Abstract

A theory of vectorial, photochemically-induced motion of matter is reported. Molecules become mobile when they are photo-selected in a gradient of light intensity. The motion occurs in the direction of the vector of the intensity gradient, and its efficiency depends on the respective orientations of the vectors of light polarization and intensity gradient. Directional motion is imparted into materials containing such smart molecules. The theory well describes experimental observations, and its application to different types of gradients and light polarization excitations is considered. The theory opens important perspectives for the transport of matter by light.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical tweezing by photomigration

Zouheir Sekkat
Appl. Opt. 55(2) 259-268 (2016)

Correlation between polymer architecture and sub-glass-transition-temperature light-induced molecular movement in azo-polyimide polymers: influence on linear and second- and third-order nonlinear optical processes

Zouheir Sekkat, Philippe Prêtre, André Knoesen, Willie Volksen, Victor Y. Lee, Robert D. Miller, Jonathan Wood, and Wolfgang Knoll
J. Opt. Soc. Am. B 15(1) 401-413 (1998)

Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain

Zouheir Sekkat, Jonathan Wood, Emil F. Aust, Wolfgang Knoll, Willi Volksen, and Robert D. Miller
J. Opt. Soc. Am. B 13(8) 1713-1724 (1996)

References

  • View by:
  • |
  • |
  • |

  1. T. Ikeda, J. Mamiya, and Y. Yu, “Photomechanics of liquid-crystalline elastomers and other polymers,” Angew. Chem. Int. Ed. Engl. 46(4), 506–528 (2007).
    [Crossref] [PubMed]
  2. J. P. Abid, M. Frigoli, R. Pansu, J. Szeftel, J. Zyss, C. Larpent, and S. Brasselet, “Light-driven directed motion of azobenzene-coated polymer nanoparticles in an aqueous medium,” Langmuir 27(13), 7967–7971 (2011).
    [Crossref] [PubMed]
  3. M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
    [Crossref] [PubMed]
  4. P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
    [Crossref]
  5. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
    [Crossref]
  6. H. Ishitobi, M. Tanabe, Z. Sekkat, and S. Kawata, “The anisotropic nanomovement of azo-polymers,” Opt. Express 15(2), 652–659 (2007).
    [Crossref] [PubMed]
  7. Z. Sekkat and S. Kawata, “Laser nanofabrication in photoresists and azopolymers,” Laser Photonics Rev. 8(1), 1–26 (2014).
    [Crossref]
  8. H. Eskandarloo, A. Kierulf, and A. Abbaspourrad, “Light-harvesting synthetic nano- and micromotors: a review,” Nanoscale 9(34), 12218–12230 (2017).
    [Crossref] [PubMed]
  9. G. J. Fang, J. E. Maclennan, Y. Yi, M. A. Glaser, M. Farrow, E. Korblova, D. M. Walba, T. E. Furtak, and N. A. Clark, “Athermal photofluidization of glasses,” Nat. Commun. 4(1), 1521 (2013).
    [Crossref] [PubMed]
  10. P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
    [Crossref] [PubMed]
  11. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: a new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23(23), 4309–4312 (1984).
    [Crossref] [PubMed]
  12. M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85(3), 351–353 (2004).
    [Crossref]
  13. A. Rahmouni, Y. Bougdid, S. Moujdi, D. V. Nesterenko, and Z. Sekkat, “Photoassisted holography in azo dye doped polymer films,” J. Phys. Chem. B 120(43), 11317–11322 (2016).
    [Crossref] [PubMed]
  14. Z. Sekkat and M. Dumont, “Photoassisted poling of azodye doped polymeric films at room temperature,” Appl. Phys. B 54(5), 486–489 (1992).
    [Crossref]
  15. Z. Sekkat and M. Dumont, “Poling of polymer films by photoisomerisation of azodye chromophores,” Mol. Cryst. Liq. Cryst. Sci. Technol. - Sec. B: Nonlinear Optics 2, 359 (1992).
  16. Z. Sekkat, J. Wood, W. Knoll, W. Volksen, R. D. Miller, and A. Knoesen, “Light induced orientation in azo-polyimide polymers 325°C below the glass transition temperature,” J. Opt. Soc. Am. B 14(4), 829–833 (1997).
    [Crossref]
  17. F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and E. Idiart, “Light-induced second-harmonic generation in azo-dye polymers,” Opt. Lett. 18(12), 941–943 (1993).
    [Crossref] [PubMed]
  18. Z. Sekkat, “Optical tweezing by photomigration,” Appl. Opt. 55(2), 259–268 (2016).
    [Crossref] [PubMed]
  19. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  20. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  21. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [Crossref] [PubMed]
  22. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
    [Crossref] [PubMed]
  23. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
    [Crossref] [PubMed]
  24. A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett. 95(16), 168102 (2005).
    [Crossref] [PubMed]
  25. N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 021914 (2007).
    [Crossref] [PubMed]
  26. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
    [Crossref] [PubMed]
  27. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17(11), 772–774 (1992).
    [Crossref] [PubMed]
  28. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express 17(7), 5743–5757 (2009).
    [Crossref] [PubMed]
  29. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
    [Crossref] [PubMed]
  30. H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo-polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
    [Crossref]
  31. Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic Press, 2002).
  32. T. Kobayashi and T. Saito, “Ultrafast dynamics in the excited of azo compounds,” in Photoreactive Organic Thin Films (Academic Press, 2002), chap. 2, pp. 49–62 .
  33. G. Tiberio, L. Muccioli, R. Berardi, and C. Zannoni, “How does the trans-cis photoisomerization of azobenzene take place in organic solvents?” ChemPhysChem 11(5), 1018–1028 (2010).
    [Crossref] [PubMed]
  34. V. Teboul, M. Saiddine, and J.-M. Nunzi, “Isomerization-induced dynamic heterogeneity in a glass former below and above T(g),” Phys. Rev. Lett. 103(26), 265701 (2009).
    [Crossref] [PubMed]
  35. V. Teboul, M. Saiddine, J.-M. Nunzi, and J.-B. Accary, “An isomerization-induced cage-breaking process in a molecular glass former below T(g),” J. Chem. Phys. 134(11), 114517 (2011).
    [Crossref] [PubMed]
  36. R. Turanský, M. Konôpka, N. L. Doltsinis, I. Stich, and D. Marx, “Optical, mechanical, and opto-mechanical switching of anchored dithioazobenzene bridges,” ChemPhysChem 11(2), 345–348 (2010).
    [Crossref] [PubMed]
  37. T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seitz, and H. E. Gaub, “Single-molecule optomechanical cycle,” Science 296(5570), 1103–1106 (2002).
    [Crossref] [PubMed]
  38. G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic Press, 1985.
  39. A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3(1), 989 (2012).
    [Crossref] [PubMed]
  40. M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2015).
    [Crossref] [PubMed]
  41. T. Grosjean and D. Courjon, “Photopolymers as vectorial sensors of the electric field,” Opt. Express 14(6), 2203–2210 (2006).
    [Crossref] [PubMed]
  42. J. A. Rodrigo and T. Alieva, “Light-driven transport of plasmonic nanoparticles on demand,” Sci. Rep. 6(1), 33729 (2016).
    [Crossref] [PubMed]
  43. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, 1994).
  44. J. J. Abbott, K. E. Peyer, M. C. Lagomarsino, L. Zhang, L. Dong, I. K. Kaliakatsos, and B. J. Nelson, “How should microrobots swim?” Int. J. Robot. Res. 28(11–12), 1434–1447 (2009).
    [Crossref]
  45. J. J. Abbott, O. Ergeneman, M. P. Kummer, A. M. Hirt, and B. J. Nelson, “Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies,” IEEE Trans. Robot. 23(6), 1247–1252 (2007).
    [Crossref]
  46. W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33(9), 1735–1748 (1994).
    [Crossref] [PubMed]
  47. M. L. Munro, X. Shen, M. Ward, P. N. Ruygrok, D. J. Crossman, and C. Soeller, “Highly variable contractile performance correlates with myocyte content in trabeculae from failing human hearts,” Sci. Rep. 8(1), 2957 (2018).
    [Crossref] [PubMed]
  48. T. Tsukagoshi, T.-V. Nguyen, K. H. Shoji, H. Takahashi, K. Matsumoto, and I. Shimoyama, “Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors,” J. Phys. D Appl. Phys. 51(14), 145401 (2018).
    [Crossref]
  49. The electric field amplitudes A1,2 of the interfering beams E1,2 are A1,2s−s=y|A1,2|,A1,2p−p=(xsin(β/2)∓zcos(β/2))|A1,2|,A1,24−+5°=(±xcos(β/2)+y+zsin(β/2))|A1,2|/√2,A1,2CLRP=(xcos(β/2)±yi∓zsin(β/2))|A1,2|/√2, and x, y, and z are the unit vectors of the Cartesian coordinates chosen for the system; A2= A1eiϕ; and ΔI, defined in the text, is ΔI=(n/2)ε0c|A1A2*|. In SI units in a medium of refractive index n, the intensity I and the field amplitude A are related by I1,2=(n/2)ε0cA1,2A1,2*. ε0 is the permittivity of free space, and c the speed of light in vacuum. A* is the complex conjugate of A.
  50. H. J. Eichler, P. Gunter, and D. W. Pohl, Laser Induced Gratings, Springer Series in Optical Sciences, vol. 50 (Springer-Verlag, 1986).
  51. N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detailed investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. 38(10), 5928–5937 (1999).
    [Crossref]
  52. B. J. Briscoe, L. Fiori, and E. Pellilo, “Nano-indentation of polymeric surfaces,” J. Phys. D Appl. Phys. 31(19), 2395–2405 (1998).
    [Crossref]
  53. R. N. Li, F. Chen, C.-H. Lam, and O. K. C. Tsui, “Viscosity of PMMA on silica: epitome of systems with strong polymer−substrate interactions,” Macromolecules 46(19), 7889–7893 (2013).
    [Crossref]

