Abstract

We report the first computational super-resolution imaging using a camera array at longwave infrared wavelengths combined with the first demonstration of video-rate multi-camera integral imaging at these wavelengths. We employ an array of synchronized FLIR Lepton cameras to record video-rate data that enables light-field imaging capabilities, such as 3D imaging and recognition of partially obscured objects, while also providing a four-fold increase in effective pixel count. This approach to high-resolution imaging enables a fundamental reduction in the track length and volume of LWIR imaging systems, while also enabling use of low-cost lens materials.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact multi-aperture imaging with high angular resolution

Guillem Carles, Gonzalo Muyo, Nicholas Bustin, Andrew Wood, and Andrew R. Harvey
J. Opt. Soc. Am. A 32(3) 411-419 (2015)

Simultaneous digital super-resolution and nonuniformity correction for infrared imaging systems

Pablo Meza, Guillermo Machuca, Sergio Torres, Cesar San Martin, and Esteban Vera
Appl. Opt. 54(21) 6508-6515 (2015)

Controlled angular and radial scanning for super resolution concentric circular imaging

Xian Du and Brian Anthony
Opt. Express 24(20) 22581-22595 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
    [Crossref] [PubMed]
  2. B. Javidi, I. Moon, and S. Yeom, “Three-dimensional identification of biological microorganism using integral imaging,” Opt. Express 14(25), 12096–12108 (2006).
    [Crossref] [PubMed]
  3. M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
    [Crossref] [PubMed]
  4. B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24(3), 765 (2005).
    [Crossref]
  5. M. DaneshPanah and B. Javidi, “Profilometry and optical slicing by passive three-dimensional imaging,” Opt. Lett. 34(7), 1105–1107 (2009).
    [Crossref] [PubMed]
  6. M. G. Lippmann, “Épreuves réversibles. Photographies intégrales,” Comptes Rendus de l’Académie des Sciences. 146, 446–451 (1908).
  7. E. Y. Lam, “Computational photography with plenoptic camera and light field capture: tutorial,” J. Opt. Soc. Am. A 32(11), 2021–2032 (2015).
    [Crossref] [PubMed]
  8. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
    [Crossref]
  9. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” in Tech. Rep. CSTR 2005–02 (Stanford University Computer Science Department, 2005).
  10. R. Ng, “Digital light field photography,” Ph.D. thesis (Stanford University, 2006).
  11. W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5(4), e16060 (2016).
    [Crossref]
  12. J. Downing, E. Findlay, G. Muyo, and A. R. Harvey, “Multichanneled finite-conjugate imaging,” J. Opt. Soc. Am. A 29(6), 921–927 (2012).
    [Crossref] [PubMed]
  13. G. Carles, J. Downing, and A. R. Harvey, “Super-resolution imaging using a camera array,” Opt. Lett. 39(7), 1889–1892 (2014).
    [Crossref] [PubMed]
  14. G. Carles, G. Muyo, N. Bustin, A. Wood, and A. R. Harvey, “Compact multi-aperture imaging with high angular resolution,” J. Opt. Soc. Am. A 32(3), 411–419 (2015).
    [Crossref] [PubMed]
  15. T. Grulois, G. Druart, N. Guérineau, A. Crastes, H. Sauer, and P. Chavel, “Extra-thin infrared camera for low-cost surveillance applications,” Opt. Lett. 39(11), 3169–3172 (2014).
    [Crossref] [PubMed]
  16. T. E. Bishop and P. Favaro, “The light field camera: extended depth of field, aliasing, and superresolution,” IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 972–986 (2012).
    [Crossref] [PubMed]
  17. K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32(6), 166 (2013).
    [Crossref]
  18. M. Elad and A. Feuer, “Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images,” IEEE Trans. Image Process. 6(12), 1646–1658 (1997).
    [Crossref] [PubMed]
  19. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin Observation Module by Bound Optics (TOMBO): Concept and Experimental Verification,” Appl. Opt. 40(11), 1806–1813 (2001).
    [Crossref] [PubMed]
  20. M. Shankar, R. Willett, N. Pitsianis, T. Schulz, R. Gibbons, R. Te Kolste, J. Carriere, C. Chen, D. Prather, and D. Brady, “Thin infrared imaging systems through multichannel sampling,” Appl. Opt. 47(10), B1–B10 (2008).
    [Crossref] [PubMed]
  21. M. Okutomi and T. Kanade, “A multiple-baseline stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 353–363 (1993).
    [Crossref]
  22. S. Komatsu, A. Markman, A. Mahalanobis, K. Chen, and B. Javidi, “Three-dimensional integral imaging and object detection using long-wave infrared imaging,” Appl. Opt. 56(9), D120–D126 (2017).
    [Crossref] [PubMed]
  23. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd. ed. (Cambridge University Press, 2003).
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985)
  25. A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
    [Crossref] [PubMed]
  26. “Resolution and spatial frequency responses,” ISO:12233:2000(E).
  27. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
    [Crossref]
  28. J. Heikkila and O. Silven, “A four-step camera calibration procedure with implicit image correction,” in IEEE International Conference on Computer Vision and Pattern Recognition, (1997)
    [Crossref]
  29. J. Schott, Remote Sensing: The Image Chain Approach (Oxford University Press, 2007).
  30. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, C. Ferreira, and Z. Zalevsky, “Space–bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13(3), 470–473 (1996).
    [Crossref]

