Abstract

We present a hybrid fiber/waveguide design for a 100-MHz frequency comb that is fully self-referenced and temperature controlled with less than 5 W of electrical power. Self-referencing is achieved by supercontinuum generation in a silicon nitride waveguide, which requires much lower pulse energies (~200 pJ) than with highly nonlinear fiber. These low-energy pulses are achieved with an erbium fiber oscillator/amplifier pumped by two 250-mW passively-cooled pump diodes that consume less than 5 W of electrical power. The temperature tuning of the oscillator, necessary to stabilize the repetition rate in the presence of environmental temperature changes, is achieved by resistive heating of a section of gold-palladium-coated fiber within the laser cavity. By heating only the small thermal mass of the fiber, the repetition rate is tuned over 4.2 kHz (corresponding to an effective temperature change of 4.2 °C) with a fast time constant of 0.5 s, at a low power consumption of 0.077 W/°C, compared to 2.5 W/°C in the conventional 200-MHz comb design.

Full Article  |  PDF Article
OSA Recommended Articles
Frequency comb based on a narrowband Yb-fiber oscillator: pre-chirp management for self-referenced carrier envelope offset frequency stabilization

Jinkang Lim, Hung-Wen Chen, Guoqing Chang, and Franz X. Kärtner
Opt. Express 21(4) 4531-4538 (2013)

Gigahertz self-referenceable frequency comb from a semiconductor disk laser

Christian A. Zaugg, Alexander Klenner, Mario Mangold, Aline S. Mayer, Sandro M. Link, Florian Emaury, Matthias Golling, Emilio Gini, Clara J. Saraceno, Bauke W. Tilma, and Ursula Keller
Opt. Express 22(13) 16445-16455 (2014)