2018 (2)

M. L. Munro, X. Shen, M. Ward, P. N. Ruygrok, D. J. Crossman, and C. Soeller, “Highly variable contractile performance correlates with myocyte content in trabeculae from failing human hearts,” Sci. Rep. 8(1), 2957 (2018).
[Crossref] [PubMed]

T. Tsukagoshi, T.-V. Nguyen, K. H. Shoji, H. Takahashi, K. Matsumoto, and I. Shimoyama, “Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors,” J. Phys. D Appl. Phys. 51(14), 145401 (2018).
[Crossref]

2017 (1)

H. Eskandarloo, A. Kierulf, and A. Abbaspourrad, “Light-harvesting synthetic nano- and micromotors: a review,” Nanoscale 9(34), 12218–12230 (2017).
[Crossref] [PubMed]

2016 (3)

A. Rahmouni, Y. Bougdid, S. Moujdi, D. V. Nesterenko, and Z. Sekkat, “Photoassisted holography in azo dye doped polymer films,” J. Phys. Chem. B 120(43), 11317–11322 (2016).
[Crossref] [PubMed]

Z. Sekkat, “Optical tweezing by photomigration,” Appl. Opt. 55(2), 259–268 (2016).
[Crossref] [PubMed]

J. A. Rodrigo and T. Alieva, “Light-driven transport of plasmonic nanoparticles on demand,” Sci. Rep. 6(1), 33729 (2016).
[Crossref] [PubMed]

2015 (1)

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2015).
[Crossref] [PubMed]

2014 (2)

H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo-polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
[Crossref]

Z. Sekkat and S. Kawata, “Laser nanofabrication in photoresists and azopolymers,” Laser Photonics Rev. 8(1), 1–26 (2014).
[Crossref]

2013 (3)

G. J. Fang, J. E. Maclennan, Y. Yi, M. A. Glaser, M. Farrow, E. Korblova, D. M. Walba, T. E. Furtak, and N. A. Clark, “Athermal photofluidization of glasses,” Nat. Commun. 4(1), 1521 (2013).
[Crossref] [PubMed]

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

R. N. Li, F. Chen, C.-H. Lam, and O. K. C. Tsui, “Viscosity of PMMA on silica: epitome of systems with strong polymer−substrate interactions,” Macromolecules 46(19), 7889–7893 (2013).
[Crossref]

2012 (1)

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3(1), 989 (2012).
[Crossref] [PubMed]

2011 (2)

V. Teboul, M. Saiddine, J.-M. Nunzi, and J.-B. Accary, “An isomerization-induced cage-breaking process in a molecular glass former below T(g),” J. Chem. Phys. 134(11), 114517 (2011).
[Crossref] [PubMed]

J. P. Abid, M. Frigoli, R. Pansu, J. Szeftel, J. Zyss, C. Larpent, and S. Brasselet, “Light-driven directed motion of azobenzene-coated polymer nanoparticles in an aqueous medium,” Langmuir 27(13), 7967–7971 (2011).
[Crossref] [PubMed]

2010 (2)

R. Turanský, M. Konôpka, N. L. Doltsinis, I. Stich, and D. Marx, “Optical, mechanical, and opto-mechanical switching of anchored dithioazobenzene bridges,” ChemPhysChem 11(2), 345–348 (2010).
[Crossref] [PubMed]

G. Tiberio, L. Muccioli, R. Berardi, and C. Zannoni, “How does the trans-cis photoisomerization of azobenzene take place in organic solvents?” ChemPhysChem 11(5), 1018–1028 (2010).
[Crossref] [PubMed]

2009 (3)

V. Teboul, M. Saiddine, and J.-M. Nunzi, “Isomerization-induced dynamic heterogeneity in a glass former below and above T(g),” Phys. Rev. Lett. 103(26), 265701 (2009).
[Crossref] [PubMed]

