Abstract

Long term spectral and temporal stability of a recently proposed high power, continuous-wave, supercontinuum source has been characterized. The supercontinuum laser, based on telecom fibers as the nonlinear medium and delivering >35W of CW power over an octave spanning bandwidth (880 to >1900nm), was operated continuously for extended periods of time to investigate its spectral stability. The dependence of stability on various parameters such as the wavelength of pumping and output power was studied by pumping the supercontinuum at 3 different wavelengths and at 3 different output power levels. The RMS value of the difference spectrum (spectral change) was used as the metric for comparison. The spectrum was stable with <1 dB variation over a duration of 60 minutes of continuous operation. This small variation is attributed to heating of the fiber and can be further reduced by properly heat sinking the fiber. When the fiber was cooled down to ambient temperature during power cycling tests, the change in spectrum was ~0.4dB. The supercontinuum output power fluctuations were characterized using a fast photo detector and was measured to be within ± 3% in nanosecond time-scales. The stability measured by these experiments demonstrates the efficacy of the source for a variety of applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-power continuous-wave supercontinuum generation in highly nonlinear fibers pumped with high-order cascaded Raman fiber amplifiers

Vishal Choudhury, S. Arun, Roopa Prakash, and V. R. Supradeepa
Appl. Opt. 57(21) 5978-5982 (2018)

High power, high efficiency, continuous-wave supercontinuum generation using standard telecom fibers

