Abstract

Conventional chiral metalenses based on helicoidal structures suffer from low energy efficiency and fixed chirality due to the extremely low conversion efficiency of cross-circular polarization in helicity-matched structures. Here, we report on high-efficiency and chirality-reversible metalens imaging using nested dual helical surfaces. The high-efficiency chiral metalenses were implemented by splitting one conventional helical surface into two nested ones with independently controllable parameters. When the relative orientations of the two nested helical surfaces were twisted at certain angles, the conversion efficiency of cross-circular polarization (i.e., the effective polarization component in imaging) could be significantly enhanced by one order of magnitude (from 4.5% to 45%) due to constructive interference of surface plasmonic polaritons between the two nested helical surfaces with a single pitch. Furthermore, the chirality of the metalens could be reversed by manipulating the twist angle even though the helicity of the surface is unchanged. Experimental verifications were performed using two-photon laser direct writing, and chiral imaging in the infrared wavelength range of 3–5 µm was successfully realized via lock-in thermography. This demonstration of the high-efficiency and chirality-reversible metalens provides what we believe is a new method to enhance chiral imaging efficiencies and the design possibilities for practical applications.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Over the past several years, optical metasurfaces have received considerable attention thanks to their flexible design functionalities and excellent performance. Based on artificial two-dimensional (2D) antennas arranged in subwavelength scales on the interface, metasurfaces allow for unprecedented control of light characteristics, thereby realizing a variety of optical functions within the micrometer/nanometer scale in many application fields, such as imaging [15], holograms [611], vortex beam generations [7,1216], structural colors [1720], and biosensing [21,22], in which different physical mechanisms are employed, including surface plasmonic polaritons or localized surface plasmons (LSP) [1,6,16,21,23], Mie resonances [24], Fano resonances [25,26], and the geometric phase [also referred to as the Pancharatnam–Berry (P–B) phase] [7,10,16].

Chiral metasurfaces are a special type of metasurface that produce different light responses under different polarization states (especially circular polarizations). Different categories of chiral metasurfaces, including 3D structures, 2D planar structures, and multilayer structures have been proposed and demonstrated in recent years. In 2009, Gansel et al. proposed and demonstrated a 3D helical nanowire circular polarizer in the IR range [27,28]; they achieved a circular polarization dichroism (CD) as high as 80% (${\rm{CD}} = {{\rm{T}}_{\rm{RCP}}} - {{\rm{T}}_{\rm{LCP}}}$, with ${{\rm{T}}_{\rm{RCP}}}$ and ${{\rm{T}}_{\rm{LCP}}}$ being the transmission of right- and left-handed polarization, respectively). Different types of helical-nanowire-based chiral structures (involving different helical surfaces or even more complicated structures) also have been proposed to enhance the circular dichroism at different wavelength ranges [2934]. 2D planar structures have also received much attention, owing to their advantages of easy integration and relatively simple fabrication [3540]. However, the chirality of planar structures is typically weak and limited to narrow bandwidths when compared with that of their 3D counterparts. To enhance the chirality of 2D structures, multilayer structures have been proposed to balance performance and fabrication difficulties [4144]. The P-B phase was further introduced into the chiral structures to facilitate chiral light-field manipulation in which the space-distributed phase across the metasurface was generated via a rotated “chiral unit” alongside the different amplitude responses of the light field (i.e., CD) to incidences of different circular polarizations. Yang et al. theoretically demonstrated chiral anomalous refraction using rotated helical nanowires, in which a linear P-B phase was generated in the orthogonal (or cross) polarization component with respect to the incident circular polarization [45]. However, it was found that the energy efficiency was very low, and the cross-polarization component with a P-B phase was ${\sim}{{4}}\%$ only in the total transmission field. Plasmonic stepped nanoapertures have also been proposed to generate chiral holograms based on the P-B phase of the unit cell orientation. However, the cross-polarization component of transmission was ${\sim}{{8}}\%$ only [46]. Very recently, He et al. proposed and demonstrated a chiral metalens featuring rotated helical surface arrays. They achieved selective focusing for different circular polarization incidences with high circular dichroism [47]. However, a low energy efficiency was also observed in this structure, and only ${\sim}{{4}}\%$ of the incident circularly polarized light could be effectively focused in the transmitted field. All these “chiral unit” based functional devices are known to suffer from low energy efficiency in the cross-polarization component featuring P-B phase modulation, whereas the component with no P-B phase modulation typically exhibits a high energy efficiency. This mismatch between the energy efficiency and effective phase modulation hinders the application of chiral metasurfaces in manipulating light field [29,48]. Moreover, the chirality of all these structures is solely determined and limited by the helicity of the “chiral unit” structure, which we believe cannot be manipulated.

Numerous attempts have been made to improve the conversion efficiency of cross-circular polarization with phase modulation. Ma et al. proposed and numerically demonstrated a Z-shaped planar chiral all-dielectric metasurface that exhibited a very large circular dichroism and high cross-circular-polarization conversion efficiency for circularly polarized light at a single wavelength of 1655 nm; with this, chiral holography [38] was theoretically achieved. A novel hybrid helix structure in which a right-handed helical wire was cascaded with a left-handed one (three pitches in height with an aspect ratio of 4.3) along the light-propagating direction was also proposed to improve cross-polarization conversion [49]. Based on the cascaded structure, a high-efficiency vortex beam generation was realized in the microwave waveband; for this, a helical wire with a very high aspect ratio of 16.2 (8 pitches in height) was employed [50]. In 2018, Xu et al. proposed triple-layer twisted split-ring resonators and realized independent control of the phase, amplitude, and polarization in the frequency range of 7–10 GHz [43]. Other different nanostructures have also been proposed to construct chiral metasurfaces. Different from using the chiral units directly (as described above), the chirality of these metasurfaces stems from the asymmetric layout of the symmetric (nonchiral) units [51,52], which often feature two sets of nanostructures with interleaved distributions to manipulate the left-circular polarized (LCP) and right-circular polarized (RCP) incidences separately and to guide light with different polarizations in different directions via an off-axis design [15,5153] or varied focal-plane settings [54]. However, these metasurfaces featuring multiplexed sets of nanostructures exhibit no circular dichroism, owing to the use of nonchiral units.

 figure: Fig. 1.

Fig. 1. Schematic of the proposed chiral metalens. (a) Overview of the chiral metalens formed from arrays of unit cells composed of nested dual-helical surfaces (NDHSs). (b) Enlarged structure showing arrays of NDHSs with a period of $P$; the azimuth angle of each NDHS varies across the metalens. (c) Perspective view of the NDHS unit cell with inner and outer radii ${{\rm{R}}_1}$ and ${{\rm{R}}_2}$, heights ${{\rm{H}}_1}$ and ${{\rm{H}}_2}$, and gold (Au) film of thickness $d$. (d) Top view of the NDHS unit cell, where $\theta$ and $\phi$ denote the azimuthal angle for the inner and outer helical surfaces, respectively. (e) Typical functions of the chiral metalens. Transmission (under the LCP incidence) or reflection (under the RCP incidence) can be specified using a left-handed NDHS metalens with a positive twist angle of $\Psi$.

Download Full Size | PPT Slide | PDF

In this paper, we report a high-efficiency and chirality-reversible chiral metalens, developed using nested dual helical surfaces. The high-efficiency chiral metalenses were implemented by splitting a conventional helical surface into two nested helical surfaces with independently controllable parameters. It was found that the conversion efficiency of cross-circular polarization can be significantly enhanced by one order of magnitude when the relative orientation of the two nested helical surfaces (single pitch with an aspect ratio of 0.81) is twisted to an optimized angle, and the chirality of the metalens can also be manipulated by the twist angle, even though the helicity of the surface remains unchanged. Experimental verifications were performed using two-photon laser direct writing, and chiral imaging in the infrared wavelength range of 3–5 µm was successfully obtained based on lock-in thermography. The demonstration of highly efficient and chirality-manipulable chiral metalenses provides what we believe is a new approach to enhance imaging energy efficiencies and design flexibility for practical applications.

2. THEORY AND STRUCTURE DESIGN

Figure 1(a) shows a schematic of the proposed chiral metalens. The metalens is formed from arrays of unit cells composed of nested dual-helical surfaces (NDHS) with a period of $P$, as shown in Fig. 1(b). Each NDHS is formed by two poly (methyl methacrylate, PMMA) cylinders with helical internal and external surfaces (inner radius ${R_1}$ and height ${H_1}$, outer radius ${R_2}$ and height ${H_2}$) covered by a gold (Au) film of uniform thickness $d$, as shown in Fig. 1(c). In consideration of the physical symmetry, the helicity of all helical surfaces in this study was assumed to be left-handed unless otherwise specified. The azimuthal angles (i.e., the starting point of the helical surface on the substrate) of the inner and outer helical surfaces were $\theta$ and $\phi$, respectively, in polar coordinates $\vec r$ [Fig. 1(d), a top view of Fig. 1(c)]. The twist angle between the inner and outer helical surfaces in each NDHS was Ψ (defined as $\phi - \theta$); this was assumed constant for all NDHSs in the structure, to reduce the computational complexity. Then, the NDHSs were arranged into an array to form a metalens in which each NDHS was rotated about the cylindrical axis such that a P–B phase distribution was introduced. The major function of the proposed chiral metalens (ChiML) is its high-performance circular-polarization selective focusing and circular-polarization reversal of transmission light. Figure 1(e) shows a typical case for LCP light impinging onto a left-handed NDHS metalens with a positive twist angle of $\Psi$, from which high-efficiency focusing can be realized in the cross-circular polarized transmission (i.e., RCP). In contrast, when RCP light impinges on the same metalens (i.e., the helicity of the surface opposes the circular polarization state), focusing is realized in the reflection with RCP state. It should be noted that the definitions of LCP and RCP are anticlockwise and clockwise, respectively, with respect to the direction of light propagation, which is the Z axis in transmission and reflection.

 figure: Fig. 2.

Fig. 2. Circular polarization components of transmission field. (a) Transmittivity (${{\rm{T}}_{\rm{LR}\Psi}}$) and phase shift (${\varphi _{\rm{LR}\Psi}}$) of the cross-polarized components in the transmission field, expressed as a function of $\theta$ at a wavelength of 4 µm for $\Psi = {{0}}$ and 75°, respectively. (b) Transmittivity (${{\rm{T}}_{\rm{LL}\Psi}}$) and phase shift (${\varphi _{\rm{LL}\Psi}}$) of the co-polarized components in the transmission field, expressed as a function of $\theta$ at a wavelength of 4 µm for $\Psi = {{0}}$ and 75°, respectively. (c) Diagram of a CMHS (i.e., a NDHS with $\Psi = {{0}}$) and a 75° NDHS. (d) Transmission spectrum of 75° NDHS array under LCP and RCP incidences.

Download Full Size | PPT Slide | PDF

The performance of the proposed ChiML was characterized using the finite-difference time-domain method (FDTD) (Lumerical Finite Difference IDE, Ansys Canada Ltd., Vancouver, BC, Canada). The dielectric gold (Au) properties reported by Palik were adopted [55]. The two orthogonal circular-polarization states can be described by the Jones matrix ${\vec \lambda _{{\rm{LCP}}}} = \frac{1}{{\sqrt 2}}(1,i)$ and ${\vec \lambda _{{\rm{RCP}}}} = \frac{1}{{\sqrt 2}}(1, - i)$. Figure 2(a) shows the co-polarized (i.e., an identical polarization state to that of the incidence for transmittivity ${{\rm{T}}_{\rm{LL}}}$ and phase shift ${\varphi _{\rm{LL}}}$) and cross-polarized (i.e., an opposite circular polarization to that of the incidence for transmittivity ${{\rm{T}}_{\rm{LR}}}$ and phase shift ${\varphi _{\rm{LR}}}$) components in the transmission light field as a function of azimuthal angle $\theta$ (fixed $\Psi$) at a wavelength of 4 µm with and without the twist angle $\Psi$ [i.e., a conventional monolithic helical surface (CMHS), denoted by subscript “0”) in an NDHS, respectively. In the calculation, the following parameters were used: ${{\rm{R}}_1} = {0.49}\;{{\unicode{x00B5}{\rm m}}}$, ${{\rm{R}}_2} = {0.98}\;{{\unicode{x00B5}{\rm m}}}$, height ${{\rm{H}}_1} = {{\rm{H}}_2} = {1.4}\;{{\unicode{x00B5}{\rm m}}}$, ${\rm{d}} = {0.18}\;{{\unicode{x00B5}{\rm m}}}$, ${\rm{P}} = {1.96}\;{{\unicode{x00B5}{\rm m}}}$, and $\Psi = {{75}}^\circ$. These parameters were optimized via a Bayesian optimization algorithm using Python (v. 3.6, Python Software Foundation, Wilmington, DE, USA). The detailed calculation process is presented in Supplement 1, Section 1. The transmission field components for either LCP or RCP incidence can be calculated by

$$\left[{\begin{array}{*{20}{c}}{{T_{\rm{LR}}}}&{{T_{\rm{RR}}}}\\{{T_{\rm{LL}}}}&{{T_{\rm{RL}}}}\end{array}} \right] = \frac{1}{2}\left[{\begin{array}{*{20}{c}}{({T_{\rm{xx}}} - {T_{\rm{yy}}}) + i({T_{\rm{xy}}} + {T_{\rm{yx}}})}&{({T_{\rm{xx}}} + {T_{\rm{yy}}}) + i({T_{\rm{xy}}} - {T_{\rm{yx}}})}\\{({T_{\rm{xx}}} + {T_{\rm{yy}}}) - i({T_{\rm{xy}}} - {T_{\rm{yx}}})}&{({T_{\rm{xx}}} - {T_{\rm{yy}}}) - i({T_{\rm{xy}}} + {T_{\rm{yx}}})}\end{array}} \right],$$
where ${{\rm{T}}_{\rm{LL}}}$, ${{\rm{T}}_{\rm{LR}}}$, and ${{\rm{T}}_{\rm{RR}}}$, ${{\rm{T}}_{\rm{RL}}}$ represent the polarization conversions in the transmission field for LCP and RCP incidence, respectively. ${{\rm{T}}_{\rm{xx}}}$, ${{\rm{T}}_{\rm{xy}}}$, ${{\rm{T}}_{\rm{yx}}},$ and ${{\rm{T}}_{\rm{yy}}}$ were obtained from the simulation results for the FDTD calculation.

