Abstract

Reliable modulation of terahertz electromagnetic waveforms is important for many applications. Here, we rapidly modulate the direction of the electric field of linearly polarized terahertz electromagnetic pulses with 1–30 THz bandwidth by applying time-dependent magnetic fields to a spintronic terahertz emitter. Polarity modulation of the terahertz field with more than 99% contrast at a rate of 10 kHz is achieved using a harmonic magnetic field. By adding a static magnetic field, we modulate the direction of the terahertz field between angles of, for instance, −53° and 53° at kilohertz rates. We believe our approach makes spintronic terahertz emitters a promising source for low-noise modulation spectroscopy and polarization-sensitive techniques such as ellipsometry at 1–30 THz.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Terahertz (THz) radiation is resonant with many low-energy modes in solid-state systems, gases, and liquids. Thus, THz spectroscopy allows one to characterize materials by their spectral fingerprint in the THz range. Tabletop sources of broadband THz radiation typically rely on difference-frequency mixing of femtosecond laser pulses in suitable media [1], resulting in sub-picosecond THz electromagnetic transients.

Modulation of the polarity (${\pm}$) and, more generally, direction of the peak field of linearly polarized THz pulses is highly desirable for all kinds of modulation spectroscopy [2,3]. Examples include lock-in-type low-noise detection, linear spectroscopy of anisotropic samples, and the separation of symmetric and antisymmetric responses with respect to the driving THz field in nonlinear spectroscopy. However, rapid modulation of the polarity and direction of the polarization of broadband THz pulses remains challenging [4].

Amplitude modulation can easily be achieved by mechanical chopping of the THz beam or of the generating femtosecond laser beam. However, this approach only allows one to modulate (multiply) the global amplitude of the THz pulse with 0 and 1. Modulation of neither the polarity nor the direction of the THz field is possible, and half of the THz power is lost. The polarization modulation of a THz beam was achieved by rotating a THz retardation plate [5,6]. As the plate is rotated mechanically, a modulation frequency above 100 Hz is difficult to reach, and the THz bandwidth is limited by the retardation plate. Shaping of the THz pulse polarization is also possible with a combination of a THz grating [7] and a spatial light modulator [8]. However, such optical setup is costly and requires very precise adjustment.

Polarity modulation (PM) and direction modulation (DM) of the peak field of linearly polarized THz pulses is also possible through direct modulation of the THz generation process. In photoconductive antennas, PM was implemented by modulating the bias voltage [911]. DM is more challenging because it requires dual photoconductive antennas with identical responses to realize a clean modulation between angles ${\pm}{\theta _0}$ [11]. For optical rectification in suitable transparent nonlinear optical crystals [8,12], the polarization of the emitted THz pulse can be controlled by the polarization of the pump beam. DM, thus, requires a costly optical modulator and special nonlinear optical materials [13].

Spintronic THz emitters (STEs), a recently developed THz-emitter class [1422], offer interesting opportunities for PM and DM. As schematically shown in Fig. 1(a), an STE typically consists of a ferromagnetic layer (F) with magnetization ${\boldsymbol M}$ and one [2325] or two [14] adjacent nonmagnetic layers (N). A femtosecond laser pulse is incident on the STE and launches a spin current with density ${j_{\rm s}}$ from the F to N [26]. Through the inverse spin Hall effect (ISHE) of the N material, ${j_{\rm s}}$ is converted into a transverse charge current with density ${j_{\rm c}} = \gamma {j_{\rm s}}$, where $\gamma$ is the spin-Hall angle [Fig. 1(a)]. As the driving laser pulse has femtosecond duration, ${j_{\rm c}}$ is time-dependent and acts like an electric dipole that emits an electromagnetic pulse with frequencies extending into the THz range.

 figure: Fig. 1.

Fig. 1. Polarization modulation of THz pulses. (a) In a spintronic THz emitter (STE), an incident femtosecond laser pulse drives spin transport from a ferromagnetic (F) into an adjacent nonmagnetic (N) layer. By the inverse spin Hall effect, the spin current ${j_{\rm s}}$ is converted into a transverse charge current ${j_{\rm c}}$ that emits THz radiation. The resulting THz field ${\boldsymbol E}$ is linearly polarized and perpendicular to the magnetization ${\boldsymbol M}$ of the F layer. We modulate the direction of ${\boldsymbol M}$ and, thus, $\boldsymbol E$ by an external in-plane magnetic field ${{\boldsymbol B}_{{\rm ext}}}$. The direction of ${\boldsymbol M}$ is monitored by means of the magneto-optic Kerr effect (MOKE). (b) In polarity-modulation (PM) mode, ${{\boldsymbol B}_{{\rm ext}}} = {{\boldsymbol B}_{{\rm AC}}}$ is a harmonic AC field ${{\boldsymbol B}_{{\rm AC}}}(t) = {{\boldsymbol u}_y}{B_{{\rm AC}}}(t)$ with ${B_{{\rm AC}}}(t) = {B_{{\rm AC}0}}\cos ({2\pi {f_{{\rm AC}}}t})$ from an electromagnet, thereby alternating the ${\boldsymbol M}$ direction between ${\pm}{{\boldsymbol u}_y}$. (c) In the more general direction-modulation (DM) mode, ${{\boldsymbol B}_{{\rm AC}}}(t)$ is superimposed by a perpendicular DC magnetic field ${{\boldsymbol B}_{{\rm DC}}} = {B_{{\rm DC}}}{{\boldsymbol u}_x}$ from a permanent magnet. The angle $\theta (t)$ of the resulting ${{\boldsymbol B}_{{\rm ext}}} = {{\boldsymbol B}_{{\rm AC}}} + {{\boldsymbol B}_{{\rm DC}}}$ and, thus, ${\boldsymbol M}$ oscillates continuously between values ${\pm}{\theta _0}$.

Download Full Size | PPT Slide | PDF

STEs have very interesting features: (i) They cover a wide bandwidth, in particular the region from 5–15 THz [14]. (ii) They operate with a very broad range of pump wavelengths [27,28]. (iii) They can be upscaled along with the laser power to generate THz field strengths reaching 0.3 MV/cm [15,29]. (iv) Due to the underlying physics, the THz electric field ${\boldsymbol E}$ is linearly polarized and perpendicular to the STE magnetization vector ${\boldsymbol M}$, as shown in Fig. 1(a) [14]. Thus, modulating the direction of ${\boldsymbol M}$ allows one to modulate the THz polarization.

In this paper, we demonstrate PM and DM of the polarization of broadband THz pulses from an STE at frequencies up to 10 kHz by a time-dependent external magnetic field. We believe our results open up promising routes toward modulation spectroscopy with THz radiation.

2. EXPERIMENTAL DETAILS

Our STE is a commercially available metallic thin-film THz emitter on a transparent $z$-cut sapphire substrate (TeraSpinTec GmbH). In our THz emission setup, the STE is excited by a femtosecond laser pulse (center wavelength 800 nm, pulse energy 1 nJ, repetition rate 80 MHz) from a laser oscillator, as shown in Fig. 1(a). The induced THz electromagnetic pulse is linearly polarized, and its electric field ${\boldsymbol E}$ directly behind the STE is perpendicular to the instantaneous magnetization ${\boldsymbol M}$ of the ferromagnetic layer; that is, ${\boldsymbol E} \propto {\boldsymbol M} \times {{\boldsymbol u}_z}$, where ${{\boldsymbol u}_z}$ is the unit vector along the $z$ axis, as shown in Fig. 1(a). To achieve PM, we switch the magnetization vector ${\boldsymbol M}$ between opposite directions ${\pm}{{\boldsymbol u}_y}$ [Fig. 1(b)]. For DM, ${\boldsymbol M}$ is continuously and periodically rotated between two directions given by angles ${\pm}{\theta _0}$ [Fig. 1(c)].

To reject the remaining pump beam, a Ge wafer is placed behind the STE [30]. We characterize the transient THz electric field by electro-optic detection in a ZnTe (110) crystal (thickness 1 mm) using a co-propagating femtosecond probe pulse (0.6 nJ, 10 fs) from the same laser. Due to interaction with the THz electric field, the initially linearly polarized probe pulse acquires an ellipticity that is measured by a quarter-wave plate, a polarizing beam splitter, and two balanced photodiodes [31,32]. The resulting voltage signals ${S_x}$ and ${S_y}$ are linearly proportional to the components ${E_x}$ and ${E_y}$ of the THz electric field ${\boldsymbol E} \propto {\boldsymbol M} \times {{\boldsymbol u}_z}$. The THz electric-field components and corresponding signals are, therefore, expected to scale according to

$${S_x} \propto {E_x} \propto - {M_y},\quad{S_y} \propto {E_y} \propto {M_x}.$$

The component ${E_x}$ or ${E_y}$ is selected for detection by placing a rotatable THz wire-grid polarizer behind the STE. The azimuthal angle of the detection crystal and the probe-pulse polarization are set such that the detection unit is equally sensitive to ${E_x}$ and ${E_y}$. For the PM mode, the voltages ${S_x}$ and ${S_y}$ are measured directly by a data acquisition card. For the DM experiment, the THz signal is also amplitude-modulated by mechanically chopping of the optical pump beam at about 32 kHz and demodulated by a lock-in amplifier. All experiments are conducted under ambient conditions in air if not stated otherwise.

The STE magnetization ${\boldsymbol M}$ is controlled by a time-dependent external magnetic field ${{\boldsymbol B}_{{\rm ext}}}(t)$. When the coercive field and the in-plane magnetic anisotropy field of the STE’s ferromagnetic layer is significantly smaller than $| {{{\boldsymbol B}_{{\rm ext}}}(t)} |$, the direction of the sample magnetization is expected to directly follow the direction of the external field according to

$${\boldsymbol M} = {M_{{\rm sat}}}{\boldsymbol B}_{{\rm ext}}^0.$$

Here, ${M_{{\rm sat}}}$ is the saturation magnetization, and ${\boldsymbol B}_{{\rm ext}}^0 = {{\boldsymbol B}_{{\rm ext}}}/| {{{\boldsymbol B}_{{\rm ext}}}} |$ is the unit direction of ${{\boldsymbol B}_{{\rm ext}}}$. For PM [Fig. 1(b)], we apply a sinusoidal AC external magnetic field ${{\boldsymbol B}_{{\rm AC}}}(t) = {{\boldsymbol u}_y}{B_{{\rm AC}}}(t)$ along the $y$ axis with ${B_{{\rm AC}}}(t) = {B_{{\rm AC}0}}\cos ({2\pi\!{f_{{\rm AC}}}t})$, amplitude ${B_{{\rm AC}0}}$, and frequency ${f_{{\rm AC}}}$. As a result, ${\boldsymbol M}$ is switched between the two states ${\pm}{M_{{\rm sat}}}{{\boldsymbol u}_y}$. For DM [Fig. 1(c)], we add a static magnetic field ${{\boldsymbol B}_{{\rm DC}}} = {B_{{\rm DC}}}{{\boldsymbol u}_x}$ that is perpendicular to ${{\boldsymbol B}_{{\rm AC}}}$. The resulting total external magnetic field is ${{\boldsymbol B}_{{\rm ext}}} = {{\boldsymbol B}_{{\rm DC}}} + {{\boldsymbol B}_{{\rm AC}}}$; thus, ${\boldsymbol M}$ rotates continuously between angles ${\pm}{\theta _0}$. The instantaneous angle of ${{\boldsymbol B}_{{\rm ext}}}$ is given by

$$\tan \theta (t ) = \frac{{{B_{{\rm AC}}}(t )}}{{{B_{{\rm DC}}}}} = \frac{{{B_{{\rm AC}0}}}}{{{B_{{\rm DC}}}}}\cos ({2\pi\!{f_{{\rm AC}}}t} ).$$

We aim at $2{\theta _0} \approx 90^\circ$ by setting $| {{B_{{\rm AC}0}}/{B_{{\rm DC}}}} | = \tan {\theta _0} \approx 1$.

The field ${{\boldsymbol B}_{{\rm AC}}}(t)$ is generated by an electromagnet consisting of a high-permeability toroidal ferrite core with a gap of 0.7 cm and roughly 150 Cu-wire turns. The magnet is driven by a power amplifier in constant-voltage mode. We found that for frequencies ${f_{{\rm AC}}}$ between 2 kHz and 10 kHz, the product ${f_{{\rm AC}}}{B_{{\rm AC}0}}$ was approximately constant, amounting to some $85{\rm kHz} \cdot {\rm mT}$. This observation indicates that the impedance of the magnet is dominated by its inductive reactance $\propto {f_{{\rm AC}}}$. The field ${{\boldsymbol B}_{{\rm DC}}}$ is generated by a permanent magnet placed at a variable distance from the sample. To minimize any mechanical and electromagnetic coupling of the AC magnetic field to adjacent optical components, the magnet system is vibration-isolated from the optical table.

For PM, we calibrate the amplitude and the phase of ${{\boldsymbol B}_{{\rm AC}}}(t)$ at the sample position with respect to the driving voltage for all relevant modulation frequencies ${f_{{\rm AC}}}$ by a tesla meter (FM302, Projekt Elektronik Mess- und Regelungstechnik GmbH) and a Hall probe (AS-NTP-0,6). For DM, ${{\boldsymbol B}_{{\rm AC}}}$ and ${{\boldsymbol B}_{{\rm DC}}}$ are measured simultaneously with a three-axis Hall probe (AS-N3DM). The electromagnet does not significantly heat up during the measurements.

To monitor the magnetization state of the sample, we make use of the emitted THz wave and Eq. (1). In our first experiments, we additionally employ the magneto-optic (MO) Kerr effect (MOKE). To this end, the polarization rotation of a reflected continuous-wave laser beam (wavelength of 635 nm) is measured using an assembly of two nearly crossed polarizers, a photodiode, and an oscilloscope. The voltage signal due to the MOKE polarization rotation is given by ${S_{{\rm MO}}} = {\boldsymbol a} \cdot {\boldsymbol M}$, where the vector ${\boldsymbol a}$ summarizes the magneto-optic coefficient of each magnetization component [33,34]. Because the incident MOKE laser beam is p-polarized, it follows that ${a_x} = 0$. As our samples exhibit an in-plane magnetic anisotropy and the external magnetic field has a negligible out-of-plane component, we have ${M_z} = 0$ and, thus,

$${S_{{\rm MO}}} = {\boldsymbol a} \cdot {\boldsymbol M} \propto {M_y}.$$

A. THz Waveforms and Spectra

We first characterize the STE output for opposite static external magnetic fields ${{\boldsymbol B}_{{\rm ext}}} = \pm {B_{{\rm DC}}}{{\boldsymbol u}_x}$, resulting in opposite static magnetizations ${\boldsymbol M} = \pm {{\boldsymbol M}_0} = \pm {M_{{\rm sat}}}{{\boldsymbol u}_x}$. Figure 2(a) shows typical THz signal waveforms ${S_y}({\tau ,{\boldsymbol M}})$ as a function of the delay $\tau$ between THz and gate pulse for ${\boldsymbol M} = \pm {{\boldsymbol M}_0}$. We observe that more than 99% of the peak signal reverses when the magnetization is reversed.

 figure: Fig. 2.

Fig. 2. Raw data and modulation contrast. (a) Typical THz signal waveforms ${S_y}({\tau ,{\boldsymbol M}})$ from the spintronic THz emitter for opposite magnetizations ${\boldsymbol M} = \pm {{\boldsymbol M}_0}$ measured with a 1 mm thick ZnTe (110) electro-optic crystal. For the modulation experiments, we measure the THz signal ${S_j}(t) = {S_j}({{\tau _0},{\boldsymbol M}(t)})$ (with $j = x$ or $y$) at the delay ${\tau _0}$ of the maximum signal (red arrow) versus real time $t$. (b) Amplitude spectra $| {{{\tilde S}_y}({\nu ,{\boldsymbol M}})} |$ of THz signals ${S_y}({\tau ,{\boldsymbol M}})$ from the STE for ${\boldsymbol M} = \pm {{\boldsymbol M}_0}$ measured with a broadband 10 µm thick ZnTe (110) electro-optic crystal in dry air atmosphere. The gray curve shows the modulus $| {\tilde Z(\nu)} |$ of the calculated impedance of the STE including the sapphire substrate. (c) Modulation contrast of the STE versus frequency up to 30 THz.

Download Full Size | PPT Slide | PDF

To test whether the signal reversal for ${\boldsymbol M} = \pm {{\boldsymbol M}_0}$ is uniform for all THz frequency components of the emitted waveform, we perform the measurement of Fig. 2(a) again, but measure the THz field with a 10 µm thick ZnTe (110) crystal in a dry air atmosphere, whose bandwidth extends from 1 to 40 THz [31,32]. Figure 2(b) shows the corresponding amplitude spectra $| {{{\tilde S}_y}({\nu ,{\boldsymbol M}})} |$ of THz signals ${S_y}({\tau ,{\boldsymbol M}})$ from the STE for ${\boldsymbol M} = \pm {{\boldsymbol M}_0}$, where ${\tilde S_y}({\nu ,{\boldsymbol M}})$ is the Fourier-transformed ${S_y}({\tau ,{\boldsymbol M}})$ at frequency $\nu$. The two spectra are almost identical and cover the interval of about 1–30 THz.

The dip at approximately 5 THz [Fig. 2(b)] arises from the zero of the electro-optic coefficient of ZnTe at this frequency [31], while the feature at 10 THz originates from a two-phonon absorption process in the Ge wafer behind the STE [30]. The subsequent dips at approximately 13, 17, and 19 THz are related to the refractive-index features of the STE’s sapphire substrate [35]. We account for this effect by calculating the STE impedance $\tilde Z(\nu)$, which connects the pump-induced sheet charge current density $\int {\rm d}z{{j}_{\rm c}}(z)$ inside the STE stack [Fig. 1(a)] to the THz field directly behind the STE [14]. As seen in Fig. 2(b), the calculated $| {\tilde Z(\nu)} |$ of our STE reproduces the features well at 13, 17, and 19 THz.