Fully stabilized 750-MHz Yb: fiber frequency comb

Bo Xu, Hideaki Yasui, Yoshiaki Nakajima, Yuxuan Ma, Zhigang Zhang, and Kaoru Minoshima
Opt. Express 25(10) 11910-11918 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Diddams, “The evolving optical frequency comb [Invited],” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
    [Crossref]
  2. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
    [Crossref]
  3. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  4. K. C. Cossel, E. M. Waxman, I. A. Finneran, G. A. Blake, J. Ye, and N. R. Newbury, “Gas-phase broadband spectroscopy using active sources: progress, status, and applications,” J. Opt. Soc. Am. B 34(1), 104–129 (2017).
    [Crossref] [PubMed]
  5. H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J.-D. Deschênes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
    [Crossref] [PubMed]
  6. J. Davila-Rodriguez, F. N. Baynes, A. D. Ludlow, T. M. Fortier, H. Leopardi, S. A. Diddams, and F. Quinlan, “Compact, thermal-noise-limited reference cavity for ultra-low-noise microwave generation,” Opt. Lett. 42(7), 1277–1280 (2017).
    [Crossref] [PubMed]
  7. J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
    [Crossref]
  8. J. H. Burke, N. D. Lemke, G. R. Phelps, and K. W. Martin, “A compact, high-performance all optical atomic clock based on telecom lasers,” Proc. SPIE 9763, 976304 (2016).
    [Crossref]
  9. T. Schuldt, K. Döringshoff, E. V. Kovalchuk, A. Keetman, J. Pahl, A. Peters, and C. Braxmaier, “Development of a compact optical absolute frequency reference for space with 10−15 instability,” Appl. Opt. 56(4), 1101–1106 (2017).
    [Crossref] [PubMed]
  10. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref] [PubMed]
  11. L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
    [Crossref] [PubMed]
  12. N. Kuse, C.-C. Lee, J. Jiang, C. Mohr, T. R. Schibli, and M. E. Fermann, “Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator,” Opt. Express 23(19), 24342–24350 (2015).
    [Crossref] [PubMed]
  13. W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
    [Crossref]
  14. S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical frequency comb generation based on erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
    [Crossref]
  15. L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22(6), 6996–7006 (2014).
    [Crossref] [PubMed]
  16. M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, T. Hülsing, T. W. Hänsch, and R. Holzwarth, “Space-borne frequency comb metrology,” Optica 3(12), 1381–1387 (2016).
    [Crossref]
  17. P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
    [Crossref]
  18. S. Coburn, G. Rieker, K. Prasad, S. Ghosh, C. Alden, N. Newbury, I. Coddington, E. Baumann, G.-W. Truong, K. Cossel, and R. Wright, “Methane detection for oil and gas production sites using portable dual-comb spectrometry,” 71st International Symposium on Molecular Spectroscopy (2016).
    [Crossref]
  19. J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(1), 5134 (2015).
    [Crossref] [PubMed]
  20. A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23(12), 15440–15451 (2015).
    [Crossref] [PubMed]
  21. A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24(10), 11043–11053 (2016).
    [Crossref] [PubMed]
  22. D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Self-referenced frequency combs using high-efficiency silicon-nitride waveguides,” Opt. Lett. 42(12), 2314–2317 (2017).
    [Crossref] [PubMed]
  23. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).
  24. B. White, J. Davis, L. Bobb, H. Krumboltz, and D. Larson, “Optical-fiber thermal modulator,” J. Lightwave Technol. 5(9), 1169–1175 (1987).
    [Crossref]
  25. H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10(3), 361–363 (1998).
    [Crossref]
  26. A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
    [Crossref]
  27. Disclaimer, “The use of tradenames in this manuscript is necessary to specify experimental results and does not imply endorsement by the National Institute of Standards and Technology.”
  28. R. Sun, J. Cheng, J. Michel, and L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett. 34(15), 2378–2380 (2009).
    [Crossref] [PubMed]
  29. M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3(1), 20 (2016).
    [Crossref]
  30. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  31. D. Neamen, W. Shedd, and B. Buchanan, “Thin Film Silicon on Silicon Nitride for Radiation Hardened Dielectrically Isolated Misfet’s,” IEEE Trans. Nucl. Sci. 22(6), 2203–2207 (1975).
    [Crossref]
  32. G. Q. Lo, A. B. Joshi, and D. L. Kwong, “Radiation hardness of MOSFETs with N2O-nitrided gate oxides,” IEEE Trans. Electron Dev. 40(8), 1565–1567 (1993).
    [Crossref]
  33. V. Brasch, Q.-F. Chen, S. Schiller, and T. J. Kippenberg, “Radiation hardness of high-Q silicon nitride microresonators for space compatible integrated optics,” Opt. Express 22(25), 30786–30794 (2014).
    [Crossref] [PubMed]
  34. B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt. Express 13(26), 10622–10633 (2005).
    [Crossref] [PubMed]
  35. E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
    [Crossref] [PubMed]
  36. W. C. Swann, E. Baumann, F. R. Giorgetta, and N. R. Newbury, “Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator,” Opt. Express 19(24), 24387–24395 (2011).
    [Crossref] [PubMed]

2017 (6)

K. C. Cossel, E. M. Waxman, I. A. Finneran, G. A. Blake, J. Ye, and N. R. Newbury, “Gas-phase broadband spectroscopy using active sources: progress, status, and applications,” J. Opt. Soc. Am. B 34(1), 104–129 (2017).
[Crossref] [PubMed]

J. Davila-Rodriguez, F. N. Baynes, A. D. Ludlow, T. M. Fortier, H. Leopardi, S. A. Diddams, and F. Quinlan, “Compact, thermal-noise-limited reference cavity for ultra-low-noise microwave generation,” Opt. Lett. 42(7), 1277–1280 (2017).
[Crossref] [PubMed]

T. Schuldt, K. Döringshoff, E. V. Kovalchuk, A. Keetman, J. Pahl, A. Peters, and C. Braxmaier, “Development of a compact optical absolute frequency reference for space with 10−15 instability,” Appl. Opt. 56(4), 1101–1106 (2017).
[Crossref] [PubMed]

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Self-referenced frequency combs using high-efficiency silicon-nitride waveguides,” Opt. Lett. 42(12), 2314–2317 (2017).
[Crossref] [PubMed]

2016 (7)

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, T. Hülsing, T. W. Hänsch, and R. Holzwarth, “Space-borne frequency comb metrology,” Optica 3(12), 1381–1387 (2016).
[Crossref]