It can be seen from Figs. 2(a) and 2(b) that the phase of the cross-polarization component (${{\rm{T}}_{\rm{LR}}}$) exhibits an excellent linear relationship to the rotating azimuthal angle, with full-phase modulation capabilities (${-}\pi - \pi$). However, the energy efficiency (i.e., ${{\rm{T}}_{\rm{LR}}}$) shows a significant difference between the NDHS for $\Psi = {{75}}^\circ$ (i.e., 75°-NDHS) and $\Psi = {{0}}^\circ$ (i.e., CMHS), as shown in Fig. 2(c). The energy efficiency was enhanced (yellow arrow) by one order of magnitude [from ${\sim}{4.5}\%$ under a conventional helical surface (${{\rm{T}}_{\rm LR0}}$) to ${\sim}{{45}}\%$ under a 75°-NDHS helical one (${{\rm{T}}_{\rm LR}75}$)]. Figure 2(b) shows the co-polarized components (${{\rm{T}}_{\rm{LL}}}$ and ${\varphi _{\rm{LL}}}$) in the transmission field under LCP incidence. The co-polarized component in the transmission exhibits no phase modulation under rotations of the NDHS unit; hence, this component cannot be employed in light-field manipulation. This inactive co-polarized component is significantly suppressed [from ${\sim}{{75}}\%$ in the CMHS (${{\rm{T}}_{\rm LL0}}$) to ${\sim}{{20}}\%$ (yellow arrow) in the 75°-NDHS (${{\rm{T}}_{\rm LL75}}$)]. The enhancement of the cross-polarized component (with excellent phase modulation) and the suppression of the co-polarized component (with no phase modulation) is of great importance in realizing high energy efficiency and reducing the background of direct light transmission. The structure also exhibits broadband circular dichroism, in which a large transmission difference between the LCP and RCP incidences can be observed over a broad spectral range (3.5–6 µm), as shown in Fig. 2(d).

Figure 3 depicts the dependences of the cross-polarization conversion and circular dichroism (during transmission) upon the azimuthal angles of the inner and outer helical surfaces of the NDHS used in Fig. 2. The NDHS is a left-handed helical surface with twist angles of $\theta$ and $\phi$ for the inner and outer surfaces, respectively. The working wavelength was set to 4 µm. Figures 3(a) and 3(b) show the transmission map and the corresponding phase of the cross-polarized component (i.e., RCP component) at different $\theta$ and $\phi$ for the LCP incidence. As shown in Fig. 3(a), two enhanced bands [i.e., $\phi - \theta = C$, $C \in (60^\circ ,100^\circ)$ and $(- 160^\circ , - 100^\circ)$] of cross-polarization conversion (${{\rm{T}}_{\rm{LR}}}$) can be observed along Line 1 (i.e., $\phi - \theta = 60^\circ$) and Line 2 (i.e., $\phi - \theta = - 120^\circ$), whereas the co-polarized component (${{\rm{T}}_{\rm{LL}}}$) of transmission was well suppressed, as shown in Supplement 1, Section 2. The corresponding phase shifts of the cross-polarized components indicate the full-phase control (${{0 - 2}}\pi$) capabilities and excellent linear relations along $\phi - \theta = C$ (where $C$ is an arbitrary constant), as shown in Fig. 3(b). In contrast, Line 3 in Fig. 3(a) represents the case of CMHS (i.e., $\phi - \theta = 0^\circ$), in which a very low efficiency ($\sim 5\%$) was obtained for cross-polarization conversion, although its phase shift was linear. Figure 3(c) shows the detailed line scan of Figs. 3(a) and 3(b) along Lines 1, 2, and 3, respectively, where ${{\rm{T}}_{\rm{LR\Psi}}}$ and ${\varphi _{\rm{LR\Psi}}}$ ($\Psi = 60^\circ$, ${-}120^\circ$, or 0°) represent the transmission and corresponding phase, respectively.

 figure: Fig. 3.

Fig. 3. Dependences of the transmission cross-polarization conversion and circular dichroism upon the azimuthal angle of the inner and outer helical surfaces in NDHS. (a) Transmission and (b) phase maps for the cross-polarized components at different $\theta$ and $\phi$ for the LCP incidences. (c) Line scans along Lines 1, 2, and 3 in (a) and (b) taken for $\Psi = {{60}}^\circ$, ${-}{{120}}^\circ$, and 0°, respectively. (d) Transmission and (e) phase maps for the cross-polarized components at different $\theta$ and $\phi$ for the RCP incidences. (f) Line scans along Lines 1, 2, and 3 in (d) and (e) taken at $\Psi = - {{60}}^\circ$, 120°, and 0°, respectively. Map of the total transmissions at different $\theta$ and $\phi$ for (g) the LCP and (h) RCP incidences. (i) Line scans along Lines 1, 2, and 3 in (g) and (h), taken at $\Psi = {{60}}^\circ$, 0°, or ${-}{{60}}^\circ$.

Download Full Size | PPT Slide | PDF

Similarly, Figs. 3(d) and 3(e) show the performance of the cross-polarization conversion under RCP incidence. Two bands of cross-polarization conversion (${{\rm{T}}_{\rm{RL}}}$) are also visible along Line 1 (i.e., $\phi - \theta = - 60^\circ$) and Line 2 (i.e., $\phi - \theta = 120^\circ$) for the opposite twist angle Ψ to the bands in Figs. 3(a) and 3(b); however, the helicity of the surface is mismatched with the circular polarization state of the incident light. Thus, a highly efficient cross-polarization conversion can always be achieved with the introduction of a twist angle Ψ, regardless of the relative helicity between the surface and incident circular-polarization state. In contrast, the cross-polarization conversion is only ${\sim}{{5}}\%$ when the helicity of the surface and incident circular polarization state are identical, and it drops as low as ${\sim}{1.5}\%$ when the helicity of the surface and incident circular polarization are opposite in the CMHS case, as shown by Line 3 in Fig. 3(a) or Fig. 3(d). This finding reveals the advantages of efficient, flexible design with the introduction of a twist angle in a NDHS structure. It also eliminates the need for the helicity of the surface and the incident polarization in CMHS structures to match. Figure 3(e) shows the corresponding phase map for Fig. 3(d). The details of Lines 1, 2, and 3 in Figs. 3(d) and 3(e) are line-scanned in Fig. 3(f), where a linear phase shift at different angles is also observed, but with opposite slopes to those of ${\varphi _{\rm{LR}}}$ in Fig. 3(c).

 figure: Fig. 4.

Fig. 4. Simulated transmission optical field of a designed IE-ChiML under LCP and RCP incidences. (a)–(b) Focusing behavior of the Pos-IE-ChiML under LCP and RCP incidences, respectively. (c)–(d) Focal depth of the Pos-IE-ChiML at different incident wavelengths under LCP and RCP incidences, respectively. (e)–(f) Focusing behavior of the Neg-IE-ChiML under LCP and RCP incidences, respectively. (g)–(h) Focusing behavior of the C-ChiML under LCP and RCP incidences, respectively. (i) Line scans along X in (a), (b), (e), (f), (g), and (h).

Download Full Size | PPT Slide | PDF

Figures 3(g) and 3(h) shows the total transmission for LCP and RCP incidence, respectively. The detailed line-scan results are shown in Fig. 3(i) along Lines 1, 2, and 3 in Figs. 3(g) and 3(h), which represent $\phi - \theta = 60^\circ$, 0°, ${-}60^\circ$, respectively. The NDHS also shows excellent circular dichroism, in which the circular dichroism at $\Psi = 60^\circ$ (${{\rm{CD}}_{60}}$) is similar to that at $\Psi = 0^\circ$(i.e., CMHS). In particular, the chirality of the structure is seen to be reversed for the RCP incidence when $\Psi = - 60^\circ$ (${{\rm{CD}}_{- 60}}$) for left-handed surface helicity; hence, the inherent structural chirality (i.e., that induced by surface helicity) can be suppressed or modified by manipulating the twist angle in NDHS.

The significant cross-polarization enhancement in the transmission obtained by the introduction of a twist angle between the inner helical surface (IHS) and the outer helical surface (OHS) in Fig. 3 can be understood and verified by an analytical calculation in which constructive interference between electric fields of the localized surface plasmons of IHS and OHS is confirmed. The interaction between IHS and OHS under LCP incidence can be expressed in terms of the transmitted electric field of an NDHS:

$$\begin{split}&{{\rm{E}}_{{\rm{LR}}}} \propto {t_{{\rm{1LR}}}}{E_i}{e^{i{\Phi _1}}}{ + }{t_{{\rm{2LR}}}}{E_i}{e^{i({\Phi _2} + 2\Psi)}}\\&{{\rm{E}}_{{\rm{LL}}}} \propto {t_{{\rm{3LL}}}}{E_i}{e^{i{\Phi _3}}}{ + }{t_{{\rm{4LL}}}}{E_i}{e^{i({\Phi _4} + 2\Psi)}}\end{split},$$
where ELR and ELL are the RCP (i.e., cross-polarization) and LCP (i.e., co-polarization) components in the transmitted electric field under LCP incidence. t1LR, t2LR and t3LL, t4LL are the transmission the coefficients of the cross-polarization and co-polarization transmission components of the IHS and OHS, respectively. ${\Phi _1}$, ${\Phi _2}$, ${\Phi _3}$, and ${\Phi _4}$ are the corresponding phase shifts of the cross-polarization and co-polarization components, respectively. $\Psi$ is the twist angle between the IHS and OHS. To maximize the cross-polarization component, the constructive interference condition between the IHS and OHS must be satisfied; that is,
$${\Phi _1} - {\Phi _2} - 2\psi = 2n\pi .$$

With the design parameters presented above, the value of ${\Phi _1} - {\Phi _2}$ was calculated numerically (using FDTD solutions) as ${\sim}{{120}}^\circ$ [with a range of (100°, 140°) when NDHS was rotated]. Therefore, $\Psi$ was ${\sim} {{60}}^\circ$ when $n = 0$, consistent with Line 1 in Fig. 3(a), and $\Psi$ was ${\sim} - \!{{120}}^\circ$ when $n = 1$, consistent with Line 2 in Fig. 3(a). The physical origin of the strong constructive IHS–OHS interference also can be understood via the enhanced localized surface plasmon (LSP) and clearly confirmed by the electric field distribution at different twist angles $\Psi$, as shown in Fig. S3 (see Supplement 1, Section 3). The enhancement of the cross-polarization conversion in the case of a mismatch between the surface helicity and incident circular polarization state [as shown in Figs. 3(d) and 3(e)] can also be well explained by the theory of constructive interference between IHS and OHS, which is described in detail in Supplement 1, Section 4.

Based on the aforementioned physical behaviors of the NDHS structure, a high-efficiency interference-enhanced chiral metalens (IE-ChiML) can be constructed using NDHS with different optimized twist angles of ${{\pm 75}}^\circ$ [within the enhanced transmission bands in Figs. 3(a) and 3(d)]. The phase distribution of the metalens can be obtained as

$$\Phi (x,y) = \Phi (0,0) + \frac{{2\pi}}{\lambda}\left(f - \sqrt {{x^2} + {y^2} + {f^2}}\right),$$
where the focal length $f = {{20}}\;{{\unicode{x00B5}{\rm m}}}$ was set such that the numerical aperture (NA) of the metalens was 0.88 (a total of ${{37}} \times {{37}}$ NDHS units with a period of 1.96 µm were assumed for the simulation design); the design wavelength $\lambda$ was set at 4 µm, and (x, y) denotes the center coordinates of each NDHS.

Figures 4(a) and 4(b) show the simulated transmission optical field for the designed focal plane at ${\rm{Z}} = {{20}}\;{{\unicode{x00B5}{\rm m}}}$ in the XY plane for IE-ChiML [which consists of NDHS with a positive twist angle of $\Psi = {{75}}^\circ$ (Pos-IE-ChiML)] under LCP and RCP incidences of wavelength 4 µm, respectively. A clear focus is observed under an LCP incidence, whereas the optical field is almost completely blocked under an RCP one. Figures 4(c) and 4(d) show the focal depth of the IE-ChiML at different incident wavelengths under LCP and RCP incidences, respectively. The dichroism focusing and the focal length’s dependence upon the incident wavelength can be clearly seen in Figs. 4(c) and 4(d). Figures 4(e) and 4(f) show the transmission optical field of a IE-ChiML, which consists of NDHS with a negative twist angle $\Psi = - {{75}}^\circ$ (Neg-IE-ChiML) [all other parameters are identical to those in Figs. 4(a) and 4(b)]. It is clearly seen that a circular dichroism opposite to that shown in Figs. 4(a) and 4(b) was achieved. Even though the surface helicities of these two IE-ChiML were identical (i.e., both are left-handed), they exhibited opposite (i.e., reversed) chirality because of the different twist angles $\Psi$.

