Abstract

The efficient investigation of integrated photonic and superconducting circuitry relies on the flexible design of masks for the lithography steps. While commercial software packages for high-end design are commonly employed, for scientific users, such software systems are often financially exclusive and thus custom solutions are needed. Here we present a flexible open source Python framework that allows mask generation of integrated circuitry by easy-to-learn Python scripting. The framework is designed to facilitate the design of new photonic building blocks, since it allows defining the geometry by reusing existing parts or direct design using geometric objects. Through the use of existing and user-defined building blocks, complex integrated circuits can be created in a convenient fashion. We illustrate the capabilities of the framework by realizing hybrid nanophotonic-superconducting circuits, as well as hybrid 2D-3D nanophotonic circuits through multi-step nanofabrication. Because all design parameters can be defined by the user, the framework is not limited to a particular platform and can rapidly be adapted for new applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
itom: an open source metrology, automation, and data evaluation software

Marc Gronle, Wolfram Lyda, Marc Wilke, Christian Kohler, and Wolfgang Osten
Appl. Opt. 53(14) 2974-2982 (2014)

Room-temperature-deposited dielectrics and superconductors for integrated photonics

Jeffrey M. Shainline, Sonia M. Buckley, Nima Nader, Cale M. Gentry, Kevin C. Cossel, Justin W. Cleary, Miloš Popović, Nathan R. Newbury, Sae Woo Nam, and Richard P. Mirin
Opt. Express 25(9) 10322-10334 (2017)

InP photonic circuits using generic integration [Invited]

K. A. Williams, E. A. J. M. Bente, D. Heiss, Y. Jiao, K. Ławniczuk, X. J. M. Leijtens, J. J. G. M. van der Tol, and M. K. Smit
Photon. Res. 3(5) B60-B68 (2015)

References

  • View by:
  • |
  • |
  • |

  1. X. Leijtens, “JePPIX: the platform for Indium Phosphide-based photonics,” IET Optoelectron. 5(5), 202–206 (2011).
    [Crossref]
  2. P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581 (2009).
    [Crossref]
  3. I. Synopsys, “PIC Design Suite,” https://www.synopsys.com/photonic-solutions/pic-design-suite.html .
  4. W. Bogaerts, P. Dumon, E. Lambert, M. Fiers, S. Pathak, and A. Ribeiro, “IPKISS: A parametric design and simulation framework for silicon photonics,” 9th Int. Conf. Gr. IV Photonics2, 30–32 (2012).
    [Crossref]
  5. Python Software Foundation, “Python Language Reference (python.org),” (2018).
  6. “Luceda Photonics,” https://www.lucedaphotonics.com .
  7. “GDSHelpers on Github,” https://github.com/HelgeGehring/gdshelpers .
  8. “GDSHelpers’ documentation,” https://gdshelpers.readthedocs.io .
  9. A. Fabri, G. J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr, “On the design of CGAL a computational geometry algorithms library,” Softw. - Pract. Exp. 30(11), 1167–1202 (2000).
    [Crossref]
  10. K. Mehlhorn, S. Näher, and C. Uhrig, “The LEDA platform for combinatorial and geometric computing,” in (1997), pp. 7–16.
  11. “GEOS - Geometry Engine, Open Source,” (2018).
  12. S. Gillies and Others, “Shapely: manipulation and analysis of geometric objects,” (2007).
  13. L. H. Gabrielli, “gdspy,” https://github.com/heitzmann/gdspy .
  14. Andrew G. Mark, “gdsCAD,” https://github.com/hohlraum/gdsCAD .
  15. J. Petykiewicz, “fatamorgana,” https://mpxd.net/code/jan/fatamorgana .
  16. Blender Foundation, “Blender,” https://www.blender.org/ .
  17. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  18. J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
    [Crossref]
  19. M. BŁahut and D. Kasprzak, “Multimode interference structures-properties and applications,” Opt. Appl. 34, 573–587 (2004).
  20. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’faolain, V. Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
    [Crossref]
  21. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett. 32(11), 1495–1497 (2007).
    [Crossref]
  22. Z. Xiao, T.-Y. Liow, J. Zhang, P. Shum, and F. Luan, “Bandwidth analysis of waveguide grating coupler,” Opt. Express 21(5), 5688 (2013).
    [Crossref]
  23. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302 (2003).
    [Crossref]
  24. M. Blaicher, M. R. Billah, T. Hoose, P.-I. Dietrich, A. Hofmann, S. Randel, W. Freude, and C. Koos, “3D-Printed Ultra-Broadband Highly Efficient Out-of-Plane Coupler for Photonic Integrated Circuits,” Conf. Lasers Electro-Optics STh1A.1 (2018).
  25. H. Gehring, M. Blaicher, W. Hartmann, P. Varytis, K. Busch, M. Wegener, and W. H. P. Pernice, “Low-loss fiber-to-chip couplers with ultrawide optical bandwidth,” APL Photonics 4(1), 010801 (2019).
    [Crossref]
  26. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667 (2012).
    [Crossref]
  27. M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, and C. Koos, “Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding,” Optica 5(7), 876 (2018).
    [Crossref]
  28. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36(17), 3398 (2011).
    [Crossref]
  29. X. Guo, C. L. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light: Sci. Appl. 6, e16249 (2017).
    [Crossref]
  30. O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015).
    [Crossref]
  31. C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3(1), 1893 (2013).
    [Crossref]
  32. W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
    [Crossref]
  33. F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
    [Crossref]
  34. S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10(11), 727–732 (2016).
    [Crossref]
  35. A. N. McCaughan and K. K. Berggren, “A Superconducting-Nanowire Three-Terminal Electrothermal Device,” Nano Lett. 14(10), 5748–5753 (2014).
    [Crossref]

