).
    [Crossref]
  25. C. M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach,” Mater. Sci. Eng., C 23(1-2), 23–31 (2003).
    [Crossref]

2018 (1)

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

2017 (2)

2016 (1)

2015 (4)

N. Rassem, A.-L. Fehrembach, and E. Popov, “Waveguide mode in the box with an extraordinary flat dispersion curve,” J. Opt. Soc. Am. A 32(3), 420 (2015).
[Crossref]

R. Laberdesque, O. Gauthier-Lafaye, H. Camon, A. Monmayrant, M. Petit, O. Demichel, and B. Cluzel, “High-order modes in cavity-resonator-integrated guided-mode resonance filters (CRIGFs),” J. Opt. Soc. Am. A 32(11), 1973 (2015).
[Crossref]

N. Rassem, E. Popov, and A.-L. Fehrembach, “Numerical modeling of long sub-wavelength patterned structures,” Opt. Quantum Electron. 47(9), 3171–3180 (2015).
[Crossref]

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref]

2013 (2)

M. J. Uddin and R. Magnusson, “Guided-Mode Resonant Thermo-Optic Tunable Filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si_3N_4 and SiO_x using microring resonances,” Opt. Lett. 38(19), 3878 (2013).
[Crossref]

2012 (4)

K. Kintaka, T. Majima, J. Inoue, K. Hatanaka, J. Nishii, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter for aperture miniaturization,” Opt. Express 20(2), 1444–1449 (2012).
[Crossref]

X. Buet, E. Daran, D. Belharet, F. Lozes-Dupuy, A. Monmayrant, and O. Gauthier-Lafaye, “High angular tolerance and reflectivity with narrow bandwidth cavity-resonator-integrated guided-mode resonance filter,” Opt. Express 20(8), 9322–9327 (2012).
[Crossref]

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

X. Buet, A. Guelmami, A. Monmayrant, S. Calvez, C. Tourte, F. Lozes-Dupuy, and O. Gauthier-Lafaye, “Wavelength-stabilised external-cavity laser diode using cavity resonator integrated guided mode filter,” Electron. Lett. 48(25), 1619–1621 (2012).
[Crossref]

2007 (1)

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable Liquid Crystal-Resonant Grating Filter Fabricated by Nanoimprint Lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

2005 (2)

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
[Crossref]

T. Katchalski, G. Levy-Yurista, A. A. Friesem, G. Martin, R. Hierle, and J. Zyss, “Light modulation with electro-optic polymer-based resonant grating waveguide structures,” Opt. Express 13(12), 4645 (2005).
[Crossref]

2003 (1)

C. M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach,” Mater. Sci. Eng., C 23(1-2), 23–31 (2003).
[Crossref]

1996 (1)

Ahopelto, J.

C. M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach,” Mater. Sci. Eng., C 23(1-2), 23–31 (2003).
[Crossref]

Antoni, T.

A. Monmayrant, S. Augé, S. Gluchko, A.-L. Fehrembach, E. Popov, T. Antoni, S. Pelloquin, A. Arnoult, G. Maisons, and O. Gauthier-Lafaye, “Wavelength stabilized External Cavity Quantum Cascade Lasers using Cavity Resonator Integrated Grating Filters,” in European Conference on Lasers and Electro-Optics (2019), p. CB-7.4 WED.

Arbabi, A.

Arnoult, A.

A. Monmayrant, S. Augé, S. Gluchko, A.-L. Fehrembach, E. Popov, T. Antoni, S. Pelloquin, A. Arnoult, G. Maisons, and O. Gauthier-Lafaye, “Wavelength stabilized External Cavity Quantum Cascade Lasers using Cavity Resonator Integrated Grating Filters,” in European Conference on Lasers and Electro-Optics (2019), p. CB-7.4 WED.

Augé, S.

S. Augé, A. Monmayrant, S. Pelloquin, J. B. Doucet, and O. Gauthier-Lafaye, “Tunable graded cavity resonator integrated grating filters,” Opt. Express 25(11), 12415 (2017).
[Crossref]

O. Gauthier-Lafaye, S. Augé, X. Buet, and A. Monmayrant, “Graded CRIGF filters for tunable external cavity lasers,” in Conference on Lasers and Electro-Optics (OSA, 2016), p. JTh2A.109.

