Abstract

Edge detection has been widely applied in computer vision and pattern recognition. Ghost imaging (GI) based edge detection can directly obtain the edges without first requiring the object image. In this paper, we propose an efficient edge detection method based on GI, where a novel variable size Sobel operator (called the V-Sobel operator) whose coefficients are isotropic and sensitive to all directions is first designed, and then “calculated speckles” are computed by the V-Sobel operator to keep the number of measurements in the GI system unchanged with the size of V-Sobel operator. Both experimental and simulation results have demonstrated the feasibility of the proposed edge detection method. Furthermore, compared with the edges obtained by GI based edge detection by using the Sobel operator, the edges acquired by the proposed method are clearer and more continuous even under a severely noisy environment. In particular, when the detection SNR is as low as 11.89dB, the proposed method can also achieve a complete and clear edge, while the method using Sobel operator cannot.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Edge detection based on gradient ghost imaging

Xue-Feng Liu, Xu-Ri Yao, Ruo-Ming Lan, Chao Wang, and Guang-Jie Zhai
Opt. Express 23(26) 33802-33811 (2015)

Edge detection based on single-pixel imaging

Hongdou Ren, Shengmei Zhao, and Jozef Gruska
Opt. Express 26(5) 5501-5511 (2018)

High quality computational ghost imaging using multi-fluorescent screen

Hossein Ghanbari-Ghalehjoughi, Sohrab Ahmadi-Kandjani, and Mansour Eslami
J. Opt. Soc. Am. A 32(2) 323-328 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Philosophical Transactions of the Royal Society A 375, 2016 (2017).
    [Crossref]
  2. J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Information Processing 11, 949–993 (2012).
    [Crossref]
  3. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Quantum Information Processing 52(5), R3429 (1995).
  4. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Physical Review Letters 89(11), 113601 (2002).
    [Crossref]
  5. J. H. Shapiro, “Computational ghost imaging,” Physical Review A 78(6), 061802 (2008).
    [Crossref]
  6. L. Wang, S. M. Zhao, W. W. Cheng, L. Y. Gong, and H. Chen, “Optical image hiding based on computational ghost imaging,” Optics Communications 366, 314–320 (2016).
    [Crossref]
  7. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Physical Review Letters 104(25), 253603 (2010).
    [Crossref] [PubMed]
  8. B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Optics Express 20(15), 16892–16901 (2012).
    [Crossref]
  9. S. M. Zhao and P. Zhuang, “Correspondence normalized ghost imaging on compressive sensing,” Chinese Physics B 23(5), 054203 (2014).
    [Crossref]
  10. M. F. Li, Y. R. Zhang, X. F. Liu, X. R. Yao, K. H. Luo, H. Fan, and L. A. Wu, “A double-threshold technique for fast time-correspondence imaging,” Applied Physics Letters 103(21), 211119 (2013).
    [Crossref]
  11. X. Bai, Y. Q. Li, and S. M. Zhao, “Differential compressive correlated imaging,” Acta Physica Sinica 62, 44209 (2013).
  12. Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nature Communications 6, 6225 (2015).
    [Crossref] [PubMed]
  13. L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” Journal of Optics 18(8), 085704 (2016).
    [Crossref]
  14. L. Wang and S. M. Zhao, “Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform,” Photonics Research 4(6), 240–244 (2016).
    [Crossref]
  15. C. Duan, Y. F. Bai, L. L. Tang, S. Q. Nan, Q. Shen, and X. Q. Fu, “Reduction of the defocusing effect in lensless ghost imaging and ghost diffraction with cosh-Gaussian modulated incoherent sources,” Applied Optics 57, B20–B24 (2018).
    [Crossref] [PubMed]
  16. Y. Jauregui-Sanchez, P. Clemente, P. Latorre-Carmona, E. Tajahuerce, and J. Lancis, “Signal-to-noise ratio of single-pixel cameras based on photodiodes,” Applied Optics 57, B67–B73 (2018).
    [Crossref] [PubMed]
  17. P. Bao, L. Zhang, and X. Wu, “Canny edge detection enhancement by scale multiplication,” IEEE Transactions on Pattern Analysis and Machine Intelligence 27(9), 1485–1490 (2005).
    [Crossref] [PubMed]
  18. S. Yi, D. Labate, G. R. Easley, and H. Krim, “A shearlet approach to edge analysis and detection,” IEEE Transactions on Image Processing 18(5), 929–941 (2009).
    [Crossref] [PubMed]
  19. X. F. Liu, X. R. Yao, R. M. Lan, C. Wang, and G. J. Zhai, “Edge detection based on gradient ghost imaging,” Optics Express 23(26), 33802–33811 (2015).
    [Crossref]
  20. T. Mao, Q. Chen, W. He, Y. Zou, H. Dai, and G. Gu, “Speckle-Shifting Ghost Imaging,” IEEE Photonics Journal 8(4), 1–10 (2016).
  21. L. Wang, L. Zou, and S. M. Zhao, “Edge detection based on subpixel-speckle-shifting ghost imaging,” Optics Communications 407, 181–185 (2018).
    [Crossref]
  22. S. Yuan, D. Xiang, X. Liu, X. Zhou, and P. Bing, “Edge detection based on computational ghost imaging with structured illuminations,” Optics Communications 410, 350–355 (2018).
    [Crossref]
  23. H. D. Ren, S. M. Zhao, and J. Gruska, “Edge detection based on single-pixel imaging,” Optics Express 26(5), 5501–5511 (2018).
    [Crossref] [PubMed]
  24. W. Frei and C. C. Chen, “Fast Boundary Detection: A Generalized and a New Algorithm,” IEEE Transaction on Computers 100(10), 988–998 (1977).
    [Crossref]
  25. R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd ed.) (Publishing house of Electronics industry2011).
  26. W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Physics Letters A 374(8), 1005–1008 (2010)
    [Crossref]