Figure 2(c) shows the magnetization-related modulation contrast

$$C\!\left(\nu \right) = 1 - \frac{{| {1 + \tilde R(\nu )} |}}{{1 + | {\tilde R(\nu )} |}}$$
of the THz signal, where $\tilde R(\nu) = {\tilde S_y}({\nu , - {{\boldsymbol M}_0}})/{\tilde S_y}({\nu , + {{\boldsymbol M}_0}})$ is the complex-valued ratio of the Fourier-transformed THz signals obtained for ${\boldsymbol M} = \pm {{\boldsymbol M}_0}$, as shown in Fig. 2(b). Prior to the Fourier transformation, we apodize [36] the waveforms to minimize echoes caused by the 10 µm thick ZnTe detection crystal [31,32]. As seen in Fig. 2(b), $C$ is larger than 99% throughout the range 1–30 THz [Fig. 2(b)]. We conclude that all THz frequency components emitted from the STE are modulated with a modulation contrast of more than 99%.
 figure: Fig. 3.

Fig. 3. Modulation of the THz-field polarity. (a) External magnetic field ${B_{{\rm ext}}}(t){{\boldsymbol u}_x}$, MOKE signal ${S_{{\rm MO}}}(t) \propto {M_y}(t)$ and THz electro-optic signal ${S_x}(t) = {S_x}({{\tau _0},{\boldsymbol M}(t)}) \propto {M_y}(t)$ as a function of real time $t$ for a modulation frequency of ${f_{{\rm AC}}} = 2\;{\rm kHz} $ of ${B_{{\rm ext},y}}$. Dashed lines are model calculations. The MOKE signal is inverted for clarity, and its DC component was removed. (b) THz signal amplitude ${S_x}(t)$ versus the external AC magnetic field ${B_{{\rm ext},y}}(t)$ for the data of the previous panel. (c–d) Same as panels (a–b), but for a modulation frequency ${f_{{\rm AC}}}$ of 5 kHz, (e–f) 8 kHz, and (g–h) 10 kHz, respectively.

Download Full Size | PPT Slide | PDF

Note that this performance does not change as the magnetization becomes time-dependent, provided ${\boldsymbol M}(t)$ can still be considered static over the duration (${\lt} 1 \; {\rm ps}$) [26] of the THz emission process. In other words, the STE operates quasistatically as long as the modulation frequency of ${\boldsymbol M}$ is significantly smaller than $1/1{\rm ps} = 1\;{\rm THz} $. In the measurements shown here, this condition is safely fulfilled.

In the following experiments, we set $\tau = {\tau _0}$ at the maximum of the THz waveform [Fig. 2(a), red arrow], start modulating the sample magnetization ${\boldsymbol M} = {\boldsymbol M}(t)$, and subsequently record the signal ${S_j}(t) = {S_j}({{\tau _0},{\boldsymbol M}(t)})$ with $j = x$ or $y$ as a function of real time $t$.

B. Polarity Modulation

In the PM mode [Fig. 1(b)], ${{\boldsymbol B}_{{\rm ext}}}$ is parallel to the $y$ axis and varies sinusoidally in time with frequency ${f_{{\rm AC}}}$. Figure 3(a) (gray solid line) shows the measured ${B_{{\rm ext},y}}(t)$ over several cycles at a modulation frequency of 2 kHz. Because the coercive field of the STE is much smaller than the amplitude of ${{\boldsymbol B}_{{\rm ext}}}$, we expect that the sample magnetization alternates between two opposite states ${\pm}{M_{{\rm sat}}}{{\boldsymbol u}_y}$, as shown in Eq. (2).

Accordingly, the MOKE signal ${S_{{\rm MO}}}(t)$ [red solid line in Fig. 3(a)] has a nearly square-like shape. The THz signal ${S_x}(t)$ [blue solid line in Fig. 3(a)] has dynamics similar to the MOKE signal ${S_{{\rm MO}}}(t)$. This observation is consistent with the expected evolution of ${\boldsymbol M}(t)$ [Eq. (2)] and its impact on the signals ${S_x}(t)$ and ${S_{{\rm MO}}}(t),$ as expected according to Eqs. (1) and (4).

We note, however, that ${S_{{\rm MO}}}(t)$ and ${S_x}(t)$ of Fig. 3(a) exhibit two additional minor features that are not predicted by Eqs. (1) and (4): First, while the edges of the THz signal are steep, the MOKE signal appears to be smeared out over a time scale of about 100 µs. As shown below, this low-pass behavior arises from the photodiode circuitry. Second, the THz electro-optic signal is a superposition of a square-like waveform and a minor sinusoidal component at the same frequency ${f_{{\rm AC}}}$, as shown in Fig. 3(a). The latter may arise from electromagnetic coupling of the circuitry generating ${{\boldsymbol B}_{{\rm AC}}}$ and the electro-optic detection electronics or from mechanical coupling of ${{\boldsymbol B}_{{\rm AC}}}$ to nearby optical components.

In Fig. 3(b), we display the THz signal amplitude ${S_x}\!(t) = {S_x}\!({{\tau _0},{\boldsymbol M}(t)})$ versus the external AC magnetic field ${B_{{\rm ext},x}}\!(t)$. We find a clear hysteresis loop. Its width implies a coercive field of about 2 mT at 2 kHz, which is much smaller than ${B_{{\rm AC}0}} = 42\;{\rm mT}$. Therefore, ${\boldsymbol M}$ nearly instantaneously follows ${{\boldsymbol B}_{{\rm ext}}}$. The apparent decrease of the MOKE signal amplitude for increasing ${B_{{\rm AC}0}}$ can be traced back to the harmonic component mentioned above and discussed below.

Remarkably, we observe qualitatively identical dynamics when we increase the modulation frequency ${f_{{\rm AC}}}$ of the magnetic field to 5 kHz [Fig. 3(c)], 8 kHz [Fig. 3(e)], and to as high as 10 kHz [Fig. 3(g)], respectively. There are minor quantitative modifications: First, the low-pass characteristics of the MOKE signal becomes more pronounced as indicated by the decreased signal amplitude. Second, the sinusoidal component of the otherwise square-like THz signal decreases significantly when ${f_{{\rm AC}}}$ is increased from 2 kHz to 5 kHz. We ascribe this reduction to the reduced peak magnetic field, which has decreased from 42 mT to 17 mT, leading to a smaller electromagnetic or mechanical interference with the THz detection.

Note that the width of the hysteresis loop stays constant with increasing modulation frequency, as seen in Figs. 3(b), 3(d), 3(f), and 3(h). This observation indicates that the period $1/{f_{{\rm AC}}}$ of the external magnetic field ${{\boldsymbol B}_{{\rm ext}}}$ is long compared to the time it takes the magnetic moment of the probed STE volume to align parallel to the external magnetic field [37,38]. The approximately constant amplitude of all hysteresis loops shows that ${{\boldsymbol B}_{{\rm ext}}}$ saturates the sample magnetization at all modulation frequencies up to 10 kHz.

1. Modeling of PM

To model the measured dynamics of Fig. 3, we calculate the magnetization using Eq. (2) and the external magnetic field ${{\boldsymbol B}_{{\rm ext}}}(t) = {{\boldsymbol B}_{{\rm AC}}}(t) = {{\boldsymbol u}_y}{B_{{\rm AC}0}}\cos ({2\pi {f_{{\rm AC}}}t})$. Due to the nonvanishing coercive field ${B_{\rm c}} \approx 2{\rm mT}$ of the STE, the switching of the STE magnetization is delayed by ${\Delta}t = {B_{\rm c}}/2\pi {f_{{\rm AC}}}{B_{{\rm AC}0}}$ after $| {{{\boldsymbol B}_{{\rm AC}}}} |$ has crossed zero. Because of ${B_{{\rm AC}0}}{f_{{\rm AC}}} \approx 85{\rm kHz} \cdot {\rm mT}$ (see above), we obtain ${\Delta}t \approx 4\; \unicode{x00B5}{\rm s}$, which is taken into account in our model by a modified Eq. (2), ${\boldsymbol M}(t) = {M_{{\rm sat}}}{\boldsymbol B}_{{\rm ext}}^0({t - {\Delta}t})$.

The resulting MOKE and THz signals are obtained using the scaling relations of Eqs. (1) and (4). To account for the low-pass characteristics of the detection electronics, the calculated signals are convoluted with the respective filter impulse response functions $H(t) \propto {\Theta}(t)\exp ({- t/{\tau _{RC}}})$, where ${\Theta}(t)$ is the Heaviside step function. We estimate the time constant ${\tau _{RC}}$ by the product of the load resistance $R$ and the capacitance $C$ of the photodiode and connection cable. Based on the specifications of these components, we obtain ${\tau _{RC}} = RC \approx 50\; {\rm k\Omega} \cdot 300\; {\rm pF} = 15\; \unicode{x00B5}{\rm s}$ and $15\;{\rm k\Omega} \cdot 100\; {\rm pF} = 1.5\; \unicode{x00B5}{\rm s}$ for the MOKE and THz detection, respectively.

The only fit parameter is the global signal amplitude. As seen in Figs. 3(a), 3(c), 3(e), and 3(g), excellent agreement is obtained between measured (solid lines) and calculated (dashed lines) signals. We conclude that the polarity of THz pulses can be modulated by external magnetic fields at a rate of up to 10 kHz with a modulation contrast of more than 99%. Note that this contrast is only limited by a small nonmagnetic component of the emitted THz field of the STE, the origin and minimization of which might be the subject of future studies.

C. Direction Modulation

In the DM mode [Fig. 1(c)], we continuously and periodically rotate the sample magnetization between two angles ${\pm}{\theta _0}$ [see Eq. (3)]. To determine the relative size of ${M_x}$ and ${M_y}$, we measure the THz signals ${S_y}$ and ${S_x}$ [see Eq. (1)]. Figure 4(a) schematically illustrates the situation.

 figure: Fig. 4.

Fig. 4. Modulation of the THz polarization direction. (a) Schematic of expected THz signal amplitudes ${S_x} \propto {E_x} \propto - {M_y}$ and ${S_y} \propto {E_y} \propto {M_x}$ versus time, when the sample magnetization oscillates between angles ${\pm}{\theta _0}$. To determine the instantaneous angle $\theta$, we measure the $x$ and $y$ amplitudes of the THz electric field. (b) Measured (blue) and modeled (orange) THz signal components ${S_x}$ and ${S_y}$ at a modulation frequency ${f_{{\rm AC}}} = 1\;{\rm kHz} $ and amplitude ${B_{{\rm AC}0}} = 5.5\;{\rm mT}$. The amplitude ratio $| {{B_{{\rm AC}0}}/{B_{{\rm DC}}}} | = \tan {\theta _0}$ is such that $2{\theta _0} = 106^\circ$. (c) Same setting as in (b) but for ${B_{{\rm AC}0}} = 8\;{\rm mT}$, yielding $2{\theta _0} = 126^\circ$.

Download Full Size | PPT Slide | PDF

The measured signal ${S_x}$ at a DM frequency of ${f_{{\rm AC}}} = 1\;{\rm kHz} $ is shown in Fig. 4(b). It oscillates symmetrically around zero at the same frequency ${f_{{\rm AC}}}$ as the external magnetic field. For the signal ${S_y}$, we observe a markedly different behavior: It oscillates at twice the frequency $2{f_{{\rm AC}}}$ of ${{\boldsymbol B}_{{\rm AC}}}$, is located on top of a nonzero background, and has an asymmetric shape about its mean value. When we increase the amplitude of ${{\boldsymbol B}_{{\rm AC}}}$ from 5.5 mT to 8 mT, the amplitude of ${S_x}$ increases slightly, while the maxima of ${S_y}$ remain constant and its minima decrease [Fig. 4(c)].

To understand the dynamics of ${S_x}$ and ${S_y}$ in detail, we consider the motion of the ${\boldsymbol M}$ vector [Fig. 4(a)]. It is fully described by the direction angle $\theta$, which oscillates periodically between ${\pm}{\theta _0}$ [Eq. (3)]. Figure 4(a) implies that the sign of the component ${M_y} \propto \sin \theta$ follows the sign of $\theta$ (see time labels ①, ③). It has, thus, the same periodicity and frequency as $\theta$ and is symmetric with respect to $\theta = 0$ (time label ②), consistent with our observations [Fig. 4(b)].

In contrast, the component ${M_x} \propto \cos \theta$ never changes sign and exhibits identical dynamics in the forward and backward motion of ${\boldsymbol M}$ [Fig. 4(a)]. Therefore, ${M_x}(t)$ has a significant nonzero offset, half the periodicity of ${M_y}(t)$ and, thus, oscillates at twice the frequency, $2{f_{{\rm AC}}}$, in agreement with our measurements [Figs. 4(b), and 4(c)]. The asymmetry of ${M_x}(t)$ around its mean value arises because the maximum ($\theta = 0$; time label ②) is traversed with maximum magnetization rotation speed ${\rm d}\theta /{\rm d}t$ whereas the minima ($\theta = \pm {\theta _0}$; time labels ①, ③) coincide with the turning points of ${\boldsymbol M}$, at which ${\rm d}\theta /{\rm d}t$ vanishes. Finally, Fig. 4(a) indicates that ${\theta _0}$ increases when ${B_{{\rm AC}0}}$ is increased, consistent with our observations (Fig. 4(b) versus Fig. 4(c)].

We note that ${S_x}$ has a small DC component. It may, for instance, arise from a small component of ${{\boldsymbol B}_{{\rm DC}}}$ along ${{\boldsymbol B}_{{\rm AC}}}$ or from a small contribution of ${E_y}$ to ${S_x}$ because the THz polarizer may not be perfectly aligned.

1. Modeling of DM

To model the dynamics in the DM mode, we use a procedure similar to what was used for the PM mode, but account for the modified external field by ${{\boldsymbol B}_{{\rm ext}}}(t) = {{\boldsymbol B}_{{\rm AC}}}(t) + {{\boldsymbol B}_{{\rm DC}}}$. Because all time constants of the THz detection electronics, including that of the lock-in amplifier (10 µs), are much smaller than the period $1/\!{f_{{\rm AC}}} = 1\;{\rm ms} $, we do not consider them in the modeling.

Again, fitting our model to our data yields excellent agreement with the measured signals ${S_x}$ and ${S_y}$, as shown by the dashed lines in Figs. 4(b), and 4(c). The fit procedure yields $2{\theta _0} = 106^\circ$ and $126^\circ$ for the data of Fig. 4(b) and Fig. 4(c), respectively. These values are close to the target value of $2{\theta _0} = 90^\circ$. The minor deviation may arise from uncertainties in the calibration of the magnetic field: The sensors of the Hall probe are located at some depth below the surface of the device, which we approximately compensated for by shifting the probe. We conclude that we can also modulate the direction of the THz field polarization at kilohertz rates.

3. CONCLUSION

We have shown that the polarity of THz electromagnetic pulses from an STE can be controlled by external magnetic AC fields with a modulation contrast of better than 99% at modulation frequencies of up to 10 kHz. By adding a DC magnetic field, modulation of the direction of the THz peak field at kilohertz rates becomes possible. By tuning the strength of the external AC magnetic field, we demonstrated tailored rotation of the THz polarization plane. Our modulation approach is broadband and uniformly affects all spectral components of the THz pulse from 1 to 30 THz and beyond.

We anticipate that PM and, more generally, DM of the polarization of THz pulses both enable interesting applications in all kinds of modulation spectroscopy. For instance, PM is useful for low-noise lock-in detection of the THz signal. In contrast to a mechanical chopper, no moving parts are required, and the resulting signal is a factor of 2 larger. In nonlinear THz spectroscopy, one can easily separate effects that are symmetric (e.g., $\propto {{\boldsymbol E}^2}$) and antisymmetric (e.g., $\propto {\boldsymbol E}$) with respect to the driving THz field ${\boldsymbol E}$ [39].

DM is highly interesting for THz time-domain ellipsometry where the sample response to $x$- and $y$-polarized incident THz pulses is measured [40]. By fast modulation between $x$ and $y$ polarizations, we can quasi-simultaneously probe the optical properties of the sample along the $x$ and $y$ directions and, thus, strongly reduce the impact of possible setup drifts.

Rapid modulation of the sign and direction of the magnetization of a given sample is interesting for low-noise probing of small magnetic effects in materials by THz emission spectroscopy [20,26,41] and THz transmission spectroscopy [42].

We finally note that our approach can be extended to uniform rotation of the THz polarization plane and even higher modulation frequencies. Uniform rotation of the STE magnetization is achieved by superposition of two perpendicular harmonic magnetic fields with a phase difference of 90°. Regarding modulation speed, the hysteresis loops of Fig. 3 indicate that the switching time of the STE magnetization does not limit its modulation at frequencies up to 10 kHz. Therefore, modulation frequencies exceeding 100 kHz should be feasible.

Funding

Deutsche Forschungsgemeinschaft; European Union H2020 Program (681917); European Commission (863155).

Acknowledgment

The authors acknowledge funding by the German Research Foundation through the collaborative research center SFB TRR 227 “Ultrafast spin dynamics” (projects B02 and A05) and the European Union H2020 program through the project CoG TERAMAG/Grant No. 681917. The authors acknowledge financial support from the Horizon 2020 Framework Programme of the European Commission under FET-Open Grant No. 863155 (s-Nebula). The authors would like to thank Genaro Bierhance for fruitful discussions and the electronics workshop of Fritz Haber Institute of the Max Planck Society, in particular Viktor Platschkowski, Thomas Zehentbauer, and Georg Heyne, for their support in the development of the electromagnet.

Disclosures

Authors Oliver Gueckstock, Lukáš Nádvorník, Tom S. Seifert, Mathias Kläui, and Tobias Kampfrath have filed a patent application at the European Patent Office covering rapid polarization modulation of spintronic THz emitters.