A. Monmayrant, S. Augé, S. Gluchko, A.-L. Fehrembach, E. Popov, T. Antoni, S. Pelloquin, A. Arnoult, G. Maisons, and O. Gauthier-Lafaye, “Wavelength stabilized External Cavity Quantum Cascade Lasers using Cavity Resonator Integrated Grating Filters,” in European Conference on Lasers and Electro-Optics (2019), p. CB-7.4 WED.

S. Pelloquin, S. Augé, K. Sharshavina, J.-B. Doucet, A. Héliot, H. Camon, A. Monmayrant, and O. Gauthier-Lafaye, “Soft mold NanoImprint Lithography: a versatile tool for sub-wavelength grating applications,” Microsyst. Technol.1–8 (2018).
[Crossref]

Belharet, D.

Bleidiessel, G.

C. M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach,” Mater. Sci. Eng., C 23(1-2), 23–31 (2003).
[Crossref]

Boes, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Bowers, J.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Bowers, J. E.

Buet, X.

X. Buet, E. Daran, D. Belharet, F. Lozes-Dupuy, A. Monmayrant, and O. Gauthier-Lafaye, “High angular tolerance and reflectivity with narrow bandwidth cavity-resonator-integrated guided-mode resonance filter,” Opt. Express 20(8), 9322–9327 (2012).
[Crossref]

X. Buet, A. Guelmami, A. Monmayrant, S. Calvez, C. Tourte, F. Lozes-Dupuy, and O. Gauthier-Lafaye, “Wavelength-stabilised external-cavity laser diode using cavity resonator integrated guided mode filter,” Electron. Lett. 48(25), 1619–1621 (2012).
[Crossref]

O. Gauthier-Lafaye, S. Augé, X. Buet, and A. Monmayrant, “Graded CRIGF filters for tunable external cavity lasers,” in Conference on Lasers and Electro-Optics (OSA, 2016), p. JTh2A.109.

Calvez, S.

X. Buet, A. Guelmami, A. Monmayrant, S. Calvez, C. Tourte, F. Lozes-Dupuy, and O. Gauthier-Lafaye, “Wavelength-stabilised external-cavity laser diode using cavity resonator integrated guided mode filter,” Electron. Lett. 48(25), 1619–1621 (2012).
[Crossref]

Camon, H.

R. Laberdesque, O. Gauthier-Lafaye, H. Camon, A. Monmayrant, M. Petit, O. Demichel, and B. Cluzel, “High-order modes in cavity-resonator-integrated guided-mode resonance filters (CRIGFs),” J. Opt. Soc. Am. A 32(11), 1973 (2015).
[Crossref]

S. Pelloquin, S. Augé, K. Sharshavina, J.-B. Doucet, A. Héliot, H. Camon, A. Monmayrant, and O. Gauthier-Lafaye, “Soft mold NanoImprint Lithography: a versatile tool for sub-wavelength grating applications,” Microsyst. Technol.1–8 (2018).
[Crossref]

Chang, A. S. P.

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable Liquid Crystal-Resonant Grating Filter Fabricated by Nanoimprint Lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Chang, L.

Chaumet, P. C.

Chou, S. Y.

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable Liquid Crystal-Resonant Grating Filter Fabricated by Nanoimprint Lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Clavijo Cedeño, C.

C. M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach,” Mater. Sci. Eng., C 23(1-2), 23–31 (2003).
[Crossref]

Cluzel, B.

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Optical Engineering (Wiley, 1995).

Corcoran, B.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Optical Engineering (Wiley, 1995).

Daran, E.

Della Corte, F. G.

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
[Crossref]

Demésy, G.

Demichel, O.

Denet, S.

A. Monmayrant, L. Ferrières, V. Lecocq, E. Feuillet, S. Denet, O. Gauthier-Lafaye, and B. Faure, “Performances of a Butterfly-packaged External cavity laser diode with CRIGF mirror,” in European Conference on Lasers and Electro-Optics (2019), p. CB-P.1 MON.

Doucet, J. B.

Doucet, J.-B.

S. Pelloquin, S. Augé, K. Sharshavina, J.-B. Doucet, A. Héliot, H. Camon, A. Monmayrant, and O. Gauthier-Lafaye, “Soft mold NanoImprint Lithography: a versatile tool for sub-wavelength grating applications,” Microsyst. Technol.1–8 (2018).
[Crossref]

Engel, H.

Faure, B.

