Abstract

The optical characteristics of a radially symmetrical core-shell spherical (CSSP) lens made of practical materials were investigated for microtracking concentrator photovoltaic (MTCPV) system applications. The full spectrum analysis results showed that a polymethyl methacrylate (PMMA)-water CSSP lens exhibits a higher optical efficiency at a longer focal length and a wider acceptance angle in MTCPV systems than PMMA homogenous spherical lenses and other reported concentrator systems. The lens-cell module efficiency with a single-junction GaAs solar cell was estimated to be ∼24% by optical analysis. The efficiency can be further improved by employing low-refractive-index core materials with a high transparency over the solar spectrum range along with multi-junction solar cells.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical design and demonstration of microtracking CPV module with bi-convex aspheric lens array

Atsushi Ito, Daisuke Sato, and Noboru Yamada
Opt. Express 26(18) A879-A891 (2018)

High-efficiency thin and compact concentrator photovoltaics with micro-solar cells directly attached to a lens array

Nobuhiko Hayashi, Daijiro Inoue, Mitsuhiro Matsumoto, Akio Matsushita, Hiroshi Higuchi, Youichirou Aya, and Tohru Nakagawa
Opt. Express 23(11) A594-A603 (2015)

Free-form optics for Fresnel-lens-based photovoltaic concentrators

Juan C. Miñano, Pablo Benítez, Pablo Zamora, Marina Buljan, Rubén Mohedano, and Asunción Santamaría
Opt. Express 21(S3) A494-A502 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (Version 53),” Prog. Photovoltaics 27(1), 3–12 (2019).
    [Crossref]
  2. D. F. Dimroth, “New world record for solar cell efficiency at 46% – French-German cooperation confirms competitive advantage of European photovoltaic industry,” https://www.ise.fraunhofer.de/en/press-media/press-releases/2014/new-world-record-for-solar-cell-efficiency-at-46-percent.html .
  3. M. Steiner, A. Bösch, A. Dilger, F. Dimroth, T. Dörsam, M. Muller, T. Hornung, G. Siefer, M. Wiesenfarth, and A. W. Bett, “FLATCON® CPV module with 36.7% efficiency equipped with four-junction solar cells,” Prog. Photovoltaics 23(10), 1323–1329 (2015).
    [Crossref]
  4. T. Ijiro and N. Yamada, “Comparison analysis of self-shading loss in pedestal and carousel tracker systems,” AIP Conf. Proc. 1556, 205–209 (2013).
  5. H. Apostoleris, M. Stefancich, and M. Chiesa, “Tracking-integrated systems for concentrating photovoltaics,” Nat. Energy 1(4), 16018 (2016).
    [Crossref]
  6. F. Duerr, Y. Meuret, and H. Thienpont, “Tailored free-form optics with movement to integrate tracking in concentrating photovoltaics,” Opt. Express 21(S3), A401–A411 (2013).
    [Crossref]
  7. V. Zagolla, D. Dominé, E. Tremblay, and C. Moser, “Self-tracking solar concentrator with an acceptance angle of 32°,” Opt. Express 22(S7), A1880–A1894 (2014).
    [Crossref]
  8. H. Ma and L. Wu, “Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications,” Appl. Opt. 54(20), 6217–6223 (2015).
    [Crossref]
  9. C. Michel, P. Blain, L. Clermont, F. Languy, C. Lenaerts, K. Fleury-Frenette, M. Décultot, S. Habraken, D. Vandormael, R. Cloots, G. K. V. V. Thalluri, C. Henrist, P. Colson, and J. Loicq, “Waveguide solar concentrator design with spectrally separated light,” Sol. Energy 157, 1005–1016 (2017).
    [Crossref]
  10. J. M. Hallas, K. A. Baker, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Two-axis solar tracking accomplished through small lateral translations,” Appl. Opt. 51(25), 6117–6124 (2012).
    [Crossref]
  11. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18(2), 1122–1133 (2010).
    [Crossref]
  12. J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19(S4), A673–A685 (2011).
    [Crossref]
  13. S. Bouchard and S. Thibault, “Planar waveguide concentrator used with a single axis tracker,” Opt. Express 22(S2), A248 (2014).
    [Crossref]
  14. Y. Liu, R. Huang, and C. K. Madsen, “Two-axis tracking using translation stages for a lens-to-channel waveguide solar concentrator,” Opt. Express 22(S6), A1567–A1575 (2014).
    [Crossref]
  15. R. Dhakal, J. Lee, and J. Kim, “Bio-inspired thin and flat solar concentrator for efficient, wide acceptance angle light collection,” Appl. Opt. 53(2), 306–315 (2014).
    [Crossref]
  16. J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6(1), 6223 (2015).
    [Crossref]
  17. J. Lloyd, M. Pavilonis, C. Gladden, C. Casper, K. Schneider, and W. McMahon, “Performance of a prototype stationary catadioptric concentrating photovoltaic module,” Opt. Express 26(10), A413–A419 (2018).
    [Crossref]
  18. N. Vu and S. Shin, “Flat concentrator photovoltaic system with lateral displacement tracking for residential rooftops,” Energies 11(1), 114 (2018).
    [Crossref]
  19. A. Ito, D. Sato, and N. Yamada, “Optical design and demonstration of microtracking CPV module with bi-convex aspheric lens array,” Opt. Express 26(18), A879–A891 (2018).
    [Crossref]
  20. R. K. Luneburg and M. Herzberger, Mathematical Theory of Optics (University of California press, 1964).
  21. H. Schrank and J. Sanford, “A Luneberg-lens update,” IEEE Antennas Propag. Mag. 37(1), 76–79 (1995).
    [Crossref]
  22. P. Kotsidas, V. Modi, and J. M. Gordon, “Nominally stationary high-concentration solar optics by gradient-index lenses,” Opt. Express 19(3), 2325–2334 (2011).
    [Crossref]
  23. P. Kotsidas, V. Modi, and J. M. Gordon, “Realizable planar gradient-index solar lenses,” Opt. Lett. 37(7), 1235–1237 (2012).
    [Crossref]
  24. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23(12), 1980–1985 (1984).
    [Crossref]
  25. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
    [Crossref]
  26. I. M. Thomas, “Method for the preparation of porous silica antireflection coatings varying in refractive index from 1.22 to 1.44,” Appl. Opt. 31(28), 6145–6149 (1992).
    [Crossref]
  27. M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, “Development of transparent silica aerogel over a wide range of densities,” Nucl. Instrum. Methods Phys. Res., Sect. A 623(1), 339–341 (2010).
    [Crossref]
  28. N. Yamada and D. Hirai, “Maximization of conversion efficiency based on global normal irradiance using hybrid concentrator photovoltaic architecture,” Prog. Photovoltaics 24(6), 846–854 (2016).
    [Crossref]
  29. N. Yamada and K. Okamoto, “Experimental measurements of a prototype high concentration Fresnel lens CPV module for the harvesting of diffuse solar radiation,” Opt. Express 22(S1), A28–A34 (2014).
    [Crossref]
  30. V. M. Emelyanov, E. S. Aronova, M. V. Nakhimovich, and M. Z. Shvarts, “Output energy predictions for hybrid concentrator III-V / planar thin-film modules,” AIP Conf. Proc. 2012, 080005 (2018).
  31. J. F. Martínez, M. Steiner, M. Wiesenfarth, and F. Dimroth, “4-terminal CPV module capable of converting global normal irradiance into electricity,” AIP Conf. Proc. 2012, 090005 (2018).
  32. T. A. Rhys, “The design of radially symmetric lenses,” IEEE Trans. Antennas Propag. 18(4), 497–506 (1970).
    [Crossref]
  33. S. P. Morgan, “General solution of the Luneberg lens problem,” J. Appl. Phys. 29(9), 1358–1368 (1958).
    [Crossref]
  34. M. Nakatani and N. Yamada, “Optical simulation of two-shell spherical lens for microtracking CPV system,” in Proceeding of 2018 IEEE 7th WCPEC. IEEE (2018), pp. 0927–0930 (2018).
  35. L. TEMTO Technology Co., “Optical Glass,” http://www.temto.com/product.php?id=90 .
  36. N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol., A 116(4), 585–587 (2009).
    [Crossref]
  37. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref]
  38. K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B: Lasers Opt. 116(3), 617–622 (2014).
    [Crossref]
  39. V. Kmetik, T. Kanabe, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Optical absorption in fluorocarbon liquids for the high energy stimulated Brillouin scattering phase conjugation and compression,” Reza Kenkyu 26(4), 322–327 (1998).
    [Crossref]
  40. C. Algora, E. Ortiz, I. Rey-Stolle, V. Díaz, R. Peña, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron Devices 48(5), 840–844 (2001).
    [Crossref]
  41. Y. Ota and K. Nishioka, “Three-dimensional simulating of concentrator photovoltaic modules using ray trace and equivalent circuit simulators,” Sol. Energy 86(1), 476–481 (2012).
    [Crossref]
  42. K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell under concentrated light by simulation program with integrated circuit emphasis,” Jpn. J. Appl. Phys. 43(3), 882–889 (2004).
    [Crossref]
  43. R. Herrero, M. Victoria, C. Domínguez, S. Askins, I. Antón, and G. Sala, “Concentration photovoltaic optical system irradiance distribution measurements and its effect on multi-junction solar cells,” Prog. Photovoltaics 20(4), 423–430 (2012).
    [Crossref]
  44. M. Victoria, C. Domínguez, I. Antón, and G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Opt. Express 17(8), 6487–6492 (2009).
    [Crossref]
  45. R. Jomen, F. Tanaka, T. Akiba, M. Ikeda, K. Kiryu, M. Matsushita, H. Maenaka, P. Dai, S. Lu, and S. Uchida, “Conversion efficiencies of single-junction III–V solar cells based on InGaP, GaAs, InGaAsP, and InGaAs for laser wireless power transmission,” Jpn. J. Appl. Phys. 57(8S3), 08RD12 (2018).
    [Crossref]