2017 (1)

2016 (2)

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5(4), e16060 (2016).
[Crossref]

2015 (2)

2014 (2)

2013 (2)

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32(6), 166 (2013).
[Crossref]

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
[Crossref] [PubMed]

2012 (2)

T. E. Bishop and P. Favaro, “The light field camera: extended depth of field, aliasing, and superresolution,” IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 972–986 (2012).
[Crossref] [PubMed]

J. Downing, E. Findlay, G. Muyo, and A. R. Harvey, “Multichanneled finite-conjugate imaging,” J. Opt. Soc. Am. A 29(6), 921–927 (2012).
[Crossref] [PubMed]

2009 (2)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

M. DaneshPanah and B. Javidi, “Profilometry and optical slicing by passive three-dimensional imaging,” Opt. Lett. 34(7), 1105–1107 (2009).
[Crossref] [PubMed]

2008 (1)

2006 (1)

2005 (1)

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24(3), 765 (2005).
[Crossref]

2001 (1)

2000 (1)

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

1997 (1)

M. Elad and A. Feuer, “Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images,” IEEE Trans. Image Process. 6(12), 1646–1658 (1997).
[Crossref] [PubMed]

1996 (1)

1993 (1)

M. Okutomi and T. Kanade, “A multiple-baseline stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 353–363 (1993).
[Crossref]

1992 (1)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

1908 (1)

M. G. Lippmann, “Épreuves réversibles. Photographies intégrales,” Comptes Rendus de l’Académie des Sciences. 146, 446–451 (1908).

Adams, A.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24(3), 765 (2005).
[Crossref]

Adelson, E. H.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Antunez, E.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24(3), 765 (2005).
[Crossref]

Barth, A.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24(3), 765 (2005).
[Crossref]

Bishop, T. E.

T. E. Bishop and P. Favaro, “The light field camera: extended depth of field, aliasing, and superresolution,” IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 972–986 (2012).
[Crossref] [PubMed]

Brady, D.

Bustin, N.

Carles, G.

Carriere, J.

Chatterjee, P.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32(6), 166 (2013).
[Crossref]

Chavel, P.

Chen, C.

Chen, K.

Crastes, A.

DaneshPanah, M.

Dorsch, R. G.

Downing, J.

Druart, G.

Duparré, J.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32(6), 166 (2013).
[Crossref]

Elad, M.

M. Elad and A. Feuer, “Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images,” IEEE Trans. Image Process. 6(12), 1646–1658 (1997).
[Crossref] [PubMed]

Favaro, P.

T. E. Bishop and P. Favaro, “The light field camera: extended depth of field, aliasing, and superresolution,” IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 972–986 (2012).
[Crossref] [PubMed]

Feizi, A.

W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5(4), e16060 (2016).
[Crossref]

Ferreira, C.

Feuer, A.