A. Monmayrant, L. Ferrières, V. Lecocq, E. Feuillet, S. Denet, O. Gauthier-Lafaye, and B. Faure, “Performances of a Butterfly-packaged External cavity laser diode with CRIGF mirror,” in European Conference on Lasers and Electro-Optics (2019), p. CB-P.1 MON.

Fehrembach, A.-L.

P. C. Chaumet, G. Demésy, O. Gauthier-Lafaye, A. Sentenac, E. Popov, and A.-L. Fehrembach, “Electromagnetic modeling of large subwavelength-patterned highly resonant structures,” Opt. Lett. 41(10), 2358 (2016).
[Crossref]

N. Rassem, A.-L. Fehrembach, and E. Popov, “Waveguide mode in the box with an extraordinary flat dispersion curve,” J. Opt. Soc. Am. A 32(3), 420 (2015).
[Crossref]

N. Rassem, E. Popov, and A.-L. Fehrembach, “Numerical modeling of long sub-wavelength patterned structures,” Opt. Quantum Electron. 47(9), 3171–3180 (2015).
[Crossref]

A. Monmayrant, S. Augé, S. Gluchko, A.-L. Fehrembach, E. Popov, T. Antoni, S. Pelloquin, A. Arnoult, G. Maisons, and O. Gauthier-Lafaye, “Wavelength stabilized External Cavity Quantum Cascade Lasers using Cavity Resonator Integrated Grating Filters,” in European Conference on Lasers and Electro-Optics (2019), p. CB-7.4 WED.

Ferrières, L.

A. Monmayrant, L. Ferrières, V. Lecocq, E. Feuillet, S. Denet, O. Gauthier-Lafaye, and B. Faure, “Performances of a Butterfly-packaged External cavity laser diode with CRIGF mirror,” in European Conference on Lasers and Electro-Optics (2019), p. CB-P.1 MON.

Feuillet, E.

A. Monmayrant, L. Ferrières, V. Lecocq, E. Feuillet, S. Denet, O. Gauthier-Lafaye, and B. Faure, “Performances of a Butterfly-packaged External cavity laser diode with CRIGF mirror,” in European Conference on Lasers and Electro-Optics (2019), p. CB-P.1 MON.

Friesem, A. A.

Gauthier-Lafaye, O.

S. Augé, A. Monmayrant, S. Pelloquin, J. B. Doucet, and O. Gauthier-Lafaye, “Tunable graded cavity resonator integrated grating filters,” Opt. Express 25(11), 12415 (2017).
[Crossref]

P. C. Chaumet, G. Demésy, O. Gauthier-Lafaye, A. Sentenac, E. Popov, and A.-L. Fehrembach, “Electromagnetic modeling of large subwavelength-patterned highly resonant structures,” Opt. Lett. 41(10), 2358 (2016).
[Crossref]

R. Laberdesque, O. Gauthier-Lafaye, H. Camon, A. Monmayrant, M. Petit, O. Demichel, and B. Cluzel, “High-order modes in cavity-resonator-integrated guided-mode resonance filters (CRIGFs),” J. Opt. Soc. Am. A 32(11), 1973 (2015).
[Crossref]

X. Buet, E. Daran, D. Belharet, F. Lozes-Dupuy, A. Monmayrant, and O. Gauthier-Lafaye, “High angular tolerance and reflectivity with narrow bandwidth cavity-resonator-integrated guided-mode resonance filter,” Opt. Express 20(8), 9322–9327 (2012).
[Crossref]

X. Buet, A. Guelmami, A. Monmayrant, S. Calvez, C. Tourte, F. Lozes-Dupuy, and O. Gauthier-Lafaye, “Wavelength-stabilised external-cavity laser diode using cavity resonator integrated guided mode filter,” Electron. Lett. 48(25), 1619–1621 (2012).
[Crossref]

A. Monmayrant, L. Ferrières, V. Lecocq, E. Feuillet, S. Denet, O. Gauthier-Lafaye, and B. Faure, “Performances of a Butterfly-packaged External cavity laser diode with CRIGF mirror,” in European Conference on Lasers and Electro-Optics (2019), p. CB-P.1 MON.

A. Monmayrant, S. Augé, S. Gluchko, A.-L. Fehrembach, E. Popov, T. Antoni, S. Pelloquin, A. Arnoult, G. Maisons, and O. Gauthier-Lafaye, “Wavelength stabilized External Cavity Quantum Cascade Lasers using Cavity Resonator Integrated Grating Filters,” in European Conference on Lasers and Electro-Optics (2019), p. CB-7.4 WED.