Data availability

Data shown in the figures are available at [43]. Other data underlying the results presented in this paper may be obtained from the authors upon reasonable request.

REFERENCES

1. S. L. Dexheimer, Terahertz Spectroscopy: Principles and Applications (CRC Press, 2017).

2. S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

3. M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared, Millimeter, Terahertz Waves 34, 1–27 (2012). [CrossRef]  

4. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007). [CrossRef]  

5. R. V. Morris, A. V. Stier, and N. P. Armitage, “Polarization modulation time-domain terahertz polarimetry,” Opt. Express 20, 12303–12317 (2012). [CrossRef]  

6. L. Wu, A. Farid, N. J. Laurita, T. Mueller, and N. P. Armitage, “A compact broadband terahertz range quarter-wave plate,” J. Infrared, Millimeter, Terahertz Waves 41, 642–654 (2020). [CrossRef]  

7. S. A. Baig, J. L. Boland, D. A. Damry, H. H. Tan, C. Jagadish, H. J. Joyce, and M. B. Johnston, “An ultrafast switchable terahertz polarization modulator based on III–V semiconductor nanowires,” Nano Lett. 17, 2603–2610 (2017). [CrossRef]  

8. M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013). [CrossRef]  

9. H. S. M. Beck, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18, 9251–9257 (2010). [CrossRef]  

10. K. Maussang, J. Palomo, J. Mangeney, S. S. Dhillon, and J. Tignon, “Large-area photoconductive switches as emitters of terahertz pulses with fully electrically controlled linear polarization,” Opt. Express 27, 14784–14797 (2019). [CrossRef]  

11. Y. Hirota, R. Hattori, M. Tani, and M. Hangyo, “Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna,” Opt. Express 14, 4486–4493 (2006). [CrossRef]  

12. N. Amer, W. C. Hurlbut, B. J. Norton, Y.-S. Lee, and T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87, 221111 (2005). [CrossRef]  

13. Q. Chen and X. C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999). [CrossRef]  

14. T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016). [CrossRef]  

15. T. Seifert, S. Jaiswal, M. Sajadi, G. Jakob, S. Winnerl, M. Wolf, M. Kläui, and T. Kampfrath, “Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter,” Appl. Phys. Lett. 110, 252402 (2017). [CrossRef]  

16. D. Yang, J. Liang, C. Zhou, L. Sun, R. Zheng, S. Luo, Y. Wu, and J. Qi, “Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure,” Adv. Opt. Mater. 4, 1944–1949 (2016). [CrossRef]  

17. D. M. Nenno, L. Scheuer, D. Sokoluk, S. Keller, G. Torosyan, A. Brodyanski, J. Losch, M. Battiato, M. Rahm, R. H. Binder, H. C. Schneider, R. Beigang, and E. T. Papaioannou, “Modification of spintronic terahertz emitter performance through defect engineering,” Sci. Rep. 9, 13348 (2019). [CrossRef]  

18. R. Schneider, M. Fix, J. Bensmann, S. Michaelis de Vasconcellos, M. Albrecht, and R. Bratschitsch, “Spintronic GdFe/Pt THz emitters,” Appl. Phys. Lett. 115, 152401 (2019). [CrossRef]  

19. Y. Wu, M. Elyasi, X. Qiu, M. Chen, Y. Liu, L. Ke, and H. Yang, “High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures,” Adv. Mater. 29, 1603031 (2017). [CrossRef]  

20. T. J. Huisman, R. V. Mikhaylovskiy, J. D. Costa, F. Freimuth, E. Paz, J. Ventura, P. P. Freitas, S. Blugel, Y. Mokrousov, T. Rasing, and A. V. Kimel, “Femtosecond control of electric currents in metallic ferromagnetic heterostructures,” Nat. Nanotechnol. 11, 455–458 (2016). [CrossRef]  

21. W. Wu, S. Lendinez, M. Taghipour Kaffash, R. D. Schaller, H. Wen, and M. B. Jungfleisch, “Modification of terahertz emission spectrum using microfabricated spintronic emitters,” J. Appl. Phys. 128, 103902 (2020). [CrossRef]  

22. J. Hawecker, T. H. Dang, E. Rongione, J. Boust, S. Collin, J.-M. George, H.-J. Drouhin, Y. Laplace, R. Grasset, J. Dong, J. Mangeney, J. Tignon, H. Jaffrès, L. Perfetti, and S. Dhillon, “Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy,” Adv. Opt. Mater., 2100412 (2021), Early View. [CrossRef]  

23. Z. Feng, H. Qiu, D. Wang, C. Zhang, S. Sun, B. Jin, and W. Tan, “Spintronic terahertz emitter,” J. Appl. Phys. 129, 010901 (2021). [CrossRef]  

24. T. S. Seifert, N. M. Tran, O. Gueckstock, S. M. Rouzegar, L. Nadvornik, S. Jaiswal, G. Jakob, V. V. Temnov, M. Münzenberg, M. Wolf, M. Kläui, and T. Kampfrath, “Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20,” J. Phys. D 51, 364003 (2018). [CrossRef]  

25. T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256–260 (2013). [CrossRef]  

26. R. Rouzegar, L. Brandt, L. Nadvornik, D. A. Reiss, A. L. Chekhov, O. Gueckstock, C. In, M. Wolf, T. S. Seifert, P. W. Brouwer, G. Woltersdorf, and T. Kampfrath, “Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization,” arXiv 2103.11710 (2021).

27. R. I. Herapath, S. M. Hornett, T. S. Seifert, G. Jakob, M. Kläui, J. Bertolotti, T. Kampfrath, and E. Hendry, “Impact of pump wavelength on terahertz emission of a cavity-enhanced spintronic trilayer,” Appl. Phys. Lett. 114, 041107 (2019). [CrossRef]  

28. E. T. Papaioannou, G. Torosyan, S. Keller, L. Scheuer, M. Battiato, V. K. Mag-Usara, J. L’huillier, M. Tani, and R. Beigang, “Efficient terahertz generation using Fe/Pt spintronic emitters pumped at different wavelengths,” IEEE Trans. Magn. 54, 9100205 (2018). [CrossRef]  

29. J. A. Fülöp, S. Tzortzakis, and T. Kampfrath, “Laser-driven strong-field terahertz sources,” Adv. Opt. Mater. 8, 1900681 (2019). [CrossRef]  

30. A. Singh, A. Pashkin, S. Winnerl, M. Helm, and H. Schneider, “Gapless broadband terahertz emission from a germanium photoconductive emitter,” ACS Photon. 5, 2718–2723 (2018). [CrossRef]  

31. A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999). [CrossRef]  

32. T. Kampfrath, J. Nötzold, and M. Wolf, “Sampling of broadband terahertz pulses with thick electro-optic crystals,” Appl. Phys. Lett. 90, 231113 (2007). [CrossRef]  

33. T. Kampfrath, R. G. Ulbrich, F. Leuenberger, M. Münzenberg, B. Sass, and W. Felsch, “Ultrafast magneto-optical response of iron thin films,” Phys. Rev. B 65, 104429 (2002). [CrossRef]  

34. C.-Y. You and S.-C. Shin, “Generalized analytic formulae for magneto-optical Kerr effects,” J. Appl. Phys. 84, 541–546 (1998). [CrossRef]  

35. A. S. Barker, “Infrared lattice vibrations and dielectric dispersion in corundum,” Phys. Rev. 132, 1474–1481 (1963). [CrossRef]  

36. D. A. Naylor and M. K. Tahic, “Apodizing functions for Fourier transform spectroscopy,” J. Opt. Soc. Am. A 24, 3644–3648 (2007). [CrossRef]  

37. D. C. Jiles, “Frequency dependence of hysteresis curves in conducting magnetic materials,” J. Appl. Phys. 76, 5849–5855 (1994). [CrossRef]  

38. G. B. V. Basso, A. Infortuna, and M. Pasquale, “Preisach model study of the connection between magnetic and microstructural properties of soft magnetic materials,” IEEE Trans. Magn. 31, 4000–4005 (1995). [CrossRef]  

39. M. Hudl, M. d’Aquino, M. Pancaldi, S. H. Yang, M. G. Samant, S. S. P. Parkin, H. A. Durr, C. Serpico, M. C. Hoffmann, and S. Bonetti, “Nonlinear magnetization dynamics driven by strong terahertz fields,” Phys. Rev. Lett. 123, 197204 (2019). [CrossRef]  

40. A. Rubano, L. Braun, M. Wolf, and T. Kampfrath, “Mid-infrared time-domain ellipsometry: application to Nb-doped SrTiO3,” Appl. Phys. Lett. 101, 081103 (2012). [CrossRef]  

41. T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018). [CrossRef]  

42. L. Nádvorník, M. Borchert, L. Brandt, R. Schlitz, K. A. de Mare, K. Výborný, I. Mertig, G. Jakob, M. Kläui, S. T. B. Goennenwein, M. Wolf, G. Woltersdorf, and T. Kampfrath, “Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions,” Phys. Rev. X 11, 021030 (2021). [CrossRef]  

43. O. Gueckstock, L. Nádvorník, T. S. Seifert, M. Borchert, G. Jakob, G. Schmidt, G. Woltersdorf, M. Kläui, M. Wolf, and T. Kampfrath, “Modulating the polarization of broadband terahertz pulses from a spintronic emitter at rates up to 10 kHz [Data set],” Zenodo (2021), https://zenodo.org/record/5017616.

References

  • View by:
  • |
  • |
  • |

  1. S. L. Dexheimer, Terahertz Spectroscopy: Principles and Applications (CRC Press, 2017).
  2. S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
  3. M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared, Millimeter, Terahertz Waves 34, 1–27 (2012).
    [Crossref]
  4. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  5. R. V. Morris, A. V. Stier, and N. P. Armitage, “Polarization modulation time-domain terahertz polarimetry,” Opt. Express 20, 12303–12317 (2012).
    [Crossref]
  6. L. Wu, A. Farid, N. J. Laurita, T. Mueller, and N. P. Armitage, “A compact broadband terahertz range quarter-wave plate,” J. Infrared, Millimeter, Terahertz Waves 41, 642–654 (2020).
    [Crossref]
  7. S. A. Baig, J. L. Boland, D. A. Damry, H. H. Tan, C. Jagadish, H. J. Joyce, and M. B. Johnston, “An ultrafast switchable terahertz polarization modulator based on III–V semiconductor nanowires,” Nano Lett. 17, 2603–2610 (2017).
    [Crossref]
  8. M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
    [Crossref]
  9. H. S. M. Beck, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18, 9251–9257 (2010).
    [Crossref]
  10. K. Maussang, J. Palomo, J. Mangeney, S. S. Dhillon, and J. Tignon, “Large-area photoconductive switches as emitters of terahertz pulses with fully electrically controlled linear polarization,” Opt. Express 27, 14784–14797 (2019).
    [Crossref]
  11. Y. Hirota, R. Hattori, M. Tani, and M. Hangyo, “Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna,” Opt. Express 14, 4486–4493 (2006).
    [Crossref]
  12. N. Amer, W. C. Hurlbut, B. J. Norton, Y.-S. Lee, and T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87, 221111 (2005).
    [Crossref]
  13. Q. Chen and X. C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
    [Crossref]
  14. T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
    [Crossref]
  15. T. Seifert, S. Jaiswal, M. Sajadi, G. Jakob, S. Winnerl, M. Wolf, M. Kläui, and T. Kampfrath, “Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter,” Appl. Phys. Lett. 110, 252402 (2017).
    [Crossref]
  16. D. Yang, J. Liang, C. Zhou, L. Sun, R. Zheng, S. Luo, Y. Wu, and J. Qi, “Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure,” Adv. Opt. Mater. 4, 1944–1949 (2016).
    [Crossref]
  17. D. M. Nenno, L. Scheuer, D. Sokoluk, S. Keller, G. Torosyan, A. Brodyanski, J. Losch, M. Battiato, M. Rahm, R. H. Binder, H. C. Schneider, R. Beigang, and E. T. Papaioannou, “Modification of spintronic terahertz emitter performance through defect engineering,” Sci. Rep. 9, 13348 (2019).
    [Crossref]
  18. R. Schneider, M. Fix, J. Bensmann, S. Michaelis de Vasconcellos, M. Albrecht, and R. Bratschitsch, “Spintronic GdFe/Pt THz emitters,” Appl. Phys. Lett. 115, 152401 (2019).
    [Crossref]
  19. Y. Wu, M. Elyasi, X. Qiu, M. Chen, Y. Liu, L. Ke, and H. Yang, “High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures,” Adv. Mater. 29, 1603031 (2017).
    [Crossref]
  20. T. J. Huisman, R. V. Mikhaylovskiy, J. D. Costa, F. Freimuth, E. Paz, J. Ventura, P. P. Freitas, S. Blugel, Y. Mokrousov, T. Rasing, and A. V. Kimel, “Femtosecond control of electric currents in metallic ferromagnetic heterostructures,” Nat. Nanotechnol. 11, 455–458 (2016).
    [Crossref]
  21. W. Wu, S. Lendinez, M. Taghipour Kaffash, R. D. Schaller, H. Wen, and M. B. Jungfleisch, “Modification of terahertz emission spectrum using microfabricated spintronic emitters,” J. Appl. Phys. 128, 103902 (2020).
    [Crossref]
  22. J. Hawecker, T. H. Dang, E. Rongione, J. Boust, S. Collin, J.-M. George, H.-J. Drouhin, Y. Laplace, R. Grasset, J. Dong, J. Mangeney, J. Tignon, H. Jaffrès, L. Perfetti, and S. Dhillon, “Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy,” Adv. Opt. Mater., 2100412 (2021), Early View.
    [Crossref]
  23. Z. Feng, H. Qiu, D. Wang, C. Zhang, S. Sun, B. Jin, and W. Tan, “Spintronic terahertz emitter,” J. Appl. Phys. 129, 010901 (2021).
    [Crossref]
  24. T. S. Seifert, N. M. Tran, O. Gueckstock, S. M. Rouzegar, L. Nadvornik, S. Jaiswal, G. Jakob, V. V. Temnov, M. Münzenberg, M. Wolf, M. Kläui, and T. Kampfrath, “Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20,” J. Phys. D 51, 364003 (2018).
    [Crossref]
  25. T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256–260 (2013).
    [Crossref]
  26. R. Rouzegar, L. Brandt, L. Nadvornik, D. A. Reiss, A. L. Chekhov, O. Gueckstock, C. In, M. Wolf, T. S. Seifert, P. W. Brouwer, G. Woltersdorf, and T. Kampfrath, “Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization,” arXiv 2103.11710 (2021).
  27. R. I. Herapath, S. M. Hornett, T. S. Seifert, G. Jakob, M. Kläui, J. Bertolotti, T. Kampfrath, and E. Hendry, “Impact of pump wavelength on terahertz emission of a cavity-enhanced spintronic trilayer,” Appl. Phys. Lett. 114, 041107 (2019).
    [Crossref]
  28. E. T. Papaioannou, G. Torosyan, S. Keller, L. Scheuer, M. Battiato, V. K. Mag-Usara, J. L’huillier, M. Tani, and R. Beigang, “Efficient terahertz generation using Fe/Pt spintronic emitters pumped at different wavelengths,” IEEE Trans. Magn. 54, 9100205 (2018).
    [Crossref]
  29. J. A. Fülöp, S. Tzortzakis, and T. Kampfrath, “Laser-driven strong-field terahertz sources,” Adv. Opt. Mater. 8, 1900681 (2019).
    [Crossref]
  30. A. Singh, A. Pashkin, S. Winnerl, M. Helm, and H. Schneider, “Gapless broadband terahertz emission from a germanium photoconductive emitter,” ACS Photon. 5, 2718–2723 (2018).
    [Crossref]
  31. A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
    [Crossref]
  32. T. Kampfrath, J. Nötzold, and M. Wolf, “Sampling of broadband terahertz pulses with thick electro-optic crystals,” Appl. Phys. Lett. 90, 231113 (2007).
    [Crossref]
  33. T. Kampfrath, R. G. Ulbrich, F. Leuenberger, M. Münzenberg, B. Sass, and W. Felsch, “Ultrafast magneto-optical response of iron thin films,” Phys. Rev. B 65, 104429 (2002).
    [Crossref]
  34. C.-Y. You and S.-C. Shin, “Generalized analytic formulae for magneto-optical Kerr effects,” J. Appl. Phys. 84, 541–546 (1998).
    [Crossref]
  35. A. S. Barker, “Infrared lattice vibrations and dielectric dispersion in corundum,” Phys. Rev. 132, 1474–1481 (1963).
    [Crossref]
  36. D. A. Naylor and M. K. Tahic, “Apodizing functions for Fourier transform spectroscopy,” J. Opt. Soc. Am. A 24, 3644–3648 (2007).
    [Crossref]
  37. D. C. Jiles, “Frequency dependence of hysteresis curves in conducting magnetic materials,” J. Appl. Phys. 76, 5849–5855 (1994).
    [Crossref]
  38. G. B. V. Basso, A. Infortuna, and M. Pasquale, “Preisach model study of the connection between magnetic and microstructural properties of soft magnetic materials,” IEEE Trans. Magn. 31, 4000–4005 (1995).
    [Crossref]
  39. M. Hudl, M. d’Aquino, M. Pancaldi, S. H. Yang, M. G. Samant, S. S. P. Parkin, H. A. Durr, C. Serpico, M. C. Hoffmann, and S. Bonetti, “Nonlinear magnetization dynamics driven by strong terahertz fields,” Phys. Rev. Lett. 123, 197204 (2019).
    [Crossref]
  40. A. Rubano, L. Braun, M. Wolf, and T. Kampfrath, “Mid-infrared time-domain ellipsometry: application to Nb-doped SrTiO3,” Appl. Phys. Lett. 101, 081103 (2012).
    [Crossref]
  41. T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
    [Crossref]
  42. L. Nádvorník, M. Borchert, L. Brandt, R. Schlitz, K. A. de Mare, K. Výborný, I. Mertig, G. Jakob, M. Kläui, S. T. B. Goennenwein, M. Wolf, G. Woltersdorf, and T. Kampfrath, “Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions,” Phys. Rev. X 11, 021030 (2021).
    [Crossref]
  43. O. Gueckstock, L. Nádvorník, T. S. Seifert, M. Borchert, G. Jakob, G. Schmidt, G. Woltersdorf, M. Kläui, M. Wolf, and T. Kampfrath, “Modulating the polarization of broadband terahertz pulses from a spintronic emitter at rates up to 10 kHz [Data set],” Zenodo (2021), https://zenodo.org/record/5017616 .