2018 (5)

C. Duan, Y. F. Bai, L. L. Tang, S. Q. Nan, Q. Shen, and X. Q. Fu, “Reduction of the defocusing effect in lensless ghost imaging and ghost diffraction with cosh-Gaussian modulated incoherent sources,” Applied Optics 57, B20–B24 (2018).
[Crossref] [PubMed]

Y. Jauregui-Sanchez, P. Clemente, P. Latorre-Carmona, E. Tajahuerce, and J. Lancis, “Signal-to-noise ratio of single-pixel cameras based on photodiodes,” Applied Optics 57, B67–B73 (2018).
[Crossref] [PubMed]

L. Wang, L. Zou, and S. M. Zhao, “Edge detection based on subpixel-speckle-shifting ghost imaging,” Optics Communications 407, 181–185 (2018).
[Crossref]

S. Yuan, D. Xiang, X. Liu, X. Zhou, and P. Bing, “Edge detection based on computational ghost imaging with structured illuminations,” Optics Communications 410, 350–355 (2018).
[Crossref]

H. D. Ren, S. M. Zhao, and J. Gruska, “Edge detection based on single-pixel imaging,” Optics Express 26(5), 5501–5511 (2018).
[Crossref] [PubMed]

2017 (1)

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Philosophical Transactions of the Royal Society A 375, 2016 (2017).
[Crossref]

2016 (4)

L. Wang, S. M. Zhao, W. W. Cheng, L. Y. Gong, and H. Chen, “Optical image hiding based on computational ghost imaging,” Optics Communications 366, 314–320 (2016).
[Crossref]

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” Journal of Optics 18(8), 085704 (2016).
[Crossref]

L. Wang and S. M. Zhao, “Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform,” Photonics Research 4(6), 240–244 (2016).
[Crossref]

T. Mao, Q. Chen, W. He, Y. Zou, H. Dai, and G. Gu, “Speckle-Shifting Ghost Imaging,” IEEE Photonics Journal 8(4), 1–10 (2016).

2015 (2)

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nature Communications 6, 6225 (2015).
[Crossref] [PubMed]

X. F. Liu, X. R. Yao, R. M. Lan, C. Wang, and G. J. Zhai, “Edge detection based on gradient ghost imaging,” Optics Express 23(26), 33802–33811 (2015).
[Crossref]

2014 (1)

S. M. Zhao and P. Zhuang, “Correspondence normalized ghost imaging on compressive sensing,” Chinese Physics B 23(5), 054203 (2014).
[Crossref]

2013 (2)

M. F. Li, Y. R. Zhang, X. F. Liu, X. R. Yao, K. H. Luo, H. Fan, and L. A. Wu, “A double-threshold technique for fast time-correspondence imaging,” Applied Physics Letters 103(21), 211119 (2013).
[Crossref]

X. Bai, Y. Q. Li, and S. M. Zhao, “Differential compressive correlated imaging,” Acta Physica Sinica 62, 44209 (2013).

2012 (2)

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Information Processing 11, 949–993 (2012).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Optics Express 20(15), 16892–16901 (2012).
[Crossref]