O. Gauthier-Lafaye, S. Augé, X. Buet, and A. Monmayrant, “Graded CRIGF filters for tunable external cavity lasers,” in Conference on Lasers and Electro-Optics (OSA, 2016), p. JTh2A.109.

S. Pelloquin, S. Augé, K. Sharshavina, J.-B. Doucet, A. Héliot, H. Camon, A. Monmayrant, and O. Gauthier-Lafaye, “Soft mold NanoImprint Lithography: a versatile tool for sub-wavelength grating applications,” Microsyst. Technol.1–8 (2018).
[Crossref]

Gluchko, S.

A. Monmayrant, S. Augé, S. Gluchko, A.-L. Fehrembach, E. Popov, T. Antoni, S. Pelloquin, A. Arnoult, G. Maisons, and O. Gauthier-Lafaye, “Wavelength stabilized External Cavity Quantum Cascade Lasers using Cavity Resonator Integrated Grating Filters,” in European Conference on Lasers and Electro-Optics (2019), p. CB-7.4 WED.

Goddard, L. L.

Gruetzner, G.

C. M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach,” Mater. Sci. Eng., C 23(1-2), 23–31 (2003).
[Crossref]

Guelmami, A.

X. Buet, A. Guelmami, A. Monmayrant, S. Calvez, C. Tourte, F. Lozes-Dupuy, and O. Gauthier-Lafaye, “Wavelength-stabilised external-cavity laser diode using cavity resonator integrated guided mode filter,” Electron. Lett. 48(25), 1619–1621 (2012).
[Crossref]

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Hatanaka, K.

Heidari, B.

C. M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach,” Mater. Sci. Eng., C 23(1-2), 23–31 (2003).
[Crossref]

Héliot, A.

S. Pelloquin, S. Augé, K. Sharshavina, J.-B. Doucet, A. Héliot, H. Camon, A. Monmayrant, and O. Gauthier-Lafaye, “Soft mold NanoImprint Lithography: a versatile tool for sub-wavelength grating applications,” Microsyst. Technol.1–8 (2018).
[Crossref]

Hierle, R.

Hoffmann, T.

C. M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach,” Mater. Sci. Eng., C 23(1-2), 23–31 (2003).
[Crossref]

Hu, H.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Inoue, J.

Iodice, M.

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
[Crossref]

Jin, C.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref]

Kam, A. P.

C. M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach,” Mater. Sci. Eng., C 23(1-2), 23–31 (2003).
[Crossref]

Katchalski, T.

Kintaka, K.

Kippenberg, T. J.

Laberdesque, R.

Lecocq, V.

A. Monmayrant, L. Ferrières, V. Lecocq, E. Feuillet, S. Denet, O. Gauthier-Lafaye, and B. Faure, “Performances of a Butterfly-packaged External cavity laser diode with CRIGF mirror,” in European Conference on Lasers and Electro-Optics (2019), p. CB-P.1 MON.

Levy-Yurista, G.

Li, K.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref]

Li, Y.

Liu, M.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref]

Lozes-Dupuy, F.

X. Buet, A. Guelmami, A. Monmayrant, S. Calvez, C. Tourte, F. Lozes-Dupuy, and O. Gauthier-Lafaye, “Wavelength-stabilised external-cavity laser diode using cavity resonator integrated guided mode filter,” Electron. Lett. 48(25), 1619–1621 (2012).
[Crossref]

X. Buet, E. Daran, D. Belharet, F. Lozes-Dupuy, A. Monmayrant, and O. Gauthier-Lafaye, “High angular tolerance and reflectivity with narrow bandwidth cavity-resonator-integrated guided-mode resonance filter,” Opt. Express 20(8), 9322–9327 (2012).
[Crossref]

Magnusson, R.

M. J. Uddin and R. Magnusson, “Guided-Mode Resonant Thermo-Optic Tunable Filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

Maisons, G.

A. Monmayrant, S. Augé, S. Gluchko, A.-L. Fehrembach, E. Popov, T. Antoni, S. Pelloquin, A. Arnoult, G. Maisons, and O. Gauthier-Lafaye, “Wavelength stabilized External Cavity Quantum Cascade Lasers using Cavity Resonator Integrated Grating Filters,” in European Conference on Lasers and Electro-Optics (2019), p. CB-7.4 WED.