2019 (1)

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (Version 53),” Prog. Photovoltaics 27(1), 3–12 (2019).
[Crossref]

2018 (4)

J. Lloyd, M. Pavilonis, C. Gladden, C. Casper, K. Schneider, and W. McMahon, “Performance of a prototype stationary catadioptric concentrating photovoltaic module,” Opt. Express 26(10), A413–A419 (2018).
[Crossref]

N. Vu and S. Shin, “Flat concentrator photovoltaic system with lateral displacement tracking for residential rooftops,” Energies 11(1), 114 (2018).
[Crossref]

A. Ito, D. Sato, and N. Yamada, “Optical design and demonstration of microtracking CPV module with bi-convex aspheric lens array,” Opt. Express 26(18), A879–A891 (2018).
[Crossref]

R. Jomen, F. Tanaka, T. Akiba, M. Ikeda, K. Kiryu, M. Matsushita, H. Maenaka, P. Dai, S. Lu, and S. Uchida, “Conversion efficiencies of single-junction III–V solar cells based on InGaP, GaAs, InGaAsP, and InGaAs for laser wireless power transmission,” Jpn. J. Appl. Phys. 57(8S3), 08RD12 (2018).
[Crossref]

2017 (1)

C. Michel, P. Blain, L. Clermont, F. Languy, C. Lenaerts, K. Fleury-Frenette, M. Décultot, S. Habraken, D. Vandormael, R. Cloots, G. K. V. V. Thalluri, C. Henrist, P. Colson, and J. Loicq, “Waveguide solar concentrator design with spectrally separated light,” Sol. Energy 157, 1005–1016 (2017).
[Crossref]

2016 (2)

H. Apostoleris, M. Stefancich, and M. Chiesa, “Tracking-integrated systems for concentrating photovoltaics,” Nat. Energy 1(4), 16018 (2016).
[Crossref]

N. Yamada and D. Hirai, “Maximization of conversion efficiency based on global normal irradiance using hybrid concentrator photovoltaic architecture,” Prog. Photovoltaics 24(6), 846–854 (2016).
[Crossref]

2015 (3)

M. Steiner, A. Bösch, A. Dilger, F. Dimroth, T. Dörsam, M. Muller, T. Hornung, G. Siefer, M. Wiesenfarth, and A. W. Bett, “FLATCON® CPV module with 36.7% efficiency equipped with four-junction solar cells,” Prog. Photovoltaics 23(10), 1323–1329 (2015).
[Crossref]

H. Ma and L. Wu, “Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications,” Appl. Opt. 54(20), 6217–6223 (2015).
[Crossref]

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6(1), 6223 (2015).
[Crossref]

2014 (6)

2013 (1)

2012 (4)

J. M. Hallas, K. A. Baker, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Two-axis solar tracking accomplished through small lateral translations,” Appl. Opt. 51(25), 6117–6124 (2012).
[Crossref]

Y. Ota and K. Nishioka, “Three-dimensional simulating of concentrator photovoltaic modules using ray trace and equivalent circuit simulators,” Sol. Energy 86(1), 476–481 (2012).
[Crossref]

P. Kotsidas, V. Modi, and J. M. Gordon, “Realizable planar gradient-index solar lenses,” Opt. Lett. 37(7), 1235–1237 (2012).
[Crossref]

R. Herrero, M. Victoria, C. Domínguez, S. Askins, I. Antón, and G. Sala, “Concentration photovoltaic optical system irradiance distribution measurements and its effect on multi-junction solar cells,” Prog. Photovoltaics 20(4), 423–430 (2012).
[Crossref]

2011 (2)

2010 (2)

J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18(2), 1122–1133 (2010).
[Crossref]

M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, “Development of transparent silica aerogel over a wide range of densities,” Nucl. Instrum. Methods Phys. Res., Sect. A 623(1), 339–341 (2010).
[Crossref]

2009 (2)

2007 (1)

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

2004 (1)

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell under concentrated light by simulation program with integrated circuit emphasis,” Jpn. J. Appl. Phys. 43(3), 882–889 (2004).
[Crossref]

2001 (1)

C. Algora, E. Ortiz, I. Rey-Stolle, V. Díaz, R. Peña, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron Devices 48(5), 840–844 (2001).
[Crossref]

1998 (1)

V. Kmetik, T. Kanabe, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Optical absorption in fluorocarbon liquids for the high energy stimulated Brillouin scattering phase conjugation and compression,” Reza Kenkyu 26(4), 322–327 (1998).
[Crossref]

1995 (1)

H. Schrank and J. Sanford, “A Luneberg-lens update,” IEEE Antennas Propag. Mag. 37(1), 76–79 (1995).
[Crossref]

1992 (1)

1984 (1)

1973 (1)

1970 (1)

T. A. Rhys, “The design of radially symmetric lenses,” IEEE Trans. Antennas Propag. 18(4), 497–506 (1970).
[Crossref]

1958 (1)

S. P. Morgan, “General solution of the Luneberg lens problem,” J. Appl. Phys. 29(9), 1358–1368 (1958).
[Crossref]

Adachi, I.