S. Arun, Vishal Choudhury, V. Balaswamy, Roopa Prakash, and V. R. Supradeepa
Opt. Express 26(7) 7979-7984 (2018)

High-power mid-infrared supercontinuum laser source using fluorotellurite fiber

Chuanfei Yao, Zhixu Jia, Zhenrui Li, Shijie Jia, Zhipeng Zhao, Lei Zhang, Yan Feng, Guanshi Qin, Yasutake Ohishi, and Weiping Qin
Optica 5(10) 1264-1270 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [Crossref] [PubMed]
  2. D. M. Owen, E. Auksorius, H. B. Manning, C. B. Talbot, P. A. A. de Beule, C. Dunsby, M. A. A. Neil, and P. M. W. French, “Excitation-resolved hyperspectral fluorescence lifetime imaging using a UV-extended supercontinuum source,” Opt. Lett. 32(23), 3408–3410 (2007).
    [Crossref] [PubMed]
  3. P.-L. Hsiung, Y. Chen, T. Ko, J. Fujimoto, C. de Matos, S. Popov, J. Taylor, and V. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Opt. Express 12(22), 5287–5295 (2004).
    [Crossref] [PubMed]
  4. T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1Tbit/s (100 Gbit/sx10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32(10), 906–907 (1996).
    [Crossref]
  5. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16(19), 14435–14447 (2008).
    [Crossref] [PubMed]
  6. S. Coen, A. H. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26(17), 1356–1358 (2001).
    [Crossref] [PubMed]
  7. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Opt. Express 10(20), 1083–1098 (2002).
    [Crossref] [PubMed]
  8. A. Jin, H. Zhou, X. Zhou, J. Hou, and Z. Jiang, “High-power ultraflat near-infrared supercontinuum generation pumped by a continuous amplified spontaneous emission source,” IEEE Photonics J. 7(2), 1–9 (2015).
    [Crossref]
  9. M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, and T. Yagi, “Low-Loss and Low-Dispersion-Slope Highly Nonlinear Fibers,” J. Lightwave Technol. 23(11), 3615–3624 (2005).
    [Crossref]
  10. J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77(2-3), 211–218 (2003).
    [Crossref]
  11. M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly nonlinear dispersion shifted fibers and their application to broadband wavelength converter,” Opt. Fiber Technol. Mater. Devices Syst. 4(2), 204–214 (1998).
    [Crossref]
  12. G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K. M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express 19(20), 19104–19113 (2011).
    [Crossref] [PubMed]
  13. A. K. Abeeluck and C. Headley, “Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation,” Opt. Lett. 30(1), 61–63 (2005).
    [Crossref] [PubMed]
  14. B. H. Chapman, S. V. Popov, and R. Taylor, “Continuous wave supercontinuum generation through pumping in the normal dispersion region for spectral flatness,” IEEE Photonics Technol. Lett. 24(15), 1325–1327 (2012).
    [Crossref]
  15. V. Choudhury, S. Arun, R. Prakash, and V. R. Supradeepa, “High-power continuous-wave supercontinuum generation in highly nonlinear fibers pumped with high-order cascaded Raman fiber amplifiers,” Appl. Opt. 57(21), 5978–5982 (2018).
    [Crossref] [PubMed]
  16. A. K. Abeeluck, C. Headley, and C. G. Jørgensen, “High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser,” Opt. Lett. 29(18), 2163–2165 (2004).
    [Crossref] [PubMed]
  17. S. Arun, V. Choudhury, V. Balaswamy, R. Prakash, and V. R. Supradeepa, “High power, high efficiency, continuous-wave supercontinuum generation using standard telecom fibers,” Opt. Express 26(7), 7979–7984 (2018).
    [Crossref] [PubMed]
  18. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  19. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  20. S. A. Babin, I. D. Vatnik, A. Yu. Laptev, M. M. Bubnov, and E. M. Dianov, “High-efficiency cascaded Raman fiber laser with random distributed feedback,” Opt. Express 22(21), 24929–24934 (2014).
    [Crossref] [PubMed]
  21. L. Zhang, H. Jiang, X. Yang, W. Pan, and Y. Feng, “Ultra-wide wavelength tuning of a cascaded Raman random fiber laser,” Opt. Lett. 41(2), 215–218 (2016).
    [Crossref] [PubMed]
  22. S. Arun, V. Balaswamy, S. Aparanji, and V. R. Supradeepa, “High power, grating-free, cascaded Raman fiber lasers,” 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 2017, pp. 1–1.
  23. V. Balaswamy, S. Arun, S. Aparanji, V. Choudhury, and V. R. Supradeepa, “High-power, fixed, and tunable wavelength, grating-free cascaded Raman fiber lasers,” Opt. Lett. 43(7), 1574–1577 (2018).
    [Crossref] [PubMed]
  24. V. R. Supradeepa, Y. Feng, and J. W. Nicholson, “Raman fiber lasers,” J. Opt. 19(2), 023001 (2017).
    [Crossref]
  25. V. Balaswamy, S. Aparanji, G. Chayran, and V. R. Supradeepa, “Tunable wavelength, tunable linewidth, high power ytterbium doped fiber laser,” in 13th International Conference on Fiber Optics and Photonics, OSA Technical Digest (online) (Optical Society of America 2016), paper Tu3E.4. (2016).
    [Crossref]
  26. S. Arun, V. Choudhury, V. Balaswamy, and V. R. Supradeepa, “Power Combined, Octave-spanning, CW Supercontinuum using Standard Telecom Fiber with Output Power of 70W,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2018), paper SM1K.5.
  27. S. Martin-Lopez, M. Gonzalez-Herraez, P. Corredera, M. L. Hernanz, A. Carrasco, and J. A. Mendez, “Temperature effects on supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 267(1), 193–196 (2006).
    [Crossref]
  28. Y. Imai and K. Mizuta, “Measurements of thermal effects on four-photon mixing conversion efficiency in an optical fiber,” Opt. Lett. 25(19), 1412–1414 (2000).
    [Crossref] [PubMed]
  29. T. Kato, Y. Koyano, and M. Nishimura, “Temperature dependence of chromatic dispersion in various types of optical fiber,” Opt. Lett. 25(16), 1156–1158 (2000).
    [Crossref] [PubMed]
  30. G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
    [Crossref]
  31. S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Temperature-dependent gain and noise in fiber Raman amplifiers,” Opt. Lett. 24(24), 1823–1825 (1999).
    [Crossref] [PubMed]
  32. A. K. Abeeluck and C. Headley, “Supercontinuum growth in a highly nonlinear fiber with a low coherence semiconductor laser diode,” Appl. Phys. Lett. 85(21), 4863–4865 (2004).
    [Crossref]
  33. F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13(17), 6615–6625 (2005).
    [Crossref] [PubMed]
  34. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, “Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers,” Opt. Express 12(13), 2838–2843 (2004).
    [Crossref] [PubMed]
  35. D. Anderson, L. Helczynski-Wolf, M. Lisak, and V. Semenov, “Features of modulational instability of partially coherent light: Importance of the incoherence spectrum,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 025601 (2004).
    [Crossref] [PubMed]
  36. R. Prakash, V. Choudhury, S. Arun, and V. R. Supradeepa, “Low power generation of equalized broadband CW supercontinua using a novel technique incorporating modulation instability of line broadened pump,” Proc. SPIE 10528, 1052817 (2018).