As a comparison, Figs. 4(g) and 4(h) show the focusing behavior of a conventional chiral metalens (C-ChiML) composed of CMHS under LCP and RCP incidences. The color bar shows that the intensity of Fig. 4(g) is one order of magnitude below that of the IE-ChiMLs shown in Fig. 4(a). The detailed intensity distribution of these two IE-ChiMLs (denoted by subscripts “75” and “${-}{{75}}$”) and C-ChiML (denoted by subscript “0”), shown in Figs. 4(a) and 4(b) and 4(e)–4(h), were line-scanned along X, as shown in Fig. 4(i). The central intensity of the focal point for the IE-ChiMLs with positive or negative chirality was 10 or 8 times larger than that of C-ChiML, respectively, which represents a significant improvement in the energy efficiency with cross-polarization manipulation in chiral metasurfaces. The extinction ratio (${{\rm{I}}_{\rm{LCP}}}/{{\rm{I}}_{\rm{RCP}}}$, the ratio of LCP and RCP transmission intensities) of Pos-IE-ChiML at the focal point was greatly increased (184) compared to that of C-ChiML (19). The full width at half-maximum of the focal point of Pos-IE-ChiML was ${\sim}{2.28}\;{{\unicode{x00B5}{\rm m}}}$, which was slightly larger than the theoretical limit (1.35 µm), because an insufficient number of unit cells were used in the simulation to simplify the computations.

3. EXPERIMENTAL SECTION

A comprehensive experimental verification and imaging of the proposed IE-ChiML were performed. A direct-laser writing system employing two-photon polymerization (Photonic Professional GT, Nanoscribe GmbH, Karlsruhe, Germany) was used to fabricate the IE-ChiML. Two-photon polymerization is a nonlinear optical process based upon the simultaneous absorption of two photons in a photosensitive material (i.e., a photoresist). The system was equipped with a motorized sample stage for coarse positioning and a piezo stage for fine positioning. A pulsed laser with a wavelength of 780 nm and a pulse duration of 100 fs was applied via an oil-immersed object lens (${{63}} \times$, N.A. 1.4) in the photoresist; a negative photoresist (IP-L780, Nanoscribe GmbH) was used and dripped onto a glass substrate, and moved along the designed path, which was controlled by the script edited according to the 3D structures in the system’s controlling software (NanoWrite, Nanoscribe GmbH). The two-photon polymerization occurred only in the ellipsoidal focus of the femtosecond laser, which provided excellent spatial selectivity and could generate fine 3D structures with optical resolutions far below the diffraction limit. The 3D structure written in the photoresist was then developed using isopropanol (${{\rm{C}}_3}{{\rm{H}}_8}{\rm{O}}$). A Pos-IE-ChiML with a scale of ${{81}} \times {{81}}$ NDHS arrays with a twist angle of $\Psi = {{75}}^\circ$ was fabricated; it occupied an area of ${{159}} \times {{159}}\;{{\unicode{x00B5}}}{{\rm{m}}^2}$ and had a focal length of 60 µm. Electron-beam evaporation was employed to uniformly coat a 180 nm thick gold layer on the structure surface. The structure of the fabricated IE-ChiML was observed via scanning electron microscopy (SEM). Figure 5 shows the SEM images of the fabricated IE-ChiML at two different view angles; here, Figs. 5(a) and 5(b) depict the top views of the IE-ChiML at different magnifications, and Figs. 5(c) and 5(d) are side views taken from a 45° view angle. Figures 5(b) and 5(d) clearly show that the dimensions of the fabricated structure are highly consistent with the designed dimensions (${\rm{P}} = {1.96}\;{{\unicode{x00B5}{\rm m}}}$, ${{\rm{R}}_2} = {0.98}\;{{\unicode{x00B5}{\rm m}}}$, and total height ${\rm{H}} + {\rm{d}} = {1.58}\;{{\unicode{x00B5}{\rm m}}}$). The twist angle $\Psi$ in the NDHS structure was well controlled at 75°, as shown in Fig. 5(b). A detailed examination of the fabricated structure’s parameters showed that the fabrication errors in diameter, height, and twist angle for the NDHS array were within ${{\pm}} {{62}}\;{\rm{nm}}$, ${{\pm}} {{74}}\;{\rm{nm}}$, and ${{\pm}} {0.91}^\circ$, respectively. These fabrication errors are well below the tolerance level, facilitating the good performance of the device. A detailed analysis of the fabrication errors and their impact on device performance is provided in Supplement 1, Section 5.

 figure: Fig. 5.

Fig. 5. SEM images of the fabricated Pos-IE-ChiML at different viewing angles. (a)–(b) Top views with different magnifications. (c)–(d) Side views at 45° view angle with different magnifications. (e) Schematic of the optical measurement system for imaging. SiN, silicon nitride infrared source; LP, linear polarizer; QWP, quarter-wave plate; L1, Lens 1; L2, Lens 2; and L3, Lens 3.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6.

Fig. 6. Experimental chiral focusing and circular dichroism of the fabricated Pos-IE-ChiML. (a)–(b) Set of time-sequential infrared pictures taken under LCP and RCP incidences, respectively. (c)–(d) Chiral focusing pictures obtained with the phase lock-in processing of (a) and (b); the inset in (c) is a magnified image of the focal spot. (e) Line scans of the intensity distribution along the X and Y axes at the centers of (c) and (d). (f) Comparison of simulated and experimental transmissions under LCP and RCP incidences.

Download Full Size | PPT Slide | PDF

A schematic of the optical measurement and imaging system is depicted in Fig. 5(e) and Fig. S5 in Supplement 1, Section 6. A monochromatic beam (3–5 µm wavelength) was generated using an infrared SiN source (LSH-SiN40, 40W, Zolix Instruments Co., Ltd., Beijing, China) and dispersed by a blazed grating. Circularly polarized light was generated by a combination of a linear polarizer (LP) (LPMIR050-MP2, Thorlabs, Inc., Newton, NJ, USA) and a quarter-wave plate (QWP) (POTWP-L4-12-UVIR, Alphalas GmbH, Göttingen, Germany) behind the source system. This was then incidented perpendicularly onto the IE-ChiML. An LCP or RCP beam was obtained by rotating the LP by 90° about the optical axis. The 1951 resolution test chart of the United States Air Force (USAF) (Thorlabs) was used as the imaging object. Because of the small size of the fabricated IE-ChiML, an infrared lens (AC254-050-E, Thorlabs) was used to reduce the test chart image to match the size of the IE-ChiML. A set of two air-spaced doublet infrared lenses with focal lengths of 50 mm (AC254-050-E, Thorlabs) and 100 mm (AC254-100-E, Thorlabs) were employed as an amplification system (${\sim}{{200}} \times$) to magnify the images using a thermal imaging camera (NoxCam 640 BB His, ${{512}} \times {{640}}$ pixels, ${{15}}\;{{\unicode{x00B5}{\rm m}}}$ pixel pitch, Noxant, Palaiseau, France). All devices were mounted on a 2D translational stage, and the position of the IE-ChiML was further adjusted using a 3D translational stage. It should be noted that the incident beam was intensity-modulated by a chopper with a frequency of ${f_c} = {{10}}\;{\rm{Hz}}$ such that the desired infrared signal (or image) of the object could be distinguished from the large background infrared radiation in the infrared wavelength range of interest, using the lock-in thermography technique. This technique was used to suppress the disturbance of random background radiation, such that only signals with the same frequency as the chopper frequency (i.e., reference frequency) could be measured.

Figure 6 shows the chiral focusing behavior and circular dichroism of the fabricated Pos-IE-ChiML. Figures 6(a) and 6(b) present two sets of infrared pictures (1000 sheets) taken from time-sequential data (acquisition frequency: 100 Hz) under intensity-modulated LCP and RCP incidences (modulation frequency: 10 Hz), respectively. It seems that no difference can be observed between the images for LCP and RCP incidences because of the severe background radiation in the middle infrared bands. Figures 6(c) and 6(d) show the chiral focusing obtained under phase lock-in processing from the set of sequential images in Figs. 6(a) and 6(b). The inset in Fig. 6(c) presents a magnified picture of the focal spot. The detailed imaging process for the lock-in technique is described in Supplement 1, Section 7. A clear focusing spot can be seen in Fig. 6(c) under LCP incidence, whereas nothing is seen in Fig. 6(d) for RCP incidence. Figure 6(e) shows the intensity distribution line scans along the X and Y axes at the centers of Figs. 6(c) and 6(d), which contain 60 pixels in their image centers. The intensity of the focus spot under LCP incidence reaches ${\sim}{{500}}$, much larger than the average value obtained for RCP incidence (${\sim}{{30}}$); which is consistent with the theoretical predictions. Figure 6(f) shows the circular dichroism of the fabricated Pos-IE-ChiML and compares it against the simulation. The measurement system for circular dichroism is shown in Fig. S4(b) in Supplement 1. As can be seen from Fig. 6(e), the experimental results agree well with the simulation results when factors such as fabrication errors and surface roughness are considered.

Figure 7 shows the experimental chiral images obtained under LCP and RCP incidences for a standard USAF resolution target. Figures 7(a) and 7(b) and their corresponding magnified pictures show that clear images can be obtained under the LCP incidence; here, Group 2/Group 3 [Fig. 7(a)] and Elements 3–5 of Group 1 [Fig. 7(b)] in the USAF resolution target exhibited maximal signal-to-noise ratios (${{\rm{I}}_{\rm{max}}}/{{\rm{I}}_{\rm{min}}}$) of 19 and 32, respectively. It should be noted that the resolution of the image shown in Fig. 7 was restricted by the pixel size of the camera (15 µm, as mentioned above). As expected, no images were observed for any group in the USAF target under RCP incidence, as evidenced in Figs. 7(c) and 7(d).

 figure: Fig. 7.

Fig. 7. Experimental chiral images under LCP and RCP incidences for the standard USAF resolution target. (a) Groups 2 and 3 of USAF target under LCP incidence. The right-side image is a magnification of the center part of left-side one (dotted box). (b) Elements 3–5 of Group 1 in the USAF target under LCP incidence. The right-side image is a magnification of the center part of left-side one (dotted box). (c) Groups 2 and 3 of USAF target under RCP incidence. (d) Elements 3–5 of Group 1 of USAF target under RCP incidence.

Download Full Size | PPT Slide | PDF

4. CONCLUSION

To summarize, we report both theoretically and experimentally on a broadband, interference-enhanced, and chirality-reversible dichroism metalens in the 3–5 µm mid-infrared region using an NDHS array. The metalens can focus and image selectively for incident beams of different circular polarizations. A one order of magnitude enhancement of energy efficiency of chiral imaging with the proposed NDHS metalens was obtained due to constructive interference of the localized surface plasmonics between the two nested helical surfaces. We also showed that the mismatch between the surface helicity and incident circular polarization state can be overcome, and consequently the chirality of the structure can be changed by manipulating the twist angle between the IHS and OHS, which provides an extra degree of freedom to manipulate the chirality of light field. We believe this work provides a new strategy to enhance the cross-polarization conversion efficiency and subsequently the energy efficiency as well as the chirality characteristics for applications in chiral sensing, imaging, displays, and chiral-metasurface-based biological detection.

Funding

Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); National Natural Science Foundation of China (61775154).

Disclosures

The authors declare that they have no conflict of interest.

Supplemental document

See Supplement 1 for supporting content.

REFERENCES

1. S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34, 3047–3049 (2009). [CrossRef]  

2. S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017). [CrossRef]  

3. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018). [CrossRef]  

4. R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019). [CrossRef]  

5. G. Yoon, K. Kim, D. Huh, H. Lee, and J. Rho, “Single-step manufacturing of hierarchical dielectric metalens in the visible,” Nat. Commun. 11, 2268 (2020). [CrossRef]  

6. W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10, 10671–10680 (2016). [CrossRef]  

7. C. Zhang, F. Yue, D. Wen, M. Chen, Z. Zhang, W. Wang, and X. Chen, “Multichannel metasurface for simultaneous control of holograms and twisted light beams,” ACS Photon. 4, 1906–1912 (2017). [CrossRef]  

8. A. Martins, J. Li, A. F. da Mota, Y. Wang, L. G. Neto, J. P. do Carmo, F. L. Teixeira, E. R. Martins, and B.-H. V. Borges, “Highly efficient holograms based on c-Si metasurfaces in the visible range,” Opt. Express 26, 9573–9583 (2018). [CrossRef]  

9. Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019). [CrossRef]  

10. A. C. Overvig, S. Shrestha, S. C. Malek, M. Lu, A. Stein, C. Zheng, and N. Yu, “Dielectric metasurfaces for complete and independent control of the optical amplitude and phase,” Light Sci. Appl. 8, 92 (2019). [CrossRef]  

11. Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C.-W. Qiu, and H. Duan, “Trichromatic and tri-polarization-channel holography with non-interleaved dielectric metasurface,” Nano Lett. 20, 994–1002 (2019). [CrossRef]  

12. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011). [CrossRef]  

13. K. Huang, H. Liu, S. Restuccia, M. Q. Mehmood, S.-T. Mei, D. Giovannini, A. Danner, M. J. Padgett, J.-H. Teng, and C.-W. Qiu, “Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum,” Light Sci. Appl. 7, 17156 (2018). [CrossRef]  

14. S. Tang, X. Li, W. Pan, J. Zhou, T. Jiang, and F. Ding, “High-efficiency broadband vortex beam generator based on transmissive metasurface,” Opt. Express 27, 4281–4291 (2019). [CrossRef]  