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express 17(7), 5743–5757 (2009).
[Crossref] [PubMed]

J. J. Abbott, K. E. Peyer, M. C. Lagomarsino, L. Zhang, L. Dong, I. K. Kaliakatsos, and B. J. Nelson, “How should microrobots swim?” Int. J. Robot. Res. 28(11–12), 1434–1447 (2009).
[Crossref]

2007 (4)

J. J. Abbott, O. Ergeneman, M. P. Kummer, A. M. Hirt, and B. J. Nelson, “Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies,” IEEE Trans. Robot. 23(6), 1247–1252 (2007).
[Crossref]

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 021914 (2007).
[Crossref] [PubMed]

T. Ikeda, J. Mamiya, and Y. Yu, “Photomechanics of liquid-crystalline elastomers and other polymers,” Angew. Chem. Int. Ed. Engl. 46(4), 506–528 (2007).
[Crossref] [PubMed]

H. Ishitobi, M. Tanabe, Z. Sekkat, and S. Kawata, “The anisotropic nanomovement of azo-polymers,” Opt. Express 15(2), 652–659 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (2)

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett. 95(16), 168102 (2005).
[Crossref] [PubMed]

2004 (3)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
[Crossref] [PubMed]

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85(3), 351–353 (2004).
[Crossref]

2003 (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

2002 (2)

T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seitz, and H. E. Gaub, “Single-molecule optomechanical cycle,” Science 296(5570), 1103–1106 (2002).
[Crossref] [PubMed]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

1999 (1)

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detailed investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. 38(10), 5928–5937 (1999).
[Crossref]

1998 (1)

B. J. Briscoe, L. Fiori, and E. Pellilo, “Nano-indentation of polymeric surfaces,” J. Phys. D Appl. Phys. 31(19), 2395–2405 (1998).
[Crossref]

1997 (1)

1995 (3)

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

1994 (1)

1993 (1)

1992 (3)

Z. Sekkat and M. Dumont, “Photoassisted poling of azodye doped polymeric films at room temperature,” Appl. Phys. B 54(5), 486–489 (1992).
[Crossref]

Z. Sekkat and M. Dumont, “Poling of polymer films by photoisomerisation of azodye chromophores,” Mol. Cryst. Liq. Cryst. Sci. Technol. - Sec. B: Nonlinear Optics 2, 359 (1992).

S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17(11), 772–774 (1992).
[Crossref] [PubMed]

1986 (1)

1984 (1)

Abbaspourrad, A.

H. Eskandarloo, A. Kierulf, and A. Abbaspourrad, “Light-harvesting synthetic nano- and micromotors: a review,” Nanoscale 9(34), 12218–12230 (2017).
[Crossref] [PubMed]

Abbott, J. J.

J. J. Abbott, K. E. Peyer, M. C. Lagomarsino, L. Zhang, L. Dong, I. K. Kaliakatsos, and B. J. Nelson, “How should microrobots swim?” Int. J. Robot. Res. 28(11–12), 1434–1447 (2009).
[Crossref]

J. J. Abbott, O. Ergeneman, M. P. Kummer, A. M. Hirt, and B. J. Nelson, “Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies,” IEEE Trans. Robot. 23(6), 1247–1252 (2007).
[Crossref]

Abid, J. P.

J. P. Abid, M. Frigoli, R. Pansu, J. Szeftel, J. Zyss, C. Larpent, and S. Brasselet, “Light-driven directed motion of azobenzene-coated polymer nanoparticles in an aqueous medium,” Langmuir 27(13), 7967–7971 (2011).
[Crossref] [PubMed]

Accary, J.-B.

V. Teboul, M. Saiddine, J.-M. Nunzi, and J.-B. Accary, “An isomerization-induced cage-breaking process in a molecular glass former below T(g),” J. Chem. Phys. 134(11), 114517 (2011).
[Crossref] [PubMed]

Alieva, T.

J. A. Rodrigo and T. Alieva, “Light-driven transport of plasmonic nanoparticles on demand,” Sci. Rep. 6(1), 33729 (2016).
[Crossref] [PubMed]

Allen, L.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Ambrosio, A.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3(1), 989 (2012).
[Crossref] [PubMed]

Ashkin, A.

Balasubramanian, S.

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detailed investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. 38(10), 5928–5937 (1999).
[Crossref]

Batalla, E.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Berardi, R.

G. Tiberio, L. Muccioli, R. Berardi, and C. Zannoni, “How does the trans-cis photoisomerization of azobenzene take place in organic solvents?” ChemPhysChem 11(5), 1018–1028 (2010).
[Crossref] [PubMed]

Berns, M. W.

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Borbone, F.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3(1), 989 (2012).
[Crossref] [PubMed]

Bougdid, Y.

A. Rahmouni, Y. Bougdid, S. Moujdi, D. V. Nesterenko, and Z. Sekkat, “Photoassisted holography in azo dye doped polymer films,” J. Phys. Chem. B 120(43), 11317–11322 (2016).
[Crossref] [PubMed]

Brasselet, S.

J. P. Abid, M. Frigoli, R. Pansu, J. Szeftel, J. Zyss, C. Larpent, and S. Brasselet, “Light-driven directed motion of azobenzene-coated polymer nanoparticles in an aqueous medium,” Langmuir 27(13), 7967–7971 (2011).
[Crossref] [PubMed]

Brehmer, L.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Briscoe, B. J.

B. J. Briscoe, L. Fiori, and E. Pellilo, “Nano-indentation of polymeric surfaces,” J. Phys. D Appl. Phys. 31(19), 2395–2405 (1998).
[Crossref]

Camacho-Lopez, M.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
[Crossref] [PubMed]

Cattani, A.

T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seitz, and H. E. Gaub, “Single-molecule optomechanical cycle,” Science 296(5570), 1103–1106 (2002).
[Crossref] [PubMed]

Charra, F.

Chen, F.

R. N. Li, F. Chen, C.-H. Lam, and O. K. C. Tsui, “Viscosity of PMMA on silica: epitome of systems with strong polymer−substrate interactions,” Macromolecules 46(19), 7889–7893 (2013).
[Crossref]

Chu, S.

Clark, N. A.

G. J. Fang, J. E. Maclennan, Y. Yi, M. A. Glaser, M. Farrow, E. Korblova, D. M. Walba, T. E. Furtak, and N. A. Clark, “Athermal photofluidization of glasses,” Nat. Commun. 4(1), 1521 (2013).
[Crossref] [PubMed]

Courjon, D.

Crossman, D. J.

M. L. Munro, X. Shen, M. Ward, P. N. Ruygrok, D. J. Crossman, and C. Soeller, “Highly variable contractile performance correlates with myocyte content in trabeculae from failing human hearts,” Sci. Rep. 8(1), 2957 (2018).
[Crossref] [PubMed]

Desyatnikov, A. S.

Dholakia, K.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

Doltsinis, N. L.