A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24(10), 11043–11053 (2016).
[Crossref] [PubMed]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics,” Optica 3(1), 20 (2016).
[Crossref]

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical frequency comb generation based on erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

J. H. Burke, N. D. Lemke, G. R. Phelps, and K. W. Martin, “A compact, high-performance all optical atomic clock based on telecom lasers,” Proc. SPIE 9763, 976304 (2016).
[Crossref]

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J.-D. Deschênes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref] [PubMed]

2015 (4)

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(1), 5134 (2015).
[Crossref] [PubMed]

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23(12), 15440–15451 (2015).
[Crossref] [PubMed]

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

N. Kuse, C.-C. Lee, J. Jiang, C. Mohr, T. R. Schibli, and M. E. Fermann, “Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator,” Opt. Express 23(19), 24342–24350 (2015).
[Crossref] [PubMed]

2014 (2)

2011 (3)

W. C. Swann, E. Baumann, F. R. Giorgetta, and N. R. Newbury, “Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator,” Opt. Express 19(24), 24387–24395 (2011).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

2010 (1)

2009 (3)

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
[Crossref] [PubMed]

R. Sun, J. Cheng, J. Michel, and L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett. 34(15), 2378–2380 (2009).
[Crossref] [PubMed]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (1)

1999 (1)

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[Crossref]

1998 (1)

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10(3), 361–363 (1998).
[Crossref]

1993 (1)

G. Q. Lo, A. B. Joshi, and D. L. Kwong, “Radiation hardness of MOSFETs with N2O-nitrided gate oxides,” IEEE Trans. Electron Dev. 40(8), 1565–1567 (1993).
[Crossref]

1987 (1)

B. White, J. Davis, L. Bobb, H. Krumboltz, and D. Larson, “Optical-fiber thermal modulator,” J. Lightwave Technol. 5(9), 1169–1175 (1987).
[Crossref]

1975 (1)

D. Neamen, W. Shedd, and B. Buchanan, “Thin Film Silicon on Silicon Nitride for Radiation Hardened Dielectrically Isolated Misfet’s,” IEEE Trans. Nucl. Sci. 22(6), 2203–2207 (1975).
[Crossref]

Abgrall, M.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Abramov, A. A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[Crossref]

Alden, C.

S. Coburn, G. Rieker, K. Prasad, S. Ghosh, C. Alden, N. Newbury, I. Coddington, E. Baumann, G.-W. Truong, K. Cossel, and R. Wright, “Methane detection for oil and gas production sites using portable dual-comb spectrometry,” 71st International Symposium on Molecular Spectroscopy (2016).
[Crossref]

Baumann, E.

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J.-D. Deschênes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref] [PubMed]

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

W. C. Swann, E. Baumann, F. R. Giorgetta, and N. R. Newbury, “Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator,” Opt. Express 19(24), 24387–24395 (2011).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
[Crossref] [PubMed]

S. Coburn, G. Rieker, K. Prasad, S. Ghosh, C. Alden, N. Newbury, I. Coddington, E. Baumann, G.-W. Truong, K. Cossel, and R. Wright, “Methane detection for oil and gas production sites using portable dual-comb spectrometry,” 71st International Symposium on Molecular Spectroscopy (2016).
[Crossref]

Baynes, F. N.

Bergeron, H.

Bize, S.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Blake, G. A.

Bobb, L.

B. White, J. Davis, L. Bobb, H. Krumboltz, and D. Larson, “Optical-fiber thermal modulator,” J. Lightwave Technol. 5(9), 1169–1175 (1987).
[Crossref]

Brasch, V.

Braxmaier, C.

Buchanan, B.

D. Neamen, W. Shedd, and B. Buchanan, “Thin Film Silicon on Silicon Nitride for Radiation Hardened Dielectrically Isolated Misfet’s,” IEEE Trans. Nucl. Sci. 22(6), 2203–2207 (1975).
[Crossref]

Burke, J. H.