2010 (2)

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Physical Review Letters 104(25), 253603 (2010).
[Crossref] [PubMed]

W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Physics Letters A 374(8), 1005–1008 (2010)
[Crossref]

2009 (1)

S. Yi, D. Labate, G. R. Easley, and H. Krim, “A shearlet approach to edge analysis and detection,” IEEE Transactions on Image Processing 18(5), 929–941 (2009).
[Crossref] [PubMed]

2008 (1)

J. H. Shapiro, “Computational ghost imaging,” Physical Review A 78(6), 061802 (2008).
[Crossref]

2005 (1)

P. Bao, L. Zhang, and X. Wu, “Canny edge detection enhancement by scale multiplication,” IEEE Transactions on Pattern Analysis and Machine Intelligence 27(9), 1485–1490 (2005).
[Crossref] [PubMed]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Physical Review Letters 89(11), 113601 (2002).
[Crossref]

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Quantum Information Processing 52(5), R3429 (1995).

1977 (1)

W. Frei and C. C. Chen, “Fast Boundary Detection: A Generalized and a New Algorithm,” IEEE Transaction on Computers 100(10), 988–998 (1977).
[Crossref]

Bai, X.

X. Bai, Y. Q. Li, and S. M. Zhao, “Differential compressive correlated imaging,” Acta Physica Sinica 62, 44209 (2013).

Bai, Y. F.

C. Duan, Y. F. Bai, L. L. Tang, S. Q. Nan, Q. Shen, and X. Q. Fu, “Reduction of the defocusing effect in lensless ghost imaging and ghost diffraction with cosh-Gaussian modulated incoherent sources,” Applied Optics 57, B20–B24 (2018).
[Crossref] [PubMed]

Bao, P.

P. Bao, L. Zhang, and X. Wu, “Canny edge detection enhancement by scale multiplication,” IEEE Transactions on Pattern Analysis and Machine Intelligence 27(9), 1485–1490 (2005).
[Crossref] [PubMed]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Physical Review Letters 89(11), 113601 (2002).
[Crossref]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Physical Review Letters 89(11), 113601 (2002).
[Crossref]

Bian, L.

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” Journal of Optics 18(8), 085704 (2016).
[Crossref]

Bing, P.

S. Yuan, D. Xiang, X. Liu, X. Zhou, and P. Bing, “Edge detection based on computational ghost imaging with structured illuminations,” Optics Communications 410, 350–355 (2018).
[Crossref]

Boyd, R. W.

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Philosophical Transactions of the Royal Society A 375, 2016 (2017).
[Crossref]

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Information Processing 11, 949–993 (2012).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Physical Review Letters 89(11), 113601 (2002).
[Crossref]

Chen, C. C.

W. Frei and C. C. Chen, “Fast Boundary Detection: A Generalized and a New Algorithm,” IEEE Transaction on Computers 100(10), 988–998 (1977).
[Crossref]

Chen, F.

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” Journal of Optics 18(8), 085704 (2016).
[Crossref]

Chen, H.

L. Wang, S. M. Zhao, W. W. Cheng, L. Y. Gong, and H. Chen, “Optical image hiding based on computational ghost imaging,” Optics Communications 366, 314–320 (2016).
[Crossref]

Chen, Q.

T. Mao, Q. Chen, W. He, Y. Zou, H. Dai, and G. Gu, “Speckle-Shifting Ghost Imaging,” IEEE Photonics Journal 8(4), 1–10 (2016).

Cheng, W. W.

L. Wang, S. M. Zhao, W. W. Cheng, L. Y. Gong, and H. Chen, “Optical image hiding based on computational ghost imaging,” Optics Communications 366, 314–320 (2016).
[Crossref]

Clemente, P.

Y. Jauregui-Sanchez, P. Clemente, P. Latorre-Carmona, E. Tajahuerce, and J. Lancis, “Signal-to-noise ratio of single-pixel cameras based on photodiodes,” Applied Optics 57, B67–B73 (2018).
[Crossref] [PubMed]

Dai, H.

T. Mao, Q. Chen, W. He, Y. Zou, H. Dai, and G. Gu, “Speckle-Shifting Ghost Imaging,” IEEE Photonics Journal 8(4), 1–10 (2016).

Dai, Q.

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” Journal of Optics 18(8), 085704 (2016).
[Crossref]

Duan, C.