Majima, T.

Manganelli, C. L.

Martin, G.

Maximov, M. V.

C. M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach,” Mater. Sci. Eng., C 23(1-2), 23–31 (2003).
[Crossref]

Mitchell, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Monmayrant, A.

S. Augé, A. Monmayrant, S. Pelloquin, J. B. Doucet, and O. Gauthier-Lafaye, “Tunable graded cavity resonator integrated grating filters,” Opt. Express 25(11), 12415 (2017).
[Crossref]

R. Laberdesque, O. Gauthier-Lafaye, H. Camon, A. Monmayrant, M. Petit, O. Demichel, and B. Cluzel, “High-order modes in cavity-resonator-integrated guided-mode resonance filters (CRIGFs),” J. Opt. Soc. Am. A 32(11), 1973 (2015).
[Crossref]

X. Buet, E. Daran, D. Belharet, F. Lozes-Dupuy, A. Monmayrant, and O. Gauthier-Lafaye, “High angular tolerance and reflectivity with narrow bandwidth cavity-resonator-integrated guided-mode resonance filter,” Opt. Express 20(8), 9322–9327 (2012).
[Crossref]

X. Buet, A. Guelmami, A. Monmayrant, S. Calvez, C. Tourte, F. Lozes-Dupuy, and O. Gauthier-Lafaye, “Wavelength-stabilised external-cavity laser diode using cavity resonator integrated guided mode filter,” Electron. Lett. 48(25), 1619–1621 (2012).
[Crossref]

A. Monmayrant, L. Ferrières, V. Lecocq, E. Feuillet, S. Denet, O. Gauthier-Lafaye, and B. Faure, “Performances of a Butterfly-packaged External cavity laser diode with CRIGF mirror,” in European Conference on Lasers and Electro-Optics (2019), p. CB-P.1 MON.

A. Monmayrant, S. Augé, S. Gluchko, A.-L. Fehrembach, E. Popov, T. Antoni, S. Pelloquin, A. Arnoult, G. Maisons, and O. Gauthier-Lafaye, “Wavelength stabilized External Cavity Quantum Cascade Lasers using Cavity Resonator Integrated Grating Filters,” in European Conference on Lasers and Electro-Optics (2019), p. CB-7.4 WED.

O. Gauthier-Lafaye, S. Augé, X. Buet, and A. Monmayrant, “Graded CRIGF filters for tunable external cavity lasers,” in Conference on Lasers and Electro-Optics (OSA, 2016), p. JTh2A.109.

S. Pelloquin, S. Augé, K. Sharshavina, J.-B. Doucet, A. Héliot, H. Camon, A. Monmayrant, and O. Gauthier-Lafaye, “Soft mold NanoImprint Lithography: a versatile tool for sub-wavelength grating applications,” Microsyst. Technol.1–8 (2018).
[Crossref]

Moretti, L.

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
[Crossref]

Morton, K. J.

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable Liquid Crystal-Resonant Grating Filter Fabricated by Nanoimprint Lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Murphy, P. F.

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable Liquid Crystal-Resonant Grating Filter Fabricated by Nanoimprint Lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Nishii, J.

Pelloquin, S.

S. Augé, A. Monmayrant, S. Pelloquin, J. B. Doucet, and O. Gauthier-Lafaye, “Tunable graded cavity resonator integrated grating filters,” Opt. Express 25(11), 12415 (2017).
[Crossref]

A. Monmayrant, S. Augé, S. Gluchko, A.-L. Fehrembach, E. Popov, T. Antoni, S. Pelloquin, A. Arnoult, G. Maisons, and O. Gauthier-Lafaye, “Wavelength stabilized External Cavity Quantum Cascade Lasers using Cavity Resonator Integrated Grating Filters,” in European Conference on Lasers and Electro-Optics (2019), p. CB-7.4 WED.

S. Pelloquin, S. Augé, K. Sharshavina, J.-B. Doucet, A. Héliot, H. Camon, A. Monmayrant, and O. Gauthier-Lafaye, “Soft mold NanoImprint Lithography: a versatile tool for sub-wavelength grating applications,” Microsyst. Technol.1–8 (2018).
[Crossref]

Peters, J. D.

Petit, M.

Pfeiffer, K.

C. M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach,” Mater. Sci. Eng., C 23(1-2), 23–31 (2003).
[Crossref]

Pfeiffer, M. H. P.

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Popov, E.