R. Turanský, M. Konôpka, N. L. Doltsinis, I. Stich, and D. Marx, “Optical, mechanical, and opto-mechanical switching of anchored dithioazobenzene bridges,” ChemPhysChem 11(2), 345–348 (2010).
[Crossref] [PubMed]

Dong, L.

J. J. Abbott, K. E. Peyer, M. C. Lagomarsino, L. Zhang, L. Dong, I. K. Kaliakatsos, and B. J. Nelson, “How should microrobots swim?” Int. J. Robot. Res. 28(11–12), 1434–1447 (2009).
[Crossref]

Dumont, M.

Z. Sekkat and M. Dumont, “Photoassisted poling of azodye doped polymeric films at room temperature,” Appl. Phys. B 54(5), 486–489 (1992).
[Crossref]

Z. Sekkat and M. Dumont, “Poling of polymer films by photoisomerisation of azodye chromophores,” Mol. Cryst. Liq. Cryst. Sci. Technol. - Sec. B: Nonlinear Optics 2, 359 (1992).

Dziedzic, J. M.

Ergeneman, O.

J. J. Abbott, O. Ergeneman, M. P. Kummer, A. M. Hirt, and B. J. Nelson, “Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies,” IEEE Trans. Robot. 23(6), 1247–1252 (2007).
[Crossref]

Eskandarloo, H.

H. Eskandarloo, A. Kierulf, and A. Abbaspourrad, “Light-harvesting synthetic nano- and micromotors: a review,” Nanoscale 9(34), 12218–12230 (2017).
[Crossref] [PubMed]

Fang, G. J.

G. J. Fang, J. E. Maclennan, Y. Yi, M. A. Glaser, M. Farrow, E. Korblova, D. M. Walba, T. E. Furtak, and N. A. Clark, “Athermal photofluidization of glasses,” Nat. Commun. 4(1), 1521 (2013).
[Crossref] [PubMed]

Farrow, M.

G. J. Fang, J. E. Maclennan, Y. Yi, M. A. Glaser, M. Farrow, E. Korblova, D. M. Walba, T. E. Furtak, and N. A. Clark, “Athermal photofluidization of glasses,” Nat. Commun. 4(1), 1521 (2013).
[Crossref] [PubMed]

Ferrari, A. C.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Finkelmann, H.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
[Crossref] [PubMed]

Fiori, L.

B. J. Briscoe, L. Fiori, and E. Pellilo, “Nano-indentation of polymeric surfaces,” J. Phys. D Appl. Phys. 31(19), 2395–2405 (1998).
[Crossref]

Friese, M. E. J.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

Frigoli, M.

J. P. Abid, M. Frigoli, R. Pansu, J. Szeftel, J. Zyss, C. Larpent, and S. Brasselet, “Light-driven directed motion of azobenzene-coated polymer nanoparticles in an aqueous medium,” Langmuir 27(13), 7967–7971 (2011).
[Crossref] [PubMed]

Furtak, T. E.

G. J. Fang, J. E. Maclennan, Y. Yi, M. A. Glaser, M. Farrow, E. Korblova, D. M. Walba, T. E. Furtak, and N. A. Clark, “Athermal photofluidization of glasses,” Nat. Commun. 4(1), 1521 (2013).
[Crossref] [PubMed]

Gaub, H. E.

T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seitz, and H. E. Gaub, “Single-molecule optomechanical cycle,” Science 296(5570), 1103–1106 (2002).
[Crossref] [PubMed]

Giersig, M.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Glaser, M. A.

G. J. Fang, J. E. Maclennan, Y. Yi, M. A. Glaser, M. Farrow, E. Korblova, D. M. Walba, T. E. Furtak, and N. A. Clark, “Athermal photofluidization of glasses,” Nat. Commun. 4(1), 1521 (2013).
[Crossref] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Grosjean, T.

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Hayazawa, N.

H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo-polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
[Crossref]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

Heckenberg, N. R.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

Hirt, A. M.

J. J. Abbott, O. Ergeneman, M. P. Kummer, A. M. Hirt, and B. J. Nelson, “Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies,” IEEE Trans. Robot. 23(6), 1247–1252 (2007).
[Crossref]

Holland, N. B.

T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seitz, and H. E. Gaub, “Single-molecule optomechanical cycle,” Science 296(5570), 1103–1106 (2002).
[Crossref] [PubMed]

Hugel, T.

T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seitz, and H. E. Gaub, “Single-molecule optomechanical cycle,” Science 296(5570), 1103–1106 (2002).
[Crossref] [PubMed]

Idiart, E.

Ikeda, T.

T. Ikeda, J. Mamiya, and Y. Yu, “Photomechanics of liquid-crystalline elastomers and other polymers,” Angew. Chem. Int. Ed. Engl. 46(4), 506–528 (2007).
[Crossref] [PubMed]

Inouye, Y.

H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo-polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
[Crossref]

Ishitobi, H.

H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo-polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
[Crossref]

H. Ishitobi, M. Tanabe, Z. Sekkat, and S. Kawata, “The anisotropic nanomovement of azo-polymers,” Opt. Express 15(2), 652–659 (2007).
[Crossref] [PubMed]

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85(3), 351–353 (2004).
[Crossref]

Jones, P. H.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Juman, G.

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2015).
[Crossref] [PubMed]

Kajzar, F.

Kaliakatsos, I. K.

J. J. Abbott, K. E. Peyer, M. C. Lagomarsino, L. Zhang, L. Dong, I. K. Kaliakatsos, and B. J. Nelson, “How should microrobots swim?” Int. J. Robot. Res. 28(11–12), 1434–1447 (2009).
[Crossref]

Karageorgiev, P.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Kawata, S.

Z. Sekkat and S. Kawata, “Laser nanofabrication in photoresists and azopolymers,” Laser Photonics Rev. 8(1), 1–26 (2014).
[Crossref]

H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo-polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
[Crossref]

H. Ishitobi, M. Tanabe, Z. Sekkat, and S. Kawata, “The anisotropic nanomovement of azo-polymers,” Opt. Express 15(2), 652–659 (2007).
[Crossref] [PubMed]

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85(3), 351–353 (2004).
[Crossref]

S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17(11), 772–774 (1992).
[Crossref] [PubMed]

Kierulf, A.

H. Eskandarloo, A. Kierulf, and A. Abbaspourrad, “Light-harvesting synthetic nano- and micromotors: a review,” Nanoscale 9(34), 12218–12230 (2017).
[Crossref] [PubMed]

Kim, D. Y.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Kivshar, Y. S.

Knoesen, A.

Knoll, W.

Kobayashi, T.

H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo-polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
[Crossref]

Konôpka, M.

R. Turanský, M. Konôpka, N. L. Doltsinis, I. Stich, and D. Marx, “Optical, mechanical, and opto-mechanical switching of anchored dithioazobenzene bridges,” ChemPhysChem 11(2), 345–348 (2010).
[Crossref] [PubMed]

Korblova, E.