15. G. Ding, K. Chen, X. Luo, J. Zhao, T. Jiang, and Y. Feng, “Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion,” Phys. Rev. Appl. 11, 044043 (2019). [CrossRef]  

16. H. Wang, Y. Li, H. Chen, Y. Shen, Z. Yang, J. Wang, J. Zhang, M. Ding, A. Zhang, T. Cui, and S. Qu, “Spin-to-orbital angular momentum conversion with quasi-continuous spatial phase response,” Adv. Opt. Mater. 7, 1901188 (2019). [CrossRef]  

17. Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4, 1196–1202 (2016). [CrossRef]  

18. F. Fu, L. Shang, Z. Chen, Y. Yu, and Y. Zhao, “Bioinspired living structural color hydrogels,” Sci. Robot. 3, eaar8580 (2018). [CrossRef]  

19. B. Yang, W. Liu, Z. Li, H. Cheng, D.-Y. Choi, S. Chen, and J. Tian, “Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces,” Nano Lett. 19, 4221–4228 (2019). [CrossRef]  

20. C. Liu, Z. Fan, Y. Tan, F. Fan, and H. Xu, “Tunable structural color patterns based on the visible-light-responsive dynamic diselenide metathesis,” Adv. Mater. 32, 1907569 (2020). [CrossRef]  

21. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010). [CrossRef]  

22. Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017). [CrossRef]  

23. W. Wang, Z. Guo, R. Li, J. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “Plasmonics metalens independent from the incident polarizations,” Opt. Express 23, 16782–16791 (2015). [CrossRef]  

24. K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2015). [CrossRef]  

25. C. Yan, K.-Y. Yang, and O. J. F. Martin, “Fano-resonance-assisted metasurface for color routing,” Light Sci. Appl. 6, e17017 (2017). [CrossRef]  

26. Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014). [CrossRef]  

27. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18, 1059–1069 (2010). [CrossRef]  

28. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009). [CrossRef]  

29. M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015). [CrossRef]  

30. X. Li, H. Zhao, C. Liu, J. Cai, Y. Zhang, Y. Jiang, and D. Zhang, “High-efficiency alignment of 3D biotemplated helices via rotating magnetic field for terahertz chiral metamaterials,” Adv. Opt. Mater. 7, 1900247 (2019). [CrossRef]  

31. M. Wang, R. Salut, H. Lu, M.-A. Suarez, N. Martin, and T. Grosjean, “Subwavelength polarization optics via individual and coupled helical traveling-wave nanoantennas,” Light Sci. Appl. 8, 76 (2019). [CrossRef]  

32. J. Hu, X. Zhao, R. Li, A. Zhu, L. Chen, Y. Lin, B. Cao, X. Zhu, and C. Wang, “Broadband circularly polarizing dichroism with high efficient plasmonic helical surface,” Opt. Express 24, 11023–11032 (2016). [CrossRef]  

33. M. Rajaei, J. Zeng, M. Albooyeh, M. Kamandi, M. Hanifeh, F. Capolino, and H. K. Wickramasinghe, “Giant circular dichroism at visible frequencies enabled by plasmonic ramp-shaped nanostructures,” ACS Photon. 6, 924–931 (2019). [CrossRef]  

34. S. V. Golod, V. A. Seyfi, A. F. Buldygin, A. E. Gayduk, and V. Y. Prinz, “Large-area 3D-printed chiral metasurface composed of metal helices,” Adv. Opt. Mater. 6, 1800424 (2018). [CrossRef]  

35. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005). [CrossRef]  

36. A. Y. Zhu, W. T. Chen, A. Zaidi, Y.-W. Huang, M. Khorasaninejad, V. Sanjeev, C.-W. Qiu, and F. Capasso, “Giant intrinsic chiro-optical activity in planar dielectric nanostructures,” Light Sci. Appl. 7, 17158 (2018). [CrossRef]  

37. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008). [CrossRef]  

38. Z. Ma, Y. Li, Y. Li, Y. Gong, S. A. Maier, and M. Hong, “All-dielectric planar chiral metasurface with gradient geometric phase,” Opt. Express 26, 6067–6078 (2018). [CrossRef]  

39. B. Semnani, J. Flannery, R. Al Maruf, and M. Bajcsy, “Spin-preserving chiral photonic crystal mirror,” Light Sci. Appl. 9, 23 (2020). [CrossRef]  

40. S. Yang, Z. Liu, S. Hu, A.-Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-selective transmission in chiral folded metasurfaces,” Nano Lett. 19, 3432–3439 (2019). [CrossRef]  

41. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012). [CrossRef]  

42. A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light Sci. Appl. 8, 78 (2019). [CrossRef]  

43. H. Xu, G. Hu, L. Han, M. Jiang, Y. Huang, Y. Li, X. Yang, X. Ling, L. Chen, J. Zhao, and C. Qiu, “Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization,” Adv. Opt. Mater. 7, 1801479 (2018). [CrossRef]  

44. J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020). [CrossRef]  

45. Z. Yang, Z. Wang, H. Tao, and M. Zhao, “Manipulation of wavefront using helical metamaterials,” Opt. Express 24, 18266–18276 (2016). [CrossRef]  

46. Y. Chen, X. Yang, and J. Gao, “Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces,” Light Sci. Appl. 7, 84 (2018). [CrossRef]  

47. C. He, T. Sun, J. Guo, M. Cao, J. Xia, J. Hu, Y. Yan, and C. Wang, “Chiral metalens of circular polarization dichroism with helical surface arrays in mid-infrared region,” Adv. Opt. Mater. 7, 1901129 (2019). [CrossRef]  

48. Y. Wang, X. Wen, Y. Qu, L. Wang, R. Wan, and Z. Zhang, “Co-occurrence of circular dichroism and asymmetric transmission in twist nanoslit-nanorod arrays,” Opt. Express 24, 16425–16433 (2016). [CrossRef]  

49. J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3, 1411–1417 (2015). [CrossRef]  

50. C. Fang, C. Wu, Z. Gong, S. Zhao, A. Sun, Z. Wei, and H. Li, “Broadband and high-efficiency vortex beam generator based on a hybrid helix array,” Opt. Lett. 43, 1538–1541 (2018). [CrossRef]  

51. M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016). [CrossRef]  

52. Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7, 25 (2018). [CrossRef]  

53. B. Groever, N. A. Rubin, J. P. B. Mueller, R. C. Devlin, and F. Capasso, “High-efficiency chiral meta-lens,” Sci. Rep. 8, 7240 (2018). [CrossRef]  

54. X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015). [CrossRef]  

55. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

References

  • View by:
  • |
  • |
  • |

  1. S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34, 3047–3049 (2009).
    [Crossref]
  2. S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
    [Crossref]
  3. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
    [Crossref]
  4. R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
    [Crossref]
  5. G. Yoon, K. Kim, D. Huh, H. Lee, and J. Rho, “Single-step manufacturing of hierarchical dielectric metalens in the visible,” Nat. Commun. 11, 2268 (2020).
    [Crossref]
  6. W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10, 10671–10680 (2016).
    [Crossref]
  7. C. Zhang, F. Yue, D. Wen, M. Chen, Z. Zhang, W. Wang, and X. Chen, “Multichannel metasurface for simultaneous control of holograms and twisted light beams,” ACS Photon. 4, 1906–1912 (2017).
    [Crossref]
  8. A. Martins, J. Li, A. F. da Mota, Y. Wang, L. G. Neto, J. P. do Carmo, F. L. Teixeira, E. R. Martins, and B.-H. V. Borges, “Highly efficient holograms based on c-Si metasurfaces in the visible range,” Opt. Express 26, 9573–9583 (2018).
    [Crossref]
  9. Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
    [Crossref]
  10. A. C. Overvig, S. Shrestha, S. C. Malek, M. Lu, A. Stein, C. Zheng, and N. Yu, “Dielectric metasurfaces for complete and independent control of the optical amplitude and phase,” Light Sci. Appl. 8, 92 (2019).
    [Crossref]
  11. Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C.-W. Qiu, and H. Duan, “Trichromatic and tri-polarization-channel holography with non-interleaved dielectric metasurface,” Nano Lett. 20, 994–1002 (2019).
    [Crossref]
  12. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref]
  13. K. Huang, H. Liu, S. Restuccia, M. Q. Mehmood, S.-T. Mei, D. Giovannini, A. Danner, M. J. Padgett, J.-H. Teng, and C.-W. Qiu, “Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum,” Light Sci. Appl. 7, 17156 (2018).
    [Crossref]
  14. S. Tang, X. Li, W. Pan, J. Zhou, T. Jiang, and F. Ding, “High-efficiency broadband vortex beam generator based on transmissive metasurface,” Opt. Express 27, 4281–4291 (2019).
    [Crossref]
  15. G. Ding, K. Chen, X. Luo, J. Zhao, T. Jiang, and Y. Feng, “Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion,” Phys. Rev. Appl. 11, 044043 (2019).
    [Crossref]
  16. H. Wang, Y. Li, H. Chen, Y. Shen, Z. Yang, J. Wang, J. Zhang, M. Ding, A. Zhang, T. Cui, and S. Qu, “Spin-to-orbital angular momentum conversion with quasi-continuous spatial phase response,” Adv. Opt. Mater. 7, 1901188 (2019).
    [Crossref]
  17. Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4, 1196–1202 (2016).
    [Crossref]
  18. F. Fu, L. Shang, Z. Chen, Y. Yu, and Y. Zhao, “Bioinspired living structural color hydrogels,” Sci. Robot. 3, eaar8580 (2018).
    [Crossref]
  19. B. Yang, W. Liu, Z. Li, H. Cheng, D.-Y. Choi, S. Chen, and J. Tian, “Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces,” Nano Lett. 19, 4221–4228 (2019).
    [Crossref]
  20. C. Liu, Z. Fan, Y. Tan, F. Fan, and H. Xu, “Tunable structural color patterns based on the visible-light-responsive dynamic diselenide metathesis,” Adv. Mater. 32, 1907569 (2020).
    [Crossref]
  21. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
    [Crossref]
  22. Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
    [Crossref]
  23. W. Wang, Z. Guo, R. Li, J. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “Plasmonics metalens independent from the incident polarizations,” Opt. Express 23, 16782–16791 (2015).
    [Crossref]
  24. K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2015).
    [Crossref]
  25. C. Yan, K.-Y. Yang, and O. J. F. Martin, “Fano-resonance-assisted metasurface for color routing,” Light Sci. Appl. 6, e17017 (2017).
    [Crossref]
  26. Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
    [Crossref]
  27. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18, 1059–1069 (2010).
    [Crossref]
  28. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
    [Crossref]
  29. M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
    [Crossref]
  30. X. Li, H. Zhao, C. Liu, J. Cai, Y. Zhang, Y. Jiang, and D. Zhang, “High-efficiency alignment of 3D biotemplated helices via rotating magnetic field for terahertz chiral metamaterials,” Adv. Opt. Mater. 7, 1900247 (2019).
    [Crossref]
  31. M. Wang, R. Salut, H. Lu, M.-A. Suarez, N. Martin, and T. Grosjean, “Subwavelength polarization optics via individual and coupled helical traveling-wave nanoantennas,” Light Sci. Appl. 8, 76 (2019).
    [Crossref]
  32. J. Hu, X. Zhao, R. Li, A. Zhu, L. Chen, Y. Lin, B. Cao, X. Zhu, and C. Wang, “Broadband circularly polarizing dichroism with high efficient plasmonic helical surface,” Opt. Express 24, 11023–11032 (2016).
    [Crossref]
  33. M. Rajaei, J. Zeng, M. Albooyeh, M. Kamandi, M. Hanifeh, F. Capolino, and H. K. Wickramasinghe, “Giant circular dichroism at visible frequencies enabled by plasmonic ramp-shaped nanostructures,” ACS Photon. 6, 924–931 (2019).
    [Crossref]
  34. S. V. Golod, V. A. Seyfi, A. F. Buldygin, A. E. Gayduk, and V. Y. Prinz, “Large-area 3D-printed chiral metasurface composed of metal helices,” Adv. Opt. Mater. 6, 1800424 (2018).
    [Crossref]
  35. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
    [Crossref]
  36. A. Y. Zhu, W. T. Chen, A. Zaidi, Y.-W. Huang, M. Khorasaninejad, V. Sanjeev, C.-W. Qiu, and F. Capasso, “Giant intrinsic chiro-optical activity in planar dielectric nanostructures,” Light Sci. Appl. 7, 17158 (2018).
    [Crossref]
  37. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008).
    [Crossref]
  38. Z. Ma, Y. Li, Y. Li, Y. Gong, S. A. Maier, and M. Hong, “All-dielectric planar chiral metasurface with gradient geometric phase,” Opt. Express 26, 6067–6078 (2018).
    [Crossref]
  39. B. Semnani, J. Flannery, R. Al Maruf, and M. Bajcsy, “Spin-preserving chiral photonic crystal mirror,” Light Sci. Appl. 9, 23 (2020).
    [Crossref]
  40. S. Yang, Z. Liu, S. Hu, A.-Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-selective transmission in chiral folded metasurfaces,” Nano Lett. 19, 3432–3439 (2019).
    [Crossref]
  41. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
    [Crossref]
  42. A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light Sci. Appl. 8, 78 (2019).
    [Crossref]
  43. H. Xu, G. Hu, L. Han, M. Jiang, Y. Huang, Y. Li, X. Yang, X. Ling, L. Chen, J. Zhao, and C. Qiu, “Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization,” Adv. Opt. Mater. 7, 1801479 (2018).
    [Crossref]
  44. J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
    [Crossref]
  45. Z. Yang, Z. Wang, H. Tao, and M. Zhao, “Manipulation of wavefront using helical metamaterials,” Opt. Express 24, 18266–18276 (2016).
    [Crossref]
  46. Y. Chen, X. Yang, and J. Gao, “Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces,” Light Sci. Appl. 7, 84 (2018).
    [Crossref]
  47. C. He, T. Sun, J. Guo, M. Cao, J. Xia, J. Hu, Y. Yan, and C. Wang, “Chiral metalens of circular polarization dichroism with helical surface arrays in mid-infrared region,” Adv. Opt. Mater. 7, 1901129 (2019).
    [Crossref]
  48. Y. Wang, X. Wen, Y. Qu, L. Wang, R. Wan, and Z. Zhang, “Co-occurrence of circular dichroism and asymmetric transmission in twist nanoslit-nanorod arrays,” Opt. Express 24, 16425–16433 (2016).
    [Crossref]
  49. J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3, 1411–1417 (2015).
    [Crossref]
  50. C. Fang, C. Wu, Z. Gong, S. Zhao, A. Sun, Z. Wei, and H. Li, “Broadband and high-efficiency vortex beam generator based on a hybrid helix array,” Opt. Lett. 43, 1538–1541 (2018).
    [Crossref]
  51. M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
    [Crossref]
  52. Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7, 25 (2018).
    [Crossref]
  53. B. Groever, N. A. Rubin, J. P. B. Mueller, R. C. Devlin, and F. Capasso, “High-efficiency chiral meta-lens,” Sci. Rep. 8, 7240 (2018).
    [Crossref]
  54. X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
    [Crossref]
  55. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