2019 (1)

H. Gehring, M. Blaicher, W. Hartmann, P. Varytis, K. Busch, M. Wegener, and W. H. P. Pernice, “Low-loss fiber-to-chip couplers with ultrawide optical bandwidth,” APL Photonics 4(1), 010801 (2019).
[Crossref]

2018 (1)

2017 (1)

X. Guo, C. L. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light: Sci. Appl. 6, e16249 (2017).
[Crossref]

2016 (2)

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10(11), 727–732 (2016).
[Crossref]

2015 (1)

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015).
[Crossref]

2014 (2)

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

A. N. McCaughan and K. K. Berggren, “A Superconducting-Nanowire Three-Terminal Electrothermal Device,” Nano Lett. 14(10), 5748–5753 (2014).
[Crossref]

2013 (2)

Z. Xiao, T.-Y. Liow, J. Zhang, P. Shum, and F. Luan, “Bandwidth analysis of waveguide grating coupler,” Opt. Express 21(5), 5688 (2013).
[Crossref]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3(1), 1893 (2013).
[Crossref]

2012 (2)

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667 (2012).
[Crossref]

2011 (2)

2010 (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

2009 (1)

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581 (2009).
[Crossref]

2007 (2)

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’faolain, V. Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett. 32(11), 1495–1497 (2007).
[Crossref]

2004 (1)

M. BŁahut and D. Kasprzak, “Multimode interference structures-properties and applications,” Opt. Appl. 34, 573–587 (2004).

2003 (1)

2000 (1)

A. Fabri, G. J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr, “On the design of CGAL a computational geometry algorithms library,” Softw. - Pract. Exp. 30(11), 1167–1202 (2000).
[Crossref]

Almeida, V. R.

Baets, R.

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581 (2009).
[Crossref]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’faolain, V. Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett. 32(11), 1495–1497 (2007).
[Crossref]

Balthasar, G.

Berggren, K. K.

A. N. McCaughan and K. K. Berggren, “A Superconducting-Nanowire Three-Terminal Electrothermal Device,” Nano Lett. 14(10), 5748–5753 (2014).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Billah, M. R.

M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, and C. Koos, “Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding,” Optica 5(7), 876 (2018).
[Crossref]

M. Blaicher, M. R. Billah, T. Hoose, P.-I. Dietrich, A. Hofmann, S. Randel, W. Freude, and C. Koos, “3D-Printed Ultra-Broadband Highly Efficient Out-of-Plane Coupler for Photonic Integrated Circuits,” Conf. Lasers Electro-Optics STh1A.1 (2018).

BLahut, M.

M. BŁahut and D. Kasprzak, “Multimode interference structures-properties and applications,” Opt. Appl. 34, 573–587 (2004).

Blaicher, M.

H. Gehring, M. Blaicher, W. Hartmann, P. Varytis, K. Busch, M. Wegener, and W. H. P. Pernice, “Low-loss fiber-to-chip couplers with ultrawide optical bandwidth,” APL Photonics 4(1), 010801 (2019).
[Crossref]

M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, and C. Koos, “Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding,” Optica 5(7), 876 (2018).
[Crossref]

M. Blaicher, M. R. Billah, T. Hoose, P.-I. Dietrich, A. Hofmann, S. Randel, W. Freude, and C. Koos, “3D-Printed Ultra-Broadband Highly Efficient Out-of-Plane Coupler for Photonic Integrated Circuits,” Conf. Lasers Electro-Optics STh1A.1 (2018).