M. Elad and A. Feuer, “Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images,” IEEE Trans. Image Process. 6(12), 1646–1658 (1997).
[Crossref] [PubMed]

Findlay, E.

Gibbons, R.

Göröcs, Z.

W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5(4), e16060 (2016).
[Crossref]

Grulois, T.

Guérineau, N.

Harvey, A. R.

Heikkila, J.

J. Heikkila and O. Silven, “A four-step camera calibration procedure with implicit image correction,” in IEEE International Conference on Computer Vision and Pattern Recognition, (1997)
[Crossref]

Horowitz, M.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24(3), 765 (2005).
[Crossref]

Ichioka, Y.

Ishida, K.

Javidi, B.

Joshi, N.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24(3), 765 (2005).
[Crossref]

Kanade, T.

M. Okutomi and T. Kanade, “A multiple-baseline stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 353–363 (1993).
[Crossref]

Komatsu, S.

Kondou, N.

Kopytko, M.

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Kumagai, T.

Lam, E. Y.

Lelescu, D.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32(6), 166 (2013).
[Crossref]

Levoy, M.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24(3), 765 (2005).
[Crossref]

Lippmann, M. G.

M. G. Lippmann, “Épreuves réversibles. Photographies intégrales,” Comptes Rendus de l’Académie des Sciences. 146, 446–451 (1908).

Lohmann, A. W.

Luo, W.

W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5(4), e16060 (2016).
[Crossref]

Mahalanobis, A.

Markman, A.

Martinez-Corral, M.

Martyniuk, P.

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

McDowall, I.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

McMahon, A.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32(6), 166 (2013).
[Crossref]

Mendlovic, D.

Miyatake, S.

Miyazaki, D.

Molina, G.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32(6), 166 (2013).
[Crossref]

Moon, I.

Morimoto, T.

Mullis, R.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32(6), 166 (2013).
[Crossref]

Muyo, G.

Nayar, S.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32(6), 166 (2013).
[Crossref]

Okutomi, M.

M. Okutomi and T. Kanade, “A multiple-baseline stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 353–363 (1993).
[Crossref]

Ozcan, A.

W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5(4), e16060 (2016).
[Crossref]

Pitsianis, N.

Prather, D.

Rogalski, A.

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Sauer, H.

Schulz, T.

Shankar, M.

Silven, O.

J. Heikkila and O. Silven, “A four-step camera calibration procedure with implicit image correction,” in IEEE International Conference on Computer Vision and Pattern Recognition, (1997)
[Crossref]

Stern, A.

Talvala, E.-V.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24(3), 765 (2005).
[Crossref]

Tanida, J.

Te Kolste, R.

Vaish, V.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24(3), 765 (2005).
[Crossref]

Venkataraman, K.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32(6), 166 (2013).
[Crossref]

Wang, J. Y. A.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Wilburn, B.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24(3), 765 (2005).
[Crossref]

Willett, R.

Wood, A.

Xiao, X.

Yamada, K.

Yeom, S.

Zalevsky, Z.

Zhang, Y.

W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5(4), e16060 (2016).
[Crossref]

Zhang, Z.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

ACM Trans. Graph. (2)

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24(3), 765 (2005).
[Crossref]

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, R. Mullis, and S. Nayar, “PiCam: an ultra-thin high performance monolithic camera array,” ACM Trans. Graph. 32(6), 166 (2013).
[Crossref]

Appl. Opt. (4)

Comptes Rendus de l’Académie des Sciences. (1)

M. G. Lippmann, “Épreuves réversibles. Photographies intégrales,” Comptes Rendus de l’Académie des Sciences. 146, 446–451 (1908).

IEEE Trans. Image Process. (1)

M. Elad and A. Feuer, “Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images,” IEEE Trans. Image Process. 6(12), 1646–1658 (1997).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (4)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

M. Okutomi and T. Kanade, “A multiple-baseline stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 353–363 (1993).
[Crossref]

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

T. E. Bishop and P. Favaro, “The light field camera: extended depth of field, aliasing, and superresolution,” IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 972–986 (2012).
[Crossref] [PubMed]

J. Microsc. (1)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (4)

Light Sci. Appl. (1)

W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5(4), e16060 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Rep. Prog. Phys. (1)

A. Rogalski, P. Martyniuk, and M. Kopytko, “Challenges of small-pixel infrared detectors: a review,” Rep. Prog. Phys. 79(4), 046501 (2016).
[Crossref] [PubMed]

Other (7)

“Resolution and spatial frequency responses,” ISO:12233:2000(E).