M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, “Development of transparent silica aerogel over a wide range of densities,” Nucl. Instrum. Methods Phys. Res., Sect. A 623(1), 339–341 (2010).
[Crossref]

Agui, T.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell under concentrated light by simulation program with integrated circuit emphasis,” Jpn. J. Appl. Phys. 43(3), 882–889 (2004).
[Crossref]

Akiba, T.

R. Jomen, F. Tanaka, T. Akiba, M. Ikeda, K. Kiryu, M. Matsushita, H. Maenaka, P. Dai, S. Lu, and S. Uchida, “Conversion efficiencies of single-junction III–V solar cells based on InGaP, GaAs, InGaAsP, and InGaAs for laser wireless power transmission,” Jpn. J. Appl. Phys. 57(8S3), 08RD12 (2018).
[Crossref]

Algora, C.

C. Algora, E. Ortiz, I. Rey-Stolle, V. Díaz, R. Peña, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron Devices 48(5), 840–844 (2001).
[Crossref]

Andreev, V. M.

C. Algora, E. Ortiz, I. Rey-Stolle, V. Díaz, R. Peña, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron Devices 48(5), 840–844 (2001).
[Crossref]

Antón, I.

R. Herrero, M. Victoria, C. Domínguez, S. Askins, I. Antón, and G. Sala, “Concentration photovoltaic optical system irradiance distribution measurements and its effect on multi-junction solar cells,” Prog. Photovoltaics 20(4), 423–430 (2012).
[Crossref]

M. Victoria, C. Domínguez, I. Antón, and G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Opt. Express 17(8), 6487–6492 (2009).
[Crossref]

Apostoleris, H.

H. Apostoleris, M. Stefancich, and M. Chiesa, “Tracking-integrated systems for concentrating photovoltaics,” Nat. Energy 1(4), 16018 (2016).
[Crossref]

Aronova, E. S.

V. M. Emelyanov, E. S. Aronova, M. V. Nakhimovich, and M. Z. Shvarts, “Output energy predictions for hybrid concentrator III-V / planar thin-film modules,” AIP Conf. Proc. 2012, 080005 (2018).

Askins, S.

R. Herrero, M. Victoria, C. Domínguez, S. Askins, I. Antón, and G. Sala, “Concentration photovoltaic optical system irradiance distribution measurements and its effect on multi-junction solar cells,” Prog. Photovoltaics 20(4), 423–430 (2012).
[Crossref]

Baker, K. A.

Betsis, S. C.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B: Lasers Opt. 116(3), 617–622 (2014).
[Crossref]

Bett, A. W.

M. Steiner, A. Bösch, A. Dilger, F. Dimroth, T. Dörsam, M. Muller, T. Hornung, G. Siefer, M. Wiesenfarth, and A. W. Bett, “FLATCON® CPV module with 36.7% efficiency equipped with four-junction solar cells,” Prog. Photovoltaics 23(10), 1323–1329 (2015).
[Crossref]

Blain, P.

C. Michel, P. Blain, L. Clermont, F. Languy, C. Lenaerts, K. Fleury-Frenette, M. Décultot, S. Habraken, D. Vandormael, R. Cloots, G. K. V. V. Thalluri, C. Henrist, P. Colson, and J. Loicq, “Waveguide solar concentrator design with spectrally separated light,” Sol. Energy 157, 1005–1016 (2017).
[Crossref]

Bösch, A.

M. Steiner, A. Bösch, A. Dilger, F. Dimroth, T. Dörsam, M. Muller, T. Hornung, G. Siefer, M. Wiesenfarth, and A. W. Bett, “FLATCON® CPV module with 36.7% efficiency equipped with four-junction solar cells,” Prog. Photovoltaics 23(10), 1323–1329 (2015).
[Crossref]

Bouchard, S.

Casper, C.

Chen, M.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Chiesa, M.

H. Apostoleris, M. Stefancich, and M. Chiesa, “Tracking-integrated systems for concentrating photovoltaics,” Nat. Energy 1(4), 16018 (2016).
[Crossref]

Clermont, L.

C. Michel, P. Blain, L. Clermont, F. Languy, C. Lenaerts, K. Fleury-Frenette, M. Décultot, S. Habraken, D. Vandormael, R. Cloots, G. K. V. V. Thalluri, C. Henrist, P. Colson, and J. Loicq, “Waveguide solar concentrator design with spectrally separated light,” Sol. Energy 157, 1005–1016 (2017).
[Crossref]

Cloots, R.

C. Michel, P. Blain, L. Clermont, F. Languy, C. Lenaerts, K. Fleury-Frenette, M. Décultot, S. Habraken, D. Vandormael, R. Cloots, G. K. V. V. Thalluri, C. Henrist, P. Colson, and J. Loicq, “Waveguide solar concentrator design with spectrally separated light,” Sol. Energy 157, 1005–1016 (2017).
[Crossref]

Colson, P.

C. Michel, P. Blain, L. Clermont, F. Languy, C. Lenaerts, K. Fleury-Frenette, M. Décultot, S. Habraken, D. Vandormael, R. Cloots, G. K. V. V. Thalluri, C. Henrist, P. Colson, and J. Loicq, “Waveguide solar concentrator design with spectrally separated light,” Sol. Energy 157, 1005–1016 (2017).
[Crossref]

Dai, P.

R. Jomen, F. Tanaka, T. Akiba, M. Ikeda, K. Kiryu, M. Matsushita, H. Maenaka, P. Dai, S. Lu, and S. Uchida, “Conversion efficiencies of single-junction III–V solar cells based on InGaP, GaAs, InGaAsP, and InGaAs for laser wireless power transmission,” Jpn. J. Appl. Phys. 57(8S3), 08RD12 (2018).
[Crossref]

Décultot, M.

C. Michel, P. Blain, L. Clermont, F. Languy, C. Lenaerts, K. Fleury-Frenette, M. Décultot, S. Habraken, D. Vandormael, R. Cloots, G. K. V. V. Thalluri, C. Henrist, P. Colson, and J. Loicq, “Waveguide solar concentrator design with spectrally separated light,” Sol. Energy 157, 1005–1016 (2017).
[Crossref]

Dhakal, R.