2021 (2)

Z. Feng, H. Qiu, D. Wang, C. Zhang, S. Sun, B. Jin, and W. Tan, “Spintronic terahertz emitter,” J. Appl. Phys. 129, 010901 (2021).
[Crossref]

L. Nádvorník, M. Borchert, L. Brandt, R. Schlitz, K. A. de Mare, K. Výborný, I. Mertig, G. Jakob, M. Kläui, S. T. B. Goennenwein, M. Wolf, G. Woltersdorf, and T. Kampfrath, “Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions,” Phys. Rev. X 11, 021030 (2021).
[Crossref]

2020 (2)

W. Wu, S. Lendinez, M. Taghipour Kaffash, R. D. Schaller, H. Wen, and M. B. Jungfleisch, “Modification of terahertz emission spectrum using microfabricated spintronic emitters,” J. Appl. Phys. 128, 103902 (2020).
[Crossref]

L. Wu, A. Farid, N. J. Laurita, T. Mueller, and N. P. Armitage, “A compact broadband terahertz range quarter-wave plate,” J. Infrared, Millimeter, Terahertz Waves 41, 642–654 (2020).
[Crossref]

2019 (6)

K. Maussang, J. Palomo, J. Mangeney, S. S. Dhillon, and J. Tignon, “Large-area photoconductive switches as emitters of terahertz pulses with fully electrically controlled linear polarization,” Opt. Express 27, 14784–14797 (2019).
[Crossref]

D. M. Nenno, L. Scheuer, D. Sokoluk, S. Keller, G. Torosyan, A. Brodyanski, J. Losch, M. Battiato, M. Rahm, R. H. Binder, H. C. Schneider, R. Beigang, and E. T. Papaioannou, “Modification of spintronic terahertz emitter performance through defect engineering,” Sci. Rep. 9, 13348 (2019).
[Crossref]

R. Schneider, M. Fix, J. Bensmann, S. Michaelis de Vasconcellos, M. Albrecht, and R. Bratschitsch, “Spintronic GdFe/Pt THz emitters,” Appl. Phys. Lett. 115, 152401 (2019).
[Crossref]

R. I. Herapath, S. M. Hornett, T. S. Seifert, G. Jakob, M. Kläui, J. Bertolotti, T. Kampfrath, and E. Hendry, “Impact of pump wavelength on terahertz emission of a cavity-enhanced spintronic trilayer,” Appl. Phys. Lett. 114, 041107 (2019).
[Crossref]

J. A. Fülöp, S. Tzortzakis, and T. Kampfrath, “Laser-driven strong-field terahertz sources,” Adv. Opt. Mater. 8, 1900681 (2019).
[Crossref]

M. Hudl, M. d’Aquino, M. Pancaldi, S. H. Yang, M. G. Samant, S. S. P. Parkin, H. A. Durr, C. Serpico, M. C. Hoffmann, and S. Bonetti, “Nonlinear magnetization dynamics driven by strong terahertz fields,” Phys. Rev. Lett. 123, 197204 (2019).
[Crossref]

2018 (4)

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

A. Singh, A. Pashkin, S. Winnerl, M. Helm, and H. Schneider, “Gapless broadband terahertz emission from a germanium photoconductive emitter,” ACS Photon. 5, 2718–2723 (2018).
[Crossref]

E. T. Papaioannou, G. Torosyan, S. Keller, L. Scheuer, M. Battiato, V. K. Mag-Usara, J. L’huillier, M. Tani, and R. Beigang, “Efficient terahertz generation using Fe/Pt spintronic emitters pumped at different wavelengths,” IEEE Trans. Magn. 54, 9100205 (2018).
[Crossref]

T. S. Seifert, N. M. Tran, O. Gueckstock, S. M. Rouzegar, L. Nadvornik, S. Jaiswal, G. Jakob, V. V. Temnov, M. Münzenberg, M. Wolf, M. Kläui, and T. Kampfrath, “Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20,” J. Phys. D 51, 364003 (2018).
[Crossref]

2017 (4)

T. Seifert, S. Jaiswal, M. Sajadi, G. Jakob, S. Winnerl, M. Wolf, M. Kläui, and T. Kampfrath, “Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter,” Appl. Phys. Lett. 110, 252402 (2017).
[Crossref]

Y. Wu, M. Elyasi, X. Qiu, M. Chen, Y. Liu, L. Ke, and H. Yang, “High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures,” Adv. Mater. 29, 1603031 (2017).
[Crossref]

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

S. A. Baig, J. L. Boland, D. A. Damry, H. H. Tan, C. Jagadish, H. J. Joyce, and M. B. Johnston, “An ultrafast switchable terahertz polarization modulator based on III–V semiconductor nanowires,” Nano Lett. 17, 2603–2610 (2017).
[Crossref]

2016 (3)

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

T. J. Huisman, R. V. Mikhaylovskiy, J. D. Costa, F. Freimuth, E. Paz, J. Ventura, P. P. Freitas, S. Blugel, Y. Mokrousov, T. Rasing, and A. V. Kimel, “Femtosecond control of electric currents in metallic ferromagnetic heterostructures,” Nat. Nanotechnol. 11, 455–458 (2016).
[Crossref]

D. Yang, J. Liang, C. Zhou, L. Sun, R. Zheng, S. Luo, Y. Wu, and J. Qi, “Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure,” Adv. Opt. Mater. 4, 1944–1949 (2016).
[Crossref]

2013 (2)

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256–260 (2013).
[Crossref]

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

2012 (3)

R. V. Morris, A. V. Stier, and N. P. Armitage, “Polarization modulation time-domain terahertz polarimetry,” Opt. Express 20, 12303–12317 (2012).
[Crossref]

M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared, Millimeter, Terahertz Waves 34, 1–27 (2012).
[Crossref]

A. Rubano, L. Braun, M. Wolf, and T. Kampfrath, “Mid-infrared time-domain ellipsometry: application to Nb-doped SrTiO3,” Appl. Phys. Lett. 101, 081103 (2012).
[Crossref]

2010 (1)

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

D. A. Naylor and M. K. Tahic, “Apodizing functions for Fourier transform spectroscopy,” J. Opt. Soc. Am. A 24, 3644–3648 (2007).
[Crossref]

T. Kampfrath, J. Nötzold, and M. Wolf, “Sampling of broadband terahertz pulses with thick electro-optic crystals,” Appl. Phys. Lett. 90, 231113 (2007).
[Crossref]

2006 (1)

2005 (1)

N. Amer, W. C. Hurlbut, B. J. Norton, Y.-S. Lee, and T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87, 221111 (2005).
[Crossref]

2002 (1)

T. Kampfrath, R. G. Ulbrich, F. Leuenberger, M. Münzenberg, B. Sass, and W. Felsch, “Ultrafast magneto-optical response of iron thin films,” Phys. Rev. B 65, 104429 (2002).
[Crossref]

1999 (2)

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[Crossref]

Q. Chen and X. C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[Crossref]

1998 (1)

C.-Y. You and S.-C. Shin, “Generalized analytic formulae for magneto-optical Kerr effects,” J. Appl. Phys. 84, 541–546 (1998).
[Crossref]

1995 (1)

G. B. V. Basso, A. Infortuna, and M. Pasquale, “Preisach model study of the connection between magnetic and microstructural properties of soft magnetic materials,” IEEE Trans. Magn. 31, 4000–4005 (1995).
[Crossref]

1994 (1)

D. C. Jiles, “Frequency dependence of hysteresis curves in conducting magnetic materials,” J. Appl. Phys. 76, 5849–5855 (1994).
[Crossref]

1963 (1)

A. S. Barker, “Infrared lattice vibrations and dielectric dispersion in corundum,” Phys. Rev. 132, 1474–1481 (1963).
[Crossref]

Albrecht, M.

R. Schneider, M. Fix, J. Bensmann, S. Michaelis de Vasconcellos, M. Albrecht, and R. Bratschitsch, “Spintronic GdFe/Pt THz emitters,” Appl. Phys. Lett. 115, 152401 (2019).
[Crossref]

Amer, N.

N. Amer, W. C. Hurlbut, B. J. Norton, Y.-S. Lee, and T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87, 221111 (2005).
[Crossref]

Appleby, R.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Armitage, N. P.

L. Wu, A. Farid, N. J. Laurita, T. Mueller, and N. P. Armitage, “A compact broadband terahertz range quarter-wave plate,” J. Infrared, Millimeter, Terahertz Waves 41, 642–654 (2020).
[Crossref]

R. V. Morris, A. V. Stier, and N. P. Armitage, “Polarization modulation time-domain terahertz polarimetry,” Opt. Express 20, 12303–12317 (2012).
[Crossref]

Axel Zeitler, J.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Baig, S. A.

S. A. Baig, J. L. Boland, D. A. Damry, H. H. Tan, C. Jagadish, H. J. Joyce, and M. B. Johnston, “An ultrafast switchable terahertz polarization modulator based on III–V semiconductor nanowires,” Nano Lett. 17, 2603–2610 (2017).
[Crossref]

Barker, A. S.

A. S. Barker, “Infrared lattice vibrations and dielectric dispersion in corundum,” Phys. Rev. 132, 1474–1481 (1963).
[Crossref]

Barker, J.

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

Basso, G. B. V.

G. B. V. Basso, A. Infortuna, and M. Pasquale, “Preisach model study of the connection between magnetic and microstructural properties of soft magnetic materials,” IEEE Trans. Magn. 31, 4000–4005 (1995).
[Crossref]

Battiato, M.

D. M. Nenno, L. Scheuer, D. Sokoluk, S. Keller, G. Torosyan, A. Brodyanski, J. Losch, M. Battiato, M. Rahm, R. H. Binder, H. C. Schneider, R. Beigang, and E. T. Papaioannou, “Modification of spintronic terahertz emitter performance through defect engineering,” Sci. Rep. 9, 13348 (2019).
[Crossref]

E. T. Papaioannou, G. Torosyan, S. Keller, L. Scheuer, M. Battiato, V. K. Mag-Usara, J. L’huillier, M. Tani, and R. Beigang, “Efficient terahertz generation using Fe/Pt spintronic emitters pumped at different wavelengths,” IEEE Trans. Magn. 54, 9100205 (2018).
[Crossref]

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256–260 (2013).
[Crossref]

Beaurepaire, E.

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

Beck, H. S. M.

Beigang, R.

D. M. Nenno, L. Scheuer, D. Sokoluk, S. Keller, G. Torosyan, A. Brodyanski, J. Losch, M. Battiato, M. Rahm, R. H. Binder, H. C. Schneider, R. Beigang, and E. T. Papaioannou, “Modification of spintronic terahertz emitter performance through defect engineering,” Sci. Rep. 9, 13348 (2019).
[Crossref]

E. T. Papaioannou, G. Torosyan, S. Keller, L. Scheuer, M. Battiato, V. K. Mag-Usara, J. L’huillier, M. Tani, and R. Beigang, “Efficient terahertz generation using Fe/Pt spintronic emitters pumped at different wavelengths,” IEEE Trans. Magn. 54, 9100205 (2018).
[Crossref]

Bensmann, J.

R. Schneider, M. Fix, J. Bensmann, S. Michaelis de Vasconcellos, M. Albrecht, and R. Bratschitsch, “Spintronic GdFe/Pt THz emitters,” Appl. Phys. Lett. 115, 152401 (2019).
[Crossref]

Bertolotti, J.

R. I. Herapath, S. M. Hornett, T. S. Seifert, G. Jakob, M. Kläui, J. Bertolotti, T. Kampfrath, and E. Hendry, “Impact of pump wavelength on terahertz emission of a cavity-enhanced spintronic trilayer,” Appl. Phys. Lett. 114, 041107 (2019).
[Crossref]

Binder, R. H.

D. M. Nenno, L. Scheuer, D. Sokoluk, S. Keller, G. Torosyan, A. Brodyanski, J. Losch, M. Battiato, M. Rahm, R. H. Binder, H. C. Schneider, R. Beigang, and E. T. Papaioannou, “Modification of spintronic terahertz emitter performance through defect engineering,” Sci. Rep. 9, 13348 (2019).
[Crossref]

Blugel, S.

T. J. Huisman, R. V. Mikhaylovskiy, J. D. Costa, F. Freimuth, E. Paz, J. Ventura, P. P. Freitas, S. Blugel, Y. Mokrousov, T. Rasing, and A. V. Kimel, “Femtosecond control of electric currents in metallic ferromagnetic heterostructures,” Nat. Nanotechnol. 11, 455–458 (2016).
[Crossref]

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256–260 (2013).
[Crossref]

Boland, J. L.

S. A. Baig, J. L. Boland, D. A. Damry, H. H. Tan, C. Jagadish, H. J. Joyce, and M. B. Johnston, “An ultrafast switchable terahertz polarization modulator based on III–V semiconductor nanowires,” Nano Lett. 17, 2603–2610 (2017).
[Crossref]

Bonetti, S.

M. Hudl, M. d’Aquino, M. Pancaldi, S. H. Yang, M. G. Samant, S. S. P. Parkin, H. A. Durr, C. Serpico, M. C. Hoffmann, and S. Bonetti, “Nonlinear magnetization dynamics driven by strong terahertz fields,” Phys. Rev. Lett. 123, 197204 (2019).
[Crossref]

Booske, J.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Borchert, M.

L. Nádvorník, M. Borchert, L. Brandt, R. Schlitz, K. A. de Mare, K. Výborný, I. Mertig, G. Jakob, M. Kläui, S. T. B. Goennenwein, M. Wolf, G. Woltersdorf, and T. Kampfrath, “Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions,” Phys. Rev. X 11, 021030 (2021).
[Crossref]

Boust, J.

J. Hawecker, T. H. Dang, E. Rongione, J. Boust, S. Collin, J.-M. George, H.-J. Drouhin, Y. Laplace, R. Grasset, J. Dong, J. Mangeney, J. Tignon, H. Jaffrès, L. Perfetti, and S. Dhillon, “Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy,” Adv. Opt. Mater., 2100412 (2021), Early View.
[Crossref]

Brandt, L.

L. Nádvorník, M. Borchert, L. Brandt, R. Schlitz, K. A. de Mare, K. Výborný, I. Mertig, G. Jakob, M. Kläui, S. T. B. Goennenwein, M. Wolf, G. Woltersdorf, and T. Kampfrath, “Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions,” Phys. Rev. X 11, 021030 (2021).
[Crossref]

R. Rouzegar, L. Brandt, L. Nadvornik, D. A. Reiss, A. L. Chekhov, O. Gueckstock, C. In, M. Wolf, T. S. Seifert, P. W. Brouwer, G. Woltersdorf, and T. Kampfrath, “Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization,” arXiv 2103.11710 (2021).

Bratschitsch, R.

R. Schneider, M. Fix, J. Bensmann, S. Michaelis de Vasconcellos, M. Albrecht, and R. Bratschitsch, “Spintronic GdFe/Pt THz emitters,” Appl. Phys. Lett. 115, 152401 (2019).
[Crossref]

Braun, L.

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

A. Rubano, L. Braun, M. Wolf, and T. Kampfrath, “Mid-infrared time-domain ellipsometry: application to Nb-doped SrTiO3,” Appl. Phys. Lett. 101, 081103 (2012).
[Crossref]

Brodyanski, A.

D. M. Nenno, L. Scheuer, D. Sokoluk, S. Keller, G. Torosyan, A. Brodyanski, J. Losch, M. Battiato, M. Rahm, R. H. Binder, H. C. Schneider, R. Beigang, and E. T. Papaioannou, “Modification of spintronic terahertz emitter performance through defect engineering,” Sci. Rep. 9, 13348 (2019).
[Crossref]

Brouwer, P. W.

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

R. Rouzegar, L. Brandt, L. Nadvornik, D. A. Reiss, A. L. Chekhov, O. Gueckstock, C. In, M. Wolf, T. S. Seifert, P. W. Brouwer, G. Woltersdorf, and T. Kampfrath, “Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization,” arXiv 2103.11710 (2021).

Castro-Camus, E.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Chekhov, A. L.

R. Rouzegar, L. Brandt, L. Nadvornik, D. A. Reiss, A. L. Chekhov, O. Gueckstock, C. In, M. Wolf, T. S. Seifert, P. W. Brouwer, G. Woltersdorf, and T. Kampfrath, “Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization,” arXiv 2103.11710 (2021).

Chen, M.

Y. Wu, M. Elyasi, X. Qiu, M. Chen, Y. Liu, L. Ke, and H. Yang, “High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures,” Adv. Mater. 29, 1603031 (2017).
[Crossref]

Chen, Q.

Q. Chen and X. C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[Crossref]

Ciccarelli, C.

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

Clarke, R.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Cocker, T. L.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Collin, S.

J. Hawecker, T. H. Dang, E. Rongione, J. Boust, S. Collin, J.-M. George, H.-J. Drouhin, Y. Laplace, R. Grasset, J. Dong, J. Mangeney, J. Tignon, H. Jaffrès, L. Perfetti, and S. Dhillon, “Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy,” Adv. Opt. Mater., 2100412 (2021), Early View.
[Crossref]

Cooper, K. B.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Costa, J. D.