2018 (4)

2017 (1)

V. R. Supradeepa, Y. Feng, and J. W. Nicholson, “Raman fiber lasers,” J. Opt. 19(2), 023001 (2017).
[Crossref]

2016 (1)

2015 (1)

A. Jin, H. Zhou, X. Zhou, J. Hou, and Z. Jiang, “High-power ultraflat near-infrared supercontinuum generation pumped by a continuous amplified spontaneous emission source,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

2014 (1)

2012 (1)

B. H. Chapman, S. V. Popov, and R. Taylor, “Continuous wave supercontinuum generation through pumping in the normal dispersion region for spectral flatness,” IEEE Photonics Technol. Lett. 24(15), 1325–1327 (2012).
[Crossref]

2011 (1)

2008 (1)

2007 (1)

2006 (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

S. Martin-Lopez, M. Gonzalez-Herraez, P. Corredera, M. L. Hernanz, A. Carrasco, and J. A. Mendez, “Temperature effects on supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 267(1), 193–196 (2006).
[Crossref]

2005 (3)

2004 (5)

2003 (1)

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77(2-3), 211–218 (2003).
[Crossref]

2002 (1)

2001 (1)

2000 (3)

1999 (1)

1998 (1)

M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly nonlinear dispersion shifted fibers and their application to broadband wavelength converter,” Opt. Fiber Technol. Mater. Devices Syst. 4(2), 204–214 (1998).
[Crossref]

1996 (1)

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1Tbit/s (100 Gbit/sx10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32(10), 906–907 (1996).
[Crossref]

1994 (1)

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Abeeluck, A. K.

A. K. Abeeluck and C. Headley, “Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation,” Opt. Lett. 30(1), 61–63 (2005).
[Crossref] [PubMed]

A. K. Abeeluck, C. Headley, and C. G. Jørgensen, “High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser,” Opt. Lett. 29(18), 2163–2165 (2004).
[Crossref] [PubMed]

A. K. Abeeluck and C. Headley, “Supercontinuum growth in a highly nonlinear fiber with a low coherence semiconductor laser diode,” Appl. Phys. Lett. 85(21), 4863–4865 (2004).
[Crossref]

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77(2-3), 211–218 (2003).
[Crossref]

Abramski, K. M.

Akasaka, N.

M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly nonlinear dispersion shifted fibers and their application to broadband wavelength converter,” Opt. Fiber Technol. Mater. Devices Syst. 4(2), 204–214 (1998).
[Crossref]

Anderson, D.

D. Anderson, L. Helczynski-Wolf, M. Lisak, and V. Semenov, “Features of modulational instability of partially coherent light: Importance of the incoherence spectrum,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 025601 (2004).
[Crossref] [PubMed]

Antonczak, A.

Aparanji, S.

Arun, S.

Auksorius, E.

Babin, S. A.

Balaswamy, V.

Broeng, J.

Bubnov, M. M.

Carrasco, A.

S. Martin-Lopez, M. Gonzalez-Herraez, P. Corredera, M. L. Hernanz, A. Carrasco, and J. A. Mendez, “Temperature effects on supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 267(1), 193–196 (2006).
[Crossref]

Chapman, B. H.

B. H. Chapman, S. V. Popov, and R. Taylor, “Continuous wave supercontinuum generation through pumping in the normal dispersion region for spectral flatness,” IEEE Photonics Technol. Lett. 24(15), 1325–1327 (2012).
[Crossref]

Chau, A. H.

Chen, Y.

Chernikov, S. V.

Choudhury, V.

Coen, S.

Corredera, P.

S. Martin-Lopez, M. Gonzalez-Herraez, P. Corredera, M. L. Hernanz, A. Carrasco, and J. A. Mendez, “Temperature effects on supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 267(1), 193–196 (2006).
[Crossref]

Cumberland, B. A.

de Beule, P. A. A.

de Matos, C.