J. H. Burke, N. D. Lemke, G. R. Phelps, and K. W. Martin, “A compact, high-performance all optical atomic clock based on telecom lasers,” Proc. SPIE 9763, 976304 (2016).
[Crossref]

Carlson, D. R.

Chen, Q.-F.

Cheng, J.

Clairon, A.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Cleff, C.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Coburn, S.

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

S. Coburn, G. Rieker, K. Prasad, S. Ghosh, C. Alden, N. Newbury, I. Coddington, E. Baumann, G.-W. Truong, K. Cossel, and R. Wright, “Methane detection for oil and gas production sites using portable dual-comb spectrometry,” 71st International Symposium on Molecular Spectroscopy (2016).
[Crossref]

Coddington, I.

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Self-referenced frequency combs using high-efficiency silicon-nitride waveguides,” Opt. Lett. 42(12), 2314–2317 (2017).
[Crossref] [PubMed]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J.-D. Deschênes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref] [PubMed]

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical frequency comb generation based on erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22(6), 6996–7006 (2014).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
[Crossref] [PubMed]

S. Coburn, G. Rieker, K. Prasad, S. Ghosh, C. Alden, N. Newbury, I. Coddington, E. Baumann, G.-W. Truong, K. Cossel, and R. Wright, “Methane detection for oil and gas production sites using portable dual-comb spectrometry,” 71st International Symposium on Molecular Spectroscopy (2016).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Cossel, K.

S. Coburn, G. Rieker, K. Prasad, S. Ghosh, C. Alden, N. Newbury, I. Coddington, E. Baumann, G.-W. Truong, K. Cossel, and R. Wright, “Methane detection for oil and gas production sites using portable dual-comb spectrometry,” 71st International Symposium on Molecular Spectroscopy (2016).
[Crossref]

Cossel, K. C.

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

K. C. Cossel, E. M. Waxman, I. A. Finneran, G. A. Blake, J. Ye, and N. R. Newbury, “Gas-phase broadband spectroscopy using active sources: progress, status, and applications,” J. Opt. Soc. Am. B 34(1), 104–129 (2017).
[Crossref] [PubMed]

Costantini, D. M.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10(3), 361–363 (1998).
[Crossref]

Davila-Rodriguez, J.

Davis, J.

B. White, J. Davis, L. Bobb, H. Krumboltz, and D. Larson, “Optical-fiber thermal modulator,” J. Lightwave Technol. 5(9), 1169–1175 (1987).
[Crossref]

Deschênes, J.-D.

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J.-D. Deschênes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref] [PubMed]

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

Deutsch, C.

Diddams, S. A.

Dinkelaker, A.

Dobner, S.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Döringshoff, K.

Doubek, R.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Droste, S.

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Self-referenced frequency combs using high-efficiency silicon-nitride waveguides,” Opt. Lett. 42(12), 2314–2317 (2017).
[Crossref] [PubMed]

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical frequency comb generation based on erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Duncker, H.

Eggleton, B. J.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[Crossref]

English, E. M. L.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Espindola, R. P.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[Crossref]

Fermann, M. E.

Finneran, I. A.

Fischer, M.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Fortier, T. M.

Fox, G. R.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10(3), 361–363 (1998).
[Crossref]

Gaeta, A. L.

Geiselmann, M.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Ghosh, S.

S. Coburn, G. Rieker, K. Prasad, S. Ghosh, C. Alden, N. Newbury, I. Coddington, E. Baumann, G.-W. Truong, K. Cossel, and R. Wright, “Methane detection for oil and gas production sites using portable dual-comb spectrometry,” 71st International Symposium on Molecular Spectroscopy (2016).
[Crossref]

Giorgetta, F. R.

Giunta, M.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, T. Hülsing, T. W. Hänsch, and R. Holzwarth, “Space-borne frequency comb metrology,” Optica 3(12), 1381–1387 (2016).
[Crossref]

Guéna, J.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Hale, A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[Crossref]

Han, S.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(1), 5134 (2015).
[Crossref] [PubMed]

Hänsch, T. W.

Hänsel, W.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Hati, A.

Hellmig, O.

Hickstein, D. D.