T. J. Huisman, R. V. Mikhaylovskiy, J. D. Costa, F. Freimuth, E. Paz, J. Ventura, P. P. Freitas, S. Blugel, Y. Mokrousov, T. Rasing, and A. V. Kimel, “Femtosecond control of electric currents in metallic ferromagnetic heterostructures,” Nat. Nanotechnol. 11, 455–458 (2016).
[Crossref]

Cramer, J.

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

Cumming, D. R. S.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Cunningham, J. E.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

d’Aquino, M.

M. Hudl, M. d’Aquino, M. Pancaldi, S. H. Yang, M. G. Samant, S. S. P. Parkin, H. A. Durr, C. Serpico, M. C. Hoffmann, and S. Bonetti, “Nonlinear magnetization dynamics driven by strong terahertz fields,” Phys. Rev. Lett. 123, 197204 (2019).
[Crossref]

Damry, D. A.

S. A. Baig, J. L. Boland, D. A. Damry, H. H. Tan, C. Jagadish, H. J. Joyce, and M. B. Johnston, “An ultrafast switchable terahertz polarization modulator based on III–V semiconductor nanowires,” Nano Lett. 17, 2603–2610 (2017).
[Crossref]

Dang, T. H.

J. Hawecker, T. H. Dang, E. Rongione, J. Boust, S. Collin, J.-M. George, H.-J. Drouhin, Y. Laplace, R. Grasset, J. Dong, J. Mangeney, J. Tignon, H. Jaffrès, L. Perfetti, and S. Dhillon, “Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy,” Adv. Opt. Mater., 2100412 (2021), Early View.
[Crossref]

Davies, A. G.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

de Mare, K. A.

L. Nádvorník, M. Borchert, L. Brandt, R. Schlitz, K. A. de Mare, K. Výborný, I. Mertig, G. Jakob, M. Kläui, S. T. B. Goennenwein, M. Wolf, G. Woltersdorf, and T. Kampfrath, “Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions,” Phys. Rev. X 11, 021030 (2021).
[Crossref]

Dekorsy, T.

Demsar, J.

Dexheimer, S. L.

S. L. Dexheimer, Terahertz Spectroscopy: Principles and Applications (CRC Press, 2017).

Dhillon, S.

J. Hawecker, T. H. Dang, E. Rongione, J. Boust, S. Collin, J.-M. George, H.-J. Drouhin, Y. Laplace, R. Grasset, J. Dong, J. Mangeney, J. Tignon, H. Jaffrès, L. Perfetti, and S. Dhillon, “Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy,” Adv. Opt. Mater., 2100412 (2021), Early View.
[Crossref]

Dhillon, S. S.

K. Maussang, J. Palomo, J. Mangeney, S. S. Dhillon, and J. Tignon, “Large-area photoconductive switches as emitters of terahertz pulses with fully electrically controlled linear polarization,” Opt. Express 27, 14784–14797 (2019).
[Crossref]

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Dong, J.

J. Hawecker, T. H. Dang, E. Rongione, J. Boust, S. Collin, J.-M. George, H.-J. Drouhin, Y. Laplace, R. Grasset, J. Dong, J. Mangeney, J. Tignon, H. Jaffrès, L. Perfetti, and S. Dhillon, “Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy,” Adv. Opt. Mater., 2100412 (2021), Early View.
[Crossref]

Drouhin, H.-J.

J. Hawecker, T. H. Dang, E. Rongione, J. Boust, S. Collin, J.-M. George, H.-J. Drouhin, Y. Laplace, R. Grasset, J. Dong, J. Mangeney, J. Tignon, H. Jaffrès, L. Perfetti, and S. Dhillon, “Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy,” Adv. Opt. Mater., 2100412 (2021), Early View.
[Crossref]

Durr, H. A.

M. Hudl, M. d’Aquino, M. Pancaldi, S. H. Yang, M. G. Samant, S. S. P. Parkin, H. A. Durr, C. Serpico, M. C. Hoffmann, and S. Bonetti, “Nonlinear magnetization dynamics driven by strong terahertz fields,” Phys. Rev. Lett. 123, 197204 (2019).
[Crossref]

Eilers, G.

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256–260 (2013).
[Crossref]

Ellison, B.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Elyasi, M.

Y. Wu, M. Elyasi, X. Qiu, M. Chen, Y. Liu, L. Ke, and H. Yang, “High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures,” Adv. Mater. 29, 1603031 (2017).
[Crossref]

Escorcia-Carranza, I.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Farid, A.

L. Wu, A. Farid, N. J. Laurita, T. Mueller, and N. P. Armitage, “A compact broadband terahertz range quarter-wave plate,” J. Infrared, Millimeter, Terahertz Waves 41, 642–654 (2020).
[Crossref]

Felsch, W.

T. Kampfrath, R. G. Ulbrich, F. Leuenberger, M. Münzenberg, B. Sass, and W. Felsch, “Ultrafast magneto-optical response of iron thin films,” Phys. Rev. B 65, 104429 (2002).
[Crossref]

Feng, Z.

Z. Feng, H. Qiu, D. Wang, C. Zhang, S. Sun, B. Jin, and W. Tan, “Spintronic terahertz emitter,” J. Appl. Phys. 129, 010901 (2021).
[Crossref]

Fice, M.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Fix, M.

R. Schneider, M. Fix, J. Bensmann, S. Michaelis de Vasconcellos, M. Albrecht, and R. Bratschitsch, “Spintronic GdFe/Pt THz emitters,” Appl. Phys. Lett. 115, 152401 (2019).
[Crossref]

Freimuth, F.

T. J. Huisman, R. V. Mikhaylovskiy, J. D. Costa, F. Freimuth, E. Paz, J. Ventura, P. P. Freitas, S. Blugel, Y. Mokrousov, T. Rasing, and A. V. Kimel, “Femtosecond control of electric currents in metallic ferromagnetic heterostructures,” Nat. Nanotechnol. 11, 455–458 (2016).
[Crossref]

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256–260 (2013).
[Crossref]

Freitas, P. P.

T. J. Huisman, R. V. Mikhaylovskiy, J. D. Costa, F. Freimuth, E. Paz, J. Ventura, P. P. Freitas, S. Blugel, Y. Mokrousov, T. Rasing, and A. V. Kimel, “Femtosecond control of electric currents in metallic ferromagnetic heterostructures,” Nat. Nanotechnol. 11, 455–458 (2016).
[Crossref]

Fülöp, J. A.

J. A. Fülöp, S. Tzortzakis, and T. Kampfrath, “Laser-driven strong-field terahertz sources,” Adv. Opt. Mater. 8, 1900681 (2019).
[Crossref]

Gensch, M.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

George, J.-M.

J. Hawecker, T. H. Dang, E. Rongione, J. Boust, S. Collin, J.-M. George, H.-J. Drouhin, Y. Laplace, R. Grasset, J. Dong, J. Mangeney, J. Tignon, H. Jaffrès, L. Perfetti, and S. Dhillon, “Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy,” Adv. Opt. Mater., 2100412 (2021), Early View.
[Crossref]

Goennenwein, S. T. B.

L. Nádvorník, M. Borchert, L. Brandt, R. Schlitz, K. A. de Mare, K. Výborný, I. Mertig, G. Jakob, M. Kläui, S. T. B. Goennenwein, M. Wolf, G. Woltersdorf, and T. Kampfrath, “Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions,” Phys. Rev. X 11, 021030 (2021).
[Crossref]

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

Goldsmith, P.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Grant, J.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Grasset, R.

J. Hawecker, T. H. Dang, E. Rongione, J. Boust, S. Collin, J.-M. George, H.-J. Drouhin, Y. Laplace, R. Grasset, J. Dong, J. Mangeney, J. Tignon, H. Jaffrès, L. Perfetti, and S. Dhillon, “Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy,” Adv. Opt. Mater., 2100412 (2021), Early View.
[Crossref]

Gueckstock, O.

T. S. Seifert, N. M. Tran, O. Gueckstock, S. M. Rouzegar, L. Nadvornik, S. Jaiswal, G. Jakob, V. V. Temnov, M. Münzenberg, M. Wolf, M. Kläui, and T. Kampfrath, “Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20,” J. Phys. D 51, 364003 (2018).
[Crossref]

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

R. Rouzegar, L. Brandt, L. Nadvornik, D. A. Reiss, A. L. Chekhov, O. Gueckstock, C. In, M. Wolf, T. S. Seifert, P. W. Brouwer, G. Woltersdorf, and T. Kampfrath, “Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization,” arXiv 2103.11710 (2021).

Hangyo, M.

Hannegan, J.

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

Hattori, R.

Hawecker, J.

J. Hawecker, T. H. Dang, E. Rongione, J. Boust, S. Collin, J.-M. George, H.-J. Drouhin, Y. Laplace, R. Grasset, J. Dong, J. Mangeney, J. Tignon, H. Jaffrès, L. Perfetti, and S. Dhillon, “Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy,” Adv. Opt. Mater., 2100412 (2021), Early View.
[Crossref]

Hayden, L. M.

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

Helm, M.

A. Singh, A. Pashkin, S. Winnerl, M. Helm, and H. Schneider, “Gapless broadband terahertz emission from a germanium photoconductive emitter,” ACS Photon. 5, 2718–2723 (2018).
[Crossref]

H. S. M. Beck, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18, 9251–9257 (2010).
[Crossref]

Hendry, E.

R. I. Herapath, S. M. Hornett, T. S. Seifert, G. Jakob, M. Kläui, J. Bertolotti, T. Kampfrath, and E. Hendry, “Impact of pump wavelength on terahertz emission of a cavity-enhanced spintronic trilayer,” Appl. Phys. Lett. 114, 041107 (2019).
[Crossref]

Henrizi, J.

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

Herapath, R. I.

R. I. Herapath, S. M. Hornett, T. S. Seifert, G. Jakob, M. Kläui, J. Bertolotti, T. Kampfrath, and E. Hendry, “Impact of pump wavelength on terahertz emission of a cavity-enhanced spintronic trilayer,” Appl. Phys. Lett. 114, 041107 (2019).
[Crossref]

Higuchi, T.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

Hirota, Y.

Hoffmann, M. C.

M. Hudl, M. d’Aquino, M. Pancaldi, S. H. Yang, M. G. Samant, S. S. P. Parkin, H. A. Durr, C. Serpico, M. C. Hoffmann, and S. Bonetti, “Nonlinear magnetization dynamics driven by strong terahertz fields,” Phys. Rev. Lett. 123, 197204 (2019).
[Crossref]

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Hornett, S. M.

R. I. Herapath, S. M. Hornett, T. S. Seifert, G. Jakob, M. Kläui, J. Bertolotti, T. Kampfrath, and E. Hendry, “Impact of pump wavelength on terahertz emission of a cavity-enhanced spintronic trilayer,” Appl. Phys. Lett. 114, 041107 (2019).
[Crossref]

Huber, R.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Hudl, M.

M. Hudl, M. d’Aquino, M. Pancaldi, S. H. Yang, M. G. Samant, S. S. P. Parkin, H. A. Durr, C. Serpico, M. C. Hoffmann, and S. Bonetti, “Nonlinear magnetization dynamics driven by strong terahertz fields,” Phys. Rev. Lett. 123, 197204 (2019).
[Crossref]

Huggard, P. G.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Huisman, T. J.

T. J. Huisman, R. V. Mikhaylovskiy, J. D. Costa, F. Freimuth, E. Paz, J. Ventura, P. P. Freitas, S. Blugel, Y. Mokrousov, T. Rasing, and A. V. Kimel, “Femtosecond control of electric currents in metallic ferromagnetic heterostructures,” Nat. Nanotechnol. 11, 455–458 (2016).
[Crossref]

Hunsche, S.

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[Crossref]

Hurlbut, W. C.

N. Amer, W. C. Hurlbut, B. J. Norton, Y.-S. Lee, and T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87, 221111 (2005).
[Crossref]

In, C.

R. Rouzegar, L. Brandt, L. Nadvornik, D. A. Reiss, A. L. Chekhov, O. Gueckstock, C. In, M. Wolf, T. S. Seifert, P. W. Brouwer, G. Woltersdorf, and T. Kampfrath, “Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization,” arXiv 2103.11710 (2021).

Infortuna, A.

G. B. V. Basso, A. Infortuna, and M. Pasquale, “Preisach model study of the connection between magnetic and microstructural properties of soft magnetic materials,” IEEE Trans. Magn. 31, 4000–4005 (1995).
[Crossref]

Jaffrès, H.

J. Hawecker, T. H. Dang, E. Rongione, J. Boust, S. Collin, J.-M. George, H.-J. Drouhin, Y. Laplace, R. Grasset, J. Dong, J. Mangeney, J. Tignon, H. Jaffrès, L. Perfetti, and S. Dhillon, “Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy,” Adv. Opt. Mater., 2100412 (2021), Early View.
[Crossref]

Jagadish, C.

S. A. Baig, J. L. Boland, D. A. Damry, H. H. Tan, C. Jagadish, H. J. Joyce, and M. B. Johnston, “An ultrafast switchable terahertz polarization modulator based on III–V semiconductor nanowires,” Nano Lett. 17, 2603–2610 (2017).
[Crossref]

Jaiswal, S.

T. S. Seifert, N. M. Tran, O. Gueckstock, S. M. Rouzegar, L. Nadvornik, S. Jaiswal, G. Jakob, V. V. Temnov, M. Münzenberg, M. Wolf, M. Kläui, and T. Kampfrath, “Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20,” J. Phys. D 51, 364003 (2018).
[Crossref]

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

T. Seifert, S. Jaiswal, M. Sajadi, G. Jakob, S. Winnerl, M. Wolf, M. Kläui, and T. Kampfrath, “Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter,” Appl. Phys. Lett. 110, 252402 (2017).
[Crossref]

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

Jakob, G.

L. Nádvorník, M. Borchert, L. Brandt, R. Schlitz, K. A. de Mare, K. Výborný, I. Mertig, G. Jakob, M. Kläui, S. T. B. Goennenwein, M. Wolf, G. Woltersdorf, and T. Kampfrath, “Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions,” Phys. Rev. X 11, 021030 (2021).
[Crossref]

R. I. Herapath, S. M. Hornett, T. S. Seifert, G. Jakob, M. Kläui, J. Bertolotti, T. Kampfrath, and E. Hendry, “Impact of pump wavelength on terahertz emission of a cavity-enhanced spintronic trilayer,” Appl. Phys. Lett. 114, 041107 (2019).
[Crossref]

T. S. Seifert, N. M. Tran, O. Gueckstock, S. M. Rouzegar, L. Nadvornik, S. Jaiswal, G. Jakob, V. V. Temnov, M. Münzenberg, M. Wolf, M. Kläui, and T. Kampfrath, “Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20,” J. Phys. D 51, 364003 (2018).
[Crossref]

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

T. Seifert, S. Jaiswal, M. Sajadi, G. Jakob, S. Winnerl, M. Wolf, M. Kläui, and T. Kampfrath, “Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter,” Appl. Phys. Lett. 110, 252402 (2017).
[Crossref]

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

Jiles, D. C.

D. C. Jiles, “Frequency dependence of hysteresis curves in conducting magnetic materials,” J. Appl. Phys. 76, 5849–5855 (1994).
[Crossref]

Jin, B.

Z. Feng, H. Qiu, D. Wang, C. Zhang, S. Sun, B. Jin, and W. Tan, “Spintronic terahertz emitter,” J. Appl. Phys. 129, 010901 (2021).
[Crossref]

Johnston, M. B.

S. A. Baig, J. L. Boland, D. A. Damry, H. H. Tan, C. Jagadish, H. J. Joyce, and M. B. Johnston, “An ultrafast switchable terahertz polarization modulator based on III–V semiconductor nanowires,” Nano Lett. 17, 2603–2610 (2017).
[Crossref]

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Jourdan, M.

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

Joyce, H. J.

S. A. Baig, J. L. Boland, D. A. Damry, H. H. Tan, C. Jagadish, H. J. Joyce, and M. B. Johnston, “An ultrafast switchable terahertz polarization modulator based on III–V semiconductor nanowires,” Nano Lett. 17, 2603–2610 (2017).
[Crossref]

Jungfleisch, M. B.

W. Wu, S. Lendinez, M. Taghipour Kaffash, R. D. Schaller, H. Wen, and M. B. Jungfleisch, “Modification of terahertz emission spectrum using microfabricated spintronic emitters,” J. Appl. Phys. 128, 103902 (2020).
[Crossref]

Kampfrath, T.

L. Nádvorník, M. Borchert, L. Brandt, R. Schlitz, K. A. de Mare, K. Výborný, I. Mertig, G. Jakob, M. Kläui, S. T. B. Goennenwein, M. Wolf, G. Woltersdorf, and T. Kampfrath, “Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions,” Phys. Rev. X 11, 021030 (2021).
[Crossref]

J. A. Fülöp, S. Tzortzakis, and T. Kampfrath, “Laser-driven strong-field terahertz sources,” Adv. Opt. Mater. 8, 1900681 (2019).
[Crossref]

R. I. Herapath, S. M. Hornett, T. S. Seifert, G. Jakob, M. Kläui, J. Bertolotti, T. Kampfrath, and E. Hendry, “Impact of pump wavelength on terahertz emission of a cavity-enhanced spintronic trilayer,” Appl. Phys. Lett. 114, 041107 (2019).
[Crossref]

T. S. Seifert, N. M. Tran, O. Gueckstock, S. M. Rouzegar, L. Nadvornik, S. Jaiswal, G. Jakob, V. V. Temnov, M. Münzenberg, M. Wolf, M. Kläui, and T. Kampfrath, “Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20,” J. Phys. D 51, 364003 (2018).
[Crossref]

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

T. Seifert, S. Jaiswal, M. Sajadi, G. Jakob, S. Winnerl, M. Wolf, M. Kläui, and T. Kampfrath, “Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter,” Appl. Phys. Lett. 110, 252402 (2017).
[Crossref]

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256–260 (2013).
[Crossref]

A. Rubano, L. Braun, M. Wolf, and T. Kampfrath, “Mid-infrared time-domain ellipsometry: application to Nb-doped SrTiO3,” Appl. Phys. Lett. 101, 081103 (2012).
[Crossref]

T. Kampfrath, J. Nötzold, and M. Wolf, “Sampling of broadband terahertz pulses with thick electro-optic crystals,” Appl. Phys. Lett. 90, 231113 (2007).
[Crossref]

T. Kampfrath, R. G. Ulbrich, F. Leuenberger, M. Münzenberg, B. Sass, and W. Felsch, “Ultrafast magneto-optical response of iron thin films,” Phys. Rev. B 65, 104429 (2002).
[Crossref]

R. Rouzegar, L. Brandt, L. Nadvornik, D. A. Reiss, A. L. Chekhov, O. Gueckstock, C. In, M. Wolf, T. S. Seifert, P. W. Brouwer, G. Woltersdorf, and T. Kampfrath, “Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization,” arXiv 2103.11710 (2021).