P. C. Chaumet, G. Demésy, O. Gauthier-Lafaye, A. Sentenac, E. Popov, and A.-L. Fehrembach, “Electromagnetic modeling of large subwavelength-patterned highly resonant structures,” Opt. Lett. 41(10), 2358 (2016).
[Crossref]

N. Rassem, A.-L. Fehrembach, and E. Popov, “Waveguide mode in the box with an extraordinary flat dispersion curve,” J. Opt. Soc. Am. A 32(3), 420 (2015).
[Crossref]

N. Rassem, E. Popov, and A.-L. Fehrembach, “Numerical modeling of long sub-wavelength patterned structures,” Opt. Quantum Electron. 47(9), 3171–3180 (2015).
[Crossref]

A. Monmayrant, S. Augé, S. Gluchko, A.-L. Fehrembach, E. Popov, T. Antoni, S. Pelloquin, A. Arnoult, G. Maisons, and O. Gauthier-Lafaye, “Wavelength stabilized External Cavity Quantum Cascade Lasers using Cavity Resonator Integrated Grating Filters,” in European Conference on Lasers and Electro-Optics (2019), p. CB-7.4 WED.

Rassem, N.

N. Rassem, E. Popov, and A.-L. Fehrembach, “Numerical modeling of long sub-wavelength patterned structures,” Opt. Quantum Electron. 47(9), 3171–3180 (2015).
[Crossref]

N. Rassem, A.-L. Fehrembach, and E. Popov, “Waveguide mode in the box with an extraordinary flat dispersion curve,” J. Opt. Soc. Am. A 32(3), 420 (2015).
[Crossref]

Rendina, I.

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
[Crossref]

Reuther, F.

C. M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach,” Mater. Sci. Eng., C 23(1-2), 23–31 (2003).
[Crossref]

Rosenblatt, D.

Seekamp, J.

C. M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach,” Mater. Sci. Eng., C 23(1-2), 23–31 (2003).
[Crossref]

Sentenac, A.

Sharon, A.

Sharshavina, K.

S. Pelloquin, S. Augé, K. Sharshavina, J.-B. Doucet, A. Héliot, H. Camon, A. Monmayrant, and O. Gauthier-Lafaye, “Soft mold NanoImprint Lithography: a versatile tool for sub-wavelength grating applications,” Microsyst. Technol.1–8 (2018).
[Crossref]

Shen, Y.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref]

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

Sotomayor Torres, C. M.

C. M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach,” Mater. Sci. Eng., C 23(1-2), 23–31 (2003).
[Crossref]

Stanton, E. J.

Steingrueber, R.

Tan, H.

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable Liquid Crystal-Resonant Grating Filter Fabricated by Nanoimprint Lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Tourte, C.

X. Buet, A. Guelmami, A. Monmayrant, S. Calvez, C. Tourte, F. Lozes-Dupuy, and O. Gauthier-Lafaye, “Wavelength-stabilised external-cavity laser diode using cavity resonator integrated guided mode filter,” Electron. Lett. 48(25), 1619–1621 (2012).
[Crossref]

Uddin, M. J.

M. J. Uddin and R. Magnusson, “Guided-Mode Resonant Thermo-Optic Tunable Filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

Ura, S.

Volet, N.

Weber, H. G.

Wu, W.

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable Liquid Crystal-Resonant Grating Filter Fabricated by Nanoimprint Lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

Xiao, G.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref]

Zankovych, S.

C. M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach,” Mater. Sci. Eng., C 23(1-2), 23–31 (2003).
[Crossref]

Zervas, M.

Zhu, Q.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref]

Zhuang, Q.

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref]

Zyss, J.

Electron. Lett. (1)

X. Buet, A. Guelmami, A. Monmayrant, S. Calvez, C. Tourte, F. Lozes-Dupuy, and O. Gauthier-Lafaye, “Wavelength-stabilised external-cavity laser diode using cavity resonator integrated guided mode filter,” Electron. Lett. 48(25), 1619–1621 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. S. P. Chang, K. J. Morton, H. Tan, P. F. Murphy, W. Wu, and S. Y. Chou, “Tunable Liquid Crystal-Resonant Grating Filter Fabricated by Nanoimprint Lithography,” IEEE Photonics Technol. Lett. 19(19), 1457–1459 (2007).
[Crossref]