Bogaerts, W.

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581 (2009).
[Crossref]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’faolain, V. Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

W. Bogaerts, P. Dumon, E. Lambert, M. Fiers, S. Pathak, and A. Ribeiro, “IPKISS: A parametric design and simulation framework for silicon photonics,” 9th Int. Conf. Gr. IV Photonics2, 30–32 (2012).
[Crossref]

Bonneau, D.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Busch, K.

H. Gehring, M. Blaicher, W. Hartmann, P. Varytis, K. Busch, M. Wegener, and W. H. P. Pernice, “Low-loss fiber-to-chip couplers with ultrawide optical bandwidth,” APL Photonics 4(1), 010801 (2019).
[Crossref]

Cheng, R.

X. Guo, C. L. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light: Sci. Appl. 6, e16249 (2017).
[Crossref]

Claes, T.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’faolain, V. Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Dietrich, P.-I.

M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, and C. Koos, “Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding,” Optica 5(7), 876 (2018).
[Crossref]

M. Blaicher, M. R. Billah, T. Hoose, P.-I. Dietrich, A. Hofmann, S. Randel, W. Freude, and C. Koos, “3D-Printed Ultra-Broadband Highly Efficient Out-of-Plane Coupler for Photonic Integrated Circuits,” Conf. Lasers Electro-Optics STh1A.1 (2018).

Dumon, P.

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581 (2009).
[Crossref]

W. Bogaerts, P. Dumon, E. Lambert, M. Fiers, S. Pathak, and A. Ribeiro, “IPKISS: A parametric design and simulation framework for silicon photonics,” 9th Int. Conf. Gr. IV Photonics2, 30–32 (2012).
[Crossref]

Ezaki, M.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Fabri, A.

A. Fabri, G. J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr, “On the design of CGAL a computational geometry algorithms library,” Softw. - Pract. Exp. 30(11), 1167–1202 (2000).
[Crossref]

Fedeli, J.-M.

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581 (2009).
[Crossref]

Ferrari, S.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10(11), 727–732 (2016).
[Crossref]

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015).
[Crossref]

Fiers, M.

W. Bogaerts, P. Dumon, E. Lambert, M. Fiers, S. Pathak, and A. Ribeiro, “IPKISS: A parametric design and simulation framework for silicon photonics,” 9th Int. Conf. Gr. IV Photonics2, 30–32 (2012).
[Crossref]

Flavel, B. S.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Freude, W.

Fulbert, L.

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581 (2009).
[Crossref]

Fütterling, V.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Gabrielli, L. H.

L. H. Gabrielli, “gdspy,” https://github.com/heitzmann/gdspy .

Gaeta, A. L.

Gehring, H.

H. Gehring, M. Blaicher, W. Hartmann, P. Varytis, K. Busch, M. Wegener, and W. H. P. Pernice, “Low-loss fiber-to-chip couplers with ultrawide optical bandwidth,” APL Photonics 4(1), 010801 (2019).
[Crossref]

Giezeman, G. J.

A. Fabri, G. J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr, “On the design of CGAL a computational geometry algorithms library,” Softw. - Pract. Exp. 30(11), 1167–1202 (2000).
[Crossref]

Gillies, S.

S. Gillies and Others, “Shapely: manipulation and analysis of geometric objects,” (2007).

Gol’tsman, G.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10(11), 727–732 (2016).
[Crossref]

Goltsman, G. N.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015).
[Crossref]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
[Crossref]

Guo, X.

X. Guo, C. L. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light: Sci. Appl. 6, e16249 (2017).
[Crossref]

Hadfield, R. H.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Hartmann, W.

H. Gehring, M. Blaicher, W. Hartmann, P. Varytis, K. Busch, M. Wegener, and W. H. P. Pernice, “Low-loss fiber-to-chip couplers with ultrawide optical bandwidth,” APL Photonics 4(1), 010801 (2019).
[Crossref]

Hennrich, F.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10(11), 727–732 (2016).
[Crossref]

Hillerkuss, D.

Hofmann, A.

