Abstract

In this article, we describe a way to obtain beyond diffraction limited imaging capability behind a scattering medium using structured illumination microscopy (SIM). A scattering medium such as a ground glass diffuser or a biological material poses obstacles to image formation, let alone high resolution imaging. However, building on the work of Vellekoop et al. [Opt. Lett. 35, 1245 (2010). [CrossRef]  ] that transforms a scattering medium into a lens, we have previously demonstrated a technique to generate an array of focal spots behind a scattering medium [Opt. Express 24, 23018 (2016). [CrossRef]  ]. Using such focal spot arrays, we illuminate fluorescent beads hidden behind a scattering medium. We process the recorded fluorescence images using an SIM reconstruction algorithm to reveal images beyond the limit of resolution of the scattering lens.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Frontiers in structured illumination microscopy

Florian Ströhl and Clemens F. Kaminski
Optica 3(6) 667-677 (2016)

Structured illumination microscopy

Manish Saxena, Gangadhar Eluru, and Sai Siva Gorthi
Adv. Opt. Photon. 7(2) 241-275 (2015)

Isotropic image in structured illumination microscopy patterned with a spatial light modulator

Bo-Jui Chang, Li-Jun Chou, Yun-Ching Chang, and Su-Yu Chiang
Opt. Express 17(17) 14710-14721 (2009)

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Archiv f. mikrosk. Anatomie 9(1), 413–468 (1873).
    [Crossref]
  2. R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99(10), 2891–2928 (1999).
    [Crossref]
  3. S. W. Hell, “Fluorescence nanoscopy: Breaking the diffraction barrier by the RESOLFT concept,” GBM Annu. Fall meeting Berlin/Potsdam 2005 2005(Fall), 1142 (2005).
    [Crossref]
  4. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref]
  5. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref]
  6. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition Processing VII, J.-A. Conchello, C. J. Cogswell, A. G. Tescher, and T. Wilson, eds. (SPIE, 2000).
  7. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696 (2007).
    [Crossref]
  8. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  9. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
    [Crossref]
  10. G. Ghielmetti and C. Aegerter, “Scattered light fluorescence microscopy in three dimensions,” in Biomedical Optics and 3-D Imaging, (OSA, 2012).
  11. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
    [Crossref]
  12. I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35(8), 1245 (2010).
    [Crossref]
  13. G. Ghielmetti and C. M. Aegerter, “Direct imaging of fluorescent structures behind turbid layers,” Opt. Express 22(2), 1981 (2014).
    [Crossref]
  14. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
    [Crossref]
  15. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
    [Crossref]
  16. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
    [Crossref]
  17. J. Schneider and C. M. Aegerter, “Guide star based deconvolution for imaging behind turbid media,” J. Eur. Opt. Soc.-Rapid Publ. 14(1), 21 (2018).
    [Crossref]
  18. E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
    [Crossref]
  19. H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Speckle correlation resolution enhancement of wide-field fluorescence imaging,” Optica 2(5), 424 (2015).
    [Crossref]
  20. A. Malavalli, M. Ackermann, and C. M. Aegerter, “Structured illumination behind turbid media,” Opt. Express 24(20), 23018 (2016).
    [Crossref]
  21. I. Vellekoop and A. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281(11), 3071–3080 (2008).
    [Crossref]
  22. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson and C. J. Cogswell, eds. (SPIE, 1995).
  23. A. Malavalli, “Microscopy behind Turbid Media,” Ph.D. thesis, Physics Institute, University of Zurich (2019).
  24. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. SHORT COMMUNICATION,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref]
  25. R. Heintzmann and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, and P. M. Viallet, eds. (SPIE, 1999).
  26. S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, “Confocal microscopy with an increased detection aperture: type-b 4pi confocal microscopy,” Opt. Lett. 19(3), 222 (1994).
    [Crossref]
  27. M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905 (1997).
    [Crossref]
  28. A. Lal, C. Shan, and P. Xi, “Structured illumination microscopy image reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 22(4), 50–63 (2016).
    [Crossref]
  29. K. Wicker, O. Mandula, G. Best, R. Fiolka, and R. Heintzmann, “Phase optimisation for structured illumination microscopy,” Opt. Express 21(2), 2032 (2013).
    [Crossref]
  30. J. W. Goodman, Introduction to Fourier Optics (W.H.Freeman & Co Ltd, 2005).