C. Duan, Y. F. Bai, L. L. Tang, S. Q. Nan, Q. Shen, and X. Q. Fu, “Reduction of the defocusing effect in lensless ghost imaging and ghost diffraction with cosh-Gaussian modulated incoherent sources,” Applied Optics 57, B20–B24 (2018).
[Crossref] [PubMed]

Easley, G. R.

S. Yi, D. Labate, G. R. Easley, and H. Krim, “A shearlet approach to edge analysis and detection,” IEEE Transactions on Image Processing 18(5), 929–941 (2009).
[Crossref] [PubMed]

Edgar, M. P.

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Optics Express 20(15), 16892–16901 (2012).
[Crossref]

Fan, H.

M. F. Li, Y. R. Zhang, X. F. Liu, X. R. Yao, K. H. Luo, H. Fan, and L. A. Wu, “A double-threshold technique for fast time-correspondence imaging,” Applied Physics Letters 103(21), 211119 (2013).
[Crossref]

Ferri, F.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Physical Review Letters 104(25), 253603 (2010).
[Crossref] [PubMed]

Frei, W.

W. Frei and C. C. Chen, “Fast Boundary Detection: A Generalized and a New Algorithm,” IEEE Transaction on Computers 100(10), 988–998 (1977).
[Crossref]

Fu, X. Q.

C. Duan, Y. F. Bai, L. L. Tang, S. Q. Nan, Q. Shen, and X. Q. Fu, “Reduction of the defocusing effect in lensless ghost imaging and ghost diffraction with cosh-Gaussian modulated incoherent sources,” Applied Optics 57, B20–B24 (2018).
[Crossref] [PubMed]

Gatti, A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Physical Review Letters 104(25), 253603 (2010).
[Crossref] [PubMed]

Gong, L. Y.

L. Wang, S. M. Zhao, W. W. Cheng, L. Y. Gong, and H. Chen, “Optical image hiding based on computational ghost imaging,” Optics Communications 366, 314–320 (2016).
[Crossref]

Gong, W.

W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Physics Letters A 374(8), 1005–1008 (2010)
[Crossref]

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd ed.) (Publishing house of Electronics industry2011).

Gruska, J.

H. D. Ren, S. M. Zhao, and J. Gruska, “Edge detection based on single-pixel imaging,” Optics Express 26(5), 5501–5511 (2018).
[Crossref] [PubMed]

Gu, G.

T. Mao, Q. Chen, W. He, Y. Zou, H. Dai, and G. Gu, “Speckle-Shifting Ghost Imaging,” IEEE Photonics Journal 8(4), 1–10 (2016).

Han, S.

W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Physics Letters A 374(8), 1005–1008 (2010)
[Crossref]

He, W.

T. Mao, Q. Chen, W. He, Y. Zou, H. Dai, and G. Gu, “Speckle-Shifting Ghost Imaging,” IEEE Photonics Journal 8(4), 1–10 (2016).

Hu, X.

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” Journal of Optics 18(8), 085704 (2016).
[Crossref]

Jauregui-Sanchez, Y.

Y. Jauregui-Sanchez, P. Clemente, P. Latorre-Carmona, E. Tajahuerce, and J. Lancis, “Signal-to-noise ratio of single-pixel cameras based on photodiodes,” Applied Optics 57, B67–B73 (2018).
[Crossref] [PubMed]

Krim, H.

S. Yi, D. Labate, G. R. Easley, and H. Krim, “A shearlet approach to edge analysis and detection,” IEEE Transactions on Image Processing 18(5), 929–941 (2009).
[Crossref] [PubMed]

Labate, D.

S. Yi, D. Labate, G. R. Easley, and H. Krim, “A shearlet approach to edge analysis and detection,” IEEE Transactions on Image Processing 18(5), 929–941 (2009).
[Crossref] [PubMed]

Lan, R. M.

X. F. Liu, X. R. Yao, R. M. Lan, C. Wang, and G. J. Zhai, “Edge detection based on gradient ghost imaging,” Optics Express 23(26), 33802–33811 (2015).
[Crossref]

Lancis, J.

Y. Jauregui-Sanchez, P. Clemente, P. Latorre-Carmona, E. Tajahuerce, and J. Lancis, “Signal-to-noise ratio of single-pixel cameras based on photodiodes,” Applied Optics 57, B67–B73 (2018).
[Crossref] [PubMed]

Latorre-Carmona, P.

Y. Jauregui-Sanchez, P. Clemente, P. Latorre-Carmona, E. Tajahuerce, and J. Lancis, “Signal-to-noise ratio of single-pixel cameras based on photodiodes,” Applied Optics 57, B67–B73 (2018).
[Crossref] [PubMed]

Li, M. F.