Díaz, V.

C. Algora, E. Ortiz, I. Rey-Stolle, V. Díaz, R. Peña, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron Devices 48(5), 840–844 (2001).
[Crossref]

Dilger, A.

M. Steiner, A. Bösch, A. Dilger, F. Dimroth, T. Dörsam, M. Muller, T. Hornung, G. Siefer, M. Wiesenfarth, and A. W. Bett, “FLATCON® CPV module with 36.7% efficiency equipped with four-junction solar cells,” Prog. Photovoltaics 23(10), 1323–1329 (2015).
[Crossref]

Dimroth, D. F.

D. F. Dimroth, “New world record for solar cell efficiency at 46% – French-German cooperation confirms competitive advantage of European photovoltaic industry,” https://www.ise.fraunhofer.de/en/press-media/press-releases/2014/new-world-record-for-solar-cell-efficiency-at-46-percent.html .

Dimroth, F.

M. Steiner, A. Bösch, A. Dilger, F. Dimroth, T. Dörsam, M. Muller, T. Hornung, G. Siefer, M. Wiesenfarth, and A. W. Bett, “FLATCON® CPV module with 36.7% efficiency equipped with four-junction solar cells,” Prog. Photovoltaics 23(10), 1323–1329 (2015).
[Crossref]

J. F. Martínez, M. Steiner, M. Wiesenfarth, and F. Dimroth, “4-terminal CPV module capable of converting global normal irradiance into electricity,” AIP Conf. Proc. 2012, 090005 (2018).

Dodge, M. J.

Dominé, D.

Domínguez, C.

R. Herrero, M. Victoria, C. Domínguez, S. Askins, I. Antón, and G. Sala, “Concentration photovoltaic optical system irradiance distribution measurements and its effect on multi-junction solar cells,” Prog. Photovoltaics 20(4), 423–430 (2012).
[Crossref]

M. Victoria, C. Domínguez, I. Antón, and G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Opt. Express 17(8), 6487–6492 (2009).
[Crossref]

Dörsam, T.

M. Steiner, A. Bösch, A. Dilger, F. Dimroth, T. Dörsam, M. Muller, T. Hornung, G. Siefer, M. Wiesenfarth, and A. W. Bett, “FLATCON® CPV module with 36.7% efficiency equipped with four-junction solar cells,” Prog. Photovoltaics 23(10), 1323–1329 (2015).
[Crossref]

Duerr, F.

Dunlop, E. D.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (Version 53),” Prog. Photovoltaics 27(1), 3–12 (2019).
[Crossref]

Emelyanov, V. M.

V. M. Emelyanov, E. S. Aronova, M. V. Nakhimovich, and M. Z. Shvarts, “Output energy predictions for hybrid concentrator III-V / planar thin-film modules,” AIP Conf. Proc. 2012, 080005 (2018).

Fleury-Frenette, K.

C. Michel, P. Blain, L. Clermont, F. Languy, C. Lenaerts, K. Fleury-Frenette, M. Décultot, S. Habraken, D. Vandormael, R. Cloots, G. K. V. V. Thalluri, C. Henrist, P. Colson, and J. Loicq, “Waveguide solar concentrator design with spectrally separated light,” Sol. Energy 157, 1005–1016 (2017).
[Crossref]

Ford, J. E.

Fujita, H.

V. Kmetik, T. Kanabe, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Optical absorption in fluorocarbon liquids for the high energy stimulated Brillouin scattering phase conjugation and compression,” Reza Kenkyu 26(4), 322–327 (1998).
[Crossref]

Fuyuki, T.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell under concentrated light by simulation program with integrated circuit emphasis,” Jpn. J. Appl. Phys. 43(3), 882–889 (2004).
[Crossref]

Giebink, N. C.

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6(1), 6223 (2015).
[Crossref]

Gladden, C.

Gordon, J. M.

Green, M. A.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (Version 53),” Prog. Photovoltaics 27(1), 3–12 (2019).
[Crossref]

Habraken, S.

C. Michel, P. Blain, L. Clermont, F. Languy, C. Lenaerts, K. Fleury-Frenette, M. Décultot, S. Habraken, D. Vandormael, R. Cloots, G. K. V. V. Thalluri, C. Henrist, P. Colson, and J. Loicq, “Waveguide solar concentrator design with spectrally separated light,” Sol. Energy 157, 1005–1016 (2017).
[Crossref]

Hale, G. M.

Hallas, J. M.

Henrist, C.

C. Michel, P. Blain, L. Clermont, F. Languy, C. Lenaerts, K. Fleury-Frenette, M. Décultot, S. Habraken, D. Vandormael, R. Cloots, G. K. V. V. Thalluri, C. Henrist, P. Colson, and J. Loicq, “Waveguide solar concentrator design with spectrally separated light,” Sol. Energy 157, 1005–1016 (2017).
[Crossref]

Herrero, R.

R. Herrero, M. Victoria, C. Domínguez, S. Askins, I. Antón, and G. Sala, “Concentration photovoltaic optical system irradiance distribution measurements and its effect on multi-junction solar cells,” Prog. Photovoltaics 20(4), 423–430 (2012).
[Crossref]

Herzberger, M.

R. K. Luneburg and M. Herzberger, Mathematical Theory of Optics (University of California press, 1964).

Hirai, D.

N. Yamada and D. Hirai, “Maximization of conversion efficiency based on global normal irradiance using hybrid concentrator photovoltaic architecture,” Prog. Photovoltaics 24(6), 846–854 (2016).
[Crossref]

Hishikawa, Y.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (Version 53),” Prog. Photovoltaics 27(1), 3–12 (2019).
[Crossref]

Hloupis, G.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B: Lasers Opt. 116(3), 617–622 (2014).
[Crossref]

Ho-Baillie, A. W. Y.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (Version 53),” Prog. Photovoltaics 27(1), 3–12 (2019).
[Crossref]

Hohl-Ebinger, J.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (Version 53),” Prog. Photovoltaics 27(1), 3–12 (2019).
[Crossref]

Hornung, T.

M. Steiner, A. Bösch, A. Dilger, F. Dimroth, T. Dörsam, M. Muller, T. Hornung, G. Siefer, M. Wiesenfarth, and A. W. Bett, “FLATCON® CPV module with 36.7% efficiency equipped with four-junction solar cells,” Prog. Photovoltaics 23(10), 1323–1329 (2015).
[Crossref]

Huang, R.

Ijiro, T.

T. Ijiro and N. Yamada, “Comparison analysis of self-shading loss in pedestal and carousel tracker systems,” AIP Conf. Proc. 1556, 205–209 (2013).

Ikeda, M.

R. Jomen, F. Tanaka, T. Akiba, M. Ikeda, K. Kiryu, M. Matsushita, H. Maenaka, P. Dai, S. Lu, and S. Uchida, “Conversion efficiencies of single-junction III–V solar cells based on InGaP, GaAs, InGaAsP, and InGaAs for laser wireless power transmission,” Jpn. J. Appl. Phys. 57(8S3), 08RD12 (2018).
[Crossref]

Ishii, Y.