M. J. Uddin and R. Magnusson, “Guided-Mode Resonant Thermo-Optic Tunable Filters,” IEEE Photonics Technol. Lett. 25(15), 1412–1415 (2013).
[Crossref]

J. Appl. Phys. (1)

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of lithium niobate, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
[Crossref]

J. Opt. Soc. Am. A (2)

Laser Photonics Rev. (2)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photonics Rev. 6(4), 488–503 (2012).
[Crossref]

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Mater. Sci. Eng., C (1)

C. M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V. Maximov, and B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach,” Mater. Sci. Eng., C 23(1-2), 23–31 (2003).
[Crossref]

Nanoscale (1)

G. Xiao, Q. Zhu, Y. Shen, K. Li, M. Liu, Q. Zhuang, and C. Jin, “A tunable submicro-optofluidic polymer filter based on guided-mode resonance,” Nanoscale 7(8), 3429–3434 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

N. Rassem, E. Popov, and A.-L. Fehrembach, “Numerical modeling of long sub-wavelength patterned structures,” Opt. Quantum Electron. 47(9), 3171–3180 (2015).
[Crossref]

Other (6)

S. Pelloquin, S. Augé, K. Sharshavina, J.-B. Doucet, A. Héliot, H. Camon, A. Monmayrant, and O. Gauthier-Lafaye, “Soft mold NanoImprint Lithography: a versatile tool for sub-wavelength grating applications,” Microsyst. Technol.1–8 (2018).
[Crossref]

H. E. Li and K. Iga, eds., Vertical-Cavity Surface-Emitting Laser Devices, Springer Series in Photonics No. v. 6 (Springer, 2003).

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Optical Engineering (Wiley, 1995).

O. Gauthier-Lafaye, S. Augé, X. Buet, and A. Monmayrant, “Graded CRIGF filters for tunable external cavity lasers,” in Conference on Lasers and Electro-Optics (OSA, 2016), p. JTh2A.109.

A. Monmayrant, L. Ferrières, V. Lecocq, E. Feuillet, S. Denet, O. Gauthier-Lafaye, and B. Faure, “Performances of a Butterfly-packaged External cavity laser diode with CRIGF mirror,” in European Conference on Lasers and Electro-Optics (2019), p. CB-P.1 MON.

A. Monmayrant, S. Augé, S. Gluchko, A.-L. Fehrembach, E. Popov, T. Antoni, S. Pelloquin, A. Arnoult, G. Maisons, and O. Gauthier-Lafaye, “Wavelength stabilized External Cavity Quantum Cascade Lasers using Cavity Resonator Integrated Grating Filters,” in European Conference on Lasers and Electro-Optics (2019), p. CB-7.4 WED.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Diagram of the considered CRIGF structure. The arrows give a schematic representation of the device operating principle where an incident beam (coming from the top) is coupled to localized resonating mode which is out-coupled to form the reflection/transmission response.
Fig. 2.
Fig. 2. Grating effective index difference (left) and out of resonance reflectivity (right) at a wavelength of 1550 nm as a function of the two top layers of the structure. Selected thicknesses of the upperclad bilayer (white dashes) minimize the reflectivity.
Fig. 3.
Fig. 3. CRIGF spectral characteristics (reflection in red and transmission in green) as calculated by RCWA (using 901 orders and a mode-matched Gaussian beam [23]). The grey area highlights the DBR stopband.
Fig. 4.
Fig. 4. Atomic-Force Microscope measurement of the profile of the etched grating into the SiN layer.
Fig. 5.
Fig. 5. Characterization setup. The free-space relay is made of the f1 and f2-focal-length lens telescope. WDM are wavelength-division multiplexer (spectrally-selective beam splitters). DAQ is a A/N data acquisition card.
Fig. 6.
Fig. 6. Top: Typical spectral characteristics at 20°C of the fabricated LNOI CRIGF. Bottom: Spatial dependence of the reflectivity (at 20°C) along the CRIGF grating lines (Z-axis). The white dashed lines show the limit of the CRIGF
Fig. 7.
Fig. 7. Temperature dependence of the normalized reflectivity of the fabricated LNOI CRIGF.

Tables (1)

Tables Icon

Table 1. Simulation parameters [20,21]

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R D B R = n 1 n 2 2 N p n 1 n 1 2 N p n 1 n 2 2 N p + n 1 n 1 2 N p
Δ λ = 4 λ π asin ( | n 2 n 1 | n 2 + n 1 )