Kanda, N.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

Ke, L.

Y. Wu, M. Elyasi, X. Qiu, M. Chen, Y. Liu, L. Ke, and H. Yang, “High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures,” Adv. Mater. 29, 1603031 (2017).
[Crossref]

Keller, S.

D. M. Nenno, L. Scheuer, D. Sokoluk, S. Keller, G. Torosyan, A. Brodyanski, J. Losch, M. Battiato, M. Rahm, R. H. Binder, H. C. Schneider, R. Beigang, and E. T. Papaioannou, “Modification of spintronic terahertz emitter performance through defect engineering,” Sci. Rep. 9, 13348 (2019).
[Crossref]

E. T. Papaioannou, G. Torosyan, S. Keller, L. Scheuer, M. Battiato, V. K. Mag-Usara, J. L’huillier, M. Tani, and R. Beigang, “Efficient terahertz generation using Fe/Pt spintronic emitters pumped at different wavelengths,” IEEE Trans. Magn. 54, 9100205 (2018).
[Crossref]

Kimel, A. V.

T. J. Huisman, R. V. Mikhaylovskiy, J. D. Costa, F. Freimuth, E. Paz, J. Ventura, P. P. Freitas, S. Blugel, Y. Mokrousov, T. Rasing, and A. V. Kimel, “Femtosecond control of electric currents in metallic ferromagnetic heterostructures,” Nat. Nanotechnol. 11, 455–458 (2016).
[Crossref]

Klatt, G.

Klaui, M.

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

Kläui, M.

L. Nádvorník, M. Borchert, L. Brandt, R. Schlitz, K. A. de Mare, K. Výborný, I. Mertig, G. Jakob, M. Kläui, S. T. B. Goennenwein, M. Wolf, G. Woltersdorf, and T. Kampfrath, “Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions,” Phys. Rev. X 11, 021030 (2021).
[Crossref]

R. I. Herapath, S. M. Hornett, T. S. Seifert, G. Jakob, M. Kläui, J. Bertolotti, T. Kampfrath, and E. Hendry, “Impact of pump wavelength on terahertz emission of a cavity-enhanced spintronic trilayer,” Appl. Phys. Lett. 114, 041107 (2019).
[Crossref]

T. S. Seifert, N. M. Tran, O. Gueckstock, S. M. Rouzegar, L. Nadvornik, S. Jaiswal, G. Jakob, V. V. Temnov, M. Münzenberg, M. Wolf, M. Kläui, and T. Kampfrath, “Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20,” J. Phys. D 51, 364003 (2018).
[Crossref]

T. Seifert, S. Jaiswal, M. Sajadi, G. Jakob, S. Winnerl, M. Wolf, M. Kläui, and T. Kampfrath, “Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter,” Appl. Phys. Lett. 110, 252402 (2017).
[Crossref]

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

Knox, W. H.

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[Crossref]

Koch, M.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Konishi, K.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

Korter, T. M.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Kronenberg, A.

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

Krozer, V.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Kuwata-Gonokami, M.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

L’huillier, J.

E. T. Papaioannou, G. Torosyan, S. Keller, L. Scheuer, M. Battiato, V. K. Mag-Usara, J. L’huillier, M. Tani, and R. Beigang, “Efficient terahertz generation using Fe/Pt spintronic emitters pumped at different wavelengths,” IEEE Trans. Magn. 54, 9100205 (2018).
[Crossref]

Laplace, Y.

J. Hawecker, T. H. Dang, E. Rongione, J. Boust, S. Collin, J.-M. George, H.-J. Drouhin, Y. Laplace, R. Grasset, J. Dong, J. Mangeney, J. Tignon, H. Jaffrès, L. Perfetti, and S. Dhillon, “Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy,” Adv. Opt. Mater., 2100412 (2021), Early View.
[Crossref]

Laurita, N. J.

L. Wu, A. Farid, N. J. Laurita, T. Mueller, and N. P. Armitage, “A compact broadband terahertz range quarter-wave plate,” J. Infrared, Millimeter, Terahertz Waves 41, 642–654 (2020).
[Crossref]

Lee, Y.-S.

N. Amer, W. C. Hurlbut, B. J. Norton, Y.-S. Lee, and T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87, 221111 (2005).
[Crossref]

Leitenstorfer, A.

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[Crossref]

Lendinez, S.

W. Wu, S. Lendinez, M. Taghipour Kaffash, R. D. Schaller, H. Wen, and M. B. Jungfleisch, “Modification of terahertz emission spectrum using microfabricated spintronic emitters,” J. Appl. Phys. 128, 103902 (2020).
[Crossref]

Leuenberger, F.

T. Kampfrath, R. G. Ulbrich, F. Leuenberger, M. Münzenberg, B. Sass, and W. Felsch, “Ultrafast magneto-optical response of iron thin films,” Phys. Rev. B 65, 104429 (2002).
[Crossref]

Li, J.-S.

M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared, Millimeter, Terahertz Waves 34, 1–27 (2012).
[Crossref]

Liang, J.

D. Yang, J. Liang, C. Zhou, L. Sun, R. Zheng, S. Luo, Y. Wu, and J. Qi, “Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure,” Adv. Opt. Mater. 4, 1944–1949 (2016).
[Crossref]

Linfield, E. H.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Liu, Y.

Y. Wu, M. Elyasi, X. Qiu, M. Chen, Y. Liu, L. Ke, and H. Yang, “High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures,” Adv. Mater. 29, 1603031 (2017).
[Crossref]

Losch, J.

D. M. Nenno, L. Scheuer, D. Sokoluk, S. Keller, G. Torosyan, A. Brodyanski, J. Losch, M. Battiato, M. Rahm, R. H. Binder, H. C. Schneider, R. Beigang, and E. T. Papaioannou, “Modification of spintronic terahertz emitter performance through defect engineering,” Sci. Rep. 9, 13348 (2019).
[Crossref]

Lucyszyn, S.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Luo, S.

D. Yang, J. Liang, C. Zhou, L. Sun, R. Zheng, S. Luo, Y. Wu, and J. Qi, “Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure,” Adv. Opt. Mater. 4, 1944–1949 (2016).
[Crossref]

Maehrlein, S. F.

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

Mag-Usara, V. K.

E. T. Papaioannou, G. Torosyan, S. Keller, L. Scheuer, M. Battiato, V. K. Mag-Usara, J. L’huillier, M. Tani, and R. Beigang, “Efficient terahertz generation using Fe/Pt spintronic emitters pumped at different wavelengths,” IEEE Trans. Magn. 54, 9100205 (2018).
[Crossref]

Mahrlein, S.

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256–260 (2013).
[Crossref]

Maldonado, P.

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256–260 (2013).
[Crossref]

Mangeney, J.

K. Maussang, J. Palomo, J. Mangeney, S. S. Dhillon, and J. Tignon, “Large-area photoconductive switches as emitters of terahertz pulses with fully electrically controlled linear polarization,” Opt. Express 27, 14784–14797 (2019).
[Crossref]

J. Hawecker, T. H. Dang, E. Rongione, J. Boust, S. Collin, J.-M. George, H.-J. Drouhin, Y. Laplace, R. Grasset, J. Dong, J. Mangeney, J. Tignon, H. Jaffrès, L. Perfetti, and S. Dhillon, “Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy,” Adv. Opt. Mater., 2100412 (2021), Early View.
[Crossref]

Markelz, A. G.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Martens, U.

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

Maussang, K.

Melnikov, A.

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

Mertig, I.

L. Nádvorník, M. Borchert, L. Brandt, R. Schlitz, K. A. de Mare, K. Výborný, I. Mertig, G. Jakob, M. Kläui, S. T. B. Goennenwein, M. Wolf, G. Woltersdorf, and T. Kampfrath, “Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions,” Phys. Rev. X 11, 021030 (2021).
[Crossref]

Michaelis de Vasconcellos, S.

R. Schneider, M. Fix, J. Bensmann, S. Michaelis de Vasconcellos, M. Albrecht, and R. Bratschitsch, “Spintronic GdFe/Pt THz emitters,” Appl. Phys. Lett. 115, 152401 (2019).
[Crossref]

Mikhaylovskiy, R. V.

T. J. Huisman, R. V. Mikhaylovskiy, J. D. Costa, F. Freimuth, E. Paz, J. Ventura, P. P. Freitas, S. Blugel, Y. Mokrousov, T. Rasing, and A. V. Kimel, “Femtosecond control of electric currents in metallic ferromagnetic heterostructures,” Nat. Nanotechnol. 11, 455–458 (2016).
[Crossref]

Misawa, K.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

Mokrousov, Y.

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

T. J. Huisman, R. V. Mikhaylovskiy, J. D. Costa, F. Freimuth, E. Paz, J. Ventura, P. P. Freitas, S. Blugel, Y. Mokrousov, T. Rasing, and A. V. Kimel, “Femtosecond control of electric currents in metallic ferromagnetic heterostructures,” Nat. Nanotechnol. 11, 455–458 (2016).
[Crossref]

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256–260 (2013).
[Crossref]

Morris, R. V.

Mueller, T.

L. Wu, A. Farid, N. J. Laurita, T. Mueller, and N. P. Armitage, “A compact broadband terahertz range quarter-wave plate,” J. Infrared, Millimeter, Terahertz Waves 41, 642–654 (2020).
[Crossref]

Munzenberg, M.

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256–260 (2013).
[Crossref]

Münzenberg, M.

T. S. Seifert, N. M. Tran, O. Gueckstock, S. M. Rouzegar, L. Nadvornik, S. Jaiswal, G. Jakob, V. V. Temnov, M. Münzenberg, M. Wolf, M. Kläui, and T. Kampfrath, “Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20,” J. Phys. D 51, 364003 (2018).
[Crossref]

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

T. Kampfrath, R. G. Ulbrich, F. Leuenberger, M. Münzenberg, B. Sass, and W. Felsch, “Ultrafast magneto-optical response of iron thin films,” Phys. Rev. B 65, 104429 (2002).
[Crossref]

Nadvornik, L.

T. S. Seifert, N. M. Tran, O. Gueckstock, S. M. Rouzegar, L. Nadvornik, S. Jaiswal, G. Jakob, V. V. Temnov, M. Münzenberg, M. Wolf, M. Kläui, and T. Kampfrath, “Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20,” J. Phys. D 51, 364003 (2018).
[Crossref]

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

R. Rouzegar, L. Brandt, L. Nadvornik, D. A. Reiss, A. L. Chekhov, O. Gueckstock, C. In, M. Wolf, T. S. Seifert, P. W. Brouwer, G. Woltersdorf, and T. Kampfrath, “Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization,” arXiv 2103.11710 (2021).

Nádvorník, L.

L. Nádvorník, M. Borchert, L. Brandt, R. Schlitz, K. A. de Mare, K. Výborný, I. Mertig, G. Jakob, M. Kläui, S. T. B. Goennenwein, M. Wolf, G. Woltersdorf, and T. Kampfrath, “Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions,” Phys. Rev. X 11, 021030 (2021).
[Crossref]

Naftaly, M.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Naylor, D. A.

Nenno, D. M.

D. M. Nenno, L. Scheuer, D. Sokoluk, S. Keller, G. Torosyan, A. Brodyanski, J. Losch, M. Battiato, M. Rahm, R. H. Binder, H. C. Schneider, R. Beigang, and E. T. Papaioannou, “Modification of spintronic terahertz emitter performance through defect engineering,” Sci. Rep. 9, 13348 (2019).
[Crossref]

Norris, T. B.

N. Amer, W. C. Hurlbut, B. J. Norton, Y.-S. Lee, and T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87, 221111 (2005).
[Crossref]

Norton, B. J.

N. Amer, W. C. Hurlbut, B. J. Norton, Y.-S. Lee, and T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87, 221111 (2005).
[Crossref]

Notzold, J.

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256–260 (2013).
[Crossref]

Nötzold, J.

T. Kampfrath, J. Nötzold, and M. Wolf, “Sampling of broadband terahertz pulses with thick electro-optic crystals,” Appl. Phys. Lett. 90, 231113 (2007).
[Crossref]

Nuss, M. C.

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[Crossref]

Oppeneer, P. M.

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256–260 (2013).
[Crossref]

Padilla, W. J.

M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared, Millimeter, Terahertz Waves 34, 1–27 (2012).
[Crossref]

Palomo, J.

Pancaldi, M.

M. Hudl, M. d’Aquino, M. Pancaldi, S. H. Yang, M. G. Samant, S. S. P. Parkin, H. A. Durr, C. Serpico, M. C. Hoffmann, and S. Bonetti, “Nonlinear magnetization dynamics driven by strong terahertz fields,” Phys. Rev. Lett. 123, 197204 (2019).
[Crossref]

Paoloni, C.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Papaioannou, E. T.

D. M. Nenno, L. Scheuer, D. Sokoluk, S. Keller, G. Torosyan, A. Brodyanski, J. Losch, M. Battiato, M. Rahm, R. H. Binder, H. C. Schneider, R. Beigang, and E. T. Papaioannou, “Modification of spintronic terahertz emitter performance through defect engineering,” Sci. Rep. 9, 13348 (2019).
[Crossref]

E. T. Papaioannou, G. Torosyan, S. Keller, L. Scheuer, M. Battiato, V. K. Mag-Usara, J. L’huillier, M. Tani, and R. Beigang, “Efficient terahertz generation using Fe/Pt spintronic emitters pumped at different wavelengths,” IEEE Trans. Magn. 54, 9100205 (2018).
[Crossref]

Pardo, D.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Parkin, S. S. P.

M. Hudl, M. d’Aquino, M. Pancaldi, S. H. Yang, M. G. Samant, S. S. P. Parkin, H. A. Durr, C. Serpico, M. C. Hoffmann, and S. Bonetti, “Nonlinear magnetization dynamics driven by strong terahertz fields,” Phys. Rev. Lett. 123, 197204 (2019).
[Crossref]

Pashkin, A.

A. Singh, A. Pashkin, S. Winnerl, M. Helm, and H. Schneider, “Gapless broadband terahertz emission from a germanium photoconductive emitter,” ACS Photon. 5, 2718–2723 (2018).
[Crossref]

Pasquale, M.

G. B. V. Basso, A. Infortuna, and M. Pasquale, “Preisach model study of the connection between magnetic and microstructural properties of soft magnetic materials,” IEEE Trans. Magn. 31, 4000–4005 (1995).
[Crossref]

Paz, E.

T. J. Huisman, R. V. Mikhaylovskiy, J. D. Costa, F. Freimuth, E. Paz, J. Ventura, P. P. Freitas, S. Blugel, Y. Mokrousov, T. Rasing, and A. V. Kimel, “Femtosecond control of electric currents in metallic ferromagnetic heterostructures,” Nat. Nanotechnol. 11, 455–458 (2016).
[Crossref]

Perfetti, L.

J. Hawecker, T. H. Dang, E. Rongione, J. Boust, S. Collin, J.-M. George, H.-J. Drouhin, Y. Laplace, R. Grasset, J. Dong, J. Mangeney, J. Tignon, H. Jaffrès, L. Perfetti, and S. Dhillon, “Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy,” Adv. Opt. Mater., 2100412 (2021), Early View.
[Crossref]

Qi, J.

D. Yang, J. Liang, C. Zhou, L. Sun, R. Zheng, S. Luo, Y. Wu, and J. Qi, “Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure,” Adv. Opt. Mater. 4, 1944–1949 (2016).
[Crossref]

Qiu, H.

Z. Feng, H. Qiu, D. Wang, C. Zhang, S. Sun, B. Jin, and W. Tan, “Spintronic terahertz emitter,” J. Appl. Phys. 129, 010901 (2021).
[Crossref]

Qiu, X.

Y. Wu, M. Elyasi, X. Qiu, M. Chen, Y. Liu, L. Ke, and H. Yang, “High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures,” Adv. Mater. 29, 1603031 (2017).
[Crossref]

Radu, I.

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256–260 (2013).
[Crossref]

Rahm, M.

D. M. Nenno, L. Scheuer, D. Sokoluk, S. Keller, G. Torosyan, A. Brodyanski, J. Losch, M. Battiato, M. Rahm, R. H. Binder, H. C. Schneider, R. Beigang, and E. T. Papaioannou, “Modification of spintronic terahertz emitter performance through defect engineering,” Sci. Rep. 9, 13348 (2019).
[Crossref]

M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared, Millimeter, Terahertz Waves 34, 1–27 (2012).
[Crossref]

Rasing, T.