M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, “Development of transparent silica aerogel over a wide range of densities,” Nucl. Instrum. Methods Phys. Res., Sect. A 623(1), 339–341 (2010).
[Crossref]

Ito, A.

Jomen, R.

R. Jomen, F. Tanaka, T. Akiba, M. Ikeda, K. Kiryu, M. Matsushita, H. Maenaka, P. Dai, S. Lu, and S. Uchida, “Conversion efficiencies of single-junction III–V solar cells based on InGaP, GaAs, InGaAsP, and InGaAs for laser wireless power transmission,” Jpn. J. Appl. Phys. 57(8S3), 08RD12 (2018).
[Crossref]

Kanabe, T.

V. Kmetik, T. Kanabe, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Optical absorption in fluorocarbon liquids for the high energy stimulated Brillouin scattering phase conjugation and compression,” Reza Kenkyu 26(4), 322–327 (1998).
[Crossref]

Kaneiwa, M.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell under concentrated light by simulation program with integrated circuit emphasis,” Jpn. J. Appl. Phys. 43(3), 882–889 (2004).
[Crossref]

Karp, J. H.

Kasarova, S.

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol., A 116(4), 585–587 (2009).
[Crossref]

Kawai, H.

M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, “Development of transparent silica aerogel over a wide range of densities,” Nucl. Instrum. Methods Phys. Res., Sect. A 623(1), 339–341 (2010).
[Crossref]

Khvostikov, V. P.

C. Algora, E. Ortiz, I. Rey-Stolle, V. Díaz, R. Peña, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron Devices 48(5), 840–844 (2001).
[Crossref]

Kim, J.

Kim, J. K.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Kiryu, K.

R. Jomen, F. Tanaka, T. Akiba, M. Ikeda, K. Kiryu, M. Matsushita, H. Maenaka, P. Dai, S. Lu, and S. Uchida, “Conversion efficiencies of single-junction III–V solar cells based on InGaP, GaAs, InGaAsP, and InGaAs for laser wireless power transmission,” Jpn. J. Appl. Phys. 57(8S3), 08RD12 (2018).
[Crossref]

Kmetik, V.

V. Kmetik, T. Kanabe, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Optical absorption in fluorocarbon liquids for the high energy stimulated Brillouin scattering phase conjugation and compression,” Reza Kenkyu 26(4), 322–327 (1998).
[Crossref]

Kotsidas, P.

Languy, F.

C. Michel, P. Blain, L. Clermont, F. Languy, C. Lenaerts, K. Fleury-Frenette, M. Décultot, S. Habraken, D. Vandormael, R. Cloots, G. K. V. V. Thalluri, C. Henrist, P. Colson, and J. Loicq, “Waveguide solar concentrator design with spectrally separated light,” Sol. Energy 157, 1005–1016 (2017).
[Crossref]

Lee, J.

Lenaerts, C.

C. Michel, P. Blain, L. Clermont, F. Languy, C. Lenaerts, K. Fleury-Frenette, M. Décultot, S. Habraken, D. Vandormael, R. Cloots, G. K. V. V. Thalluri, C. Henrist, P. Colson, and J. Loicq, “Waveguide solar concentrator design with spectrally separated light,” Sol. Energy 157, 1005–1016 (2017).
[Crossref]

Levi, D. H.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (Version 53),” Prog. Photovoltaics 27(1), 3–12 (2019).
[Crossref]

Lin, S. Y.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Liu, W.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Liu, Y.

Lloyd, J.

Loicq, J.

C. Michel, P. Blain, L. Clermont, F. Languy, C. Lenaerts, K. Fleury-Frenette, M. Décultot, S. Habraken, D. Vandormael, R. Cloots, G. K. V. V. Thalluri, C. Henrist, P. Colson, and J. Loicq, “Waveguide solar concentrator design with spectrally separated light,” Sol. Energy 157, 1005–1016 (2017).
[Crossref]

Lu, S.

R. Jomen, F. Tanaka, T. Akiba, M. Ikeda, K. Kiryu, M. Matsushita, H. Maenaka, P. Dai, S. Lu, and S. Uchida, “Conversion efficiencies of single-junction III–V solar cells based on InGaP, GaAs, InGaAsP, and InGaAs for laser wireless power transmission,” Jpn. J. Appl. Phys. 57(8S3), 08RD12 (2018).
[Crossref]

Luneburg, R. K.

R. K. Luneburg and M. Herzberger, Mathematical Theory of Optics (University of California press, 1964).

Ma, H.

Madsen, C. K.

Maenaka, H.

R. Jomen, F. Tanaka, T. Akiba, M. Ikeda, K. Kiryu, M. Matsushita, H. Maenaka, P. Dai, S. Lu, and S. Uchida, “Conversion efficiencies of single-junction III–V solar cells based on InGaP, GaAs, InGaAsP, and InGaAs for laser wireless power transmission,” Jpn. J. Appl. Phys. 57(8S3), 08RD12 (2018).
[Crossref]

Martínez, J. F.

J. F. Martínez, M. Steiner, M. Wiesenfarth, and F. Dimroth, “4-terminal CPV module capable of converting global normal irradiance into electricity,” AIP Conf. Proc. 2012, 090005 (2018).

Matsushita, M.

R. Jomen, F. Tanaka, T. Akiba, M. Ikeda, K. Kiryu, M. Matsushita, H. Maenaka, P. Dai, S. Lu, and S. Uchida, “Conversion efficiencies of single-junction III–V solar cells based on InGaP, GaAs, InGaAsP, and InGaAs for laser wireless power transmission,” Jpn. J. Appl. Phys. 57(8S3), 08RD12 (2018).
[Crossref]

McMahon, W.

Meulblok, B. M.

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6(1), 6223 (2015).
[Crossref]

Meuret, Y.

Michel, C.

C. Michel, P. Blain, L. Clermont, F. Languy, C. Lenaerts, K. Fleury-Frenette, M. Décultot, S. Habraken, D. Vandormael, R. Cloots, G. K. V. V. Thalluri, C. Henrist, P. Colson, and J. Loicq, “Waveguide solar concentrator design with spectrally separated light,” Sol. Energy 157, 1005–1016 (2017).
[Crossref]

Modi, V.

Morgan, S. P.

S. P. Morgan, “General solution of the Luneberg lens problem,” J. Appl. Phys. 29(9), 1358–1368 (1958).
[Crossref]

Moser, C.

Moutzouris, K.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B: Lasers Opt. 116(3), 617–622 (2014).
[Crossref]

Muller, M.

M. Steiner, A. Bösch, A. Dilger, F. Dimroth, T. Dörsam, M. Muller, T. Hornung, G. Siefer, M. Wiesenfarth, and A. W. Bett, “FLATCON® CPV module with 36.7% efficiency equipped with four-junction solar cells,” Prog. Photovoltaics 23(10), 1323–1329 (2015).
[Crossref]

Nakatani, M.

