Abstract

Silicon nitride based photonic integrated circuits offer a wavelength operation window in the near infrared down to visible light, which makes them attractive for life science applications. However, they exhibit significantly different behavior in comparison with better-established silicon on insulator counterparts due to the lower index contrast. Among the most important building blocks in photonic integrated circuits are broadband couplers with a defined coupling ratio. We present silicon nitride broadband asymmetric directional coupler designs with 50/50 and 90/10 splitting ratios with a central wavelength of 840 nm for both TE- and TM-like polarization. We show that silicon nitride broadband asymmetric directional couplers can be designed accurately in a time efficient way by using a general implementation of the coupled mode theory. The accuracy of the coupled mode theory approach is validated with finite difference time domain simulations and confirmed with measurements of four coupler configurations.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control

Zeqin Lu, Han Yun, Yun Wang, Zhitian Chen, Fan Zhang, Nicolas A. F. Jaeger, and Lukas Chrostowski
Opt. Express 23(3) 3795-3808 (2015)

Ultracompact and broadband asymmetric directional-coupler-based mode division (de)multiplexer

Kolsoom Mehrabi and Abbas Zarifkar
J. Opt. Soc. Am. B 36(7) 1907-1913 (2019)

Broadband TE-pass slot waveguide polarizer using an asymmetrical directional coupler

Bin Ni and Jinbiao Xiao
Appl. Opt. 57(15) 4032-4038 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low loss CMOS-compatible PECVD silicon nitride waveguides and grating couplers for blue light optogenetic applications,” IEEE Photonics J. 8, 1–11 (2016).
    [Crossref]
  2. P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel, Switzerland) 17, 2088 (2017).
    [Crossref]
  3. J.-C. Tinguely, Ø. I. Helle, and B. S. Ahluwalia, “Silicon nitride waveguide platform for fluorescence microscopy of living cells,” Opt. Express 25, 27678–27690 (2017).
    [Crossref] [PubMed]
  4. A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
    [Crossref]
  5. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: A study of the effect of plasma frequency on optical properties,” Opt. Express 16, 13509 (2008).
    [Crossref] [PubMed]
  6. A. E. Kaloyeros, F. A. Jové, J. Goff, and B. Arkles, “Review—silicon nitride and silicon nitride-rich thin film technologies: Trends in deposition techniques and related applications,” ECS J. Solid State Sci. Technol. 6, P691–P714 (2017).
    [Crossref]
  7. A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J.  5, 2202809 (2013).
    [Crossref]
  8. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21, 14036–14046 (2013).
    [Crossref] [PubMed]
  9. P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
    [Crossref]
  10. G. A. Reider, Photonics: An Introduction(Springer, 2016).
    [Crossref]
  11. R. Adar, C. H. Henry, R. F. Kazarinov, R. C. Kistler, and G. R. Weber, “Adiabatic 3-dB couplers, filters, and multiplexers made with silica waveguides on silicon,” J. Light. Technol. 10, 46–50 (1992).
    [Crossref]
  12. G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband silicon-on-insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Reports 7, 7246 (2017).
    [Crossref]
  13. R. K. Gupta, S. Chandran, and B. K. Das, “Wavelength-independent directional couplers for integrated silicon photonics,” J. Light. Technol. 35, 4916–4923 (2017).
    [Crossref]
  14. K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach–Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett.  26, 1326 (1990).
    [Crossref]
  15. Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, F. Jaeger, A. Nicolas, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3806 (2015).
    [Crossref] [PubMed]
  16. Lumerical Inc. (2018).

2017 (6)

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel, Switzerland) 17, 2088 (2017).
[Crossref]

J.-C. Tinguely, Ø. I. Helle, and B. S. Ahluwalia, “Silicon nitride waveguide platform for fluorescence microscopy of living cells,” Opt. Express 25, 27678–27690 (2017).
[Crossref] [PubMed]

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

A. E. Kaloyeros, F. A. Jové, J. Goff, and B. Arkles, “Review—silicon nitride and silicon nitride-rich thin film technologies: Trends in deposition techniques and related applications,” ECS J. Solid State Sci. Technol. 6, P691–P714 (2017).
[Crossref]