T. J. Huisman, R. V. Mikhaylovskiy, J. D. Costa, F. Freimuth, E. Paz, J. Ventura, P. P. Freitas, S. Blugel, Y. Mokrousov, T. Rasing, and A. V. Kimel, “Femtosecond control of electric currents in metallic ferromagnetic heterostructures,” Nat. Nanotechnol. 11, 455–458 (2016).
[Crossref]

Razdolski, I.

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

Rea, S.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Reiss, D. A.

R. Rouzegar, L. Brandt, L. Nadvornik, D. A. Reiss, A. L. Chekhov, O. Gueckstock, C. In, M. Wolf, T. S. Seifert, P. W. Brouwer, G. Woltersdorf, and T. Kampfrath, “Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization,” arXiv 2103.11710 (2021).

Renaud, C.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Rethfeld, B.

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

Ridler, N.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Rongione, E.

J. Hawecker, T. H. Dang, E. Rongione, J. Boust, S. Collin, J.-M. George, H.-J. Drouhin, Y. Laplace, R. Grasset, J. Dong, J. Mangeney, J. Tignon, H. Jaffrès, L. Perfetti, and S. Dhillon, “Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy,” Adv. Opt. Mater., 2100412 (2021), Early View.
[Crossref]

Rouzegar, R.

R. Rouzegar, L. Brandt, L. Nadvornik, D. A. Reiss, A. L. Chekhov, O. Gueckstock, C. In, M. Wolf, T. S. Seifert, P. W. Brouwer, G. Woltersdorf, and T. Kampfrath, “Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization,” arXiv 2103.11710 (2021).

Rouzegar, S. M.

T. S. Seifert, N. M. Tran, O. Gueckstock, S. M. Rouzegar, L. Nadvornik, S. Jaiswal, G. Jakob, V. V. Temnov, M. Münzenberg, M. Wolf, M. Kläui, and T. Kampfrath, “Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20,” J. Phys. D 51, 364003 (2018).
[Crossref]

Rubano, A.

A. Rubano, L. Braun, M. Wolf, and T. Kampfrath, “Mid-infrared time-domain ellipsometry: application to Nb-doped SrTiO3,” Appl. Phys. Lett. 101, 081103 (2012).
[Crossref]

Sajadi, M.

T. Seifert, S. Jaiswal, M. Sajadi, G. Jakob, S. Winnerl, M. Wolf, M. Kläui, and T. Kampfrath, “Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter,” Appl. Phys. Lett. 110, 252402 (2017).
[Crossref]

Samant, M. G.

M. Hudl, M. d’Aquino, M. Pancaldi, S. H. Yang, M. G. Samant, S. S. P. Parkin, H. A. Durr, C. Serpico, M. C. Hoffmann, and S. Bonetti, “Nonlinear magnetization dynamics driven by strong terahertz fields,” Phys. Rev. Lett. 123, 197204 (2019).
[Crossref]

Sass, B.

T. Kampfrath, R. G. Ulbrich, F. Leuenberger, M. Münzenberg, B. Sass, and W. Felsch, “Ultrafast magneto-optical response of iron thin films,” Phys. Rev. B 65, 104429 (2002).
[Crossref]

Sato, M.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

Schaller, R. D.

W. Wu, S. Lendinez, M. Taghipour Kaffash, R. D. Schaller, H. Wen, and M. B. Jungfleisch, “Modification of terahertz emission spectrum using microfabricated spintronic emitters,” J. Appl. Phys. 128, 103902 (2020).
[Crossref]

Scheuer, L.

D. M. Nenno, L. Scheuer, D. Sokoluk, S. Keller, G. Torosyan, A. Brodyanski, J. Losch, M. Battiato, M. Rahm, R. H. Binder, H. C. Schneider, R. Beigang, and E. T. Papaioannou, “Modification of spintronic terahertz emitter performance through defect engineering,” Sci. Rep. 9, 13348 (2019).
[Crossref]

E. T. Papaioannou, G. Torosyan, S. Keller, L. Scheuer, M. Battiato, V. K. Mag-Usara, J. L’huillier, M. Tani, and R. Beigang, “Efficient terahertz generation using Fe/Pt spintronic emitters pumped at different wavelengths,” IEEE Trans. Magn. 54, 9100205 (2018).
[Crossref]

Schlitz, R.

L. Nádvorník, M. Borchert, L. Brandt, R. Schlitz, K. A. de Mare, K. Výborný, I. Mertig, G. Jakob, M. Kläui, S. T. B. Goennenwein, M. Wolf, G. Woltersdorf, and T. Kampfrath, “Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions,” Phys. Rev. X 11, 021030 (2021).
[Crossref]

Schmuttenmaer, C. A.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Schneider, H.

A. Singh, A. Pashkin, S. Winnerl, M. Helm, and H. Schneider, “Gapless broadband terahertz emission from a germanium photoconductive emitter,” ACS Photon. 5, 2718–2723 (2018).
[Crossref]

Schneider, H. C.

D. M. Nenno, L. Scheuer, D. Sokoluk, S. Keller, G. Torosyan, A. Brodyanski, J. Losch, M. Battiato, M. Rahm, R. H. Binder, H. C. Schneider, R. Beigang, and E. T. Papaioannou, “Modification of spintronic terahertz emitter performance through defect engineering,” Sci. Rep. 9, 13348 (2019).
[Crossref]

Schneider, R.

R. Schneider, M. Fix, J. Bensmann, S. Michaelis de Vasconcellos, M. Albrecht, and R. Bratschitsch, “Spintronic GdFe/Pt THz emitters,” Appl. Phys. Lett. 115, 152401 (2019).
[Crossref]

Seeds, A.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Seifert, T.

T. Seifert, S. Jaiswal, M. Sajadi, G. Jakob, S. Winnerl, M. Wolf, M. Kläui, and T. Kampfrath, “Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter,” Appl. Phys. Lett. 110, 252402 (2017).
[Crossref]

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

Seifert, T. S.

R. I. Herapath, S. M. Hornett, T. S. Seifert, G. Jakob, M. Kläui, J. Bertolotti, T. Kampfrath, and E. Hendry, “Impact of pump wavelength on terahertz emission of a cavity-enhanced spintronic trilayer,” Appl. Phys. Lett. 114, 041107 (2019).
[Crossref]

T. S. Seifert, N. M. Tran, O. Gueckstock, S. M. Rouzegar, L. Nadvornik, S. Jaiswal, G. Jakob, V. V. Temnov, M. Münzenberg, M. Wolf, M. Kläui, and T. Kampfrath, “Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20,” J. Phys. D 51, 364003 (2018).
[Crossref]

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

R. Rouzegar, L. Brandt, L. Nadvornik, D. A. Reiss, A. L. Chekhov, O. Gueckstock, C. In, M. Wolf, T. S. Seifert, P. W. Brouwer, G. Woltersdorf, and T. Kampfrath, “Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization,” arXiv 2103.11710 (2021).

Serpico, C.

M. Hudl, M. d’Aquino, M. Pancaldi, S. H. Yang, M. G. Samant, S. S. P. Parkin, H. A. Durr, C. Serpico, M. C. Hoffmann, and S. Bonetti, “Nonlinear magnetization dynamics driven by strong terahertz fields,” Phys. Rev. Lett. 123, 197204 (2019).
[Crossref]

Shah, J.

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[Crossref]

Shams, H.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Shin, S.-C.

C.-Y. You and S.-C. Shin, “Generalized analytic formulae for magneto-optical Kerr effects,” J. Appl. Phys. 84, 541–546 (1998).
[Crossref]

Sibik, J.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Simoens, F.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Singh, A.

A. Singh, A. Pashkin, S. Winnerl, M. Helm, and H. Schneider, “Gapless broadband terahertz emission from a germanium photoconductive emitter,” ACS Photon. 5, 2718–2723 (2018).
[Crossref]

Sokoluk, D.

D. M. Nenno, L. Scheuer, D. Sokoluk, S. Keller, G. Torosyan, A. Brodyanski, J. Losch, M. Battiato, M. Rahm, R. H. Binder, H. C. Schneider, R. Beigang, and E. T. Papaioannou, “Modification of spintronic terahertz emitter performance through defect engineering,” Sci. Rep. 9, 13348 (2019).
[Crossref]

Stier, A. V.

Stöhr, A.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Sun, L.

D. Yang, J. Liang, C. Zhou, L. Sun, R. Zheng, S. Luo, Y. Wu, and J. Qi, “Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure,” Adv. Opt. Mater. 4, 1944–1949 (2016).
[Crossref]

Sun, S.

Z. Feng, H. Qiu, D. Wang, C. Zhang, S. Sun, B. Jin, and W. Tan, “Spintronic terahertz emitter,” J. Appl. Phys. 129, 010901 (2021).
[Crossref]

Suzuki, T.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

Taghipour Kaffash, M.

W. Wu, S. Lendinez, M. Taghipour Kaffash, R. D. Schaller, H. Wen, and M. B. Jungfleisch, “Modification of terahertz emission spectrum using microfabricated spintronic emitters,” J. Appl. Phys. 128, 103902 (2020).
[Crossref]

Tahic, M. K.

Tan, H. H.

S. A. Baig, J. L. Boland, D. A. Damry, H. H. Tan, C. Jagadish, H. J. Joyce, and M. B. Johnston, “An ultrafast switchable terahertz polarization modulator based on III–V semiconductor nanowires,” Nano Lett. 17, 2603–2610 (2017).
[Crossref]

Tan, W.

Z. Feng, H. Qiu, D. Wang, C. Zhang, S. Sun, B. Jin, and W. Tan, “Spintronic terahertz emitter,” J. Appl. Phys. 129, 010901 (2021).
[Crossref]

Tani, M.

E. T. Papaioannou, G. Torosyan, S. Keller, L. Scheuer, M. Battiato, V. K. Mag-Usara, J. L’huillier, M. Tani, and R. Beigang, “Efficient terahertz generation using Fe/Pt spintronic emitters pumped at different wavelengths,” IEEE Trans. Magn. 54, 9100205 (2018).
[Crossref]

Y. Hirota, R. Hattori, M. Tani, and M. Hangyo, “Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna,” Opt. Express 14, 4486–4493 (2006).
[Crossref]

Taylor, Z. D.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Temnov, V. V.

T. S. Seifert, N. M. Tran, O. Gueckstock, S. M. Rouzegar, L. Nadvornik, S. Jaiswal, G. Jakob, V. V. Temnov, M. Münzenberg, M. Wolf, M. Kläui, and T. Kampfrath, “Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20,” J. Phys. D 51, 364003 (2018).
[Crossref]

Tignon, J.

K. Maussang, J. Palomo, J. Mangeney, S. S. Dhillon, and J. Tignon, “Large-area photoconductive switches as emitters of terahertz pulses with fully electrically controlled linear polarization,” Opt. Express 27, 14784–14797 (2019).
[Crossref]

J. Hawecker, T. H. Dang, E. Rongione, J. Boust, S. Collin, J.-M. George, H.-J. Drouhin, Y. Laplace, R. Grasset, J. Dong, J. Mangeney, J. Tignon, H. Jaffrès, L. Perfetti, and S. Dhillon, “Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy,” Adv. Opt. Mater., 2100412 (2021), Early View.
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Torosyan, G.

D. M. Nenno, L. Scheuer, D. Sokoluk, S. Keller, G. Torosyan, A. Brodyanski, J. Losch, M. Battiato, M. Rahm, R. H. Binder, H. C. Schneider, R. Beigang, and E. T. Papaioannou, “Modification of spintronic terahertz emitter performance through defect engineering,” Sci. Rep. 9, 13348 (2019).
[Crossref]

E. T. Papaioannou, G. Torosyan, S. Keller, L. Scheuer, M. Battiato, V. K. Mag-Usara, J. L’huillier, M. Tani, and R. Beigang, “Efficient terahertz generation using Fe/Pt spintronic emitters pumped at different wavelengths,” IEEE Trans. Magn. 54, 9100205 (2018).
[Crossref]

Tran, N. M.

T. S. Seifert, N. M. Tran, O. Gueckstock, S. M. Rouzegar, L. Nadvornik, S. Jaiswal, G. Jakob, V. V. Temnov, M. Münzenberg, M. Wolf, M. Kläui, and T. Kampfrath, “Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20,” J. Phys. D 51, 364003 (2018).
[Crossref]

Turchinovich, D.

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

Tzortzakis, S.

J. A. Fülöp, S. Tzortzakis, and T. Kampfrath, “Laser-driven strong-field terahertz sources,” Adv. Opt. Mater. 8, 1900681 (2019).
[Crossref]

Ulbrich, R. G.

T. Kampfrath, R. G. Ulbrich, F. Leuenberger, M. Münzenberg, B. Sass, and W. Felsch, “Ultrafast magneto-optical response of iron thin films,” Phys. Rev. B 65, 104429 (2002).
[Crossref]

Ventura, J.

T. J. Huisman, R. V. Mikhaylovskiy, J. D. Costa, F. Freimuth, E. Paz, J. Ventura, P. P. Freitas, S. Blugel, Y. Mokrousov, T. Rasing, and A. V. Kimel, “Femtosecond control of electric currents in metallic ferromagnetic heterostructures,” Nat. Nanotechnol. 11, 455–458 (2016).
[Crossref]

Vitiello, M. S.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Výborný, K.

L. Nádvorník, M. Borchert, L. Brandt, R. Schlitz, K. A. de Mare, K. Výborný, I. Mertig, G. Jakob, M. Kläui, S. T. B. Goennenwein, M. Wolf, G. Woltersdorf, and T. Kampfrath, “Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions,” Phys. Rev. X 11, 021030 (2021).
[Crossref]

Wallace, V. P.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Wang, D.

Z. Feng, H. Qiu, D. Wang, C. Zhang, S. Sun, B. Jin, and W. Tan, “Spintronic terahertz emitter,” J. Appl. Phys. 129, 010901 (2021).
[Crossref]

Watanabe, S.

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

Weber, S. T.

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

Weightman, P.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Wen, H.

W. Wu, S. Lendinez, M. Taghipour Kaffash, R. D. Schaller, H. Wen, and M. B. Jungfleisch, “Modification of terahertz emission spectrum using microfabricated spintronic emitters,” J. Appl. Phys. 128, 103902 (2020).
[Crossref]

Williams, G. P.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Winnerl, S.

A. Singh, A. Pashkin, S. Winnerl, M. Helm, and H. Schneider, “Gapless broadband terahertz emission from a germanium photoconductive emitter,” ACS Photon. 5, 2718–2723 (2018).
[Crossref]

T. Seifert, S. Jaiswal, M. Sajadi, G. Jakob, S. Winnerl, M. Wolf, M. Kläui, and T. Kampfrath, “Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter,” Appl. Phys. Lett. 110, 252402 (2017).
[Crossref]

H. S. M. Beck, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18, 9251–9257 (2010).
[Crossref]

Wolf, M.

L. Nádvorník, M. Borchert, L. Brandt, R. Schlitz, K. A. de Mare, K. Výborný, I. Mertig, G. Jakob, M. Kläui, S. T. B. Goennenwein, M. Wolf, G. Woltersdorf, and T. Kampfrath, “Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions,” Phys. Rev. X 11, 021030 (2021).
[Crossref]

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

T. S. Seifert, N. M. Tran, O. Gueckstock, S. M. Rouzegar, L. Nadvornik, S. Jaiswal, G. Jakob, V. V. Temnov, M. Münzenberg, M. Wolf, M. Kläui, and T. Kampfrath, “Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20,” J. Phys. D 51, 364003 (2018).
[Crossref]

T. Seifert, S. Jaiswal, M. Sajadi, G. Jakob, S. Winnerl, M. Wolf, M. Kläui, and T. Kampfrath, “Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter,” Appl. Phys. Lett. 110, 252402 (2017).
[Crossref]

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256–260 (2013).
[Crossref]

A. Rubano, L. Braun, M. Wolf, and T. Kampfrath, “Mid-infrared time-domain ellipsometry: application to Nb-doped SrTiO3,” Appl. Phys. Lett. 101, 081103 (2012).
[Crossref]

T. Kampfrath, J. Nötzold, and M. Wolf, “Sampling of broadband terahertz pulses with thick electro-optic crystals,” Appl. Phys. Lett. 90, 231113 (2007).
[Crossref]

R. Rouzegar, L. Brandt, L. Nadvornik, D. A. Reiss, A. L. Chekhov, O. Gueckstock, C. In, M. Wolf, T. S. Seifert, P. W. Brouwer, G. Woltersdorf, and T. Kampfrath, “Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization,” arXiv 2103.11710 (2021).

Woltersdorf, G.

L. Nádvorník, M. Borchert, L. Brandt, R. Schlitz, K. A. de Mare, K. Výborný, I. Mertig, G. Jakob, M. Kläui, S. T. B. Goennenwein, M. Wolf, G. Woltersdorf, and T. Kampfrath, “Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions,” Phys. Rev. X 11, 021030 (2021).
[Crossref]

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

R. Rouzegar, L. Brandt, L. Nadvornik, D. A. Reiss, A. L. Chekhov, O. Gueckstock, C. In, M. Wolf, T. S. Seifert, P. W. Brouwer, G. Woltersdorf, and T. Kampfrath, “Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization,” arXiv 2103.11710 (2021).

Wu, L.

L. Wu, A. Farid, N. J. Laurita, T. Mueller, and N. P. Armitage, “A compact broadband terahertz range quarter-wave plate,” J. Infrared, Millimeter, Terahertz Waves 41, 642–654 (2020).
[Crossref]

Wu, W.

W. Wu, S. Lendinez, M. Taghipour Kaffash, R. D. Schaller, H. Wen, and M. B. Jungfleisch, “Modification of terahertz emission spectrum using microfabricated spintronic emitters,” J. Appl. Phys. 128, 103902 (2020).
[Crossref]

Wu, Y.

Y. Wu, M. Elyasi, X. Qiu, M. Chen, Y. Liu, L. Ke, and H. Yang, “High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures,” Adv. Mater. 29, 1603031 (2017).
[Crossref]

D. Yang, J. Liang, C. Zhou, L. Sun, R. Zheng, S. Luo, Y. Wu, and J. Qi, “Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure,” Adv. Opt. Mater. 4, 1944–1949 (2016).
[Crossref]

Yang, D.