M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, and C. Koos, “Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding,” Optica 5(7), 876 (2018).
[Crossref]

M. Blaicher, M. R. Billah, T. Hoose, P.-I. Dietrich, A. Hofmann, S. Randel, W. Freude, and C. Koos, “3D-Printed Ultra-Broadband Highly Efficient Out-of-Plane Coupler for Photonic Integrated Circuits,” Conf. Lasers Electro-Optics STh1A.1 (2018).

Hoose, T.

M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, and C. Koos, “Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding,” Optica 5(7), 876 (2018).
[Crossref]

M. Blaicher, M. R. Billah, T. Hoose, P.-I. Dietrich, A. Hofmann, S. Randel, W. Freude, and C. Koos, “3D-Printed Ultra-Broadband Highly Efficient Out-of-Plane Coupler for Photonic Integrated Circuits,” Conf. Lasers Electro-Optics STh1A.1 (2018).

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Iizuka, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Jordan, M.

Jung, H.

X. Guo, C. L. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light: Sci. Appl. 6, e16249 (2017).
[Crossref]

Kahl, O.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10(11), 727–732 (2016).
[Crossref]

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015).
[Crossref]

Kappes, M. M.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10(11), 727–732 (2016).
[Crossref]

Kasprzak, D.

M. BŁahut and D. Kasprzak, “Multimode interference structures-properties and applications,” Opt. Appl. 34, 573–587 (2004).

Kettner, L.

A. Fabri, G. J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr, “On the design of CGAL a computational geometry algorithms library,” Softw. - Pract. Exp. 30(11), 1167–1202 (2000).
[Crossref]

Khasminskaya, S.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10(11), 727–732 (2016).
[Crossref]

Koos, C.

Korneev, A.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10(11), 727–732 (2016).
[Crossref]

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015).
[Crossref]

Kovalyuk, V.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10(11), 727–732 (2016).
[Crossref]

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015).
[Crossref]

Krupke, R.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10(11), 727–732 (2016).
[Crossref]

Lambert, E.

W. Bogaerts, P. Dumon, E. Lambert, M. Fiers, S. Pathak, and A. Ribeiro, “IPKISS: A parametric design and simulation framework for silicon photonics,” 9th Int. Conf. Gr. IV Photonics2, 30–32 (2012).
[Crossref]

Leijtens, X.

X. Leijtens, “JePPIX: the platform for Indium Phosphide-based photonics,” IET Optoelectron. 5(5), 202–206 (2011).
[Crossref]

Leuthold, J.

Levy, J. S.

Li, M.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
[Crossref]

Lindenmann, N.

Liow, T.-Y.

Lipson, M.

Luan, F.

Marin-Palomo, P.

Mark, Andrew G.

Andrew G. Mark, “gdsCAD,” https://github.com/hohlraum/gdsCAD .

Marshall, G. D.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

McCaughan, A. N.

A. N. McCaughan and K. K. Berggren, “A Superconducting-Nanowire Three-Terminal Electrothermal Device,” Nano Lett. 14(10), 5748–5753 (2014).
[Crossref]

Mehlhorn, K.

K. Mehlhorn, S. Näher, and C. Uhrig, “The LEDA platform for combinatorial and geometric computing,” in (1997), pp. 7–16.

Minaeva, O.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
[Crossref]

Moehrle, M.

Näher, S.

K. Mehlhorn, S. Näher, and C. Uhrig, “The LEDA platform for combinatorial and geometric computing,” in (1997), pp. 7–16.

Natarajan, C. M.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Nesic, A.

O’brien, J. L.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

O’faolain, L.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’faolain, V. Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Ohira, K.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Okawachi, Y.

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Panepucci, R. R.

Pathak, S.

W. Bogaerts, P. Dumon, E. Lambert, M. Fiers, S. Pathak, and A. Ribeiro, “IPKISS: A parametric design and simulation framework for silicon photonics,” 9th Int. Conf. Gr. IV Photonics2, 30–32 (2012).
[Crossref]

Pernice, W. H. P.

H. Gehring, M. Blaicher, W. Hartmann, P. Varytis, K. Busch, M. Wegener, and W. H. P. Pernice, “Low-loss fiber-to-chip couplers with ultrawide optical bandwidth,” APL Photonics 4(1), 010801 (2019).
[Crossref]

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10(11), 727–732 (2016).
[Crossref]

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015).
[Crossref]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3(1), 1893 (2013).
[Crossref]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
[Crossref]

Petykiewicz, J.

J. Petykiewicz, “fatamorgana,” https://mpxd.net/code/jan/fatamorgana .

Pyatkov, F.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10(11), 727–732 (2016).
[Crossref]

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Randel, S.