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband silicon-on-insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Reports 7, 7246 (2017).
[Crossref]

R. K. Gupta, S. Chandran, and B. K. Das, “Wavelength-independent directional couplers for integrated silicon photonics,” J. Light. Technol. 35, 4916–4923 (2017).
[Crossref]

2016 (1)

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low loss CMOS-compatible PECVD silicon nitride waveguides and grating couplers for blue light optogenetic applications,” IEEE Photonics J. 8, 1–11 (2016).
[Crossref]

2015 (2)

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, F. Jaeger, A. Nicolas, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3806 (2015).
[Crossref] [PubMed]

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

2013 (2)

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J.  5, 2202809 (2013).
[Crossref]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21, 14036–14046 (2013).
[Crossref] [PubMed]

2008 (1)

1992 (1)

R. Adar, C. H. Henry, R. F. Kazarinov, R. C. Kistler, and G. R. Weber, “Adiabatic 3-dB couplers, filters, and multiplexers made with silica waveguides on silicon,” J. Light. Technol. 10, 46–50 (1992).
[Crossref]

1990 (1)

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach–Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett.  26, 1326 (1990).
[Crossref]

Adar, R.

R. Adar, C. H. Henry, R. F. Kazarinov, R. C. Kistler, and G. R. Weber, “Adiabatic 3-dB couplers, filters, and multiplexers made with silica waveguides on silicon,” J. Light. Technol. 10, 46–50 (1992).
[Crossref]

Ahluwalia, B. S.

Aimez, V.

Alemany, R.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel, Switzerland) 17, 2088 (2017).
[Crossref]

Ang, T. Y. L.

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband silicon-on-insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Reports 7, 7246 (2017).
[Crossref]

Arkles, B.

A. E. Kaloyeros, F. A. Jové, J. Goff, and B. Arkles, “Review—silicon nitride and silicon nitride-rich thin film technologies: Trends in deposition techniques and related applications,” ECS J. Solid State Sci. Technol. 6, P691–P714 (2017).
[Crossref]

Baets, R.

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low loss CMOS-compatible PECVD silicon nitride waveguides and grating couplers for blue light optogenetic applications,” IEEE Photonics J. 8, 1–11 (2016).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J.  5, 2202809 (2013).
[Crossref]

Baños, R.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel, Switzerland) 17, 2088 (2017).
[Crossref]

Bienstman, P.

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

Bois, B. Du

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low loss CMOS-compatible PECVD silicon nitride waveguides and grating couplers for blue light optogenetic applications,” IEEE Photonics J. 8, 1–11 (2016).
[Crossref]

Braeken, D.

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low loss CMOS-compatible PECVD silicon nitride waveguides and grating couplers for blue light optogenetic applications,” IEEE Photonics J. 8, 1–11 (2016).
[Crossref]

Bru, L. A.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel, Switzerland) 17, 2088 (2017).
[Crossref]

Chandran, S.

R. K. Gupta, S. Chandran, and B. K. Das, “Wavelength-independent directional couplers for integrated silicon photonics,” J. Light. Technol. 35, 4916–4923 (2017).
[Crossref]

Charette, P.

Chen, G. F. R.

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband silicon-on-insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Reports 7, 7246 (2017).
[Crossref]

Chen, Z.

Chrostowski, L.

Cirera, J. M.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel, Switzerland) 17, 2088 (2017).
[Crossref]

Claes, T.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J.  5, 2202809 (2013).
[Crossref]

Clemmen, S.

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

Das, B. K.

R. K. Gupta, S. Chandran, and B. K. Das, “Wavelength-independent directional couplers for integrated silicon photonics,” J. Light. Technol. 35, 4916–4923 (2017).
[Crossref]

Dave, U.

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

Deshpande, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J.  5, 2202809 (2013).
[Crossref]

Dhakal, A.

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J.  5, 2202809 (2013).
[Crossref]

Dhoore, S.

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

Doménech, J. D.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel, Switzerland) 17, 2088 (2017).
[Crossref]

Domínguez, C.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel, Switzerland) 17, 2088 (2017).
[Crossref]

DuBois, B.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J.  5, 2202809 (2013).
[Crossref]

Fernández, J.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel, Switzerland) 17, 2088 (2017).
[Crossref]

Finkelstein, H.