Holzwarth, R.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, T. Hülsing, T. W. Hänsch, and R. Holzwarth, “Space-borne frequency comb metrology,” Optica 3(12), 1381–1387 (2016).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Hoogland, H.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Hülsing, T.

Iwakuni, K.

Jang, H.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(1), 5134 (2015).
[Crossref] [PubMed]

Jang, Y.-S.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(1), 5134 (2015).
[Crossref] [PubMed]

Jiang, H.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Jiang, J.

Johnson, A. R.

Joshi, A. B.

G. Q. Lo, A. B. Joshi, and D. L. Kwong, “Radiation hardness of MOSFETs with N2O-nitrided gate oxides,” IEEE Trans. Electron Dev. 40(8), 1565–1567 (1993).
[Crossref]

Jost, J. D.

Kang, K.-I.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(1), 5134 (2015).
[Crossref] [PubMed]

Keetman, A.

Keller, U.

Khader, I. H.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

Kim, S.-W.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(1), 5134 (2015).
[Crossref] [PubMed]

Kim, Y.-J.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(1), 5134 (2015).
[Crossref] [PubMed]

Kimerling, L.

Kippenberg, T. J.

Klenner, A.

Kohfeldt, A.

Kordts, A.

Kovalchuk, E. V.

Krumboltz, H.

B. White, J. Davis, L. Bobb, H. Krumboltz, and D. Larson, “Optical-fiber thermal modulator,” J. Lightwave Technol. 5(9), 1169–1175 (1987).
[Crossref]

Krutzik, M.

Kuse, N.

Kwong, D. L.

G. Q. Lo, A. B. Joshi, and D. L. Kwong, “Radiation hardness of MOSFETs with N2O-nitrided gate oxides,” IEEE Trans. Electron Dev. 40(8), 1565–1567 (1993).
[Crossref]

Ky, N. H.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10(3), 361–363 (1998).
[Crossref]

Lamont, M. R. E.

Lampmann, K.

Larson, D.

B. White, J. Davis, L. Bobb, H. Krumboltz, and D. Larson, “Optical-fiber thermal modulator,” J. Lightwave Technol. 5(9), 1169–1175 (1987).
[Crossref]

Le Coq, Y.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Lee, C.-C.

Lee, J.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(1), 5134 (2015).
[Crossref] [PubMed]

Lee, K.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(1), 5134 (2015).
[Crossref] [PubMed]

Lee, S.-H.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(1), 5134 (2015).
[Crossref] [PubMed]

Lemke, N. D.

J. H. Burke, N. D. Lemke, G. R. Phelps, and K. W. Martin, “A compact, high-performance all optical atomic clock based on telecom lasers,” Proc. SPIE 9763, 976304 (2016).
[Crossref]

Leopardi, H.

Lezius, M.

Lim, C.-W.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(1), 5134 (2015).
[Crossref] [PubMed]

Limberger, H. G.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10(3), 361–363 (1998).
[Crossref]

Lind, A.

Lipson, M.

Lo, G. Q.

G. Q. Lo, A. B. Joshi, and D. L. Kwong, “Radiation hardness of MOSFETs with N2O-nitrided gate oxides,” IEEE Trans. Electron Dev. 40(8), 1565–1567 (1993).
[Crossref]

Lours, M.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Ludlow, A. D.

Luke, K.

Mandel, O.

Martin, K. W.

J. H. Burke, N. D. Lemke, G. R. Phelps, and K. W. Martin, “A compact, high-performance all optical atomic clock based on telecom lasers,” Proc. SPIE 9763, 976304 (2016).
[Crossref]

Mayer, A. S.

Mayer, P.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Michel, J.

Millo, J.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Mohr, C.

Muller, C. A. P.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10(3), 361–363 (1998).
[Crossref]

Nader, N.

Neamen, D.

D. Neamen, W. Shedd, and B. Buchanan, “Thin Film Silicon on Silicon Nitride for Radiation Hardened Dielectrically Isolated Misfet’s,” IEEE Trans. Nucl. Sci. 22(6), 2203–2207 (1975).
[Crossref]

Nelson, C. W.