M. Nakatani and N. Yamada, “Optical simulation of two-shell spherical lens for microtracking CPV system,” in Proceeding of 2018 IEEE 7th WCPEC. IEEE (2018), pp. 0927–0930 (2018).

Nakatsuka, M.

V. Kmetik, T. Kanabe, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Optical absorption in fluorocarbon liquids for the high energy stimulated Brillouin scattering phase conjugation and compression,” Reza Kenkyu 26(4), 322–327 (1998).
[Crossref]

Nakhimovich, M. V.

V. M. Emelyanov, E. S. Aronova, M. V. Nakhimovich, and M. Z. Shvarts, “Output energy predictions for hybrid concentrator III-V / planar thin-film modules,” AIP Conf. Proc. 2012, 080005 (2018).

Nikolov, I.

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol., A 116(4), 585–587 (2009).
[Crossref]

Nishioka, K.

Y. Ota and K. Nishioka, “Three-dimensional simulating of concentrator photovoltaic modules using ray trace and equivalent circuit simulators,” Sol. Energy 86(1), 476–481 (2012).
[Crossref]

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell under concentrated light by simulation program with integrated circuit emphasis,” Jpn. J. Appl. Phys. 43(3), 882–889 (2004).
[Crossref]

Okamoto, K.

Ortiz, E.

C. Algora, E. Ortiz, I. Rey-Stolle, V. Díaz, R. Peña, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron Devices 48(5), 840–844 (2001).
[Crossref]

Ota, Y.

Y. Ota and K. Nishioka, “Three-dimensional simulating of concentrator photovoltaic modules using ray trace and equivalent circuit simulators,” Sol. Energy 86(1), 476–481 (2012).
[Crossref]

Papamichael, M.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B: Lasers Opt. 116(3), 617–622 (2014).
[Crossref]

Pavilonis, M.

Peña, R.

C. Algora, E. Ortiz, I. Rey-Stolle, V. Díaz, R. Peña, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron Devices 48(5), 840–844 (2001).
[Crossref]

Price, J. S.

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6(1), 6223 (2015).
[Crossref]

Querry, M. R.

Rey-Stolle, I.

C. Algora, E. Ortiz, I. Rey-Stolle, V. Díaz, R. Peña, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron Devices 48(5), 840–844 (2001).
[Crossref]

Rhys, T. A.

T. A. Rhys, “The design of radially symmetric lenses,” IEEE Trans. Antennas Propag. 18(4), 497–506 (1970).
[Crossref]

Rogers, J. A.

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6(1), 6223 (2015).
[Crossref]

Rumyantsev, V. D.

C. Algora, E. Ortiz, I. Rey-Stolle, V. Díaz, R. Peña, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron Devices 48(5), 840–844 (2001).
[Crossref]

Sala, G.

R. Herrero, M. Victoria, C. Domínguez, S. Askins, I. Antón, and G. Sala, “Concentration photovoltaic optical system irradiance distribution measurements and its effect on multi-junction solar cells,” Prog. Photovoltaics 20(4), 423–430 (2012).
[Crossref]

M. Victoria, C. Domínguez, I. Antón, and G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Opt. Express 17(8), 6487–6492 (2009).
[Crossref]

Sanford, J.

H. Schrank and J. Sanford, “A Luneberg-lens update,” IEEE Antennas Propag. Mag. 37(1), 76–79 (1995).
[Crossref]

Sato, D.

Schneider, K.

Schrank, H.

H. Schrank and J. Sanford, “A Luneberg-lens update,” IEEE Antennas Propag. Mag. 37(1), 76–79 (1995).
[Crossref]

Schubert, E. F.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Schubert, M. F.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Sheng, X.

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6(1), 6223 (2015).
[Crossref]

Shin, S.

N. Vu and S. Shin, “Flat concentrator photovoltaic system with lateral displacement tracking for residential rooftops,” Energies 11(1), 114 (2018).
[Crossref]

Shvarts, M. Z.

V. M. Emelyanov, E. S. Aronova, M. V. Nakhimovich, and M. Z. Shvarts, “Output energy predictions for hybrid concentrator III-V / planar thin-film modules,” AIP Conf. Proc. 2012, 080005 (2018).

Siefer, G.

M. Steiner, A. Bösch, A. Dilger, F. Dimroth, T. Dörsam, M. Muller, T. Hornung, G. Siefer, M. Wiesenfarth, and A. W. Bett, “FLATCON® CPV module with 36.7% efficiency equipped with four-junction solar cells,” Prog. Photovoltaics 23(10), 1323–1329 (2015).
[Crossref]

Smart, J. A.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Stavrakas, I.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B: Lasers Opt. 116(3), 617–622 (2014).
[Crossref]

Stefancich, M.

H. Apostoleris, M. Stefancich, and M. Chiesa, “Tracking-integrated systems for concentrating photovoltaics,” Nat. Energy 1(4), 16018 (2016).
[Crossref]

Steiner, M.

M. Steiner, A. Bösch, A. Dilger, F. Dimroth, T. Dörsam, M. Muller, T. Hornung, G. Siefer, M. Wiesenfarth, and A. W. Bett, “FLATCON® CPV module with 36.7% efficiency equipped with four-junction solar cells,” Prog. Photovoltaics 23(10), 1323–1329 (2015).
[Crossref]

J. F. Martínez, M. Steiner, M. Wiesenfarth, and F. Dimroth, “4-terminal CPV module capable of converting global normal irradiance into electricity,” AIP Conf. Proc. 2012, 090005 (2018).

Sultanova, N.

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol., A 116(4), 585–587 (2009).
[Crossref]

Sumiyoshi, T.

M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, “Development of transparent silica aerogel over a wide range of densities,” Nucl. Instrum. Methods Phys. Res., Sect. A 623(1), 339–341 (2010).
[Crossref]

Tabata, M.

M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, “Development of transparent silica aerogel over a wide range of densities,” Nucl. Instrum. Methods Phys. Res., Sect. A 623(1), 339–341 (2010).
[Crossref]

Takamoto, T.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell under concentrated light by simulation program with integrated circuit emphasis,” Jpn. J. Appl. Phys. 43(3), 882–889 (2004).
[Crossref]

Tanaka, F.

R. Jomen, F. Tanaka, T. Akiba, M. Ikeda, K. Kiryu, M. Matsushita, H. Maenaka, P. Dai, S. Lu, and S. Uchida, “Conversion efficiencies of single-junction III–V solar cells based on InGaP, GaAs, InGaAsP, and InGaAs for laser wireless power transmission,” Jpn. J. Appl. Phys. 57(8S3), 08RD12 (2018).
[Crossref]

Thalluri, G. K. V. V.

C. Michel, P. Blain, L. Clermont, F. Languy, C. Lenaerts, K. Fleury-Frenette, M. Décultot, S. Habraken, D. Vandormael, R. Cloots, G. K. V. V. Thalluri, C. Henrist, P. Colson, and J. Loicq, “Waveguide solar concentrator design with spectrally separated light,” Sol. Energy 157, 1005–1016 (2017).
[Crossref]

Thibault, S.