2018 (1)

J. Schneider and C. M. Aegerter, “Guide star based deconvolution for imaging behind turbid media,” J. Eur. Opt. Soc.-Rapid Publ. 14(1), 21 (2018).
[Crossref]

2016 (2)

A. Lal, C. Shan, and P. Xi, “Structured illumination microscopy image reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 22(4), 50–63 (2016).
[Crossref]

A. Malavalli, M. Ackermann, and C. M. Aegerter, “Structured illumination behind turbid media,” Opt. Express 24(20), 23018 (2016).
[Crossref]

2015 (1)

2014 (2)

G. Ghielmetti and C. M. Aegerter, “Direct imaging of fluorescent structures behind turbid layers,” Opt. Express 22(2), 1981 (2014).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

2013 (1)

2012 (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

2011 (1)

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref]

2010 (3)

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35(8), 1245 (2010).
[Crossref]

2008 (1)

I. Vellekoop and A. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281(11), 3071–3080 (2008).
[Crossref]

2007 (1)

2006 (2)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

2005 (1)

S. W. Hell, “Fluorescence nanoscopy: Breaking the diffraction barrier by the RESOLFT concept,” GBM Annu. Fall meeting Berlin/Potsdam 2005 2005(Fall), 1142 (2005).
[Crossref]

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. SHORT COMMUNICATION,” J. Microsc. 198(2), 82–87 (2000).
[Crossref]

1999 (1)

R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99(10), 2891–2928 (1999).
[Crossref]

1997 (1)

1994 (1)

1988 (1)

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref]

1873 (1)

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Archiv f. mikrosk. Anatomie 9(1), 413–468 (1873).
[Crossref]

Abbe, E.

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Archiv f. mikrosk. Anatomie 9(1), 413–468 (1873).
[Crossref]

Ackermann, M.

Aegerter, C.

G. Ghielmetti and C. Aegerter, “Scattered light fluorescence microscopy in three dimensions,” in Biomedical Optics and 3-D Imaging, (OSA, 2012).

Aegerter, C. M.

Agard, D. A.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson and C. J. Cogswell, eds. (SPIE, 1995).

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition Processing VII, J.-A. Conchello, C. J. Cogswell, A. G. Tescher, and T. Wilson, eds. (SPIE, 2000).

Akbulut, D.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref]

Arridge, S. R.

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Bertolotti, J.

H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Speckle correlation resolution enhancement of wide-field fluorescence imaging,” Optica 2(5), 424 (2015).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref]

Best, G.

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Boccara, A. C.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Choe, R.

Corlu, A.

Cremer, C.

Cremer, C. G.

R. Heintzmann and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, and P. M. Viallet, eds. (SPIE, 1999).

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Dunn, R. C.

R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99(10), 2891–2928 (1999).
[Crossref]

Durduran, T.

Feng, S.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

Fiolka, R.

Freund, I.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref]

Ghielmetti, G.

G. Ghielmetti and C. M. Aegerter, “Direct imaging of fluorescent structures behind turbid layers,” Opt. Express 22(2), 1981 (2014).
[Crossref]

G. Ghielmetti and C. Aegerter, “Scattered light fluorescence microscopy in three dimensions,” in Biomedical Optics and 3-D Imaging, (OSA, 2012).

Gigan, S.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (W.H.Freeman & Co Ltd, 2005).

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. SHORT COMMUNICATION,” J. Microsc. 198(2), 82–87 (2000).
[Crossref]

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson and C. J. Cogswell, eds. (SPIE, 1995).

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition Processing VII, J.-A. Conchello, C. J. Cogswell, A. G. Tescher, and T. Wilson, eds. (SPIE, 2000).

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Heintzmann, R.

K. Wicker, O. Mandula, G. Best, R. Fiolka, and R. Heintzmann, “Phase optimisation for structured illumination microscopy,” Opt. Express 21(2), 2032 (2013).
[Crossref]

R. Heintzmann and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, and P. M. Viallet, eds. (SPIE, 1999).

Hell, S. W.