Gargallo, B.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel, Switzerland) 17, 2088 (2017).
[Crossref]

Gielen, G.

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low loss CMOS-compatible PECVD silicon nitride waveguides and grating couplers for blue light optogenetic applications,” IEEE Photonics J. 8, 1–11 (2016).
[Crossref]

Goff, J.

A. E. Kaloyeros, F. A. Jové, J. Goff, and B. Arkles, “Review—silicon nitride and silicon nitride-rich thin film technologies: Trends in deposition techniques and related applications,” ECS J. Solid State Sci. Technol. 6, P691–P714 (2017).
[Crossref]

Gorin, A.

Grondin, E.

Gupta, R. K.

R. K. Gupta, S. Chandran, and B. K. Das, “Wavelength-independent directional couplers for integrated silicon photonics,” J. Light. Technol. 35, 4916–4923 (2017).
[Crossref]

Hainberger, R.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Helin, P.

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low loss CMOS-compatible PECVD silicon nitride waveguides and grating couplers for blue light optogenetic applications,” IEEE Photonics J. 8, 1–11 (2016).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J.  5, 2202809 (2013).
[Crossref]

Helle, Ø. I.

Henry, C. H.

R. Adar, C. H. Henry, R. F. Kazarinov, R. C. Kistler, and G. R. Weber, “Adiabatic 3-dB couplers, filters, and multiplexers made with silica waveguides on silicon,” J. Light. Technol. 10, 46–50 (1992).
[Crossref]

Hermans, A.

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

Hoffman, L.

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low loss CMOS-compatible PECVD silicon nitride waveguides and grating couplers for blue light optogenetic applications,” IEEE Photonics J. 8, 1–11 (2016).
[Crossref]

Jaeger, F.

Jansen, R.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J.  5, 2202809 (2013).
[Crossref]

Jaouad, A.

Jinguji, K.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach–Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett.  26, 1326 (1990).
[Crossref]

Jové, F. A.

A. E. Kaloyeros, F. A. Jové, J. Goff, and B. Arkles, “Review—silicon nitride and silicon nitride-rich thin film technologies: Trends in deposition techniques and related applications,” ECS J. Solid State Sci. Technol. 6, P691–P714 (2017).
[Crossref]

Kaloyeros, A. E.

A. E. Kaloyeros, F. A. Jové, J. Goff, and B. Arkles, “Review—silicon nitride and silicon nitride-rich thin film technologies: Trends in deposition techniques and related applications,” ECS J. Solid State Sci. Technol. 6, P691–P714 (2017).
[Crossref]

Kawachi, M.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach–Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett.  26, 1326 (1990).
[Crossref]

Kazarinov, R. F.

R. Adar, C. H. Henry, R. F. Kazarinov, R. C. Kistler, and G. R. Weber, “Adiabatic 3-dB couplers, filters, and multiplexers made with silica waveguides on silicon,” J. Light. Technol. 10, 46–50 (1992).
[Crossref]

Kistler, R. C.

R. Adar, C. H. Henry, R. F. Kazarinov, R. C. Kistler, and G. R. Weber, “Adiabatic 3-dB couplers, filters, and multiplexers made with silica waveguides on silicon,” J. Light. Technol. 10, 46–50 (1992).
[Crossref]

Koppitsch, G.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Kraft, J.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Kuyken, B.

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

Leyssens, K.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J.  5, 2202809 (2013).
[Crossref]

Li, Y.

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

Lim, S. T.

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband silicon-on-insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Reports 7, 7246 (2017).
[Crossref]

Lu, Z.

Mas, R.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel, Switzerland) 17, 2088 (2017).
[Crossref]

Melnik, E.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Merget, F.

Micó, G.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel, Switzerland) 17, 2088 (2017).
[Crossref]

Muellner, P.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Muneeb, M.

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

Muñoz, P.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel, Switzerland) 17, 2088 (2017).
[Crossref]

Neutens, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J.  5, 2202809 (2013).
[Crossref]

Nicolas, A.

Ong, J. R.