Dianov, E. M.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dunsby, C.

Endo, M.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Feng, Y.

Finot, C.

French, P. M. W.

Fujimoto, J.

Gapontsev, V.

Genty, G.

Ghosh, G.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Gonzalez-Herraez, M.

S. Martin-Lopez, M. Gonzalez-Herraez, P. Corredera, M. L. Hernanz, A. Carrasco, and J. A. Mendez, “Temperature effects on supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 267(1), 193–196 (2006).
[Crossref]

González-Herráez, M.

Harvey, J. D.

Headley, C.

A. K. Abeeluck and C. Headley, “Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation,” Opt. Lett. 30(1), 61–63 (2005).
[Crossref] [PubMed]

A. K. Abeeluck and C. Headley, “Supercontinuum growth in a highly nonlinear fiber with a low coherence semiconductor laser diode,” Appl. Phys. Lett. 85(21), 4863–4865 (2004).
[Crossref]

A. K. Abeeluck, C. Headley, and C. G. Jørgensen, “High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser,” Opt. Lett. 29(18), 2163–2165 (2004).
[Crossref] [PubMed]

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77(2-3), 211–218 (2003).
[Crossref]

Helczynski-Wolf, L.

D. Anderson, L. Helczynski-Wolf, M. Lisak, and V. Semenov, “Features of modulational instability of partially coherent light: Importance of the incoherence spectrum,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 025601 (2004).
[Crossref] [PubMed]

Hernanz, M. L.

S. Martin-Lopez, M. Gonzalez-Herraez, P. Corredera, M. L. Hernanz, A. Carrasco, and J. A. Mendez, “Temperature effects on supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 267(1), 193–196 (2006).
[Crossref]

Hiroishi, J.

Hou, J.

A. Jin, H. Zhou, X. Zhou, J. Hou, and Z. Jiang, “High-power ultraflat near-infrared supercontinuum generation pumped by a continuous amplified spontaneous emission source,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

Hsiung, P.-L.

Imai, Y.

Ishikawa, S.

M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly nonlinear dispersion shifted fibers and their application to broadband wavelength converter,” Opt. Fiber Technol. Mater. Devices Syst. 4(2), 204–214 (1998).
[Crossref]

Iwasaki, T.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Jiang, H.

Jiang, Z.

A. Jin, H. Zhou, X. Zhou, J. Hou, and Z. Jiang, “High-power ultraflat near-infrared supercontinuum generation pumped by a continuous amplified spontaneous emission source,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

Jin, A.

A. Jin, H. Zhou, X. Zhou, J. Hou, and Z. Jiang, “High-power ultraflat near-infrared supercontinuum generation pumped by a continuous amplified spontaneous emission source,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

Jørgensen, C. G.

A. K. Abeeluck, C. Headley, and C. G. Jørgensen, “High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser,” Opt. Lett. 29(18), 2163–2165 (2004).
[Crossref] [PubMed]

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77(2-3), 211–218 (2003).
[Crossref]

Kaczmarek, P.

Kaivola, M.

Kamatani, O.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1Tbit/s (100 Gbit/sx10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32(10), 906–907 (1996).
[Crossref]

Kanamori, T.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1Tbit/s (100 Gbit/sx10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32(10), 906–907 (1996).
[Crossref]

Kashiwada, T.

M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly nonlinear dispersion shifted fibers and their application to broadband wavelength converter,” Opt. Fiber Technol. Mater. Devices Syst. 4(2), 204–214 (1998).
[Crossref]

Kato, T.

Kawanishi, S.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1Tbit/s (100 Gbit/sx10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32(10), 906–907 (1996).
[Crossref]

Knight, J. C.

Ko, T.

Koyano, Y.

Lantz, E.

Laptev, A. Yu.

Lehtonen, M.

Leonhardt, R.

Lewis, S. A. E.

Lisak, M.

D. Anderson, L. Helczynski-Wolf, M. Lisak, and V. Semenov, “Features of modulational instability of partially coherent light: Importance of the incoherence spectrum,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 025601 (2004).
[Crossref] [PubMed]

Ludvigsen, H.