2020 (4)

G. Yoon, K. Kim, D. Huh, H. Lee, and J. Rho, “Single-step manufacturing of hierarchical dielectric metalens in the visible,” Nat. Commun. 11, 2268 (2020).
[Crossref]

C. Liu, Z. Fan, Y. Tan, F. Fan, and H. Xu, “Tunable structural color patterns based on the visible-light-responsive dynamic diselenide metathesis,” Adv. Mater. 32, 1907569 (2020).
[Crossref]

B. Semnani, J. Flannery, R. Al Maruf, and M. Bajcsy, “Spin-preserving chiral photonic crystal mirror,” Light Sci. Appl. 9, 23 (2020).
[Crossref]

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

2019 (14)

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light Sci. Appl. 8, 78 (2019).
[Crossref]

S. Yang, Z. Liu, S. Hu, A.-Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-selective transmission in chiral folded metasurfaces,” Nano Lett. 19, 3432–3439 (2019).
[Crossref]

C. He, T. Sun, J. Guo, M. Cao, J. Xia, J. Hu, Y. Yan, and C. Wang, “Chiral metalens of circular polarization dichroism with helical surface arrays in mid-infrared region,” Adv. Opt. Mater. 7, 1901129 (2019).
[Crossref]

B. Yang, W. Liu, Z. Li, H. Cheng, D.-Y. Choi, S. Chen, and J. Tian, “Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces,” Nano Lett. 19, 4221–4228 (2019).
[Crossref]

X. Li, H. Zhao, C. Liu, J. Cai, Y. Zhang, Y. Jiang, and D. Zhang, “High-efficiency alignment of 3D biotemplated helices via rotating magnetic field for terahertz chiral metamaterials,” Adv. Opt. Mater. 7, 1900247 (2019).
[Crossref]

M. Wang, R. Salut, H. Lu, M.-A. Suarez, N. Martin, and T. Grosjean, “Subwavelength polarization optics via individual and coupled helical traveling-wave nanoantennas,” Light Sci. Appl. 8, 76 (2019).
[Crossref]

M. Rajaei, J. Zeng, M. Albooyeh, M. Kamandi, M. Hanifeh, F. Capolino, and H. K. Wickramasinghe, “Giant circular dichroism at visible frequencies enabled by plasmonic ramp-shaped nanostructures,” ACS Photon. 6, 924–931 (2019).
[Crossref]

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

A. C. Overvig, S. Shrestha, S. C. Malek, M. Lu, A. Stein, C. Zheng, and N. Yu, “Dielectric metasurfaces for complete and independent control of the optical amplitude and phase,” Light Sci. Appl. 8, 92 (2019).
[Crossref]

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C.-W. Qiu, and H. Duan, “Trichromatic and tri-polarization-channel holography with non-interleaved dielectric metasurface,” Nano Lett. 20, 994–1002 (2019).
[Crossref]

S. Tang, X. Li, W. Pan, J. Zhou, T. Jiang, and F. Ding, “High-efficiency broadband vortex beam generator based on transmissive metasurface,” Opt. Express 27, 4281–4291 (2019).
[Crossref]

G. Ding, K. Chen, X. Luo, J. Zhao, T. Jiang, and Y. Feng, “Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion,” Phys. Rev. Appl. 11, 044043 (2019).
[Crossref]

H. Wang, Y. Li, H. Chen, Y. Shen, Z. Yang, J. Wang, J. Zhang, M. Ding, A. Zhang, T. Cui, and S. Qu, “Spin-to-orbital angular momentum conversion with quasi-continuous spatial phase response,” Adv. Opt. Mater. 7, 1901188 (2019).
[Crossref]

2018 (12)

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

A. Martins, J. Li, A. F. da Mota, Y. Wang, L. G. Neto, J. P. do Carmo, F. L. Teixeira, E. R. Martins, and B.-H. V. Borges, “Highly efficient holograms based on c-Si metasurfaces in the visible range,” Opt. Express 26, 9573–9583 (2018).
[Crossref]

S. V. Golod, V. A. Seyfi, A. F. Buldygin, A. E. Gayduk, and V. Y. Prinz, “Large-area 3D-printed chiral metasurface composed of metal helices,” Adv. Opt. Mater. 6, 1800424 (2018).
[Crossref]

K. Huang, H. Liu, S. Restuccia, M. Q. Mehmood, S.-T. Mei, D. Giovannini, A. Danner, M. J. Padgett, J.-H. Teng, and C.-W. Qiu, “Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum,” Light Sci. Appl. 7, 17156 (2018).
[Crossref]

F. Fu, L. Shang, Z. Chen, Y. Yu, and Y. Zhao, “Bioinspired living structural color hydrogels,” Sci. Robot. 3, eaar8580 (2018).
[Crossref]

Z. Ma, Y. Li, Y. Li, Y. Gong, S. A. Maier, and M. Hong, “All-dielectric planar chiral metasurface with gradient geometric phase,” Opt. Express 26, 6067–6078 (2018).
[Crossref]

Y. Chen, X. Yang, and J. Gao, “Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces,” Light Sci. Appl. 7, 84 (2018).
[Crossref]

C. Fang, C. Wu, Z. Gong, S. Zhao, A. Sun, Z. Wei, and H. Li, “Broadband and high-efficiency vortex beam generator based on a hybrid helix array,” Opt. Lett. 43, 1538–1541 (2018).
[Crossref]

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7, 25 (2018).
[Crossref]

B. Groever, N. A. Rubin, J. P. B. Mueller, R. C. Devlin, and F. Capasso, “High-efficiency chiral meta-lens,” Sci. Rep. 8, 7240 (2018).
[Crossref]

A. Y. Zhu, W. T. Chen, A. Zaidi, Y.-W. Huang, M. Khorasaninejad, V. Sanjeev, C.-W. Qiu, and F. Capasso, “Giant intrinsic chiro-optical activity in planar dielectric nanostructures,” Light Sci. Appl. 7, 17158 (2018).
[Crossref]

H. Xu, G. Hu, L. Han, M. Jiang, Y. Huang, Y. Li, X. Yang, X. Ling, L. Chen, J. Zhao, and C. Qiu, “Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization,” Adv. Opt. Mater. 7, 1801479 (2018).
[Crossref]

2017 (4)

C. Yan, K.-Y. Yang, and O. J. F. Martin, “Fano-resonance-assisted metasurface for color routing,” Light Sci. Appl. 6, e17017 (2017).
[Crossref]

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref]

C. Zhang, F. Yue, D. Wen, M. Chen, Z. Zhang, W. Wang, and X. Chen, “Multichannel metasurface for simultaneous control of holograms and twisted light beams,” ACS Photon. 4, 1906–1912 (2017).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

2016 (6)

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10, 10671–10680 (2016).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4, 1196–1202 (2016).
[Crossref]

J. Hu, X. Zhao, R. Li, A. Zhu, L. Chen, Y. Lin, B. Cao, X. Zhu, and C. Wang, “Broadband circularly polarizing dichroism with high efficient plasmonic helical surface,” Opt. Express 24, 11023–11032 (2016).
[Crossref]

Z. Yang, Z. Wang, H. Tao, and M. Zhao, “Manipulation of wavefront using helical metamaterials,” Opt. Express 24, 18266–18276 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

Y. Wang, X. Wen, Y. Qu, L. Wang, R. Wan, and Z. Zhang, “Co-occurrence of circular dichroism and asymmetric transmission in twist nanoslit-nanorod arrays,” Opt. Express 24, 16425–16433 (2016).
[Crossref]

2015 (5)

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3, 1411–1417 (2015).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
[Crossref]

W. Wang, Z. Guo, R. Li, J. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “Plasmonics metalens independent from the incident polarizations,” Opt. Express 23, 16782–16791 (2015).
[Crossref]

K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref]

2014 (1)

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[Crossref]

2012 (1)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

2010 (2)

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18, 1059–1069 (2010).
[Crossref]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref]

2009 (2)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34, 3047–3049 (2009).
[Crossref]

2008 (1)

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008).
[Crossref]

2005 (1)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Al Maruf, R.

B. Semnani, J. Flannery, R. Al Maruf, and M. Bajcsy, “Spin-preserving chiral photonic crystal mirror,” Light Sci. Appl. 9, 23 (2020).
[Crossref]

Albooyeh, M.

M. Rajaei, J. Zeng, M. Albooyeh, M. Kamandi, M. Hanifeh, F. Capolino, and H. K. Wickramasinghe, “Giant circular dichroism at visible frequencies enabled by plasmonic ramp-shaped nanostructures,” ACS Photon. 6, 924–931 (2019).
[Crossref]

Alù, A.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref]

Amrollahi, P.

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light Sci. Appl. 8, 78 (2019).
[Crossref]

Askarpour, A. N.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref]

Bade, K.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3, 1411–1417 (2015).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Bai, J.

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light Sci. Appl. 8, 78 (2019).
[Crossref]

Bajcsy, M.

B. Semnani, J. Flannery, R. Al Maruf, and M. Bajcsy, “Spin-preserving chiral photonic crystal mirror,” Light Sci. Appl. 9, 23 (2020).
[Crossref]

Bao, Y.

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

Barron, L. D.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref]

Basiri, A.

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light Sci. Appl. 8, 78 (2019).
[Crossref]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref]

Benedetti, A.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref]

Bi, K.

K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2015).
[Crossref]

Blume, L.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3, 1411–1417 (2015).
[Crossref]

Borges, B.-H. V.

Buldygin, A. F.

S. V. Golod, V. A. Seyfi, A. F. Buldygin, A. E. Gayduk, and V. Y. Prinz, “Large-area 3D-printed chiral metasurface composed of metal helices,” Adv. Opt. Mater. 6, 1800424 (2018).
[Crossref]

Burger, S.

Cai, J.

X. Li, H. Zhao, C. Liu, J. Cai, Y. Zhang, Y. Jiang, and D. Zhang, “High-efficiency alignment of 3D biotemplated helices via rotating magnetic field for terahertz chiral metamaterials,” Adv. Opt. Mater. 7, 1900247 (2019).
[Crossref]

Cao, B.

Cao, M.

C. He, T. Sun, J. Guo, M. Cao, J. Xia, J. Hu, Y. Yan, and C. Wang, “Chiral metalens of circular polarization dichroism with helical surface arrays in mid-infrared region,” Adv. Opt. Mater. 7, 1901129 (2019).
[Crossref]

Capasso, F.

B. Groever, N. A. Rubin, J. P. B. Mueller, R. C. Devlin, and F. Capasso, “High-efficiency chiral meta-lens,” Sci. Rep. 8, 7240 (2018).
[Crossref]

A. Y. Zhu, W. T. Chen, A. Zaidi, Y.-W. Huang, M. Khorasaninejad, V. Sanjeev, C.-W. Qiu, and F. Capasso, “Giant intrinsic chiro-optical activity in planar dielectric nanostructures,” Light Sci. Appl. 7, 17158 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Capolino, F.

M. Rajaei, J. Zeng, M. Albooyeh, M. Kamandi, M. Hanifeh, F. Capolino, and H. K. Wickramasinghe, “Giant circular dichroism at visible frequencies enabled by plasmonic ramp-shaped nanostructures,” ACS Photon. 6, 924–931 (2019).
[Crossref]

Carpenter, J.

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light Sci. Appl. 8, 78 (2019).
[Crossref]

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref]

Chen, H.

H. Wang, Y. Li, H. Chen, Y. Shen, Z. Yang, J. Wang, J. Zhang, M. Ding, A. Zhang, T. Cui, and S. Qu, “Spin-to-orbital angular momentum conversion with quasi-continuous spatial phase response,” Adv. Opt. Mater. 7, 1901188 (2019).
[Crossref]

Chen, J.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Chen, J.-W.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Chen, K.

G. Ding, K. Chen, X. Luo, J. Zhao, T. Jiang, and Y. Feng, “Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion,” Phys. Rev. Appl. 11, 044043 (2019).
[Crossref]

Chen, L.