Newbury, N.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

S. Coburn, G. Rieker, K. Prasad, S. Ghosh, C. Alden, N. Newbury, I. Coddington, E. Baumann, G.-W. Truong, K. Cossel, and R. Wright, “Methane detection for oil and gas production sites using portable dual-comb spectrometry,” 71st International Symposium on Molecular Spectroscopy (2016).
[Crossref]

Newbury, N. R.

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

K. C. Cossel, E. M. Waxman, I. A. Finneran, G. A. Blake, J. Ye, and N. R. Newbury, “Gas-phase broadband spectroscopy using active sources: progress, status, and applications,” J. Opt. Soc. Am. B 34(1), 104–129 (2017).
[Crossref] [PubMed]

D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, and S. B. Papp, “Self-referenced frequency combs using high-efficiency silicon-nitride waveguides,” Opt. Lett. 42(12), 2314–2317 (2017).
[Crossref] [PubMed]

H. Bergeron, L. C. Sinclair, W. C. Swann, C. W. Nelson, J.-D. Deschênes, E. Baumann, F. R. Giorgetta, I. Coddington, and N. R. Newbury, “Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path,” Optica 3(4), 441–447 (2016).
[Crossref] [PubMed]

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical frequency comb generation based on erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22(6), 6996–7006 (2014).
[Crossref] [PubMed]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

W. C. Swann, E. Baumann, F. R. Giorgetta, and N. R. Newbury, “Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator,” Opt. Express 19(24), 24387–24395 (2011).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
[Crossref] [PubMed]

B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt. Express 13(26), 10622–10633 (2005).
[Crossref] [PubMed]

Nicholson, J. W.

Okawachi, Y.

Pahl, J.

Papp, S. B.

Peters, A.

Pfeiffer, M. H. P.

Phelps, G. R.

J. H. Burke, N. D. Lemke, G. R. Phelps, and K. W. Martin, “A compact, high-performance all optical atomic clock based on telecom lasers,” Proc. SPIE 9763, 976304 (2016).
[Crossref]

Prasad, K.

S. Coburn, G. Rieker, K. Prasad, S. Ghosh, C. Alden, N. Newbury, I. Coddington, E. Baumann, G.-W. Truong, K. Cossel, and R. Wright, “Methane detection for oil and gas production sites using portable dual-comb spectrometry,” 71st International Symposium on Molecular Spectroscopy (2016).
[Crossref]

Quinlan, F.

Rieker, G.

S. Coburn, G. Rieker, K. Prasad, S. Ghosh, C. Alden, N. Newbury, I. Coddington, E. Baumann, G.-W. Truong, K. Cossel, and R. Wright, “Methane detection for oil and gas production sites using portable dual-comb spectrometry,” 71st International Symposium on Molecular Spectroscopy (2016).
[Crossref]

Rieker, G. B.

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22(6), 6996–7006 (2014).
[Crossref] [PubMed]

Rogers, J. A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[Crossref]

Salathe, R. P.

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10(3), 361–363 (1998).
[Crossref]

Santarelli, G.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Schibli, T. R.

Schiemangk, M.

Schiller, S.

Schkolnik, V.

Schmid, S.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Schroeder, P. J.

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

Schuldt, T.

Sengstock, K.

Shedd, W.

D. Neamen, W. Shedd, and B. Buchanan, “Thin Film Silicon on Silicon Nitride for Radiation Hardened Dielectrically Isolated Misfet’s,” IEEE Trans. Nucl. Sci. 22(6), 2203–2207 (1975).
[Crossref]

Sinclair, L. C.

Sodergren, B.

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

Sonderhouse, L.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

Srinivasan, K.

Steinmetz, T.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Strasser, T. A.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[Crossref]

Sun, R.

Swann, W.

Swann, W. C.

Thaller, A.

Tobar, M. E.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Truong, G. W.

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

Truong, G.-W.

S. Coburn, G. Rieker, K. Prasad, S. Ghosh, C. Alden, N. Newbury, I. Coddington, E. Baumann, G.-W. Truong, K. Cossel, and R. Wright, “Methane detection for oil and gas production sites using portable dual-comb spectrometry,” 71st International Symposium on Molecular Spectroscopy (2016).
[Crossref]

Washburn, B. R.