M. F. Li, Y. R. Zhang, X. F. Liu, X. R. Yao, K. H. Luo, H. Fan, and L. A. Wu, “A double-threshold technique for fast time-correspondence imaging,” Applied Physics Letters 103(21), 211119 (2013).
[Crossref]

Li, Y. Q.

X. Bai, Y. Q. Li, and S. M. Zhao, “Differential compressive correlated imaging,” Acta Physica Sinica 62, 44209 (2013).

Liu, X.

S. Yuan, D. Xiang, X. Liu, X. Zhou, and P. Bing, “Edge detection based on computational ghost imaging with structured illuminations,” Optics Communications 410, 350–355 (2018).
[Crossref]

Liu, X. F.

X. F. Liu, X. R. Yao, R. M. Lan, C. Wang, and G. J. Zhai, “Edge detection based on gradient ghost imaging,” Optics Express 23(26), 33802–33811 (2015).
[Crossref]

M. F. Li, Y. R. Zhang, X. F. Liu, X. R. Yao, K. H. Luo, H. Fan, and L. A. Wu, “A double-threshold technique for fast time-correspondence imaging,” Applied Physics Letters 103(21), 211119 (2013).
[Crossref]

Lugiato, L. A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Physical Review Letters 104(25), 253603 (2010).
[Crossref] [PubMed]

Luo, K. H.

M. F. Li, Y. R. Zhang, X. F. Liu, X. R. Yao, K. H. Luo, H. Fan, and L. A. Wu, “A double-threshold technique for fast time-correspondence imaging,” Applied Physics Letters 103(21), 211119 (2013).
[Crossref]

Ma, X.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nature Communications 6, 6225 (2015).
[Crossref] [PubMed]

Magatti, D.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Physical Review Letters 104(25), 253603 (2010).
[Crossref] [PubMed]

Mao, T.

T. Mao, Q. Chen, W. He, Y. Zou, H. Dai, and G. Gu, “Speckle-Shifting Ghost Imaging,” IEEE Photonics Journal 8(4), 1–10 (2016).

Nan, S. Q.

C. Duan, Y. F. Bai, L. L. Tang, S. Q. Nan, Q. Shen, and X. Q. Fu, “Reduction of the defocusing effect in lensless ghost imaging and ghost diffraction with cosh-Gaussian modulated incoherent sources,” Applied Optics 57, B20–B24 (2018).
[Crossref] [PubMed]

Padgett, M. J.

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Philosophical Transactions of the Royal Society A 375, 2016 (2017).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Optics Express 20(15), 16892–16901 (2012).
[Crossref]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Quantum Information Processing 52(5), R3429 (1995).

Ren, H. D.

H. D. Ren, S. M. Zhao, and J. Gruska, “Edge detection based on single-pixel imaging,” Optics Express 26(5), 5501–5511 (2018).
[Crossref] [PubMed]

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Quantum Information Processing 52(5), R3429 (1995).

Shapiro, J. H.

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Information Processing 11, 949–993 (2012).
[Crossref]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Optics Express 20(15), 16892–16901 (2012).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Physical Review A 78(6), 061802 (2008).
[Crossref]

Shen, Q.

C. Duan, Y. F. Bai, L. L. Tang, S. Q. Nan, Q. Shen, and X. Q. Fu, “Reduction of the defocusing effect in lensless ghost imaging and ghost diffraction with cosh-Gaussian modulated incoherent sources,” Applied Optics 57, B20–B24 (2018).
[Crossref] [PubMed]

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Quantum Information Processing 52(5), R3429 (1995).

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Quantum Information Processing 52(5), R3429 (1995).

Sun, B.

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Optics Express 20(15), 16892–16901 (2012).
[Crossref]

Suo, J.

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” Journal of Optics 18(8), 085704 (2016).
[Crossref]

Tajahuerce, E.

Y. Jauregui-Sanchez, P. Clemente, P. Latorre-Carmona, E. Tajahuerce, and J. Lancis, “Signal-to-noise ratio of single-pixel cameras based on photodiodes,” Applied Optics 57, B67–B73 (2018).
[Crossref] [PubMed]

Tang, L. L.

C. Duan, Y. F. Bai, L. L. Tang, S. Q. Nan, Q. Shen, and X. Q. Fu, “Reduction of the defocusing effect in lensless ghost imaging and ghost diffraction with cosh-Gaussian modulated incoherent sources,” Applied Optics 57, B20–B24 (2018).
[Crossref] [PubMed]

Wang, C.