G. J. Fang, J. E. Maclennan, Y. Yi, M. A. Glaser, M. Farrow, E. Korblova, D. M. Walba, T. E. Furtak, and N. A. Clark, “Athermal photofluidization of glasses,” Nat. Commun. 4(1), 1521 (2013).
[Crossref] [PubMed]

Krolikowski, W.

Kumar, J.

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detailed investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. 38(10), 5928–5937 (1999).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Kummer, M. P.

J. J. Abbott, O. Ergeneman, M. P. Kummer, A. M. Hirt, and B. J. Nelson, “Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies,” IEEE Trans. Robot. 23(6), 1247–1252 (2007).
[Crossref]

Lagomarsino, M. C.

J. J. Abbott, K. E. Peyer, M. C. Lagomarsino, L. Zhang, L. Dong, I. K. Kaliakatsos, and B. J. Nelson, “How should microrobots swim?” Int. J. Robot. Res. 28(11–12), 1434–1447 (2009).
[Crossref]

Lam, C.-H.

R. N. Li, F. Chen, C.-H. Lam, and O. K. C. Tsui, “Viscosity of PMMA on silica: epitome of systems with strong polymer−substrate interactions,” Macromolecules 46(19), 7889–7893 (2013).
[Crossref]

Larpent, C.

J. P. Abid, M. Frigoli, R. Pansu, J. Szeftel, J. Zyss, C. Larpent, and S. Brasselet, “Light-driven directed motion of azobenzene-coated polymer nanoparticles in an aqueous medium,” Langmuir 27(13), 7967–7971 (2011).
[Crossref] [PubMed]

Li, L.

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detailed investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. 38(10), 5928–5937 (1999).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Li, R. N.

R. N. Li, F. Chen, C.-H. Lam, and O. K. C. Tsui, “Viscosity of PMMA on silica: epitome of systems with strong polymer−substrate interactions,” Macromolecules 46(19), 7889–7893 (2013).
[Crossref]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

Maclennan, J. E.

G. J. Fang, J. E. Maclennan, Y. Yi, M. A. Glaser, M. Farrow, E. Korblova, D. M. Walba, T. E. Furtak, and N. A. Clark, “Athermal photofluidization of glasses,” Nat. Commun. 4(1), 1521 (2013).
[Crossref] [PubMed]

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Maddalena, P.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3(1), 989 (2012).
[Crossref] [PubMed]

Maeda, M.

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85(3), 351–353 (2004).
[Crossref]

Maia Neto, P. A.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 021914 (2007).
[Crossref] [PubMed]

Mamiya, J.

T. Ikeda, J. Mamiya, and Y. Yu, “Photomechanics of liquid-crystalline elastomers and other polymers,” Angew. Chem. Int. Ed. Engl. 46(4), 506–528 (2007).
[Crossref] [PubMed]

Maragò, O. M.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Marrucci, L.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3(1), 989 (2012).
[Crossref] [PubMed]

Marx, D.

R. Turanský, M. Konôpka, N. L. Doltsinis, I. Stich, and D. Marx, “Optical, mechanical, and opto-mechanical switching of anchored dithioazobenzene bridges,” ChemPhysChem 11(2), 345–348 (2010).
[Crossref] [PubMed]

Matsumoto, K.

T. Tsukagoshi, T.-V. Nguyen, K. H. Shoji, H. Takahashi, K. Matsumoto, and I. Shimoyama, “Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors,” J. Phys. D Appl. Phys. 51(14), 145401 (2018).
[Crossref]

Mazolli, A.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 021914 (2007).
[Crossref] [PubMed]

Mesquita, O. N.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 021914 (2007).
[Crossref] [PubMed]

Miller, R. D.

Miyamoto, K.

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2015).
[Crossref] [PubMed]

Moroder, L.

T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seitz, and H. E. Gaub, “Single-molecule optomechanical cycle,” Science 296(5570), 1103–1106 (2002).
[Crossref] [PubMed]

Moujdi, S.

A. Rahmouni, Y. Bougdid, S. Moujdi, D. V. Nesterenko, and Z. Sekkat, “Photoassisted holography in azo dye doped polymer films,” J. Phys. Chem. B 120(43), 11317–11322 (2016).
[Crossref] [PubMed]

Muccioli, L.

G. Tiberio, L. Muccioli, R. Berardi, and C. Zannoni, “How does the trans-cis photoisomerization of azobenzene take place in organic solvents?” ChemPhysChem 11(5), 1018–1028 (2010).
[Crossref] [PubMed]

Munro, M. L.

M. L. Munro, X. Shen, M. Ward, P. N. Ruygrok, D. J. Crossman, and C. Soeller, “Highly variable contractile performance correlates with myocyte content in trabeculae from failing human hearts,” Sci. Rep. 8(1), 2957 (2018).
[Crossref] [PubMed]

Nakamura, I.

H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo-polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
[Crossref]

Natansohn, A.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Neher, D.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Nelson, B. J.

J. J. Abbott, K. E. Peyer, M. C. Lagomarsino, L. Zhang, L. Dong, I. K. Kaliakatsos, and B. J. Nelson, “How should microrobots swim?” Int. J. Robot. Res. 28(11–12), 1434–1447 (2009).
[Crossref]

J. J. Abbott, O. Ergeneman, M. P. Kummer, A. M. Hirt, and B. J. Nelson, “Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies,” IEEE Trans. Robot. 23(6), 1247–1252 (2007).
[Crossref]

Nesterenko, D. V.

A. Rahmouni, Y. Bougdid, S. Moujdi, D. V. Nesterenko, and Z. Sekkat, “Photoassisted holography in azo dye doped polymer films,” J. Phys. Chem. B 120(43), 11317–11322 (2016).
[Crossref] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Nguyen, T.-V.

T. Tsukagoshi, T.-V. Nguyen, K. H. Shoji, H. Takahashi, K. Matsumoto, and I. Shimoyama, “Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors,” J. Phys. D Appl. Phys. 51(14), 145401 (2018).
[Crossref]

Nikolova, L.

Nunzi, J. M.

Nunzi, J.-M.

V. Teboul, M. Saiddine, J.-M. Nunzi, and J.-B. Accary, “An isomerization-induced cage-breaking process in a molecular glass former below T(g),” J. Chem. Phys. 134(11), 114517 (2011).
[Crossref] [PubMed]

V. Teboul, M. Saiddine, and J.-M. Nunzi, “Isomerization-induced dynamic heterogeneity in a glass former below and above T(g),” Phys. Rev. Lett. 103(26), 265701 (2009).
[Crossref] [PubMed]

Nussenzveig, H. M.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 021914 (2007).
[Crossref] [PubMed]

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Omatsu, T.

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2015).
[Crossref] [PubMed]

Padgett, M. J.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

Palffy-Muhoray, P.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
[Crossref] [PubMed]

Pansu, R.