S. W. Hell, “Fluorescence nanoscopy: Breaking the diffraction barrier by the RESOLFT concept,” GBM Annu. Fall meeting Berlin/Potsdam 2005 2005(Fall), 1142 (2005).
[Crossref]

S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, “Confocal microscopy with an increased detection aperture: type-b 4pi confocal microscopy,” Opt. Lett. 19(3), 222 (1994).
[Crossref]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Juškaitis, R.

Katz, O.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Lagendijk, A.

H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Speckle correlation resolution enhancement of wide-field fluorescence imaging,” Optica 2(5), 424 (2015).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

Lal, A.

A. Lal, C. Shan, and P. Xi, “Structured illumination microscopy image reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 22(4), 50–63 (2016).
[Crossref]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Lerosey, G.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

Lindek, S.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Malavalli, A.

A. Malavalli, M. Ackermann, and C. M. Aegerter, “Structured illumination behind turbid media,” Opt. Express 24(20), 23018 (2016).
[Crossref]

A. Malavalli, “Microscopy behind Turbid Media,” Ph.D. thesis, Physics Institute, University of Zurich (2019).

Mandula, O.

Mosk, A.

I. Vellekoop and A. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281(11), 3071–3080 (2008).
[Crossref]

Mosk, A. P.

H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Speckle correlation resolution enhancement of wide-field fluorescence imaging,” Optica 2(5), 424 (2015).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

Neil, M. A. A.

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

Rosen, M. A.

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Schnall, M. D.

Schneider, J.

J. Schneider and C. M. Aegerter, “Guide star based deconvolution for imaging behind turbid media,” J. Eur. Opt. Soc.-Rapid Publ. 14(1), 21 (2018).
[Crossref]

Schweiger, M.

Sedat, J. W.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson and C. J. Cogswell, eds. (SPIE, 1995).

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition Processing VII, J.-A. Conchello, C. J. Cogswell, A. G. Tescher, and T. Wilson, eds. (SPIE, 2000).

Shan, C.

A. Lal, C. Shan, and P. Xi, “Structured illumination microscopy image reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 22(4), 50–63 (2016).
[Crossref]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Stelzer, E. H. K.

van Putten, E. G.

H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Speckle correlation resolution enhancement of wide-field fluorescence imaging,” Optica 2(5), 424 (2015).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref]

Vellekoop, I.

I. Vellekoop and A. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281(11), 3071–3080 (2008).
[Crossref]

Vellekoop, I. M.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35(8), 1245 (2010).
[Crossref]

Vos, W. L.

H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Speckle correlation resolution enhancement of wide-field fluorescence imaging,” Optica 2(5), 424 (2015).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref]

Wicker, K.

Wilson, T.

Xi, P.

A. Lal, C. Shan, and P. Xi, “Structured illumination microscopy image reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 22(4), 50–63 (2016).
[Crossref]

Yilmaz, H.

Yodh, A. G.

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Archiv f. mikrosk. Anatomie (1)

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Archiv f. mikrosk. Anatomie 9(1), 413–468 (1873).
[Crossref]

Chem. Rev. (1)

R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99(10), 2891–2928 (1999).
[Crossref]

GBM Annu. Fall meeting Berlin/Potsdam 2005 (1)

S. W. Hell, “Fluorescence nanoscopy: Breaking the diffraction barrier by the RESOLFT concept,” GBM Annu. Fall meeting Berlin/Potsdam 2005 2005(Fall), 1142 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Lal, C. Shan, and P. Xi, “Structured illumination microscopy image reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 22(4), 50–63 (2016).
[Crossref]

J. Eur. Opt. Soc.-Rapid Publ. (1)

J. Schneider and C. M. Aegerter, “Guide star based deconvolution for imaging behind turbid media,” J. Eur. Opt. Soc.-Rapid Publ. 14(1), 21 (2018).
[Crossref]

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. SHORT COMMUNICATION,” J. Microsc. 198(2), 82–87 (2000).
[Crossref]

Nat. Commun. (1)

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).
[Crossref]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Nat. Photonics (2)

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232–234 (2012).
[Crossref]

Opt. Commun. (1)

I. Vellekoop and A. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281(11), 3071–3080 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Optica (1)

Phys. Rev. Lett. (2)

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988).
[Crossref]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Science (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Other (6)

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition Processing VII, J.-A. Conchello, C. J. Cogswell, A. G. Tescher, and T. Wilson, eds. (SPIE, 2000).