H. Xu, G. Hu, L. Han, M. Jiang, Y. Huang, Y. Li, X. Yang, X. Ling, L. Chen, J. Zhao, and C. Qiu, “Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization,” Adv. Opt. Mater. 7, 1801479 (2018).
[Crossref]

J. Hu, X. Zhao, R. Li, A. Zhu, L. Chen, Y. Lin, B. Cao, X. Zhu, and C. Wang, “Broadband circularly polarizing dichroism with high efficient plasmonic helical surface,” Opt. Express 24, 11023–11032 (2016).
[Crossref]

Chen, M.

C. Zhang, F. Yue, D. Wen, M. Chen, Z. Zhang, W. Wang, and X. Chen, “Multichannel metasurface for simultaneous control of holograms and twisted light beams,” ACS Photon. 4, 1906–1912 (2017).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
[Crossref]

Chen, M. K.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Chen, S.

B. Yang, W. Liu, Z. Li, H. Cheng, D.-Y. Choi, S. Chen, and J. Tian, “Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces,” Nano Lett. 19, 4221–4228 (2019).
[Crossref]

Chen, W.

Chen, W. T.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

A. Y. Zhu, W. T. Chen, A. Zaidi, Y.-W. Huang, M. Khorasaninejad, V. Sanjeev, C.-W. Qiu, and F. Capasso, “Giant intrinsic chiro-optical activity in planar dielectric nanostructures,” Light Sci. Appl. 7, 17158 (2018).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

Chen, X.

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light Sci. Appl. 8, 78 (2019).
[Crossref]

C. Zhang, F. Yue, D. Wen, M. Chen, Z. Zhang, W. Wang, and X. Chen, “Multichannel metasurface for simultaneous control of holograms and twisted light beams,” ACS Photon. 4, 1906–1912 (2017).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
[Crossref]

Chen, Y.

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C.-W. Qiu, and H. Duan, “Trichromatic and tri-polarization-channel holography with non-interleaved dielectric metasurface,” Nano Lett. 20, 994–1002 (2019).
[Crossref]

Y. Chen, X. Yang, and J. Gao, “Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces,” Light Sci. Appl. 7, 84 (2018).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4, 1196–1202 (2016).
[Crossref]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008).
[Crossref]

Chen, Y. H.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Chen, Z.

F. Fu, L. Shang, Z. Chen, Y. Yu, and Y. Zhao, “Bioinspired living structural color hydrogels,” Sci. Robot. 3, eaar8580 (2018).
[Crossref]

Cheng, H.

B. Yang, W. Liu, Z. Li, H. Cheng, D.-Y. Choi, S. Chen, and J. Tian, “Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces,” Nano Lett. 19, 4221–4228 (2019).
[Crossref]

Choi, D.-Y.

B. Yang, W. Liu, Z. Li, H. Cheng, D.-Y. Choi, S. Chen, and J. Tian, “Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces,” Nano Lett. 19, 4221–4228 (2019).
[Crossref]

Chu, C. H.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Chung, T. L.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Cui, T.

H. Wang, Y. Li, H. Chen, Y. Shen, Z. Yang, J. Wang, J. Zhang, M. Ding, A. Zhang, T. Cui, and S. Qu, “Spin-to-orbital angular momentum conversion with quasi-continuous spatial phase response,” Adv. Opt. Mater. 7, 1901188 (2019).
[Crossref]

Cuscunà, M.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref]

da Mota, A. F.

Dai, H.

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

Dai, P.

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4, 1196–1202 (2016).
[Crossref]

Danner, A.

K. Huang, H. Liu, S. Restuccia, M. Q. Mehmood, S.-T. Mei, D. Giovannini, A. Danner, M. J. Padgett, J.-H. Teng, and C.-W. Qiu, “Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum,” Light Sci. Appl. 7, 17156 (2018).
[Crossref]

Day, J. K.

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Devlin, R. C.

B. Groever, N. A. Rubin, J. P. B. Mueller, R. C. Devlin, and F. Capasso, “High-efficiency chiral meta-lens,” Sci. Rep. 8, 7240 (2018).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

Ding, F.

Ding, G.

G. Ding, K. Chen, X. Luo, J. Zhao, T. Jiang, and Y. Feng, “Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion,” Phys. Rev. Appl. 11, 044043 (2019).
[Crossref]

Ding, M.

H. Wang, Y. Li, H. Chen, Y. Shen, Z. Yang, J. Wang, J. Zhang, M. Ding, A. Zhang, T. Cui, and S. Qu, “Spin-to-orbital angular momentum conversion with quasi-continuous spatial phase response,” Adv. Opt. Mater. 7, 1901188 (2019).
[Crossref]

do Carmo, J. P.

Duan, H.

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C.-W. Qiu, and H. Duan, “Trichromatic and tri-polarization-channel holography with non-interleaved dielectric metasurface,” Nano Lett. 20, 994–1002 (2019).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4, 1196–1202 (2016).
[Crossref]

Esposito, M.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref]

Fan, F.

C. Liu, Z. Fan, Y. Tan, F. Fan, and H. Xu, “Tunable structural color patterns based on the visible-light-responsive dynamic diselenide metathesis,” Adv. Mater. 32, 1907569 (2020).
[Crossref]

Fan, Z.

C. Liu, Z. Fan, Y. Tan, F. Fan, and H. Xu, “Tunable structural color patterns based on the visible-light-responsive dynamic diselenide metathesis,” Adv. Mater. 32, 1907569 (2020).
[Crossref]

Fang, C.

Fedotov, V. A.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008).
[Crossref]

Feng, Y.

G. Ding, K. Chen, X. Luo, J. Zhao, T. Jiang, and Y. Feng, “Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion,” Phys. Rev. Appl. 11, 044043 (2019).
[Crossref]

Flannery, J.

B. Semnani, J. Flannery, R. Al Maruf, and M. Bajcsy, “Spin-preserving chiral photonic crystal mirror,” Light Sci. Appl. 9, 23 (2020).
[Crossref]

Fu, F.

F. Fu, L. Shang, Z. Chen, Y. Yu, and Y. Zhao, “Bioinspired living structural color hydrogels,” Sci. Robot. 3, eaar8580 (2018).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Gadegaard, N.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18, 1059–1069 (2010).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Gao, J.

Y. Chen, X. Yang, and J. Gao, “Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces,” Light Sci. Appl. 7, 84 (2018).
[Crossref]

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10, 10671–10680 (2016).
[Crossref]

Gayduk, A. E.

S. V. Golod, V. A. Seyfi, A. F. Buldygin, A. E. Gayduk, and V. Y. Prinz, “Large-area 3D-printed chiral metasurface composed of metal helices,” Adv. Opt. Mater. 6, 1800424 (2018).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Giovannini, D.

K. Huang, H. Liu, S. Restuccia, M. Q. Mehmood, S.-T. Mei, D. Giovannini, A. Danner, M. J. Padgett, J.-H. Teng, and C.-W. Qiu, “Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum,” Light Sci. Appl. 7, 17156 (2018).
[Crossref]

Golod, S. V.

S. V. Golod, V. A. Seyfi, A. F. Buldygin, A. E. Gayduk, and V. Y. Prinz, “Large-area 3D-printed chiral metasurface composed of metal helices,” Adv. Opt. Mater. 6, 1800424 (2018).
[Crossref]

Gong, Y.

Gong, Z.

Groever, B.

B. Groever, N. A. Rubin, J. P. B. Mueller, R. C. Devlin, and F. Capasso, “High-efficiency chiral meta-lens,” Sci. Rep. 8, 7240 (2018).
[Crossref]

Grosjean, T.

M. Wang, R. Salut, H. Lu, M.-A. Suarez, N. Martin, and T. Grosjean, “Subwavelength polarization optics via individual and coupled helical traveling-wave nanoantennas,” Light Sci. Appl. 8, 76 (2019).
[Crossref]

Gu, C.

S. Yang, Z. Liu, S. Hu, A.-Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-selective transmission in chiral folded metasurfaces,” Nano Lett. 19, 3432–3439 (2019).
[Crossref]

Guo, C.

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

Guo, J.

C. He, T. Sun, J. Guo, M. Cao, J. Xia, J. Hu, Y. Yan, and C. Wang, “Chiral metalens of circular polarization dichroism with helical surface arrays in mid-infrared region,” Adv. Opt. Mater. 7, 1901129 (2019).
[Crossref]

Guo, Y.

K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2015).
[Crossref]

Guo, Z.

Halas, N. J.

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[Crossref]

Han, J.

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7, 25 (2018).
[Crossref]

Han, L.

H. Xu, G. Hu, L. Han, M. Jiang, Y. Huang, Y. Li, X. Yang, X. Ling, L. Chen, J. Zhao, and C. Qiu, “Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization,” Adv. Opt. Mater. 7, 1801479 (2018).
[Crossref]

Hanifeh, M.

M. Rajaei, J. Zeng, M. Albooyeh, M. Kamandi, M. Hanifeh, F. Capolino, and H. K. Wickramasinghe, “Giant circular dichroism at visible frequencies enabled by plasmonic ramp-shaped nanostructures,” ACS Photon. 6, 924–931 (2019).
[Crossref]

He, C.

C. He, T. Sun, J. Guo, M. Cao, J. Xia, J. Hu, Y. Yan, and C. Wang, “Chiral metalens of circular polarization dichroism with helical surface arrays in mid-infrared region,” Adv. Opt. Mater. 7, 1901129 (2019).
[Crossref]

Hendry, E.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref]

Holman, Z.

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light Sci. Appl. 8, 78 (2019).
[Crossref]

Hong, M.

Hu, G.

H. Xu, G. Hu, L. Han, M. Jiang, Y. Huang, Y. Li, X. Yang, X. Ling, L. Chen, J. Zhao, and C. Qiu, “Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization,” Adv. Opt. Mater. 7, 1801479 (2018).
[Crossref]

Hu, J.

C. He, T. Sun, J. Guo, M. Cao, J. Xia, J. Hu, Y. Yan, and C. Wang, “Chiral metalens of circular polarization dichroism with helical surface arrays in mid-infrared region,” Adv. Opt. Mater. 7, 1901129 (2019).
[Crossref]

J. Hu, X. Zhao, R. Li, A. Zhu, L. Chen, Y. Lin, B. Cao, X. Zhu, and C. Wang, “Broadband circularly polarizing dichroism with high efficient plasmonic helical surface,” Opt. Express 24, 11023–11032 (2016).
[Crossref]

Hu, S.

S. Yang, Z. Liu, S. Hu, A.-Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-selective transmission in chiral folded metasurfaces,” Nano Lett. 19, 3432–3439 (2019).
[Crossref]

Hu, Y.

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C.-W. Qiu, and H. Duan, “Trichromatic and tri-polarization-channel holography with non-interleaved dielectric metasurface,” Nano Lett. 20, 994–1002 (2019).
[Crossref]

Huang, J.

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

Huang, K.

K. Huang, H. Liu, S. Restuccia, M. Q. Mehmood, S.-T. Mei, D. Giovannini, A. Danner, M. J. Padgett, J.-H. Teng, and C.-W. Qiu, “Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum,” Light Sci. Appl. 7, 17156 (2018).
[Crossref]

Huang, Y.

H. Xu, G. Hu, L. Han, M. Jiang, Y. Huang, Y. Li, X. Yang, X. Ling, L. Chen, J. Zhao, and C. Qiu, “Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization,” Adv. Opt. Mater. 7, 1801479 (2018).
[Crossref]

Huang, Y.-T.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Huang, Y.-W.

A. Y. Zhu, W. T. Chen, A. Zaidi, Y.-W. Huang, M. Khorasaninejad, V. Sanjeev, C.-W. Qiu, and F. Capasso, “Giant intrinsic chiro-optical activity in planar dielectric nanostructures,” Light Sci. Appl. 7, 17158 (2018).
[Crossref]

Huh, D.

G. Yoon, K. Kim, D. Huh, H. Lee, and J. Rho, “Single-step manufacturing of hierarchical dielectric metalens in the visible,” Nat. Commun. 11, 2268 (2020).
[Crossref]

Hung Chu, C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref]

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref]

Jiang, M.

H. Xu, G. Hu, L. Han, M. Jiang, Y. Huang, Y. Li, X. Yang, X. Ling, L. Chen, J. Zhao, and C. Qiu, “Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization,” Adv. Opt. Mater. 7, 1801479 (2018).
[Crossref]

Jiang, T.

S. Tang, X. Li, W. Pan, J. Zhou, T. Jiang, and F. Ding, “High-efficiency broadband vortex beam generator based on transmissive metasurface,” Opt. Express 27, 4281–4291 (2019).
[Crossref]

G. Ding, K. Chen, X. Luo, J. Zhao, T. Jiang, and Y. Feng, “Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion,” Phys. Rev. Appl. 11, 044043 (2019).
[Crossref]

Jiang, Y.

X. Li, H. Zhao, C. Liu, J. Cai, Y. Zhang, Y. Jiang, and D. Zhang, “High-efficiency alignment of 3D biotemplated helices via rotating magnetic field for terahertz chiral metamaterials,” Adv. Opt. Mater. 7, 1900247 (2019).
[Crossref]

Jin, A.-Z.

S. Yang, Z. Liu, S. Hu, A.-Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-selective transmission in chiral folded metasurfaces,” Nano Lett. 19, 3432–3439 (2019).
[Crossref]

Jin, L.

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C.-W. Qiu, and H. Duan, “Trichromatic and tri-polarization-channel holography with non-interleaved dielectric metasurface,” Nano Lett. 20, 994–1002 (2019).
[Crossref]

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref]

Kadodwala, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref]

Kamandi, M.