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband silicon-on-insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Reports 7, 7246 (2017).
[Crossref]

Pastor, D.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel, Switzerland) 17, 2088 (2017).
[Crossref]

Pérez, D.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel, Switzerland) 17, 2088 (2017).
[Crossref]

Peyskens, F.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J.  5, 2202809 (2013).
[Crossref]

Png, C. E.

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband silicon-on-insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Reports 7, 7246 (2017).
[Crossref]

Puers, R.

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low loss CMOS-compatible PECVD silicon nitride waveguides and grating couplers for blue light optogenetic applications,” IEEE Photonics J. 8, 1–11 (2016).
[Crossref]

Rahim, A.

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

Raza, A.

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

Reider, G. A.

G. A. Reider, Photonics: An Introduction(Springer, 2016).
[Crossref]

Roelkens, G.

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

Romero-García, S.

Rottenberg, X.

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J.  5, 2202809 (2013).
[Crossref]

Ryckeboer, E.

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

Sánchez, A. M.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel, Switzerland) 17, 2088 (2017).
[Crossref]

Schrank, F.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Selvaraja, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J.  5, 2202809 (2013).
[Crossref]

Severi, S.

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J.  5, 2202809 (2013).
[Crossref]

Subramanian, A.

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low loss CMOS-compatible PECVD silicon nitride waveguides and grating couplers for blue light optogenetic applications,” IEEE Photonics J. 8, 1–11 (2016).
[Crossref]

Subramanian, A. Z.

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J.  5, 2202809 (2013).
[Crossref]

Sugita, A.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach–Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett.  26, 1326 (1990).
[Crossref]

Takato, N.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach–Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett.  26, 1326 (1990).
[Crossref]

Tan, D. T. H.

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband silicon-on-insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Reports 7, 7246 (2017).
[Crossref]

Thomas, N. Le

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

Thourhout, D. van

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

Tinguely, J.-C.

van Dorpe, P.

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low loss CMOS-compatible PECVD silicon nitride waveguides and grating couplers for blue light optogenetic applications,” IEEE Photonics J. 8, 1–11 (2016).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J.  5, 2202809 (2013).
[Crossref]

Wang, Y.

Weber, G. R.

R. Adar, C. H. Henry, R. F. Kazarinov, R. C. Kistler, and G. R. Weber, “Adiabatic 3-dB couplers, filters, and multiplexers made with silica waveguides on silicon,” J. Light. Technol. 10, 46–50 (1992).
[Crossref]

Witzens, J.

Yun, H.

Zhang, F.

Zhong, F.

ECS J. Solid State Sci. Technol. (1)

A. E. Kaloyeros, F. A. Jové, J. Goff, and B. Arkles, “Review—silicon nitride and silicon nitride-rich thin film technologies: Trends in deposition techniques and related applications,” ECS J. Solid State Sci. Technol. 6, P691–P714 (2017).
[Crossref]

Electron. Lett (1)

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach–Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett.  26, 1326 (1990).
[Crossref]

IEEE Photonics J (1)

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. DuBois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J.  5, 2202809 (2013).
[Crossref]

IEEE Photonics J. (1)

L. Hoffman, A. Subramanian, P. Helin, B. Du Bois, R. Baets, P. van Dorpe, G. Gielen, R. Puers, and D. Braeken, “Low loss CMOS-compatible PECVD silicon nitride waveguides and grating couplers for blue light optogenetic applications,” IEEE Photonics J. 8, 1–11 (2016).
[Crossref]

J. Light. Technol. (3)

A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Light. Technol. 35, 639–649 (2017).
[Crossref]

R. Adar, C. H. Henry, R. F. Kazarinov, R. C. Kistler, and G. R. Weber, “Adiabatic 3-dB couplers, filters, and multiplexers made with silica waveguides on silicon,” J. Light. Technol. 10, 46–50 (1992).
[Crossref]

R. K. Gupta, S. Chandran, and B. K. Das, “Wavelength-independent directional couplers for integrated silicon photonics,” J. Light. Technol. 35, 4916–4923 (2017).
[Crossref]

Opt. Express (4)

Procedia Eng. (1)

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Sci. Reports (1)

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband silicon-on-insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Reports 7, 7246 (2017).
[Crossref]