X. F. Liu, X. R. Yao, R. M. Lan, C. Wang, and G. J. Zhai, “Edge detection based on gradient ghost imaging,” Optics Express 23(26), 33802–33811 (2015).
[Crossref]

Wang, L.

L. Wang, L. Zou, and S. M. Zhao, “Edge detection based on subpixel-speckle-shifting ghost imaging,” Optics Communications 407, 181–185 (2018).
[Crossref]

L. Wang and S. M. Zhao, “Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform,” Photonics Research 4(6), 240–244 (2016).
[Crossref]

L. Wang, S. M. Zhao, W. W. Cheng, L. Y. Gong, and H. Chen, “Optical image hiding based on computational ghost imaging,” Optics Communications 366, 314–320 (2016).
[Crossref]

Welsh, S. S.

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Optics Express 20(15), 16892–16901 (2012).
[Crossref]

Woods, R. E.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd ed.) (Publishing house of Electronics industry2011).

Wu, L. A.

M. F. Li, Y. R. Zhang, X. F. Liu, X. R. Yao, K. H. Luo, H. Fan, and L. A. Wu, “A double-threshold technique for fast time-correspondence imaging,” Applied Physics Letters 103(21), 211119 (2013).
[Crossref]

Wu, X.

P. Bao, L. Zhang, and X. Wu, “Canny edge detection enhancement by scale multiplication,” IEEE Transactions on Pattern Analysis and Machine Intelligence 27(9), 1485–1490 (2005).
[Crossref] [PubMed]

Xiang, D.

S. Yuan, D. Xiang, X. Liu, X. Zhou, and P. Bing, “Edge detection based on computational ghost imaging with structured illuminations,” Optics Communications 410, 350–355 (2018).
[Crossref]

Yao, X. R.

X. F. Liu, X. R. Yao, R. M. Lan, C. Wang, and G. J. Zhai, “Edge detection based on gradient ghost imaging,” Optics Express 23(26), 33802–33811 (2015).
[Crossref]

M. F. Li, Y. R. Zhang, X. F. Liu, X. R. Yao, K. H. Luo, H. Fan, and L. A. Wu, “A double-threshold technique for fast time-correspondence imaging,” Applied Physics Letters 103(21), 211119 (2013).
[Crossref]

Yi, S.

S. Yi, D. Labate, G. R. Easley, and H. Krim, “A shearlet approach to edge analysis and detection,” IEEE Transactions on Image Processing 18(5), 929–941 (2009).
[Crossref] [PubMed]

Yuan, S.

S. Yuan, D. Xiang, X. Liu, X. Zhou, and P. Bing, “Edge detection based on computational ghost imaging with structured illuminations,” Optics Communications 410, 350–355 (2018).
[Crossref]

Zhai, G. J.

X. F. Liu, X. R. Yao, R. M. Lan, C. Wang, and G. J. Zhai, “Edge detection based on gradient ghost imaging,” Optics Express 23(26), 33802–33811 (2015).
[Crossref]

Zhang, L.

P. Bao, L. Zhang, and X. Wu, “Canny edge detection enhancement by scale multiplication,” IEEE Transactions on Pattern Analysis and Machine Intelligence 27(9), 1485–1490 (2005).
[Crossref] [PubMed]

Zhang, Y. R.

M. F. Li, Y. R. Zhang, X. F. Liu, X. R. Yao, K. H. Luo, H. Fan, and L. A. Wu, “A double-threshold technique for fast time-correspondence imaging,” Applied Physics Letters 103(21), 211119 (2013).
[Crossref]

Zhang, Z.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nature Communications 6, 6225 (2015).
[Crossref] [PubMed]

Zhao, S. M.

L. Wang, L. Zou, and S. M. Zhao, “Edge detection based on subpixel-speckle-shifting ghost imaging,” Optics Communications 407, 181–185 (2018).
[Crossref]

H. D. Ren, S. M. Zhao, and J. Gruska, “Edge detection based on single-pixel imaging,” Optics Express 26(5), 5501–5511 (2018).
[Crossref] [PubMed]

L. Wang and S. M. Zhao, “Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform,” Photonics Research 4(6), 240–244 (2016).
[Crossref]

L. Wang, S. M. Zhao, W. W. Cheng, L. Y. Gong, and H. Chen, “Optical image hiding based on computational ghost imaging,” Optics Communications 366, 314–320 (2016).
[Crossref]

S. M. Zhao and P. Zhuang, “Correspondence normalized ghost imaging on compressive sensing,” Chinese Physics B 23(5), 054203 (2014).
[Crossref]

X. Bai, Y. Q. Li, and S. M. Zhao, “Differential compressive correlated imaging,” Acta Physica Sinica 62, 44209 (2013).

Zhong, J.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nature Communications 6, 6225 (2015).
[Crossref] [PubMed]

Zhou, X.