Maillotte, H.

Manning, H. B.

Martin-Lopez, S.

S. Martin-Lopez, M. Gonzalez-Herraez, P. Corredera, M. L. Hernanz, A. Carrasco, and J. A. Mendez, “Temperature effects on supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 267(1), 193–196 (2006).
[Crossref]

F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13(17), 6615–6625 (2005).
[Crossref] [PubMed]

Mendez, J. A.

S. Martin-Lopez, M. Gonzalez-Herraez, P. Corredera, M. L. Hernanz, A. Carrasco, and J. A. Mendez, “Temperature effects on supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 267(1), 193–196 (2006).
[Crossref]

Mizuta, K.

Morioka, T.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1Tbit/s (100 Gbit/sx10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32(10), 906–907 (1996).
[Crossref]

Mussot, A.

Neil, M. A. A.

Nicholson, J. W.

V. R. Supradeepa, Y. Feng, and J. W. Nicholson, “Raman fiber lasers,” J. Opt. 19(2), 023001 (2017).
[Crossref]

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77(2-3), 211–218 (2003).
[Crossref]

Nishimura, M.

T. Kato, Y. Koyano, and M. Nishimura, “Temperature dependence of chromatic dispersion in various types of optical fiber,” Opt. Lett. 25(16), 1156–1158 (2000).
[Crossref] [PubMed]

M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly nonlinear dispersion shifted fibers and their application to broadband wavelength converter,” Opt. Fiber Technol. Mater. Devices Syst. 4(2), 204–214 (1998).
[Crossref]

Okuno, T.

M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly nonlinear dispersion shifted fibers and their application to broadband wavelength converter,” Opt. Fiber Technol. Mater. Devices Syst. 4(2), 204–214 (1998).
[Crossref]

Onishi, M.

M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly nonlinear dispersion shifted fibers and their application to broadband wavelength converter,” Opt. Fiber Technol. Mater. Devices Syst. 4(2), 204–214 (1998).
[Crossref]

Ono, H.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1Tbit/s (100 Gbit/sx10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32(10), 906–907 (1996).
[Crossref]

Owen, D. M.

Pan, W.

Pitois, S.

Popov, S.

Popov, S. V.

B. H. Chapman, S. V. Popov, and R. Taylor, “Continuous wave supercontinuum generation through pumping in the normal dispersion region for spectral flatness,” IEEE Photonics Technol. Lett. 24(15), 1325–1327 (2012).
[Crossref]

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16(19), 14435–14447 (2008).
[Crossref] [PubMed]

Prakash, R.

Ranka, J. K.

Rulkov, A. B.

Russell, P. St. J.

Saruwatari, M.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1Tbit/s (100 Gbit/sx10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32(10), 906–907 (1996).
[Crossref]

Semenov, V.

D. Anderson, L. Helczynski-Wolf, M. Lisak, and V. Semenov, “Features of modulational instability of partially coherent light: Importance of the incoherence spectrum,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 025601 (2004).
[Crossref] [PubMed]

Sobon, G.

Sotor, J.

Stentz, A. J.

Sugizaki, R.

Supradeepa, V. R.

Sylvestre, T.

Tadakuma, M.

Takahashi, H.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1Tbit/s (100 Gbit/sx10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32(10), 906–907 (1996).
[Crossref]

Takahashi, M.

Takara, H.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1Tbit/s (100 Gbit/sx10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32(10), 906–907 (1996).
[Crossref]

Takiguchi, K.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1Tbit/s (100 Gbit/sx10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32(10), 906–907 (1996).
[Crossref]

Talbot, C. B.

Taniguchi, Y.

Taylor, J.

Taylor, J. R.

Taylor, R.

B. H. Chapman, S. V. Popov, and R. Taylor, “Continuous wave supercontinuum generation through pumping in the normal dispersion region for spectral flatness,” IEEE Photonics Technol. Lett. 24(15), 1325–1327 (2012).
[Crossref]

Travers, J. C.

Uchiyama, K.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1Tbit/s (100 Gbit/sx10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32(10), 906–907 (1996).
[Crossref]

Vanholsbeeck, F.

Vatnik, I. D.

Wadsworth, W. J.