Thienpont, H.

Thomas, I. M.

Tremblay, E.

Tremblay, E. J.

Triantis, D.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B: Lasers Opt. 116(3), 617–622 (2014).
[Crossref]

Uchida, S.

R. Jomen, F. Tanaka, T. Akiba, M. Ikeda, K. Kiryu, M. Matsushita, H. Maenaka, P. Dai, S. Lu, and S. Uchida, “Conversion efficiencies of single-junction III–V solar cells based on InGaP, GaAs, InGaAsP, and InGaAs for laser wireless power transmission,” Jpn. J. Appl. Phys. 57(8S3), 08RD12 (2018).
[Crossref]

Uraoka, Y.

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell under concentrated light by simulation program with integrated circuit emphasis,” Jpn. J. Appl. Phys. 43(3), 882–889 (2004).
[Crossref]

Vandormael, D.

C. Michel, P. Blain, L. Clermont, F. Languy, C. Lenaerts, K. Fleury-Frenette, M. Décultot, S. Habraken, D. Vandormael, R. Cloots, G. K. V. V. Thalluri, C. Henrist, P. Colson, and J. Loicq, “Waveguide solar concentrator design with spectrally separated light,” Sol. Energy 157, 1005–1016 (2017).
[Crossref]

Victoria, M.

R. Herrero, M. Victoria, C. Domínguez, S. Askins, I. Antón, and G. Sala, “Concentration photovoltaic optical system irradiance distribution measurements and its effect on multi-junction solar cells,” Prog. Photovoltaics 20(4), 423–430 (2012).
[Crossref]

M. Victoria, C. Domínguez, I. Antón, and G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Opt. Express 17(8), 6487–6492 (2009).
[Crossref]

Vu, N.

N. Vu and S. Shin, “Flat concentrator photovoltaic system with lateral displacement tracking for residential rooftops,” Energies 11(1), 114 (2018).
[Crossref]

Wiesenfarth, M.

M. Steiner, A. Bösch, A. Dilger, F. Dimroth, T. Dörsam, M. Muller, T. Hornung, G. Siefer, M. Wiesenfarth, and A. W. Bett, “FLATCON® CPV module with 36.7% efficiency equipped with four-junction solar cells,” Prog. Photovoltaics 23(10), 1323–1329 (2015).
[Crossref]

J. F. Martínez, M. Steiner, M. Wiesenfarth, and F. Dimroth, “4-terminal CPV module capable of converting global normal irradiance into electricity,” AIP Conf. Proc. 2012, 090005 (2018).

Wu, L.

Xi, J. Q.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Yamada, N.

A. Ito, D. Sato, and N. Yamada, “Optical design and demonstration of microtracking CPV module with bi-convex aspheric lens array,” Opt. Express 26(18), A879–A891 (2018).
[Crossref]

N. Yamada and D. Hirai, “Maximization of conversion efficiency based on global normal irradiance using hybrid concentrator photovoltaic architecture,” Prog. Photovoltaics 24(6), 846–854 (2016).
[Crossref]

N. Yamada and K. Okamoto, “Experimental measurements of a prototype high concentration Fresnel lens CPV module for the harvesting of diffuse solar radiation,” Opt. Express 22(S1), A28–A34 (2014).
[Crossref]

M. Nakatani and N. Yamada, “Optical simulation of two-shell spherical lens for microtracking CPV system,” in Proceeding of 2018 IEEE 7th WCPEC. IEEE (2018), pp. 0927–0930 (2018).

T. Ijiro and N. Yamada, “Comparison analysis of self-shading loss in pedestal and carousel tracker systems,” AIP Conf. Proc. 1556, 205–209 (2013).

Yamanaka, T.

V. Kmetik, T. Kanabe, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Optical absorption in fluorocarbon liquids for the high energy stimulated Brillouin scattering phase conjugation and compression,” Reza Kenkyu 26(4), 322–327 (1998).
[Crossref]

Yokogawa, H.

M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, “Development of transparent silica aerogel over a wide range of densities,” Nucl. Instrum. Methods Phys. Res., Sect. A 623(1), 339–341 (2010).
[Crossref]

Yoshita, M.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (Version 53),” Prog. Photovoltaics 27(1), 3–12 (2019).
[Crossref]

Zagolla, V.

Acta Phys. Pol., A (1)

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol., A 116(4), 585–587 (2009).
[Crossref]

Appl. Opt. (6)

Appl. Phys. B: Lasers Opt. (1)

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B: Lasers Opt. 116(3), 617–622 (2014).
[Crossref]

Energies (1)

N. Vu and S. Shin, “Flat concentrator photovoltaic system with lateral displacement tracking for residential rooftops,” Energies 11(1), 114 (2018).
[Crossref]

IEEE Antennas Propag. Mag. (1)

H. Schrank and J. Sanford, “A Luneberg-lens update,” IEEE Antennas Propag. Mag. 37(1), 76–79 (1995).
[Crossref]

IEEE Trans. Antennas Propag. (1)

T. A. Rhys, “The design of radially symmetric lenses,” IEEE Trans. Antennas Propag. 18(4), 497–506 (1970).
[Crossref]

IEEE Trans. Electron Devices (1)

C. Algora, E. Ortiz, I. Rey-Stolle, V. Díaz, R. Peña, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron Devices 48(5), 840–844 (2001).
[Crossref]

J. Appl. Phys. (1)

S. P. Morgan, “General solution of the Luneberg lens problem,” J. Appl. Phys. 29(9), 1358–1368 (1958).
[Crossref]

Jpn. J. Appl. Phys. (2)

K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell under concentrated light by simulation program with integrated circuit emphasis,” Jpn. J. Appl. Phys. 43(3), 882–889 (2004).
[Crossref]

R. Jomen, F. Tanaka, T. Akiba, M. Ikeda, K. Kiryu, M. Matsushita, H. Maenaka, P. Dai, S. Lu, and S. Uchida, “Conversion efficiencies of single-junction III–V solar cells based on InGaP, GaAs, InGaAsP, and InGaAs for laser wireless power transmission,” Jpn. J. Appl. Phys. 57(8S3), 08RD12 (2018).
[Crossref]

Nat. Commun. (1)

J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, and N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nat. Commun. 6(1), 6223 (2015).
[Crossref]

Nat. Energy (1)

H. Apostoleris, M. Stefancich, and M. Chiesa, “Tracking-integrated systems for concentrating photovoltaics,” Nat. Energy 1(4), 16018 (2016).
[Crossref]

Nat. Photonics (1)

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. A (1)

M. Tabata, I. Adachi, Y. Ishii, H. Kawai, T. Sumiyoshi, and H. Yokogawa, “Development of transparent silica aerogel over a wide range of densities,” Nucl. Instrum. Methods Phys. Res., Sect. A 623(1), 339–341 (2010).
[Crossref]

Opt. Express (11)

M. Victoria, C. Domínguez, I. Antón, and G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Opt. Express 17(8), 6487–6492 (2009).
[Crossref]