J. Heikkila and O. Silven, “A four-step camera calibration procedure with implicit image correction,” in IEEE International Conference on Computer Vision and Pattern Recognition, (1997)
[Crossref]

J. Schott, Remote Sensing: The Image Chain Approach (Oxford University Press, 2007).

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd. ed. (Cambridge University Press, 2003).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985)

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” in Tech. Rep. CSTR 2005–02 (Stanford University Computer Science Department, 2005).

R. Ng, “Digital light field photography,” Ph.D. thesis (Stanford University, 2006).

Supplementary Material (2)

NameDescription
» Visualization 1       Digital refocusing at the ranges of 1.02 m (rear bush), 0.885 m (toy car), and 0.820 m (front bush) demonstrates simultaneous digital refocusing and SR on each object.
» Visualization 2       Video-rate imaging of dynamic 3D scenes, with simultaneous integral imaging(light field) - super-resolution for 4D volumetric reconstruction.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Calculated variation of optical transmission with focal length for anti-reflection coated silicon and germanium doublet lenses.
Fig. 2
Fig. 2 Analysis of computational SR in the LWIR for a range of pixel sizes. Subplot (a) shows the system MTF as a function of pixel size, where: the Nyquist frequency is indicated by a vertical dashed black line, the pixel MTF is shown by a black-solid line, the optics MTF is shown by the colored dashed lines, and the overall MTF indicated by colored solid lines. Subplot (b) indicates the overall MTF at the Nyquist frequency (MTFnyq) as a function of pixel size.
Fig. 3
Fig. 3 (a) Schematic representation of the modular multi-camera array system, (b) the calculated system MTF (blue), with the optical MTF (red), pixel MTF (yellow) and the six measured system SFRs for every (black lines).
Fig. 4
Fig. 4 Calibration process: (a) a visible-light photograph of a 3D-printed plastic calibration target. (b) the back-illuminated calibration target is imaged by the camera array at various positions and orientations.
Fig. 5
Fig. 5 Results of computational SR at static scenarios. Images of the objects using a visible camera (first column); original low resolution LWIR image captured by the reference camera (second column); and corresponding super-resolved LWIR images in (third column).
Fig. 6
Fig. 6 Analysis of SR performance in a long shutter-less capture, under multi-camera thermal drift. The temporal variation of the lowest and highest captured intensity value in the region of interest of the USAF-51 target during the ~2,25 hours acquisition is shown in (a) for all cameras. Three resulting SR images, at different instants of this long acquisition, are showed inside the subplot. The CTF calculated from elements of the target is shown in (b), for vertical (blue) and horizontal elements (red), where the CTF variation during the acquisition is shown in error bars, with the initial CTF.
Fig. 7
Fig. 7 Spatial frequency analysis of SR imaging using the star target. (a) Ground truth, (b) a low-resolution image and (c) SR image. Subplots (d), (e) and (f) show the respective spatial-frequency spectra, where the horizontal and vertical Nyquist frequency limits are indicated with a dashed red line showing that the aliased high-frequency components in (e) are recovered in the SR image of (f), which has the expected non-aliased, low-pass-filter version of (d).
Fig. 8
Fig. 8 CIIR-SR results at different planes. Color image of the scene (a), and comparison of low resolution image from reference camera (b), super-resolved image at 0.820 m (c), 0.885 m (e), and 1.020 m (e). Visualization 1 shows reconstruction in intermediate planes.
Fig. 9
Fig. 9 CIIR-SR results at different planes at video-rate. Comparison of low resolution image from reference camera (a), super-resolved image at 3 m (b), 6 m (c). A detailed comparison is shown for low resolution (d) and super-resolution (e). Visualization 2 shows arbitrary reconstruction at several simultaneous intermediate planes in the video-rate sequence.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

y LR,k =D W k,z y HR + e k