M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, and C. Koos, “Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding,” Optica 5(7), 876 (2018).
[Crossref]

M. Blaicher, M. R. Billah, T. Hoose, P.-I. Dietrich, A. Hofmann, S. Randel, W. Freude, and C. Koos, “3D-Printed Ultra-Broadband Highly Efficient Out-of-Plane Coupler for Photonic Integrated Circuits,” Conf. Lasers Electro-Optics STh1A.1 (2018).

Rarity, J. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Rath, P.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10(11), 727–732 (2016).
[Crossref]

Ribeiro, A.

W. Bogaerts, P. Dumon, E. Lambert, M. Fiers, S. Pathak, and A. Ribeiro, “IPKISS: A parametric design and simulation framework for silicon photonics,” 9th Int. Conf. Gr. IV Photonics2, 30–32 (2012).
[Crossref]

Rockstuhl, C.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10(11), 727–732 (2016).
[Crossref]

Roelkens, G.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Saha, K.

Scheerlinck, S.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’faolain, V. Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Schirra, S.

A. Fabri, G. J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr, “On the design of CGAL a computational geometry algorithms library,” Softw. - Pract. Exp. 30(11), 1167–1202 (2000).
[Crossref]

Schmogrow, R.

Schönherr, S.

A. Fabri, G. J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr, “On the design of CGAL a computational geometry algorithms library,” Softw. - Pract. Exp. 30(11), 1167–1202 (2000).
[Crossref]

Schrauwen, J.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’faolain, V. Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Schuck, C.

X. Guo, C. L. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light: Sci. Appl. 6, e16249 (2017).
[Crossref]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3(1), 1893 (2013).
[Crossref]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
[Crossref]

Sergienko, A. V.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
[Crossref]

Shum, P.

Silverstone, J. W.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Slowik, K.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10(11), 727–732 (2016).
[Crossref]

Suzuki, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Synopsys, I.

I. Synopsys, “PIC Design Suite,” https://www.synopsys.com/photonic-solutions/pic-design-suite.html .

Taillaert, D.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’faolain, V. Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Tang, H. X.

X. Guo, C. L. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light: Sci. Appl. 6, e16249 (2017).
[Crossref]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3(1), 1893 (2013).
[Crossref]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
[Crossref]

Tanner, M. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Thompson, M. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Thourhout, V.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’faolain, V. Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Troppenz, U.

Uhrig, C.

K. Mehlhorn, S. Näher, and C. Uhrig, “The LEDA platform for combinatorial and geometric computing,” in (1997), pp. 7–16.

Van Laere, F.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’faolain, V. Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Van Thourhout, D.

Varytis, P.

H. Gehring, M. Blaicher, W. Hartmann, P. Varytis, K. Busch, M. Wegener, and W. H. P. Pernice, “Low-loss fiber-to-chip couplers with ultrawide optical bandwidth,” APL Photonics 4(1), 010801 (2019).
[Crossref]

Vetter, A.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10(11), 727–732 (2016).
[Crossref]

Wegener, M.

H. Gehring, M. Blaicher, W. Hartmann, P. Varytis, K. Busch, M. Wegener, and W. H. P. Pernice, “Low-loss fiber-to-chip couplers with ultrawide optical bandwidth,” APL Photonics 4(1), 010801 (2019).
[Crossref]

Wen, Y. H.

Xiao, Z.

Yoshida, H.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Zhang, J.

Zou, C. L.

X. Guo, C. L. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light: Sci. Appl. 6, e16249 (2017).
[Crossref]

Zwiller, V.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

APL Photonics (1)

H. Gehring, M. Blaicher, W. Hartmann, P. Varytis, K. Busch, M. Wegener, and W. H. P. Pernice, “Low-loss fiber-to-chip couplers with ultrawide optical bandwidth,” APL Photonics 4(1), 010801 (2019).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Electron. Lett. (1)

P. Dumon, W. Bogaerts, R. Baets, J.-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’faolain, V. Thourhout, and R. Baets, “Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

IET Optoelectron. (1)

X. Leijtens, “JePPIX: the platform for Indium Phosphide-based photonics,” IET Optoelectron. 5(5), 202–206 (2011).
[Crossref]

Light: Sci. Appl. (1)

X. Guo, C. L. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon-pair source on a nanophotonic chip,” Light: Sci. Appl. 6, e16249 (2017).
[Crossref]

Nano Lett. (1)

A. N. McCaughan and K. K. Berggren, “A Superconducting-Nanowire Three-Terminal Electrothermal Device,” Nano Lett. 14(10), 5748–5753 (2014).
[Crossref]

Nat. Commun. (1)

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3(1), 1325 (2012).
[Crossref]

Nat. Photonics (3)

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10(11), 727–732 (2016).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2014).
[Crossref]

Opt. Appl. (1)

M. BŁahut and D. Kasprzak, “Multimode interference structures-properties and applications,” Opt. Appl. 34, 573–587 (2004).