J. P. Abid, M. Frigoli, R. Pansu, J. Szeftel, J. Zyss, C. Larpent, and S. Brasselet, “Light-driven directed motion of azobenzene-coated polymer nanoparticles in an aqueous medium,” Langmuir 27(13), 7967–7971 (2011).
[Crossref] [PubMed]

Pellilo, E.

B. J. Briscoe, L. Fiori, and E. Pellilo, “Nano-indentation of polymeric surfaces,” J. Phys. D Appl. Phys. 31(19), 2395–2405 (1998).
[Crossref]

Peyer, K. E.

J. J. Abbott, K. E. Peyer, M. C. Lagomarsino, L. Zhang, L. Dong, I. K. Kaliakatsos, and B. J. Nelson, “How should microrobots swim?” Int. J. Robot. Res. 28(11–12), 1434–1447 (2009).
[Crossref]

Pietsch, U.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Rahmouni, A.

A. Rahmouni, Y. Bougdid, S. Moujdi, D. V. Nesterenko, and Z. Sekkat, “Photoassisted holography in azo dye doped polymer films,” J. Phys. Chem. B 120(43), 11317–11322 (2016).
[Crossref] [PubMed]

Raimond, P.

Rocha, M. S.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 021914 (2007).
[Crossref] [PubMed]

Rochon, P.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

Rode, A. V.

Rodrigo, J. A.

J. A. Rodrigo and T. Alieva, “Light-driven transport of plasmonic nanoparticles on demand,” Sci. Rep. 6(1), 33729 (2016).
[Crossref] [PubMed]

Rohrbach, A.

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett. 95(16), 168102 (2005).
[Crossref] [PubMed]

Roviello, A.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3(1), 989 (2012).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

Ruygrok, P. N.

M. L. Munro, X. Shen, M. Ward, P. N. Ruygrok, D. J. Crossman, and C. Soeller, “Highly variable contractile performance correlates with myocyte content in trabeculae from failing human hearts,” Sci. Rep. 8(1), 2957 (2018).
[Crossref] [PubMed]

Saiddine, M.

V. Teboul, M. Saiddine, J.-M. Nunzi, and J.-B. Accary, “An isomerization-induced cage-breaking process in a molecular glass former below T(g),” J. Chem. Phys. 134(11), 114517 (2011).
[Crossref] [PubMed]

V. Teboul, M. Saiddine, and J.-M. Nunzi, “Isomerization-induced dynamic heterogeneity in a glass former below and above T(g),” Phys. Rev. Lett. 103(26), 265701 (2009).
[Crossref] [PubMed]

Schulz, B.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Seitz, M.

T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seitz, and H. E. Gaub, “Single-molecule optomechanical cycle,” Science 296(5570), 1103–1106 (2002).
[Crossref] [PubMed]

Sekkat, Z.

A. Rahmouni, Y. Bougdid, S. Moujdi, D. V. Nesterenko, and Z. Sekkat, “Photoassisted holography in azo dye doped polymer films,” J. Phys. Chem. B 120(43), 11317–11322 (2016).
[Crossref] [PubMed]

Z. Sekkat, “Optical tweezing by photomigration,” Appl. Opt. 55(2), 259–268 (2016).
[Crossref] [PubMed]

Z. Sekkat and S. Kawata, “Laser nanofabrication in photoresists and azopolymers,” Laser Photonics Rev. 8(1), 1–26 (2014).
[Crossref]

H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo-polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
[Crossref]

H. Ishitobi, M. Tanabe, Z. Sekkat, and S. Kawata, “The anisotropic nanomovement of azo-polymers,” Opt. Express 15(2), 652–659 (2007).
[Crossref] [PubMed]

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85(3), 351–353 (2004).
[Crossref]

Z. Sekkat, J. Wood, W. Knoll, W. Volksen, R. D. Miller, and A. Knoesen, “Light induced orientation in azo-polyimide polymers 325°C below the glass transition temperature,” J. Opt. Soc. Am. B 14(4), 829–833 (1997).
[Crossref]

Z. Sekkat and M. Dumont, “Photoassisted poling of azodye doped polymeric films at room temperature,” Appl. Phys. B 54(5), 486–489 (1992).
[Crossref]

Z. Sekkat and M. Dumont, “Poling of polymer films by photoisomerisation of azodye chromophores,” Mol. Cryst. Liq. Cryst. Sci. Technol. - Sec. B: Nonlinear Optics 2, 359 (1992).

Shelley, M.

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
[Crossref] [PubMed]

Shen, X.

M. L. Munro, X. Shen, M. Ward, P. N. Ruygrok, D. J. Crossman, and C. Soeller, “Highly variable contractile performance correlates with myocyte content in trabeculae from failing human hearts,” Sci. Rep. 8(1), 2957 (2018).
[Crossref] [PubMed]

Shimoyama, I.

T. Tsukagoshi, T.-V. Nguyen, K. H. Shoji, H. Takahashi, K. Matsumoto, and I. Shimoyama, “Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors,” J. Phys. D Appl. Phys. 51(14), 145401 (2018).
[Crossref]

Shoji, K. H.

T. Tsukagoshi, T.-V. Nguyen, K. H. Shoji, H. Takahashi, K. Matsumoto, and I. Shimoyama, “Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors,” J. Phys. D Appl. Phys. 51(14), 145401 (2018).
[Crossref]

Shvedov, V. G.

Soeller, C.

M. L. Munro, X. Shen, M. Ward, P. N. Ruygrok, D. J. Crossman, and C. Soeller, “Highly variable contractile performance correlates with myocyte content in trabeculae from failing human hearts,” Sci. Rep. 8(1), 2957 (2018).
[Crossref] [PubMed]

Sonek, G. J.

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

Stich, I.

R. Turanský, M. Konôpka, N. L. Doltsinis, I. Stich, and D. Marx, “Optical, mechanical, and opto-mechanical switching of anchored dithioazobenzene bridges,” ChemPhysChem 11(2), 345–348 (2010).
[Crossref] [PubMed]

Stiller, B.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Sugiura, T.

Szeftel, J.

J. P. Abid, M. Frigoli, R. Pansu, J. Szeftel, J. Zyss, C. Larpent, and S. Brasselet, “Light-driven directed motion of azobenzene-coated polymer nanoparticles in an aqueous medium,” Langmuir 27(13), 7967–7971 (2011).
[Crossref] [PubMed]

Takahashi, H.

T. Tsukagoshi, T.-V. Nguyen, K. H. Shoji, H. Takahashi, K. Matsumoto, and I. Shimoyama, “Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors,” J. Phys. D Appl. Phys. 51(14), 145401 (2018).
[Crossref]

Tanabe, M.

Teboul, V.

V. Teboul, M. Saiddine, J.-M. Nunzi, and J.-B. Accary, “An isomerization-induced cage-breaking process in a molecular glass former below T(g),” J. Chem. Phys. 134(11), 114517 (2011).
[Crossref] [PubMed]

V. Teboul, M. Saiddine, and J.-M. Nunzi, “Isomerization-induced dynamic heterogeneity in a glass former below and above T(g),” Phys. Rev. Lett. 103(26), 265701 (2009).
[Crossref] [PubMed]

Tiberio, G.