D. Yang, J. Liang, C. Zhou, L. Sun, R. Zheng, S. Luo, Y. Wu, and J. Qi, “Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure,” Adv. Opt. Mater. 4, 1944–1949 (2016).
[Crossref]

Yang, H.

Y. Wu, M. Elyasi, X. Qiu, M. Chen, Y. Liu, L. Ke, and H. Yang, “High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures,” Adv. Mater. 29, 1603031 (2017).
[Crossref]

Yang, S. H.

M. Hudl, M. d’Aquino, M. Pancaldi, S. H. Yang, M. G. Samant, S. S. P. Parkin, H. A. Durr, C. Serpico, M. C. Hoffmann, and S. Bonetti, “Nonlinear magnetization dynamics driven by strong terahertz fields,” Phys. Rev. Lett. 123, 197204 (2019).
[Crossref]

Yoshioka, K.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

You, C.-Y.

C.-Y. You and S.-C. Shin, “Generalized analytic formulae for magneto-optical Kerr effects,” J. Appl. Phys. 84, 541–546 (1998).
[Crossref]

Zbarsky, V.

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256–260 (2013).
[Crossref]

Zhang, C.

Z. Feng, H. Qiu, D. Wang, C. Zhang, S. Sun, B. Jin, and W. Tan, “Spintronic terahertz emitter,” J. Appl. Phys. 129, 010901 (2021).
[Crossref]

Zhang, X. C.

Q. Chen and X. C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[Crossref]

Zheng, R.

D. Yang, J. Liang, C. Zhou, L. Sun, R. Zheng, S. Luo, Y. Wu, and J. Qi, “Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure,” Adv. Opt. Mater. 4, 1944–1949 (2016).
[Crossref]

Zhou, C.

D. Yang, J. Liang, C. Zhou, L. Sun, R. Zheng, S. Luo, Y. Wu, and J. Qi, “Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure,” Adv. Opt. Mater. 4, 1944–1949 (2016).
[Crossref]

ACS Photon. (1)

A. Singh, A. Pashkin, S. Winnerl, M. Helm, and H. Schneider, “Gapless broadband terahertz emission from a germanium photoconductive emitter,” ACS Photon. 5, 2718–2723 (2018).
[Crossref]

Adv. Mater. (1)

Y. Wu, M. Elyasi, X. Qiu, M. Chen, Y. Liu, L. Ke, and H. Yang, “High-performance THz emitters based on ferromagnetic/nonmagnetic heterostructures,” Adv. Mater. 29, 1603031 (2017).
[Crossref]

Adv. Opt. Mater. (2)

D. Yang, J. Liang, C. Zhou, L. Sun, R. Zheng, S. Luo, Y. Wu, and J. Qi, “Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure,” Adv. Opt. Mater. 4, 1944–1949 (2016).
[Crossref]

J. A. Fülöp, S. Tzortzakis, and T. Kampfrath, “Laser-driven strong-field terahertz sources,” Adv. Opt. Mater. 8, 1900681 (2019).
[Crossref]

Appl. Phys. Lett. (8)

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[Crossref]

T. Kampfrath, J. Nötzold, and M. Wolf, “Sampling of broadband terahertz pulses with thick electro-optic crystals,” Appl. Phys. Lett. 90, 231113 (2007).
[Crossref]

R. I. Herapath, S. M. Hornett, T. S. Seifert, G. Jakob, M. Kläui, J. Bertolotti, T. Kampfrath, and E. Hendry, “Impact of pump wavelength on terahertz emission of a cavity-enhanced spintronic trilayer,” Appl. Phys. Lett. 114, 041107 (2019).
[Crossref]

N. Amer, W. C. Hurlbut, B. J. Norton, Y.-S. Lee, and T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett. 87, 221111 (2005).
[Crossref]

Q. Chen and X. C. Zhang, “Polarization modulation in optoelectronic generation and detection of terahertz beams,” Appl. Phys. Lett. 74, 3435–3437 (1999).
[Crossref]

T. Seifert, S. Jaiswal, M. Sajadi, G. Jakob, S. Winnerl, M. Wolf, M. Kläui, and T. Kampfrath, “Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter,” Appl. Phys. Lett. 110, 252402 (2017).
[Crossref]

R. Schneider, M. Fix, J. Bensmann, S. Michaelis de Vasconcellos, M. Albrecht, and R. Bratschitsch, “Spintronic GdFe/Pt THz emitters,” Appl. Phys. Lett. 115, 152401 (2019).
[Crossref]

A. Rubano, L. Braun, M. Wolf, and T. Kampfrath, “Mid-infrared time-domain ellipsometry: application to Nb-doped SrTiO3,” Appl. Phys. Lett. 101, 081103 (2012).
[Crossref]

IEEE Trans. Magn. (2)

G. B. V. Basso, A. Infortuna, and M. Pasquale, “Preisach model study of the connection between magnetic and microstructural properties of soft magnetic materials,” IEEE Trans. Magn. 31, 4000–4005 (1995).
[Crossref]

E. T. Papaioannou, G. Torosyan, S. Keller, L. Scheuer, M. Battiato, V. K. Mag-Usara, J. L’huillier, M. Tani, and R. Beigang, “Efficient terahertz generation using Fe/Pt spintronic emitters pumped at different wavelengths,” IEEE Trans. Magn. 54, 9100205 (2018).
[Crossref]

J. Appl. Phys. (4)

W. Wu, S. Lendinez, M. Taghipour Kaffash, R. D. Schaller, H. Wen, and M. B. Jungfleisch, “Modification of terahertz emission spectrum using microfabricated spintronic emitters,” J. Appl. Phys. 128, 103902 (2020).
[Crossref]

Z. Feng, H. Qiu, D. Wang, C. Zhang, S. Sun, B. Jin, and W. Tan, “Spintronic terahertz emitter,” J. Appl. Phys. 129, 010901 (2021).
[Crossref]

C.-Y. You and S.-C. Shin, “Generalized analytic formulae for magneto-optical Kerr effects,” J. Appl. Phys. 84, 541–546 (1998).
[Crossref]

D. C. Jiles, “Frequency dependence of hysteresis curves in conducting magnetic materials,” J. Appl. Phys. 76, 5849–5855 (1994).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (2)

M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared, Millimeter, Terahertz Waves 34, 1–27 (2012).
[Crossref]

L. Wu, A. Farid, N. J. Laurita, T. Mueller, and N. P. Armitage, “A compact broadband terahertz range quarter-wave plate,” J. Infrared, Millimeter, Terahertz Waves 41, 642–654 (2020).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D (2)

T. S. Seifert, N. M. Tran, O. Gueckstock, S. M. Rouzegar, L. Nadvornik, S. Jaiswal, G. Jakob, V. V. Temnov, M. Münzenberg, M. Wolf, M. Kläui, and T. Kampfrath, “Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20,” J. Phys. D 51, 364003 (2018).
[Crossref]

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. Axel Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).

Nano Lett. (1)

S. A. Baig, J. L. Boland, D. A. Damry, H. H. Tan, C. Jagadish, H. J. Joyce, and M. B. Johnston, “An ultrafast switchable terahertz polarization modulator based on III–V semiconductor nanowires,” Nano Lett. 17, 2603–2610 (2017).
[Crossref]

Nat. Commun. (1)

T. S. Seifert, S. Jaiswal, J. Barker, S. T. Weber, I. Razdolski, J. Cramer, O. Gueckstock, S. F. Maehrlein, L. Nadvornik, S. Watanabe, C. Ciccarelli, A. Melnikov, G. Jakob, M. Munzenberg, S. T. B. Goennenwein, G. Woltersdorf, B. Rethfeld, P. W. Brouwer, M. Wolf, M. Klaui, and T. Kampfrath, “Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy,” Nat. Commun. 9, 2899 (2018).
[Crossref]

Nat. Nanotechnol. (2)

T. J. Huisman, R. V. Mikhaylovskiy, J. D. Costa, F. Freimuth, E. Paz, J. Ventura, P. P. Freitas, S. Blugel, Y. Mokrousov, T. Rasing, and A. V. Kimel, “Femtosecond control of electric currents in metallic ferromagnetic heterostructures,” Nat. Nanotechnol. 11, 455–458 (2016).
[Crossref]

T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Munzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” Nat. Nanotechnol. 8, 256–260 (2013).
[Crossref]

Nat. Photonics (3)

T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, “Efficient metallic spintronic emitters of ultrabroadband terahertz radiation,” Nat. Photonics 10, 483–488 (2016).
[Crossref]

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7, 724–731 (2013).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Opt. Express (4)

Phys. Rev. (1)

A. S. Barker, “Infrared lattice vibrations and dielectric dispersion in corundum,” Phys. Rev. 132, 1474–1481 (1963).
[Crossref]

Phys. Rev. B (1)

T. Kampfrath, R. G. Ulbrich, F. Leuenberger, M. Münzenberg, B. Sass, and W. Felsch, “Ultrafast magneto-optical response of iron thin films,” Phys. Rev. B 65, 104429 (2002).
[Crossref]

Phys. Rev. Lett. (1)

M. Hudl, M. d’Aquino, M. Pancaldi, S. H. Yang, M. G. Samant, S. S. P. Parkin, H. A. Durr, C. Serpico, M. C. Hoffmann, and S. Bonetti, “Nonlinear magnetization dynamics driven by strong terahertz fields,” Phys. Rev. Lett. 123, 197204 (2019).
[Crossref]

Phys. Rev. X (1)

L. Nádvorník, M. Borchert, L. Brandt, R. Schlitz, K. A. de Mare, K. Výborný, I. Mertig, G. Jakob, M. Kläui, S. T. B. Goennenwein, M. Wolf, G. Woltersdorf, and T. Kampfrath, “Broadband terahertz probes of anisotropic magnetoresistance disentangle extrinsic and intrinsic contributions,” Phys. Rev. X 11, 021030 (2021).
[Crossref]

Sci. Rep. (1)

D. M. Nenno, L. Scheuer, D. Sokoluk, S. Keller, G. Torosyan, A. Brodyanski, J. Losch, M. Battiato, M. Rahm, R. H. Binder, H. C. Schneider, R. Beigang, and E. T. Papaioannou, “Modification of spintronic terahertz emitter performance through defect engineering,” Sci. Rep. 9, 13348 (2019).
[Crossref]

Other (4)

S. L. Dexheimer, Terahertz Spectroscopy: Principles and Applications (CRC Press, 2017).

R. Rouzegar, L. Brandt, L. Nadvornik, D. A. Reiss, A. L. Chekhov, O. Gueckstock, C. In, M. Wolf, T. S. Seifert, P. W. Brouwer, G. Woltersdorf, and T. Kampfrath, “Laser-induced terahertz spin transport in magnetic nanostructures arises from the same force as ultrafast demagnetization,” arXiv 2103.11710 (2021).

J. Hawecker, T. H. Dang, E. Rongione, J. Boust, S. Collin, J.-M. George, H.-J. Drouhin, Y. Laplace, R. Grasset, J. Dong, J. Mangeney, J. Tignon, H. Jaffrès, L. Perfetti, and S. Dhillon, “Spin injection efficiency at metallic interfaces probed by THz emission spectroscopy,” Adv. Opt. Mater., 2100412 (2021), Early View.
[Crossref]

O. Gueckstock, L. Nádvorník, T. S. Seifert, M. Borchert, G. Jakob, G. Schmidt, G. Woltersdorf, M. Kläui, M. Wolf, and T. Kampfrath, “Modulating the polarization of broadband terahertz pulses from a spintronic emitter at rates up to 10 kHz [Data set],” Zenodo (2021), https://zenodo.org/record/5017616 .

Data availability

Data shown in the figures are available at [43]. Other data underlying the results presented in this paper may be obtained from the authors upon reasonable request.

43. O. Gueckstock, L. Nádvorník, T. S. Seifert, M. Borchert, G. Jakob, G. Schmidt, G. Woltersdorf, M. Kläui, M. Wolf, and T. Kampfrath, “Modulating the polarization of broadband terahertz pulses from a spintronic emitter at rates up to 10 kHz [Data set],” Zenodo (2021), https://zenodo.org/record/5017616.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Polarization modulation of THz pulses. (a) In a spintronic THz emitter (STE), an incident femtosecond laser pulse drives spin transport from a ferromagnetic (F) into an adjacent nonmagnetic (N) layer. By the inverse spin Hall effect, the spin current ${j_{\rm s}}$ is converted into a transverse charge current ${j_{\rm c}}$ that emits THz radiation. The resulting THz field ${\boldsymbol E}$ is linearly polarized and perpendicular to the magnetization ${\boldsymbol M}$ of the F layer. We modulate the direction of ${\boldsymbol M}$ and, thus, $\boldsymbol E$ by an external in-plane magnetic field ${{\boldsymbol B}_{{\rm ext}}}$. The direction of ${\boldsymbol M}$ is monitored by means of the magneto-optic Kerr effect (MOKE). (b) In polarity-modulation (PM) mode, ${{\boldsymbol B}_{{\rm ext}}} = {{\boldsymbol B}_{{\rm AC}}}$ is a harmonic AC field ${{\boldsymbol B}_{{\rm AC}}}(t) = {{\boldsymbol u}_y}{B_{{\rm AC}}}(t)$ with ${B_{{\rm AC}}}(t) = {B_{{\rm AC}0}}\cos ({2\pi {f_{{\rm AC}}}t})$ from an electromagnet, thereby alternating the ${\boldsymbol M}$ direction between ${\pm}{{\boldsymbol u}_y}$. (c) In the more general direction-modulation (DM) mode, ${{\boldsymbol B}_{{\rm AC}}}(t)$ is superimposed by a perpendicular DC magnetic field ${{\boldsymbol B}_{{\rm DC}}} = {B_{{\rm DC}}}{{\boldsymbol u}_x}$ from a permanent magnet. The angle $\theta (t)$ of the resulting ${{\boldsymbol B}_{{\rm ext}}} = {{\boldsymbol B}_{{\rm AC}}} + {{\boldsymbol B}_{{\rm DC}}}$ and, thus, ${\boldsymbol M}$ oscillates continuously between values ${\pm}{\theta _0}$.
Fig. 2.
Fig. 2. Raw data and modulation contrast. (a) Typical THz signal waveforms ${S_y}({\tau ,{\boldsymbol M}})$ from the spintronic THz emitter for opposite magnetizations ${\boldsymbol M} = \pm {{\boldsymbol M}_0}$ measured with a 1 mm thick ZnTe (110) electro-optic crystal. For the modulation experiments, we measure the THz signal ${S_j}(t) = {S_j}({{\tau _0},{\boldsymbol M}(t)})$ (with $j = x$ or $y$) at the delay ${\tau _0}$ of the maximum signal (red arrow) versus real time $t$. (b) Amplitude spectra $| {{{\tilde S}_y}({\nu ,{\boldsymbol M}})} |$ of THz signals ${S_y}({\tau ,{\boldsymbol M}})$ from the STE for ${\boldsymbol M} = \pm {{\boldsymbol M}_0}$ measured with a broadband 10 µm thick ZnTe (110) electro-optic crystal in dry air atmosphere. The gray curve shows the modulus $| {\tilde Z(\nu)} |$ of the calculated impedance of the STE including the sapphire substrate. (c) Modulation contrast of the STE versus frequency up to 30 THz.
Fig. 3.
Fig. 3. Modulation of the THz-field polarity. (a) External magnetic field ${B_{{\rm ext}}}(t){{\boldsymbol u}_x}$, MOKE signal ${S_{{\rm MO}}}(t) \propto {M_y}(t)$ and THz electro-optic signal ${S_x}(t) = {S_x}({{\tau _0},{\boldsymbol M}(t)}) \propto {M_y}(t)$ as a function of real time $t$ for a modulation frequency of ${f_{{\rm AC}}} = 2\;{\rm kHz} $ of ${B_{{\rm ext},y}}$. Dashed lines are model calculations. The MOKE signal is inverted for clarity, and its DC component was removed. (b) THz signal amplitude ${S_x}(t)$ versus the external AC magnetic field ${B_{{\rm ext},y}}(t)$ for the data of the previous panel. (c–d) Same as panels (a–b), but for a modulation frequency ${f_{{\rm AC}}}$ of 5 kHz, (e–f) 8 kHz, and (g–h) 10 kHz, respectively.
Fig. 4.
Fig. 4. Modulation of the THz polarization direction. (a) Schematic of expected THz signal amplitudes ${S_x} \propto {E_x} \propto - {M_y}$ and ${S_y} \propto {E_y} \propto {M_x}$ versus time, when the sample magnetization oscillates between angles ${\pm}{\theta _0}$. To determine the instantaneous angle $\theta$, we measure the $x$ and $y$ amplitudes of the THz electric field. (b) Measured (blue) and modeled (orange) THz signal components ${S_x}$ and ${S_y}$ at a modulation frequency ${f_{{\rm AC}}} = 1\;{\rm kHz} $ and amplitude ${B_{{\rm AC}0}} = 5.5\;{\rm mT}$. The amplitude ratio $| {{B_{{\rm AC}0}}/{B_{{\rm DC}}}} | = \tan {\theta _0}$ is such that $2{\theta _0} = 106^\circ$. (c) Same setting as in (b) but for ${B_{{\rm AC}0}} = 8\;{\rm mT}$, yielding $2{\theta _0} = 126^\circ$.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S x E x M y , S y E y M x .
M = M s a t B e x t 0 .
tan θ ( t ) = B A C ( t ) B D C = B A C 0 B D C cos ( 2 π f A C t ) .
S M O = a M M y .
C ( ν ) = 1 | 1 + R ~ ( ν ) | 1 + | R ~ ( ν ) |