S. Yuan, D. Xiang, X. Liu, X. Zhou, and P. Bing, “Edge detection based on computational ghost imaging with structured illuminations,” Optics Communications 410, 350–355 (2018).
[Crossref]

Zhuang, P.

S. M. Zhao and P. Zhuang, “Correspondence normalized ghost imaging on compressive sensing,” Chinese Physics B 23(5), 054203 (2014).
[Crossref]

Zou, L.

L. Wang, L. Zou, and S. M. Zhao, “Edge detection based on subpixel-speckle-shifting ghost imaging,” Optics Communications 407, 181–185 (2018).
[Crossref]

Zou, Y.

T. Mao, Q. Chen, W. He, Y. Zou, H. Dai, and G. Gu, “Speckle-Shifting Ghost Imaging,” IEEE Photonics Journal 8(4), 1–10 (2016).

Acta Physica Sinica (1)

X. Bai, Y. Q. Li, and S. M. Zhao, “Differential compressive correlated imaging,” Acta Physica Sinica 62, 44209 (2013).

Applied Optics (2)

C. Duan, Y. F. Bai, L. L. Tang, S. Q. Nan, Q. Shen, and X. Q. Fu, “Reduction of the defocusing effect in lensless ghost imaging and ghost diffraction with cosh-Gaussian modulated incoherent sources,” Applied Optics 57, B20–B24 (2018).
[Crossref] [PubMed]

Y. Jauregui-Sanchez, P. Clemente, P. Latorre-Carmona, E. Tajahuerce, and J. Lancis, “Signal-to-noise ratio of single-pixel cameras based on photodiodes,” Applied Optics 57, B67–B73 (2018).
[Crossref] [PubMed]

Applied Physics Letters (1)

M. F. Li, Y. R. Zhang, X. F. Liu, X. R. Yao, K. H. Luo, H. Fan, and L. A. Wu, “A double-threshold technique for fast time-correspondence imaging,” Applied Physics Letters 103(21), 211119 (2013).
[Crossref]

Chinese Physics B (1)

S. M. Zhao and P. Zhuang, “Correspondence normalized ghost imaging on compressive sensing,” Chinese Physics B 23(5), 054203 (2014).
[Crossref]

IEEE Photonics Journal (1)

T. Mao, Q. Chen, W. He, Y. Zou, H. Dai, and G. Gu, “Speckle-Shifting Ghost Imaging,” IEEE Photonics Journal 8(4), 1–10 (2016).

IEEE Transaction on Computers (1)

W. Frei and C. C. Chen, “Fast Boundary Detection: A Generalized and a New Algorithm,” IEEE Transaction on Computers 100(10), 988–998 (1977).
[Crossref]

IEEE Transactions on Image Processing (1)

S. Yi, D. Labate, G. R. Easley, and H. Krim, “A shearlet approach to edge analysis and detection,” IEEE Transactions on Image Processing 18(5), 929–941 (2009).
[Crossref] [PubMed]

IEEE Transactions on Pattern Analysis and Machine Intelligence (1)

P. Bao, L. Zhang, and X. Wu, “Canny edge detection enhancement by scale multiplication,” IEEE Transactions on Pattern Analysis and Machine Intelligence 27(9), 1485–1490 (2005).
[Crossref] [PubMed]

Journal of Optics (1)

L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” Journal of Optics 18(8), 085704 (2016).
[Crossref]

Nature Communications (1)

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nature Communications 6, 6225 (2015).
[Crossref] [PubMed]

Optics Communications (3)

L. Wang, S. M. Zhao, W. W. Cheng, L. Y. Gong, and H. Chen, “Optical image hiding based on computational ghost imaging,” Optics Communications 366, 314–320 (2016).
[Crossref]

L. Wang, L. Zou, and S. M. Zhao, “Edge detection based on subpixel-speckle-shifting ghost imaging,” Optics Communications 407, 181–185 (2018).
[Crossref]