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical frequency comb generation based on erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt. Express 13(26), 10622–10633 (2005).
[Crossref] [PubMed]

Waxman, E. M.

Westly, D.

White, B.

B. White, J. Davis, L. Bobb, H. Krumboltz, and D. Larson, “Optical-fiber thermal modulator,” J. Lightwave Technol. 5(9), 1169–1175 (1987).
[Crossref]

Wicht, A.

Wilken, T.

Windeler, R. S.

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[Crossref]

Windpassinger, P.

Wright, R.

S. Coburn, G. Rieker, K. Prasad, S. Ghosh, C. Alden, N. Newbury, I. Coddington, E. Baumann, G.-W. Truong, K. Cossel, and R. Wright, “Methane detection for oil and gas production sites using portable dual-comb spectrometry,” 71st International Symposium on Molecular Spectroscopy (2016).
[Crossref]

Wright, R. J.

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

Ycas, G.

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical frequency comb generation based on erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

Ye, J.

Zervas, M.

Appl. Opt. (1)

Appl. Phys. B (1)

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Appl. Phys. Lett. (1)

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (2)

H. G. Limberger, N. H. Ky, D. M. Costantini, R. P. Salathe, C. A. P. Muller, and G. R. Fox, “Efficient miniature fiber-optic tunable filter based on intracore Bragg grating and electrically resistive coating,” IEEE Photon. Technol. Lett. 10(3), 361–363 (1998).
[Crossref]

A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, and T. A. Strasser, “Electrically tunable efficient broad-band fiber filter,” IEEE Photon. Technol. Lett. 11(4), 445–447 (1999).
[Crossref]

IEEE Trans. Electron Dev. (1)

G. Q. Lo, A. B. Joshi, and D. L. Kwong, “Radiation hardness of MOSFETs with N2O-nitrided gate oxides,” IEEE Trans. Electron Dev. 40(8), 1565–1567 (1993).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

D. Neamen, W. Shedd, and B. Buchanan, “Thin Film Silicon on Silicon Nitride for Radiation Hardened Dielectrically Isolated Misfet’s,” IEEE Trans. Nucl. Sci. 22(6), 2203–2207 (1975).
[Crossref]

J. Lightwave Technol. (1)

B. White, J. Davis, L. Bobb, H. Krumboltz, and D. Larson, “Optical-fiber thermal modulator,” J. Lightwave Technol. 5(9), 1169–1175 (1987).
[Crossref]

J. Opt. Soc. Am. B (2)

Nanophotonics (1)

S. Droste, G. Ycas, B. R. Washburn, I. Coddington, and N. R. Newbury, “Optical frequency comb generation based on erbium fiber lasers,” Nanophotonics 5(2), 196–213 (2016).
[Crossref]

Nat. Photonics (1)

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

Opt. Express (7)

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22(6), 6996–7006 (2014).
[Crossref] [PubMed]

N. Kuse, C.-C. Lee, J. Jiang, C. Mohr, T. R. Schibli, and M. E. Fermann, “Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator,” Opt. Express 23(19), 24342–24350 (2015).
[Crossref] [PubMed]

W. C. Swann, E. Baumann, F. R. Giorgetta, and N. R. Newbury, “Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator,” Opt. Express 19(24), 24387–24395 (2011).
[Crossref] [PubMed]

V. Brasch, Q.-F. Chen, S. Schiller, and T. J. Kippenberg, “Radiation hardness of high-Q silicon nitride microresonators for space compatible integrated optics,” Opt. Express 22(25), 30786–30794 (2014).
[Crossref] [PubMed]

B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt. Express 13(26), 10622–10633 (2005).
[Crossref] [PubMed]

A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides,” Opt. Express 23(12), 15440–15451 (2015).
[Crossref] [PubMed]

A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, and U. Keller, “Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides,” Opt. Express 24(10), 11043–11053 (2016).
[Crossref] [PubMed]

Opt. Lett. (4)

Optica (4)

Proc. Combust. Inst. (1)