G. Tiberio, L. Muccioli, R. Berardi, and C. Zannoni, “How does the trans-cis photoisomerization of azobenzene take place in organic solvents?” ChemPhysChem 11(5), 1018–1028 (2010).
[Crossref] [PubMed]

Todorov, T.

Tomova, N.

Tripathy, S. K.

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detailed investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. 38(10), 5928–5937 (1999).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

Tsui, O. K. C.

R. N. Li, F. Chen, C.-H. Lam, and O. K. C. Tsui, “Viscosity of PMMA on silica: epitome of systems with strong polymer−substrate interactions,” Macromolecules 46(19), 7889–7893 (2013).
[Crossref]

Tsukagoshi, T.

T. Tsukagoshi, T.-V. Nguyen, K. H. Shoji, H. Takahashi, K. Matsumoto, and I. Shimoyama, “Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors,” J. Phys. D Appl. Phys. 51(14), 145401 (2018).
[Crossref]

Turanský, R.

R. Turanský, M. Konôpka, N. L. Doltsinis, I. Stich, and D. Marx, “Optical, mechanical, and opto-mechanical switching of anchored dithioazobenzene bridges,” ChemPhysChem 11(2), 345–348 (2010).
[Crossref] [PubMed]

Viana, N. B.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 021914 (2007).
[Crossref] [PubMed]

Viswanathan, N. K.

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detailed investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. 38(10), 5928–5937 (1999).
[Crossref]

Volksen, W.

Volpe, G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Walba, D. M.

G. J. Fang, J. E. Maclennan, Y. Yi, M. A. Glaser, M. Farrow, E. Korblova, D. M. Walba, T. E. Furtak, and N. A. Clark, “Athermal photofluidization of glasses,” Nat. Commun. 4(1), 1521 (2013).
[Crossref] [PubMed]

Ward, M.

M. L. Munro, X. Shen, M. Ward, P. N. Ruygrok, D. J. Crossman, and C. Soeller, “Highly variable contractile performance correlates with myocyte content in trabeculae from failing human hearts,” Sci. Rep. 8(1), 2957 (2018).
[Crossref] [PubMed]

Watabe, M.

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2015).
[Crossref] [PubMed]

Wood, J.

Wright, W. H.

Yi, Y.

G. J. Fang, J. E. Maclennan, Y. Yi, M. A. Glaser, M. Farrow, E. Korblova, D. M. Walba, T. E. Furtak, and N. A. Clark, “Athermal photofluidization of glasses,” Nat. Commun. 4(1), 1521 (2013).
[Crossref] [PubMed]

Yu, Y.

T. Ikeda, J. Mamiya, and Y. Yu, “Photomechanics of liquid-crystalline elastomers and other polymers,” Angew. Chem. Int. Ed. Engl. 46(4), 506–528 (2007).
[Crossref] [PubMed]

Zannoni, C.

G. Tiberio, L. Muccioli, R. Berardi, and C. Zannoni, “How does the trans-cis photoisomerization of azobenzene take place in organic solvents?” ChemPhysChem 11(5), 1018–1028 (2010).
[Crossref] [PubMed]

Zhang, L.

J. J. Abbott, K. E. Peyer, M. C. Lagomarsino, L. Zhang, L. Dong, I. K. Kaliakatsos, and B. J. Nelson, “How should microrobots swim?” Int. J. Robot. Res. 28(11–12), 1434–1447 (2009).
[Crossref]

Zyss, J.

J. P. Abid, M. Frigoli, R. Pansu, J. Szeftel, J. Zyss, C. Larpent, and S. Brasselet, “Light-driven directed motion of azobenzene-coated polymer nanoparticles in an aqueous medium,” Langmuir 27(13), 7967–7971 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

H. Ishitobi, I. Nakamura, T. Kobayashi, N. Hayazawa, Z. Sekkat, S. Kawata, and Y. Inouye, “Nanomovement of azo-polymers induced by longitudinal fields,” ACS Photonics 1(3), 190–197 (2014).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

T. Ikeda, J. Mamiya, and Y. Yu, “Photomechanics of liquid-crystalline elastomers and other polymers,” Angew. Chem. Int. Ed. Engl. 46(4), 506–528 (2007).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (1)

Z. Sekkat and M. Dumont, “Photoassisted poling of azodye doped polymeric films at room temperature,” Appl. Phys. B 54(5), 486–489 (1992).
[Crossref]

Appl. Phys. Lett. (3)

M. Maeda, H. Ishitobi, Z. Sekkat, and S. Kawata, “Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films,” Appl. Phys. Lett. 85(3), 351–353 (2004).
[Crossref]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66(2), 136–138 (1995).
[Crossref]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66(10), 1166–1168 (1995).
[Crossref]

ChemPhysChem (2)

G. Tiberio, L. Muccioli, R. Berardi, and C. Zannoni, “How does the trans-cis photoisomerization of azobenzene take place in organic solvents?” ChemPhysChem 11(5), 1018–1028 (2010).
[Crossref] [PubMed]

R. Turanský, M. Konôpka, N. L. Doltsinis, I. Stich, and D. Marx, “Optical, mechanical, and opto-mechanical switching of anchored dithioazobenzene bridges,” ChemPhysChem 11(2), 345–348 (2010).
[Crossref] [PubMed]

IEEE Trans. Robot. (1)

J. J. Abbott, O. Ergeneman, M. P. Kummer, A. M. Hirt, and B. J. Nelson, “Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies,” IEEE Trans. Robot. 23(6), 1247–1252 (2007).
[Crossref]

Int. J. Robot. Res. (1)

J. J. Abbott, K. E. Peyer, M. C. Lagomarsino, L. Zhang, L. Dong, I. K. Kaliakatsos, and B. J. Nelson, “How should microrobots swim?” Int. J. Robot. Res. 28(11–12), 1434–1447 (2009).
[Crossref]

J. Chem. Phys. (1)

V. Teboul, M. Saiddine, J.-M. Nunzi, and J.-B. Accary, “An isomerization-induced cage-breaking process in a molecular glass former below T(g),” J. Chem. Phys. 134(11), 114517 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

A. Rahmouni, Y. Bougdid, S. Moujdi, D. V. Nesterenko, and Z. Sekkat, “Photoassisted holography in azo dye doped polymer films,” J. Phys. Chem. B 120(43), 11317–11322 (2016).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (2)

T. Tsukagoshi, T.-V. Nguyen, K. H. Shoji, H. Takahashi, K. Matsumoto, and I. Shimoyama, “Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors,” J. Phys. D Appl. Phys. 51(14), 145401 (2018).
[Crossref]