S. Yuan, D. Xiang, X. Liu, X. Zhou, and P. Bing, “Edge detection based on computational ghost imaging with structured illuminations,” Optics Communications 410, 350–355 (2018).
[Crossref]

Optics Express (3)

H. D. Ren, S. M. Zhao, and J. Gruska, “Edge detection based on single-pixel imaging,” Optics Express 26(5), 5501–5511 (2018).
[Crossref] [PubMed]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Optics Express 20(15), 16892–16901 (2012).
[Crossref]

X. F. Liu, X. R. Yao, R. M. Lan, C. Wang, and G. J. Zhai, “Edge detection based on gradient ghost imaging,” Optics Express 23(26), 33802–33811 (2015).
[Crossref]

Philosophical Transactions of the Royal Society A (1)

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Philosophical Transactions of the Royal Society A 375, 2016 (2017).
[Crossref]

Photonics Research (1)

L. Wang and S. M. Zhao, “Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform,” Photonics Research 4(6), 240–244 (2016).
[Crossref]

Physical Review A (1)

J. H. Shapiro, “Computational ghost imaging,” Physical Review A 78(6), 061802 (2008).
[Crossref]

Physical Review Letters (2)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Physical Review Letters 89(11), 113601 (2002).
[Crossref]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Physical Review Letters 104(25), 253603 (2010).
[Crossref] [PubMed]

Physics Letters A (1)

W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Physics Letters A 374(8), 1005–1008 (2010)
[Crossref]

Quantum Information Processing (2)

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Information Processing 11, 949–993 (2012).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Quantum Information Processing 52(5), R3429 (1995).

Other (1)

R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd ed.) (Publishing house of Electronics industry2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The experimental setup for the edge detection with V-Sobel operator based on GI. DLP: Digital Light Procession.
Fig. 2
Fig. 2 The experiment and simulation results for edge detection based on ghost imaging with V-Sobel operator, where the original edges are obtained by Sobel operators on the original objects. The size of the V-Sobel template is 5 × 5.
Fig. 3
Fig. 3 The experiment and simulation comparison results for the same objects with Sobel operator and V-Sobel operator. The size of the V-Sobel template is 5 × 5.
Fig. 4
Fig. 4 The anti-noise property of different template size Sobel operator, where S N R BD is setup to 18.10dB.
Fig. 5
Fig. 5 The signal-to-noise ratio performance of edge information against S N R BD both using Sobel operator and the V-Sobel operator. The size of the V-Sobel template is 5 × 5.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

G x = ( 1 2 2 1 2 2 N 1 2 N 1 2 N 1 2 0 0 0 0 0 N 1 2 N 1 2 N 1 2 2 2 1 2 2 1 ) ,
G y = ( 1 2 0 2 1 2 2 N 1 2 0 N 1 2 N 1 2 0 N 1 2 N 1 2 0 N 1 2 2 2 1 2 0 2 1 ) ,
G x = ( 1 2 2 2 1 2 2 2 2 2 2 0 0 0 0 0 2 2 2 2 2 2 1 2 2 2 1 ) ,
G y = ( 1 2 0 2 1 2 2 0 2 2 2 2 2 0 2 2 2 2 2 0 2 2 1 2 0 2 1 ) ,
( H w , w H w , w H 0 , 0 H a , b H w , w H w , w ) ,
y a , b k = x i y j I k ( x i + a , y j + b ) T ( x i , y j ) ,
y k = a b H a , b y a , b k = a b H a , b ( x i y j I k ( x i + a , y j + b ) T ( x i , y j ) ) ,
y k = x i y j I k ( x i , y j ) ( a b H a , b T ( x i a , y j b ) ) .
T ( x i , y j ) = a b H a , b T ( x i a , y j b ) .
y k = x i y j I k ( x i , y j ) T ( x i , y j ) ,
T ( x i , y j ) = y k I k ( x i , y j ) y k I k ( x i , y j ) ,
y k = a b H a , b y a , b k = a b H a , b ( x i y j I k ( x i + a , y j + b ) T ( x i , y j ) ) = x i y j T ( x i , y j ) ( a b H a , b I k ( x i + a , y j + b ) ) = x i y j T ( x i , y j ) I k ( x i , y j ) ,
I k ( x i , y j ) = a b H a , b I k ( x i + a , y j + b ) ,
S N R = m e a n ( I e d g e ) m e a n ( I b a c k ) v a r ( I b a c k ) ,
S N R BD = 10 log 10 P o w e r S P o w e r N ,

Metrics