Opt. Express (2)

Opt. Lett. (3)

Optica (1)

Sci. Rep. (2)

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015).
[Crossref]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3(1), 1893 (2013).
[Crossref]

Softw. - Pract. Exp. (1)

A. Fabri, G. J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr, “On the design of CGAL a computational geometry algorithms library,” Softw. - Pract. Exp. 30(11), 1167–1202 (2000).
[Crossref]

Other (14)

K. Mehlhorn, S. Näher, and C. Uhrig, “The LEDA platform for combinatorial and geometric computing,” in (1997), pp. 7–16.

“GEOS - Geometry Engine, Open Source,” (2018).

S. Gillies and Others, “Shapely: manipulation and analysis of geometric objects,” (2007).

L. H. Gabrielli, “gdspy,” https://github.com/heitzmann/gdspy .

Andrew G. Mark, “gdsCAD,” https://github.com/hohlraum/gdsCAD .

J. Petykiewicz, “fatamorgana,” https://mpxd.net/code/jan/fatamorgana .

Blender Foundation, “Blender,” https://www.blender.org/ .

I. Synopsys, “PIC Design Suite,” https://www.synopsys.com/photonic-solutions/pic-design-suite.html .

W. Bogaerts, P. Dumon, E. Lambert, M. Fiers, S. Pathak, and A. Ribeiro, “IPKISS: A parametric design and simulation framework for silicon photonics,” 9th Int. Conf. Gr. IV Photonics2, 30–32 (2012).
[Crossref]

Python Software Foundation, “Python Language Reference (python.org),” (2018).

“Luceda Photonics,” https://www.lucedaphotonics.com .

“GDSHelpers on Github,” https://github.com/HelgeGehring/gdshelpers .

“GDSHelpers’ documentation,” https://gdshelpers.readthedocs.io .

M. Blaicher, M. R. Billah, T. Hoose, P.-I. Dietrich, A. Hofmann, S. Randel, W. Freude, and C. Koos, “3D-Printed Ultra-Broadband Highly Efficient Out-of-Plane Coupler for Photonic Integrated Circuits,” Conf. Lasers Electro-Optics STh1A.1 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Composition of a waveguide, which is generated at a certain port (red arrow). The waveguide consists of four segments which are added successively (connecting ports are represented by green arrows). Finally, the ending port (blue arrow) of the waveguide is extracted, allowing to attach another photonic building block at the end.
Fig. 2.
Fig. 2. Concept of our design framework. (a) Individual components (surrounded by rectangles), here a ring-resonator, a y-splitter, and four grating couplers, can be placed at user-defined positions in a conceptual way. (b) Subsequently the ports (represented in (a) by circles at the edges of the parts) of the devices are connected automatically by waveguides e.g. Bezier-curves. GDSHelpers also provides capability for labelling devices as shown in the (b).
Fig. 3.
Fig. 3. Shapes of various nanophotonic splitters implemented in GDSHelpers. (a) Y-splitter. (b) 2 × 2 Multi-mode-interference-splitter (MMI). (c) Directional coupler.
Fig. 4.
Fig. 4. Conversion of a negative-tone shape for use with positive resist. The original shape of the grating coupler is inflated, to define the outer borders of the exposed area. For saving computational time and mask file size, the created shape is simplified. Finally, the original shape is subtracted and the pattern for positive resist remains.
Fig. 5.
Fig. 5. Micrographs of various fabricated devices designed using GDSHelpers. (a) SEM-Micrograph of an SNSPD. (b) In the upper part of the picture four gold contacts connected to an nTron are visible. (c) An integrated micromechanical phase shifter is shown in the center region of the picture. (d) A photonic circuit consisting of two MZIs with each containing a spiral in each arm.
Fig. 6.
Fig. 6. SEM-micrographs of nanophotonic circuitry with precision aligned 3D-polymer-structures. (a) Several devices which use 3D-polymer structures in order to couple light from a waveguide into the fiber and vice versa. (b) Nanophotonic circuitry integrated with 3D-polymer connections between planar waveguides.