Windeler, R. S.

Yagi, T.

Yamada, M.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1Tbit/s (100 Gbit/sx10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32(10), 906–907 (1996).
[Crossref]

Yan, M. F.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77(2-3), 211–218 (2003).
[Crossref]

Yang, X.

Zhang, L.

Zhou, H.

A. Jin, H. Zhou, X. Zhou, J. Hou, and Z. Jiang, “High-power ultraflat near-infrared supercontinuum generation pumped by a continuous amplified spontaneous emission source,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

Zhou, X.

A. Jin, H. Zhou, X. Zhou, J. Hou, and Z. Jiang, “High-power ultraflat near-infrared supercontinuum generation pumped by a continuous amplified spontaneous emission source,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77(2-3), 211–218 (2003).
[Crossref]

Appl. Phys. Lett. (1)

A. K. Abeeluck and C. Headley, “Supercontinuum growth in a highly nonlinear fiber with a low coherence semiconductor laser diode,” Appl. Phys. Lett. 85(21), 4863–4865 (2004).
[Crossref]

Electron. Lett. (1)

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1Tbit/s (100 Gbit/sx10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32(10), 906–907 (1996).
[Crossref]

IEEE Photonics J. (1)

A. Jin, H. Zhou, X. Zhou, J. Hou, and Z. Jiang, “High-power ultraflat near-infrared supercontinuum generation pumped by a continuous amplified spontaneous emission source,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. H. Chapman, S. V. Popov, and R. Taylor, “Continuous wave supercontinuum generation through pumping in the normal dispersion region for spectral flatness,” IEEE Photonics Technol. Lett. 24(15), 1325–1327 (2012).
[Crossref]

J. Lightwave Technol. (2)

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, and T. Yagi, “Low-Loss and Low-Dispersion-Slope Highly Nonlinear Fibers,” J. Lightwave Technol. 23(11), 3615–3624 (2005).
[Crossref]

J. Opt. (1)

V. R. Supradeepa, Y. Feng, and J. W. Nicholson, “Raman fiber lasers,” J. Opt. 19(2), 023001 (2017).
[Crossref]

Opt. Commun. (1)

S. Martin-Lopez, M. Gonzalez-Herraez, P. Corredera, M. L. Hernanz, A. Carrasco, and J. A. Mendez, “Temperature effects on supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 267(1), 193–196 (2006).
[Crossref]

Opt. Express (8)

S. A. Babin, I. D. Vatnik, A. Yu. Laptev, M. M. Bubnov, and E. M. Dianov, “High-efficiency cascaded Raman fiber laser with random distributed feedback,” Opt. Express 22(21), 24929–24934 (2014).
[Crossref] [PubMed]

F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13(17), 6615–6625 (2005).
[Crossref] [PubMed]

A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, “Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers,” Opt. Express 12(13), 2838–2843 (2004).
[Crossref] [PubMed]

P.-L. Hsiung, Y. Chen, T. Ko, J. Fujimoto, C. de Matos, S. Popov, J. Taylor, and V. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Opt. Express 12(22), 5287–5295 (2004).
[Crossref] [PubMed]

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Opt. Express 10(20), 1083–1098 (2002).
[Crossref] [PubMed]

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16(19), 14435–14447 (2008).
[Crossref] [PubMed]

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K. M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express 19(20), 19104–19113 (2011).
[Crossref] [PubMed]

S. Arun, V. Choudhury, V. Balaswamy, R. Prakash, and V. R. Supradeepa, “High power, high efficiency, continuous-wave supercontinuum generation using standard telecom fibers,” Opt. Express 26(7), 7979–7984 (2018).
[Crossref] [PubMed]

Opt. Fiber Technol. Mater. Devices Syst. (1)

M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly nonlinear dispersion shifted fibers and their application to broadband wavelength converter,” Opt. Fiber Technol. Mater. Devices Syst. 4(2), 204–214 (1998).
[Crossref]

Opt. Lett. (10)

A. K. Abeeluck and C. Headley, “Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation,” Opt. Lett. 30(1), 61–63 (2005).
[Crossref] [PubMed]

A. K. Abeeluck, C. Headley, and C. G. Jørgensen, “High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser,” Opt. Lett. 29(18), 2163–2165 (2004).
[Crossref] [PubMed]