P. J. Schroeder, R. J. Wright, S. Coburn, B. Sodergren, K. C. Cossel, S. Droste, G. W. Truong, E. Baumann, F. R. Giorgetta, I. Coddington, N. R. Newbury, and G. B. Rieker, “Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust,” Proc. Combust. Inst. 36(3), 4565–4573 (2017).
[Crossref]

Proc. SPIE (1)

J. H. Burke, N. D. Lemke, G. R. Phelps, and K. W. Martin, “A compact, high-performance all optical atomic clock based on telecom lasers,” Proc. SPIE 9763, 976304 (2016).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Rev. Sci. Instrum. (1)

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited article: a compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4(1), 5134 (2015).
[Crossref] [PubMed]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Other (3)

S. Coburn, G. Rieker, K. Prasad, S. Ghosh, C. Alden, N. Newbury, I. Coddington, E. Baumann, G.-W. Truong, K. Cossel, and R. Wright, “Methane detection for oil and gas production sites using portable dual-comb spectrometry,” 71st International Symposium on Molecular Spectroscopy (2016).
[Crossref]

Disclaimer, “The use of tradenames in this manuscript is necessary to specify experimental results and does not imply endorsement by the National Institute of Standards and Technology.”

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Layout of the low power comb. EDF: erbium-doped fiber, OC: output coupler, WDM: wavelength division multiplexer, ISO: isolator, PPKTP: periodically-poled potassium titanyl phosphate, SiN: silicon nitride, NC: not connected. Note that this oscillator is pumped through the end mirror (which is transparent at 980 nm) using the passively-cooled laser diode at 980 nm. The intracavity WDM only serves to dump extra pump light, protecting the SESAM and limiting back reflection into the pump. After the amplifier, a coupler directs 90% of the output to the SiN waveguide for broadening and 10% to a PPKTP crystal for doubling. (b) 30-dB fCEO signal recorded with 22 mW of light incident on the SiN waveguide (300-kHz resolution bandwidth). (c) Spectra of the comb at the output of the oscillator (red), at the output of the amplifier (black). (d) Spectra at the output of the SiN waveguide to beat against the doubled light from PPKTP.
Fig. 2
Fig. 2 (a) SiN chip used in this experiment. (b) Calculated dispersion profile for the 2100-nm waveguide. (c) recorded spectrum vs incident power. The dotted line denotes 786 nm.
Fig. 3
Fig. 3 Counted frep, and fCEO while the frequency comb was locked and powered by a USB charger. Counter gate time was 100 ms. The standard deviations calculated for the first 1000 points are 12.7 mHz for frep and 4.7 Hz for fCEO.
Fig. 4
Fig. 4 Fiber resistive modulator design and results. (a) Oscillator design: in this case, only 13.9 cm of the ≈1 m oscillator is coated. (b) Repetition rate (left axis) and cavity-averaged temperature (right axis) versus input electrical power. Blue line is a linear fit giving an frep tuning constant of 77 mW/kHz. EDF: Erbium-doped fiber, frep: repetition rate, fCEO: carrier envelope offset frequency.
Fig. 5
Fig. 5 Response time constants and Bode plots. (a) The response of frep (green) and fCEO (shown in the inset in purple) to a square wave voltage modulation. The exponential fits (transparent red and violet lines) extracted the time constants (τ) of the frep response. (b) Transfer function (Bode plots) for rising (red) and falling (blue) edges.

Tables (1)

Tables Icon

Table 1 Comparison of electrical power consumption between a conventional 200-MHz comb design (left column), and two optimized 100-MHz designs, first only with fiber resistive modulator (middle) and second fully optimized using passively-cooled pumps (right). It should be noted that the fully optimized design assumes the use of a fiber resistive modulator for temperature tuning. All the values are based on actual measurements. The temperature tuning values are based on a 3 °C offset from ambient temperature. Measured power draw for the pump diodes includes the diode controllers (Wavelength Electronics LDTC1040 and LDTC2E for the oscillator and amplifier pump respectively and two LDTC1024’s for the passively-cooled pumps [27]). The power consumption of the locking electronics including the PZTs has not been included here, although for the PZT the consumption is negligibly low (< 5 mW)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f fix = d f CEO d f rep f rep f CEO ,