B. J. Briscoe, L. Fiori, and E. Pellilo, “Nano-indentation of polymeric surfaces,” J. Phys. D Appl. Phys. 31(19), 2395–2405 (1998).
[Crossref]

Jpn. J. Appl. Phys. (1)

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detailed investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. 38(10), 5928–5937 (1999).
[Crossref]

Langmuir (1)

J. P. Abid, M. Frigoli, R. Pansu, J. Szeftel, J. Zyss, C. Larpent, and S. Brasselet, “Light-driven directed motion of azobenzene-coated polymer nanoparticles in an aqueous medium,” Langmuir 27(13), 7967–7971 (2011).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

Z. Sekkat and S. Kawata, “Laser nanofabrication in photoresists and azopolymers,” Laser Photonics Rev. 8(1), 1–26 (2014).
[Crossref]

Macromolecules (1)

R. N. Li, F. Chen, C.-H. Lam, and O. K. C. Tsui, “Viscosity of PMMA on silica: epitome of systems with strong polymer−substrate interactions,” Macromolecules 46(19), 7889–7893 (2013).
[Crossref]

Mol. Cryst. Liq. Cryst. Sci. Technol. - Sec. B: Nonlinear Optics (1)

Z. Sekkat and M. Dumont, “Poling of polymer films by photoisomerisation of azodye chromophores,” Mol. Cryst. Liq. Cryst. Sci. Technol. - Sec. B: Nonlinear Optics 2, 359 (1992).

Nanoscale (1)

H. Eskandarloo, A. Kierulf, and A. Abbaspourrad, “Light-harvesting synthetic nano- and micromotors: a review,” Nanoscale 9(34), 12218–12230 (2017).
[Crossref] [PubMed]

Nat. Commun. (2)

G. J. Fang, J. E. Maclennan, Y. Yi, M. A. Glaser, M. Farrow, E. Korblova, D. M. Walba, T. E. Furtak, and N. A. Clark, “Athermal photofluidization of glasses,” Nat. Commun. 4(1), 1521 (2013).
[Crossref] [PubMed]

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3(1), 989 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 021914 (2007).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref] [PubMed]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[Crossref] [PubMed]

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett. 95(16), 168102 (2005).
[Crossref] [PubMed]

V. Teboul, M. Saiddine, and J.-M. Nunzi, “Isomerization-induced dynamic heterogeneity in a glass former below and above T(g),” Phys. Rev. Lett. 103(26), 265701 (2009).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Sci. Rep. (3)

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4(1), 4281 (2015).
[Crossref] [PubMed]

J. A. Rodrigo and T. Alieva, “Light-driven transport of plasmonic nanoparticles on demand,” Sci. Rep. 6(1), 33729 (2016).
[Crossref] [PubMed]

M. L. Munro, X. Shen, M. Ward, P. N. Ruygrok, D. J. Crossman, and C. Soeller, “Highly variable contractile performance correlates with myocyte content in trabeculae from failing human hearts,” Sci. Rep. 8(1), 2957 (2018).
[Crossref] [PubMed]

Science (1)

T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seitz, and H. E. Gaub, “Single-molecule optomechanical cycle,” Science 296(5570), 1103–1106 (2002).
[Crossref] [PubMed]

Other (6)

G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic Press, 1985.

M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, 1994).

Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic Press, 2002).

T. Kobayashi and T. Saito, “Ultrafast dynamics in the excited of azo compounds,” in Photoreactive Organic Thin Films (Academic Press, 2002), chap. 2, pp. 49–62 .

The electric field amplitudes A1,2 of the interfering beams E1,2 are A1,2s−s=y|A1,2|,A1,2p−p=(xsin(β/2)∓zcos(β/2))|A1,2|,A1,24−+5°=(±xcos(β/2)+y+zsin(β/2))|A1,2|/√2,A1,2CLRP=(xcos(β/2)±yi∓zsin(β/2))|A1,2|/√2, and x, y, and z are the unit vectors of the Cartesian coordinates chosen for the system; A2= A1eiϕ; and ΔI, defined in the text, is ΔI=(n/2)ε0c|A1A2*|. In SI units in a medium of refractive index n, the intensity I and the field amplitude A are related by I1,2=(n/2)ε0cA1,2A1,2*. ε0 is the permittivity of free space, and c the speed of light in vacuum. A* is the complex conjugate of A.

H. J. Eichler, P. Gunter, and D. W. Pohl, Laser Induced Gratings, Springer Series in Optical Sciences, vol. 50 (Springer-Verlag, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (Left) Trans-cis photoisomerization of an azo dye; e.g. DR1. (Right) Schematic of the photoisomerization force on a colloidal particle near the focus of a Gaussian beam.
Fig. 2
Fig. 2 Representation of the orientation of the transition dipole moment of the molecule, μ, and the vector gradient of the light intensity kG, and the electric field of the actinic light, E, in an orthonormal Cartesian coordinate system (x, y, z). E is chosen parallel to z to simplify the calculations. The red thick curved arrow between kG and the potential energy U=k x 2 /2, which is approximated by a harmonic-type potential for week forces, indicates that a molecule is dragged by the potential in the direction of kG after acquiring mobility by photo-selective isomerization. The spring schematically depicts the vibrational motion of the molecule upon cyclic trans-cis isomerization and k is the spring constant.
Fig. 3
Fig. 3 Calculated intensity profile I( x ) and photoisomerization pressure F ph p produced by a Gaussian beam (a) and an interference pattern for an s-s configuration (b) versus the direction of matter motion; e.g. along the direction of the gradient vector of the actinic light intensity. I and F ph p are normalized in (a) by I 0 and K n I 0 / ω 0 2 ; respectively, and in (b) by 2 I 0 and 4π K n I 0 /Λ; respectively. The motion of a colloidal particle is schematically depicted to move from intensity maxima to intensity minima according to the sign of the force.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

U(r)=kI(r);
cosχ=cosθcos θ G +sinθsin θ G cosϕ.
U( r )= 3 4π kI( r ) cos 2 χ cos 2 θsinθdθdϕ;
U( r )=( 2 cos 2 θ G +1 )kI( r )=KI( r );       K=( 2 cos 2 θ G +1 )k.
F ph p ( r )=U( r )=K I( r ).
U Total = 1 2   k T   x 2 ; with k T =K k grad k el ;
G( x, x ' ;t )= [ 2π k B T k T  ( 1exp( 2t τ ) ) ] 1/2 exp[   k T [ xx'exp(t/τ) ] 2 2 k B T(1exp(2t/τ) ].
Ψ eq ( x )=  ( k T 2π k B T ) 1/2 exp(   k T x 2 2 k B T ).
B( t )=(1exp(2t/τ)) k B T/ k T .
F ph p = 1 ω 0 0 2 ω 0 F ph p ( r )dr ;
I( x )=2 I 0 +2ΔIcos( 2πx/Λ ).
F ph p ( x )=K I/x=(4π/Λ) K n ΔIsin( 2πx/Λ ).