J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18(2), 1122–1133 (2010).
[Crossref]

P. Kotsidas, V. Modi, and J. M. Gordon, “Nominally stationary high-concentration solar optics by gradient-index lenses,” Opt. Express 19(3), 2325–2334 (2011).
[Crossref]

J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19(S4), A673–A685 (2011).
[Crossref]

F. Duerr, Y. Meuret, and H. Thienpont, “Tailored free-form optics with movement to integrate tracking in concentrating photovoltaics,” Opt. Express 21(S3), A401–A411 (2013).
[Crossref]

N. Yamada and K. Okamoto, “Experimental measurements of a prototype high concentration Fresnel lens CPV module for the harvesting of diffuse solar radiation,” Opt. Express 22(S1), A28–A34 (2014).
[Crossref]

S. Bouchard and S. Thibault, “Planar waveguide concentrator used with a single axis tracker,” Opt. Express 22(S2), A248 (2014).
[Crossref]

Y. Liu, R. Huang, and C. K. Madsen, “Two-axis tracking using translation stages for a lens-to-channel waveguide solar concentrator,” Opt. Express 22(S6), A1567–A1575 (2014).
[Crossref]

V. Zagolla, D. Dominé, E. Tremblay, and C. Moser, “Self-tracking solar concentrator with an acceptance angle of 32°,” Opt. Express 22(S7), A1880–A1894 (2014).
[Crossref]

J. Lloyd, M. Pavilonis, C. Gladden, C. Casper, K. Schneider, and W. McMahon, “Performance of a prototype stationary catadioptric concentrating photovoltaic module,” Opt. Express 26(10), A413–A419 (2018).
[Crossref]

A. Ito, D. Sato, and N. Yamada, “Optical design and demonstration of microtracking CPV module with bi-convex aspheric lens array,” Opt. Express 26(18), A879–A891 (2018).
[Crossref]

Opt. Lett. (1)

Prog. Photovoltaics (4)

R. Herrero, M. Victoria, C. Domínguez, S. Askins, I. Antón, and G. Sala, “Concentration photovoltaic optical system irradiance distribution measurements and its effect on multi-junction solar cells,” Prog. Photovoltaics 20(4), 423–430 (2012).
[Crossref]

N. Yamada and D. Hirai, “Maximization of conversion efficiency based on global normal irradiance using hybrid concentrator photovoltaic architecture,” Prog. Photovoltaics 24(6), 846–854 (2016).
[Crossref]

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and A. W. Y. Ho-Baillie, “Solar cell efficiency tables (Version 53),” Prog. Photovoltaics 27(1), 3–12 (2019).
[Crossref]

M. Steiner, A. Bösch, A. Dilger, F. Dimroth, T. Dörsam, M. Muller, T. Hornung, G. Siefer, M. Wiesenfarth, and A. W. Bett, “FLATCON® CPV module with 36.7% efficiency equipped with four-junction solar cells,” Prog. Photovoltaics 23(10), 1323–1329 (2015).
[Crossref]

Reza Kenkyu (1)

V. Kmetik, T. Kanabe, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Optical absorption in fluorocarbon liquids for the high energy stimulated Brillouin scattering phase conjugation and compression,” Reza Kenkyu 26(4), 322–327 (1998).
[Crossref]

Sol. Energy (2)

Y. Ota and K. Nishioka, “Three-dimensional simulating of concentrator photovoltaic modules using ray trace and equivalent circuit simulators,” Sol. Energy 86(1), 476–481 (2012).
[Crossref]

C. Michel, P. Blain, L. Clermont, F. Languy, C. Lenaerts, K. Fleury-Frenette, M. Décultot, S. Habraken, D. Vandormael, R. Cloots, G. K. V. V. Thalluri, C. Henrist, P. Colson, and J. Loicq, “Waveguide solar concentrator design with spectrally separated light,” Sol. Energy 157, 1005–1016 (2017).
[Crossref]

Other (7)

R. K. Luneburg and M. Herzberger, Mathematical Theory of Optics (University of California press, 1964).

T. Ijiro and N. Yamada, “Comparison analysis of self-shading loss in pedestal and carousel tracker systems,” AIP Conf. Proc. 1556, 205–209 (2013).

D. F. Dimroth, “New world record for solar cell efficiency at 46% – French-German cooperation confirms competitive advantage of European photovoltaic industry,” https://www.ise.fraunhofer.de/en/press-media/press-releases/2014/new-world-record-for-solar-cell-efficiency-at-46-percent.html .

M. Nakatani and N. Yamada, “Optical simulation of two-shell spherical lens for microtracking CPV system,” in Proceeding of 2018 IEEE 7th WCPEC. IEEE (2018), pp. 0927–0930 (2018).

L. TEMTO Technology Co., “Optical Glass,” http://www.temto.com/product.php?id=90 .

V. M. Emelyanov, E. S. Aronova, M. V. Nakhimovich, and M. Z. Shvarts, “Output energy predictions for hybrid concentrator III-V / planar thin-film modules,” AIP Conf. Proc. 2012, 080005 (2018).

J. F. Martínez, M. Steiner, M. Wiesenfarth, and F. Dimroth, “4-terminal CPV module capable of converting global normal irradiance into electricity,” AIP Conf. Proc. 2012, 090005 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Tracking motion of an MTCPV with spherical lenses.
Fig. 2.
Fig. 2. Mechanical angle limit of MTCPV with a spherical lens for long focal length (a) and short focal length (b).
Fig. 3.
Fig. 3. Ray-tracing simulation model of a CSSP lens.
Fig. 4.
Fig. 4. Spectral absorptivity of a 1-cm-thick layer of water αλ, EQE of the GaAs solar cell EQEλ, and AM 1.5D standard direct solar spectrum (ASTM G173) Iλ.
Fig. 5.
Fig. 5. Simulated optical efficiency and the corresponding focal length for different core radii of the PMMA–water CSSP lens.
Fig. 6.
Fig. 6. Spectral optical efficiencies for different focal lengths when rcore = 3.5 mm (a), 3.7 mm (b), and 4.0 mm (c).
Fig. 7.
Fig. 7. Estimated short-circuit current density of a GaAs solar cell Jsc with a PMMA–water CSSP lens for various core radii rcore and focal lengths f.
Fig. 8.
Fig. 8. Angular optical efficiency of a PMMA–water CSSP lens ((a) and (c)) in comparison with that of a PMMA homogenous spherical lens ((b) and (d)). Upper graphs: contours for different AOIs and focal lengths. Bottom graphs: characteristics for specific focal lengths.
Fig. 9.
Fig. 9. Comparison of AOI dependency of the optical efficiency between the reported MTCPV systems.

Tables (3)

Tables Icon

Table 1. Simulation conditions

Tables Icon

Table 2. Reported Power Generation Performance of GaAs Solar Cells Under Varied Solar Concentration [40]

Tables Icon

Table 3. List of the Reported MTCPVs in which AOI Dependency is Measured and/or Simulated

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J s c = q λ h c β I λ E Q E λ ( E ) η o p t λ d λ