S. Coen, A. H. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26(17), 1356–1358 (2001).
[Crossref] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
[Crossref] [PubMed]

D. M. Owen, E. Auksorius, H. B. Manning, C. B. Talbot, P. A. A. de Beule, C. Dunsby, M. A. A. Neil, and P. M. W. French, “Excitation-resolved hyperspectral fluorescence lifetime imaging using a UV-extended supercontinuum source,” Opt. Lett. 32(23), 3408–3410 (2007).
[Crossref] [PubMed]

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Temperature-dependent gain and noise in fiber Raman amplifiers,” Opt. Lett. 24(24), 1823–1825 (1999).
[Crossref] [PubMed]

V. Balaswamy, S. Arun, S. Aparanji, V. Choudhury, and V. R. Supradeepa, “High-power, fixed, and tunable wavelength, grating-free cascaded Raman fiber lasers,” Opt. Lett. 43(7), 1574–1577 (2018).
[Crossref] [PubMed]

L. Zhang, H. Jiang, X. Yang, W. Pan, and Y. Feng, “Ultra-wide wavelength tuning of a cascaded Raman random fiber laser,” Opt. Lett. 41(2), 215–218 (2016).
[Crossref] [PubMed]

Y. Imai and K. Mizuta, “Measurements of thermal effects on four-photon mixing conversion efficiency in an optical fiber,” Opt. Lett. 25(19), 1412–1414 (2000).
[Crossref] [PubMed]

T. Kato, Y. Koyano, and M. Nishimura, “Temperature dependence of chromatic dispersion in various types of optical fiber,” Opt. Lett. 25(16), 1156–1158 (2000).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. Anderson, L. Helczynski-Wolf, M. Lisak, and V. Semenov, “Features of modulational instability of partially coherent light: Importance of the incoherence spectrum,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 025601 (2004).
[Crossref] [PubMed]

Proc. SPIE (1)

R. Prakash, V. Choudhury, S. Arun, and V. R. Supradeepa, “Low power generation of equalized broadband CW supercontinua using a novel technique incorporating modulation instability of line broadened pump,” Proc. SPIE 10528, 1052817 (2018).

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (4)

S. Arun, V. Balaswamy, S. Aparanji, and V. R. Supradeepa, “High power, grating-free, cascaded Raman fiber lasers,” 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 2017, pp. 1–1.

V. Balaswamy, S. Aparanji, G. Chayran, and V. R. Supradeepa, “Tunable wavelength, tunable linewidth, high power ytterbium doped fiber laser,” in 13th International Conference on Fiber Optics and Photonics, OSA Technical Digest (online) (Optical Society of America 2016), paper Tu3E.4. (2016).
[Crossref]

S. Arun, V. Choudhury, V. Balaswamy, and V. R. Supradeepa, “Power Combined, Octave-spanning, CW Supercontinuum using Standard Telecom Fiber with Output Power of 70W,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2018), paper SM1K.5.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Architecture of Supercontinuum laser (from [17]) (WDM – Wavelength division multiplexer).
Fig. 2
Fig. 2 Supercontinuum spectrum pumped by Yb laser operating at 1073nm (blue part of spectra is captured by OSA and red part of spectra is captured by mid-IR spectrometer).
Fig. 3
Fig. 3 (a) Supercontinuum output power plot (b), (c), (d) Difference spectrum plots for 1070, 1076, 1082nm pumping.
Fig. 4
Fig. 4 Supercontinuum spectrum at beginning (blue, t = 0), and ending of a continuous run (red, t = 15 min).
Fig. 5
Fig. 5 Difference spectrum during power cycling (a) after 15 min of continuous run (b) after 30 min settling period.
Fig. 6
Fig. 6 Change in (a) temperature profile of fiber spool and RMS value of the difference spectrum over time (b) RMS variation of difference spectrum after achieving the steady state fiber temperature.
Fig. 7
Fig. 7 (a) Time domain fluctuations at the output of supercontinuum (b) inset shows the fluctuations at a faster time scale.

Tables (1)

Tables Icon

Table 1 RMS Values of Difference Spectrum for Different Pump Wavelengths and Powers