Sensors (Basel, Switzerland) (1)

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors (Basel, Switzerland) 17, 2088 (2017).
[Crossref]

Other (2)

G. A. Reider, Photonics: An Introduction(Springer, 2016).
[Crossref]

Lumerical Inc. (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Different implementations of MZI type directional couplers with phase shifts Δϕ induced by (a) waveguide length differences or by (b), (c) propagation constant differences.
Fig. 2
Fig. 2 (a) Top view of the chosen design. The waveguide widths were chosen to only support the fundamental mode (W0 = 0.7 µm, W1 = 0.6 µm, W2 = 0.8 µm). At the distance D2 the waveguides are sufficiently decoupled (D1 = 0.3 µm, D2 = 1.5 µm). For the calculations E1 is taken as input port with the light propagating from left to right, as indicated by the white arrow. The input, output and s-bends have a radius of 150 µm. The width of the waveguides are changed within a 1 µm long linear taper. (b) Cross section of the symmetric waveguide section of the DC.
Fig. 3
Fig. 3 Splitting ratio in percent of the optical power at the cross port ( E 2 ) for a parameter sweep of L1 and L2 from 0 µm to 30 µm for (a) TE-and (b) TM-like polarization. The red and white dots indicate the device parameters chosen for 3D FDTD simulation and fabrication. Optimization parameter Δη in percent of the splitting ratio across the bandwidth of 100 nm for (c) TE-and (d) TM-like polarization. The red and white dashed lines indicate the 50/50 and 90/10 splitting ratio, respectively.
Fig. 4
Fig. 4 Optimization parameter Δη in percent for a DC without added separation for (a) TE-and (b) TM-like polarization. The red and white dashed lines indicate the 50/50 and 90/10 splitting ratio, respectively. For TM-like polarization the mixture between coupling and phase shifts results in a significant distortion in the Δη over the wavelength bandwidth. Therefore, no adequate splitting behavior was found and a separation was added.
Fig. 5
Fig. 5 Splitting ratio behavior for 50/50 and 90/10 MZI DCs for TE- and TM-like polarization. The gray dashed line indicates the intended splitting ratio. The measured light power at the output ports was normalized to the total output power of both ports. 3D FDTD simulations and the measurements show almost identical behavior with small deviations which can be attributed to fabrication limits.
Fig. 6
Fig. 6 (a) 3D FDTD simulations of the power transfer ratio to the straight port for a 50/50 DC with a standard symmetric design and the broadband MZI design for TE and TM-like polarization. The MZI DC design significantly improves the broadband behavior compared to the standard symmetric design over a bandwidth of 100 nm. In the standard symmetric DC the distance between the coupling waveguides was set to 300 nm for the TE-like polarization, while for the TM-like polarization the distance had to be increased to 500 nm to reduce the coupling in the input and output bent sections. (b) Comparison of CMT simulation results and the measurement for the 50/50 MZI DC for TE-like polarization for the cross port. This shows that by taking into account the coupling effect in the bent and tapered sections (complete CMT), the CMT closely resembles the measurement, while omitting this effect either in the tapered sections (w/o tapers) or in both the tapered and bent sections (w/o tapers & bends) results in significant deviations.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

C = ( t i k i k t * ) exp ( i ϕ )
t = cos ( K z ) i Δ β K sin ( K z ) , k = κ K sin ( K z ) , ϕ = β ¯ z ,
β ¯ = β 1 + β 2 2 , Δ β = β 1 β 2 2 ,
β ( λ ) = 2 π λ n eff ( λ ) .
β ± = β ¯ ± K
K = [ ( Δ β ) 2 + | κ | 2 ] 1 / 2 .
Δ β coup = β + β 2 ,
κ = [ K 2 ( Δ β ) 2 ] 1 / 2 = [ ( Δ β coup ) 2 ( Δ β ) 2 ] 1 / 2 .
η cross = | E 2 | 2 | E 1 | 2 + | E 2 | 2 η straight = | E 1 | 2 | E 1 | 2 + | E 2 | 2 .
Δ η = 1 21 n = 1 21 [ η ( λ n ) η ( λ = 840 nm ) ] 2 .

Metrics