M. Rajaei, J. Zeng, M. Albooyeh, M. Kamandi, M. Hanifeh, F. Capolino, and H. K. Wickramasinghe, “Giant circular dichroism at visible frequencies enabled by plasmonic ramp-shaped nanostructures,” ACS Photon. 6, 924–931 (2019).
[Crossref]

Kaschke, J.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3, 1411–1417 (2015).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref]

Kelly, S. M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref]

Khardikov, V. V.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008).
[Crossref]

Khorasaninejad, M.

A. Y. Zhu, W. T. Chen, A. Zaidi, Y.-W. Huang, M. Khorasaninejad, V. Sanjeev, C.-W. Qiu, and F. Capasso, “Giant intrinsic chiro-optical activity in planar dielectric nanostructures,” Light Sci. Appl. 7, 17158 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

Kim, K.

G. Yoon, K. Kim, D. Huh, H. Lee, and J. Rho, “Single-step manufacturing of hierarchical dielectric metalens in the visible,” Nat. Commun. 11, 2268 (2020).
[Crossref]

Kuan, C.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Kuo, H. Y.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref]

Lai, Y.-C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref]

Lee, E.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Lee, H.

G. Yoon, K. Kim, D. Huh, H. Lee, and J. Rho, “Single-step manufacturing of hierarchical dielectric metalens in the visible,” Nat. Commun. 11, 2268 (2020).
[Crossref]

Lei, M.

K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2015).
[Crossref]

Li, F.

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

Li, H.

Li, J.

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

S. Yang, Z. Liu, S. Hu, A.-Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-selective transmission in chiral folded metasurfaces,” Nano Lett. 19, 3432–3439 (2019).
[Crossref]

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

A. Martins, J. Li, A. F. da Mota, Y. Wang, L. G. Neto, J. P. do Carmo, F. L. Teixeira, E. R. Martins, and B.-H. V. Borges, “Highly efficient holograms based on c-Si metasurfaces in the visible range,” Opt. Express 26, 9573–9583 (2018).
[Crossref]

Li, L.

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C.-W. Qiu, and H. Duan, “Trichromatic and tri-polarization-channel holography with non-interleaved dielectric metasurface,” Nano Lett. 20, 994–1002 (2019).
[Crossref]

Li, R.

Li, T.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Li, X.

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C.-W. Qiu, and H. Duan, “Trichromatic and tri-polarization-channel holography with non-interleaved dielectric metasurface,” Nano Lett. 20, 994–1002 (2019).
[Crossref]

S. Tang, X. Li, W. Pan, J. Zhou, T. Jiang, and F. Ding, “High-efficiency broadband vortex beam generator based on transmissive metasurface,” Opt. Express 27, 4281–4291 (2019).
[Crossref]

X. Li, H. Zhao, C. Liu, J. Cai, Y. Zhang, Y. Jiang, and D. Zhang, “High-efficiency alignment of 3D biotemplated helices via rotating magnetic field for terahertz chiral metamaterials,” Adv. Opt. Mater. 7, 1900247 (2019).
[Crossref]

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref]

Li, Y.

H. Wang, Y. Li, H. Chen, Y. Shen, Z. Yang, J. Wang, J. Zhang, M. Ding, A. Zhang, T. Cui, and S. Qu, “Spin-to-orbital angular momentum conversion with quasi-continuous spatial phase response,” Adv. Opt. Mater. 7, 1901188 (2019).
[Crossref]

Z. Ma, Y. Li, Y. Li, Y. Gong, S. A. Maier, and M. Hong, “All-dielectric planar chiral metasurface with gradient geometric phase,” Opt. Express 26, 6067–6078 (2018).
[Crossref]

Z. Ma, Y. Li, Y. Li, Y. Gong, S. A. Maier, and M. Hong, “All-dielectric planar chiral metasurface with gradient geometric phase,” Opt. Express 26, 6067–6078 (2018).
[Crossref]

H. Xu, G. Hu, L. Han, M. Jiang, Y. Huang, Y. Li, X. Yang, X. Ling, L. Chen, J. Zhao, and C. Qiu, “Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization,” Adv. Opt. Mater. 7, 1801479 (2018).
[Crossref]

W. Wang, Z. Guo, R. Li, J. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “Plasmonics metalens independent from the incident polarizations,” Opt. Express 23, 16782–16791 (2015).
[Crossref]

Li, Z.

B. Yang, W. Liu, Z. Li, H. Cheng, D.-Y. Choi, S. Chen, and J. Tian, “Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces,” Nano Lett. 19, 4221–4228 (2019).
[Crossref]

Lin, R. J.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Lin, Y.

Linden, S.

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18, 1059–1069 (2010).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Ling, X.

H. Xu, G. Hu, L. Han, M. Jiang, Y. Huang, Y. Li, X. Yang, X. Ling, L. Chen, J. Zhao, and C. Qiu, “Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization,” Adv. Opt. Mater. 7, 1801479 (2018).
[Crossref]

Liu, C.

C. Liu, Z. Fan, Y. Tan, F. Fan, and H. Xu, “Tunable structural color patterns based on the visible-light-responsive dynamic diselenide metathesis,” Adv. Mater. 32, 1907569 (2020).
[Crossref]

X. Li, H. Zhao, C. Liu, J. Cai, Y. Zhang, Y. Jiang, and D. Zhang, “High-efficiency alignment of 3D biotemplated helices via rotating magnetic field for terahertz chiral metamaterials,” Adv. Opt. Mater. 7, 1900247 (2019).
[Crossref]

Liu, H.

K. Huang, H. Liu, S. Restuccia, M. Q. Mehmood, S.-T. Mei, D. Giovannini, A. Danner, M. J. Padgett, J.-H. Teng, and C.-W. Qiu, “Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum,” Light Sci. Appl. 7, 17156 (2018).
[Crossref]

Liu, W.

B. Yang, W. Liu, Z. Li, H. Cheng, D.-Y. Choi, S. Chen, and J. Tian, “Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces,” Nano Lett. 19, 4221–4228 (2019).
[Crossref]

Liu, X.

K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2015).
[Crossref]

Liu, Y.

Liu, Z.

S. Yang, Z. Liu, S. Hu, A.-Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-selective transmission in chiral folded metasurfaces,” Nano Lett. 19, 3432–3439 (2019).
[Crossref]

Lu, H.

M. Wang, R. Salut, H. Lu, M.-A. Suarez, N. Martin, and T. Grosjean, “Subwavelength polarization optics via individual and coupled helical traveling-wave nanoantennas,” Light Sci. Appl. 8, 76 (2019).
[Crossref]

Lu, M.

A. C. Overvig, S. Shrestha, S. C. Malek, M. Lu, A. Stein, C. Zheng, and N. Yu, “Dielectric metasurfaces for complete and independent control of the optical amplitude and phase,” Light Sci. Appl. 8, 92 (2019).
[Crossref]

Lu, S.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Luo, X.

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C.-W. Qiu, and H. Duan, “Trichromatic and tri-polarization-channel holography with non-interleaved dielectric metasurface,” Nano Lett. 20, 994–1002 (2019).
[Crossref]

G. Ding, K. Chen, X. Luo, J. Zhao, T. Jiang, and Y. Feng, “Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion,” Phys. Rev. Appl. 11, 044043 (2019).
[Crossref]

Luo, Y.

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C.-W. Qiu, and H. Duan, “Trichromatic and tri-polarization-channel holography with non-interleaved dielectric metasurface,” Nano Lett. 20, 994–1002 (2019).
[Crossref]

Ma, Z.

Maier, S. A.

Malek, S. C.

A. C. Overvig, S. Shrestha, S. C. Malek, M. Lu, A. Stein, C. Zheng, and N. Yu, “Dielectric metasurfaces for complete and independent control of the optical amplitude and phase,” Light Sci. Appl. 8, 92 (2019).
[Crossref]

Martin, N.

M. Wang, R. Salut, H. Lu, M.-A. Suarez, N. Martin, and T. Grosjean, “Subwavelength polarization optics via individual and coupled helical traveling-wave nanoantennas,” Light Sci. Appl. 8, 76 (2019).
[Crossref]

Martin, O. J. F.

C. Yan, K.-Y. Yang, and O. J. F. Martin, “Fano-resonance-assisted metasurface for color routing,” Light Sci. Appl. 6, e17017 (2017).
[Crossref]

Martins, A.

Martins, E. R.

Mehmood, M. Q.

K. Huang, H. Liu, S. Restuccia, M. Q. Mehmood, S.-T. Mei, D. Giovannini, A. Danner, M. J. Padgett, J.-H. Teng, and C.-W. Qiu, “Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum,” Light Sci. Appl. 7, 17156 (2018).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
[Crossref]

Mei, S.-T.

K. Huang, H. Liu, S. Restuccia, M. Q. Mehmood, S.-T. Mei, D. Giovannini, A. Danner, M. J. Padgett, J.-H. Teng, and C.-W. Qiu, “Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum,” Light Sci. Appl. 7, 17156 (2018).
[Crossref]

Meng, M.

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C.-W. Qiu, and H. Duan, “Trichromatic and tri-polarization-channel holography with non-interleaved dielectric metasurface,” Nano Lett. 20, 994–1002 (2019).
[Crossref]

Mikhaylovskiy, R. V.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref]

Mueller, J. P. B.

B. Groever, N. A. Rubin, J. P. B. Mueller, R. C. Devlin, and F. Capasso, “High-efficiency chiral meta-lens,” Sci. Rep. 8, 7240 (2018).
[Crossref]

Nelson, R. L.

Neto, L. G.

Neumann, O.

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[Crossref]

Nordlander, P.

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[Crossref]

Oh, J.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

Overvig, A. C.

A. C. Overvig, S. Shrestha, S. C. Malek, M. Lu, A. Stein, C. Zheng, and N. Yu, “Dielectric metasurfaces for complete and independent control of the optical amplitude and phase,” Light Sci. Appl. 8, 92 (2019).
[Crossref]

Padgett, M. J.

K. Huang, H. Liu, S. Restuccia, M. Q. Mehmood, S.-T. Mei, D. Giovannini, A. Danner, M. J. Padgett, J.-H. Teng, and C.-W. Qiu, “Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum,” Light Sci. Appl. 7, 17156 (2018).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pan, W.

Passaseo, A.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref]

Plum, E.

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7, 25 (2018).
[Crossref]

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref]

Prinz, V. Y.

S. V. Golod, V. A. Seyfi, A. F. Buldygin, A. E. Gayduk, and V. Y. Prinz, “Large-area 3D-printed chiral metasurface composed of metal helices,” Adv. Opt. Mater. 6, 1800424 (2018).
[Crossref]

Prosvirnin, S. L.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008).
[Crossref]

Qiu, C.

H. Xu, G. Hu, L. Han, M. Jiang, Y. Huang, Y. Li, X. Yang, X. Ling, L. Chen, J. Zhao, and C. Qiu, “Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization,” Adv. Opt. Mater. 7, 1801479 (2018).
[Crossref]

Qiu, C.-W.

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C.-W. Qiu, and H. Duan, “Trichromatic and tri-polarization-channel holography with non-interleaved dielectric metasurface,” Nano Lett. 20, 994–1002 (2019).
[Crossref]

K. Huang, H. Liu, S. Restuccia, M. Q. Mehmood, S.-T. Mei, D. Giovannini, A. Danner, M. J. Padgett, J.-H. Teng, and C.-W. Qiu, “Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum,” Light Sci. Appl. 7, 17156 (2018).
[Crossref]

A. Y. Zhu, W. T. Chen, A. Zaidi, Y.-W. Huang, M. Khorasaninejad, V. Sanjeev, C.-W. Qiu, and F. Capasso, “Giant intrinsic chiro-optical activity in planar dielectric nanostructures,” Light Sci. Appl. 7, 17158 (2018).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
[Crossref]

Qu, S.

H. Wang, Y. Li, H. Chen, Y. Shen, Z. Yang, J. Wang, J. Zhang, M. Ding, A. Zhang, T. Cui, and S. Qu, “Spin-to-orbital angular momentum conversion with quasi-continuous spatial phase response,” Adv. Opt. Mater. 7, 1901188 (2019).
[Crossref]

W. Wang, Z. Guo, R. Li, J. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “Plasmonics metalens independent from the incident polarizations,” Opt. Express 23, 16782–16791 (2015).
[Crossref]

Qu, Y.

Rajaei, M.

M. Rajaei, J. Zeng, M. Albooyeh, M. Kamandi, M. Hanifeh, F. Capolino, and H. K. Wickramasinghe, “Giant circular dichroism at visible frequencies enabled by plasmonic ramp-shaped nanostructures,” ACS Photon. 6, 924–931 (2019).
[Crossref]

Restuccia, S.

K. Huang, H. Liu, S. Restuccia, M. Q. Mehmood, S.-T. Mei, D. Giovannini, A. Danner, M. J. Padgett, J.-H. Teng, and C.-W. Qiu, “Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum,” Light Sci. Appl. 7, 17156 (2018).
[Crossref]

Rho, J.

G. Yoon, K. Kim, D. Huh, H. Lee, and J. Rho, “Single-step manufacturing of hierarchical dielectric metalens in the visible,” Nat. Commun. 11, 2268 (2020).
[Crossref]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Rousso, D.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

Rubin, N. A.

B. Groever, N. A. Rubin, J. P. B. Mueller, R. C. Devlin, and F. Capasso, “High-efficiency chiral meta-lens,” Sci. Rep. 8, 7240 (2018).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref]

Salut, R.

M. Wang, R. Salut, H. Lu, M.-A. Suarez, N. Martin, and T. Grosjean, “Subwavelength polarization optics via individual and coupled helical traveling-wave nanoantennas,” Light Sci. Appl. 8, 76 (2019).
[Crossref]

Sanjeev, V.