G. Ghielmetti and C. Aegerter, “Scattered light fluorescence microscopy in three dimensions,” in Biomedical Optics and 3-D Imaging, (OSA, 2012).

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson and C. J. Cogswell, eds. (SPIE, 1995).

A. Malavalli, “Microscopy behind Turbid Media,” Ph.D. thesis, Physics Institute, University of Zurich (2019).

R. Heintzmann and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, and P. M. Viallet, eds. (SPIE, 1999).

J. W. Goodman, Introduction to Fourier Optics (W.H.Freeman & Co Ltd, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Figure shows a part of the experimental setup. An illumination laser is passed through a beam expander and reflected off an SLM (illumination system not shown), showing a phase mask. The thus shaped wave-front then illuminates a by a diffuser in front of a collection of fluorescent particles. These are imaged with a detection system, including the option of introducing a fluorescence filter. A scattering lens produces multiple focal spots upon adding a phase mask as shown here. The mask is raster scanned to obtain a lattice of 9by9 spots. The camera sees the focal spots when no filter is added and the fluorescent beads when a filter is added.
Fig. 2.
Fig. 2. a)Experimental PSF of the system measured from normalized intensity images of $0.5\mu m$ fluorescent beads. FWHM corresponds to roughly $860nm$ b) Normalized OTF of the system computed by FFT of a). c) and d) show the respective plot profiles of the PSF and OTF. The arrows mark the cutoff spatial frequency range of the detection system $k_{cutoff}$ along with the illumination spatial frequency $k_0$.
Fig. 3.
Fig. 3. Simulated 2D sinusoidal illumination pattern for SIM and its corresponding frequency spectrum. The spectrum shows 9 delta peaks labelled with their corresponding spatial frequencies.
Fig. 4.
Fig. 4. SIM reconstruction: a)speckle illuminated fluorescent sample scene captured using 40X objective. b) same scene as seen with a 100X objective. c) wide-field reconstructed component taken from SIM algorithm performed with 40X objective containing only the diffraction limited information thus similar to a). d) super resolution added to the wide-field component in c). This shows a clear enhancement in resolution over c). The intensity cross-sections along the dashed yellow lines are plotted for corresponding images. Vertical plots are along the slanted lines and horizontal plots are along the horizontal lines. d) clearly shows that neighbouring beads can now be resolved. The resolution enhancement in d) is comparable to that of the wide-field image in b).
Fig. 5.
Fig. 5. Widefield and SIM reconstruction spectra
Fig. 6.
Fig. 6. A plot of intensity PSF of the microscope after SIM reconstruction shows a narrowing compared to that before. For comparison the conventional widefield PSF obtained using Wiener filtering of the central unshifted component is also plotted. From these plots it is clear that the PSF is narrower due to SIM reconstruction and not due to Wiener filtering. The result corresponds to a $\approx 1.6$ fold resolution enhancement.
Fig. 7.
Fig. 7. SIM results with a smaller number of foci used in the periodic illumination (here a 5$\times$ 5 example is shown). a)Widefield image of the scene b)SIM reconstructed image a). Their corresponding plots show that b) has superior resolution than a). SIM with reduced number of foci only implies a smaller field-of-view and does not affect resolution enhancement.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = I 0 [ 1 + m cos ( k x x + ϕ x ) ] [ 1 + m cos ( k y y + ϕ y ) ] H 1 ( x , y )
D ( x , y ) = [ S ( x , y ) I ( x , y ) ] H 2 ( x , y ) + N ( x , y )
D ~ ( k x , k y ) = [ S ~ ( k x , k y ) I ~ ( k x , k y ) ] H ~ 1 ( k x , k y ) H ~ 2 ( k x , k y ) + N ~ ( k x , k y )
D ~ n ( k x , k y ) = m M n m S ~ m ( k x , k y ) H ~ 1 ( k x , k y ) H ~ 2 ( k x , k y ) + N ~ ( k x , k y ) with M n m = e x p [ 2 π i ( m x n x 3 + m y n y 3 ) ]
Noisy [ S ~ n ( k x , k y ) ] = M n m 1 [ D ~ n ( k x , k y ) ]

Metrics