A. Y. Zhu, W. T. Chen, A. Zaidi, Y.-W. Huang, M. Khorasaninejad, V. Sanjeev, C.-W. Qiu, and F. Capasso, “Giant intrinsic chiro-optical activity in planar dielectric nanostructures,” Light Sci. Appl. 7, 17158 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Sanvitto, D.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref]

Schwanecke, A. S.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008).
[Crossref]

Semnani, B.

B. Semnani, J. Flannery, R. Al Maruf, and M. Bajcsy, “Spin-preserving chiral photonic crystal mirror,” Light Sci. Appl. 9, 23 (2020).
[Crossref]

Seyfi, V. A.

S. V. Golod, V. A. Seyfi, A. F. Buldygin, A. E. Gayduk, and V. Y. Prinz, “Large-area 3D-printed chiral metasurface composed of metal helices,” Adv. Opt. Mater. 6, 1800424 (2018).
[Crossref]

Shang, L.

F. Fu, L. Shang, Z. Chen, Y. Yu, and Y. Zhao, “Bioinspired living structural color hydrogels,” Sci. Robot. 3, eaar8580 (2018).
[Crossref]

Shen, Y.

H. Wang, Y. Li, H. Chen, Y. Shen, Z. Yang, J. Wang, J. Zhang, M. Ding, A. Zhang, T. Cui, and S. Qu, “Spin-to-orbital angular momentum conversion with quasi-continuous spatial phase response,” Adv. Opt. Mater. 7, 1901188 (2019).
[Crossref]

Shi, J.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref]

Shi, Z.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Shrestha, S.

A. C. Overvig, S. Shrestha, S. C. Malek, M. Lu, A. Stein, C. Zheng, and N. Yu, “Dielectric metasurfaces for complete and independent control of the optical amplitude and phase,” Light Sci. Appl. 8, 92 (2019).
[Crossref]

Stein, A.

A. C. Overvig, S. Shrestha, S. C. Malek, M. Lu, A. Stein, C. Zheng, and N. Yu, “Dielectric metasurfaces for complete and independent control of the optical amplitude and phase,” Light Sci. Appl. 8, 92 (2019).
[Crossref]

Su, V.-C.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Suarez, M.-A.

M. Wang, R. Salut, H. Lu, M.-A. Suarez, N. Martin, and T. Grosjean, “Subwavelength polarization optics via individual and coupled helical traveling-wave nanoantennas,” Light Sci. Appl. 8, 76 (2019).
[Crossref]

Sun, A.

Sun, L.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref]

Sun, S.

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

Sun, T.

C. He, T. Sun, J. Guo, M. Cao, J. Xia, J. Hu, Y. Yan, and C. Wang, “Chiral metalens of circular polarization dichroism with helical surface arrays in mid-infrared region,” Adv. Opt. Mater. 7, 1901129 (2019).
[Crossref]

Svirko, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref]

Tan, Y.

C. Liu, Z. Fan, Y. Tan, F. Fan, and H. Xu, “Tunable structural color patterns based on the visible-light-responsive dynamic diselenide metathesis,” Adv. Mater. 32, 1907569 (2020).
[Crossref]

Tang, S.

Tang, T.

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

Tao, H.

Tasco, V.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref]

Teixeira, F. L.

Teng, J.-H.

K. Huang, H. Liu, S. Restuccia, M. Q. Mehmood, S.-T. Mei, D. Giovannini, A. Danner, M. J. Padgett, J.-H. Teng, and C.-W. Qiu, “Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum,” Light Sci. Appl. 7, 17156 (2018).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Thiel, M.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3, 1411–1417 (2015).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Tian, J.

B. Yang, W. Liu, Z. Li, H. Cheng, D.-Y. Choi, S. Chen, and J. Tian, “Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces,” Nano Lett. 19, 4221–4228 (2019).
[Crossref]

Todisco, F.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref]

Tsai, D. P.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Turunen, J.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Wan, R.

Wan, W.

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10, 10671–10680 (2016).
[Crossref]

Wang, C.

C. He, T. Sun, J. Guo, M. Cao, J. Xia, J. Hu, Y. Yan, and C. Wang, “Chiral metalens of circular polarization dichroism with helical surface arrays in mid-infrared region,” Adv. Opt. Mater. 7, 1901129 (2019).
[Crossref]

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light Sci. Appl. 8, 78 (2019).
[Crossref]

J. Hu, X. Zhao, R. Li, A. Zhu, L. Chen, Y. Lin, B. Cao, X. Zhu, and C. Wang, “Broadband circularly polarizing dichroism with high efficient plasmonic helical surface,” Opt. Express 24, 11023–11032 (2016).
[Crossref]

Wang, H.

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C.-W. Qiu, and H. Duan, “Trichromatic and tri-polarization-channel holography with non-interleaved dielectric metasurface,” Nano Lett. 20, 994–1002 (2019).
[Crossref]

H. Wang, Y. Li, H. Chen, Y. Shen, Z. Yang, J. Wang, J. Zhang, M. Ding, A. Zhang, T. Cui, and S. Qu, “Spin-to-orbital angular momentum conversion with quasi-continuous spatial phase response,” Adv. Opt. Mater. 7, 1901188 (2019).
[Crossref]

Wang, J.

H. Wang, Y. Li, H. Chen, Y. Shen, Z. Yang, J. Wang, J. Zhang, M. Ding, A. Zhang, T. Cui, and S. Qu, “Spin-to-orbital angular momentum conversion with quasi-continuous spatial phase response,” Adv. Opt. Mater. 7, 1901188 (2019).
[Crossref]

Wang, J.-H.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Wang, L.

Wang, M.

M. Wang, R. Salut, H. Lu, M.-A. Suarez, N. Martin, and T. Grosjean, “Subwavelength polarization optics via individual and coupled helical traveling-wave nanoantennas,” Light Sci. Appl. 8, 76 (2019).
[Crossref]

Wang, Q.

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7, 25 (2018).
[Crossref]

Wang, S.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Wang, W.

C. Zhang, F. Yue, D. Wen, M. Chen, Z. Zhang, W. Wang, and X. Chen, “Multichannel metasurface for simultaneous control of holograms and twisted light beams,” ACS Photon. 4, 1906–1912 (2017).
[Crossref]

W. Wang, Z. Guo, R. Li, J. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “Plasmonics metalens independent from the incident polarizations,” Opt. Express 23, 16782–16791 (2015).
[Crossref]

Wang, X.

Wang, X.-H.

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

Wang, Y.

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C.-W. Qiu, and H. Duan, “Trichromatic and tri-polarization-channel holography with non-interleaved dielectric metasurface,” Nano Lett. 20, 994–1002 (2019).
[Crossref]

A. Martins, J. Li, A. F. da Mota, Y. Wang, L. G. Neto, J. P. do Carmo, F. L. Teixeira, E. R. Martins, and B.-H. V. Borges, “Highly efficient holograms based on c-Si metasurfaces in the visible range,” Opt. Express 26, 9573–9583 (2018).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4, 1196–1202 (2016).
[Crossref]

Y. Wang, X. Wen, Y. Qu, L. Wang, R. Wan, and Z. Zhang, “Co-occurrence of circular dichroism and asymmetric transmission in twist nanoslit-nanorod arrays,” Opt. Express 24, 16425–16433 (2016).
[Crossref]

Wang, Z.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Z. Yang, Z. Wang, H. Tao, and M. Zhao, “Manipulation of wavefront using helical metamaterials,” Opt. Express 24, 18266–18276 (2016).
[Crossref]

Wegener, M.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3, 1411–1417 (2015).
[Crossref]

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18, 1059–1069 (2010).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Wei, Z.

Wen, D.

C. Zhang, F. Yue, D. Wen, M. Chen, Z. Zhang, W. Wang, and X. Chen, “Multichannel metasurface for simultaneous control of holograms and twisted light beams,” ACS Photon. 4, 1906–1912 (2017).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
[Crossref]

Wen, X.

Wickramasinghe, H. K.

M. Rajaei, J. Zeng, M. Albooyeh, M. Kamandi, M. Hanifeh, F. Capolino, and H. K. Wickramasinghe, “Giant circular dichroism at visible frequencies enabled by plasmonic ramp-shaped nanostructures,” ACS Photon. 6, 924–931 (2019).
[Crossref]

Wu, C.

Wu, L.

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3, 1411–1417 (2015).
[Crossref]

Wu, P. C.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Xia, J.

C. He, T. Sun, J. Guo, M. Cao, J. Xia, J. Hu, Y. Yan, and C. Wang, “Chiral metalens of circular polarization dichroism with helical surface arrays in mid-infrared region,” Adv. Opt. Mater. 7, 1901129 (2019).
[Crossref]

Xiao, J.

K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2015).
[Crossref]

Xiao, S.

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C.-W. Qiu, and H. Duan, “Trichromatic and tri-polarization-channel holography with non-interleaved dielectric metasurface,” Nano Lett. 20, 994–1002 (2019).
[Crossref]

Xu, B.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Xu, H.

C. Liu, Z. Fan, Y. Tan, F. Fan, and H. Xu, “Tunable structural color patterns based on the visible-light-responsive dynamic diselenide metathesis,” Adv. Mater. 32, 1907569 (2020).
[Crossref]

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

H. Xu, G. Hu, L. Han, M. Jiang, Y. Huang, Y. Li, X. Yang, X. Ling, L. Chen, J. Zhao, and C. Qiu, “Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization,” Adv. Opt. Mater. 7, 1801479 (2018).
[Crossref]

Xu, Q.

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7, 25 (2018).
[Crossref]

Xu, Y.

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7, 25 (2018).
[Crossref]

Yan, C.

C. Yan, K.-Y. Yang, and O. J. F. Martin, “Fano-resonance-assisted metasurface for color routing,” Light Sci. Appl. 6, e17017 (2017).
[Crossref]

Yan, Y.

C. He, T. Sun, J. Guo, M. Cao, J. Xia, J. Hu, Y. Yan, and C. Wang, “Chiral metalens of circular polarization dichroism with helical surface arrays in mid-infrared region,” Adv. Opt. Mater. 7, 1901129 (2019).
[Crossref]

Yang, B.

B. Yang, W. Liu, Z. Li, H. Cheng, D.-Y. Choi, S. Chen, and J. Tian, “Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces,” Nano Lett. 19, 4221–4228 (2019).
[Crossref]

Yang, H.

S. Yang, Z. Liu, S. Hu, A.-Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-selective transmission in chiral folded metasurfaces,” Nano Lett. 19, 3432–3439 (2019).
[Crossref]

Yang, K.-Y.

C. Yan, K.-Y. Yang, and O. J. F. Martin, “Fano-resonance-assisted metasurface for color routing,” Light Sci. Appl. 6, e17017 (2017).
[Crossref]

Yang, M.

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

Yang, Q.

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7, 25 (2018).
[Crossref]

Yang, S.

S. Yang, Z. Liu, S. Hu, A.-Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-selective transmission in chiral folded metasurfaces,” Nano Lett. 19, 3432–3439 (2019).
[Crossref]

S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34, 3047–3049 (2009).
[Crossref]

Yang, X.

H. Xu, G. Hu, L. Han, M. Jiang, Y. Huang, Y. Li, X. Yang, X. Ling, L. Chen, J. Zhao, and C. Qiu, “Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization,” Adv. Opt. Mater. 7, 1801479 (2018).
[Crossref]

Y. Chen, X. Yang, and J. Gao, “Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces,” Light Sci. Appl. 7, 84 (2018).
[Crossref]

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10, 10671–10680 (2016).
[Crossref]

Yang, Y.

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

Yang, Z.

H. Wang, Y. Li, H. Chen, Y. Shen, Z. Yang, J. Wang, J. Zhang, M. Ding, A. Zhang, T. Cui, and S. Qu, “Spin-to-orbital angular momentum conversion with quasi-continuous spatial phase response,” Adv. Opt. Mater. 7, 1901188 (2019).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4, 1196–1202 (2016).
[Crossref]

Z. Yang, Z. Wang, H. Tao, and M. Zhao, “Manipulation of wavefront using helical metamaterials,” Opt. Express 24, 18266–18276 (2016).
[Crossref]

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3, 1411–1417 (2015).
[Crossref]

Yao, J.

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

Yao, Y.

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light Sci. Appl. 8, 78 (2019).
[Crossref]

Yoon, G.

G. Yoon, K. Kim, D. Huh, H. Lee, and J. Rho, “Single-step manufacturing of hierarchical dielectric metalens in the visible,” Nat. Commun. 11, 2268 (2020).
[Crossref]

Yu, N.

A. C. Overvig, S. Shrestha, S. C. Malek, M. Lu, A. Stein, C. Zheng, and N. Yu, “Dielectric metasurfaces for complete and independent control of the optical amplitude and phase,” Light Sci. Appl. 8, 92 (2019).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Yu, Y.

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

F. Fu, L. Shang, Z. Chen, Y. Yu, and Y. Zhao, “Bioinspired living structural color hydrogels,” Sci. Robot. 3, eaar8580 (2018).
[Crossref]

Yue, F.

C. Zhang, F. Yue, D. Wen, M. Chen, Z. Zhang, W. Wang, and X. Chen, “Multichannel metasurface for simultaneous control of holograms and twisted light beams,” ACS Photon. 4, 1906–1912 (2017).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
[Crossref]

Zaidi, A.

A. Y. Zhu, W. T. Chen, A. Zaidi, Y.-W. Huang, M. Khorasaninejad, V. Sanjeev, C.-W. Qiu, and F. Capasso, “Giant intrinsic chiro-optical activity in planar dielectric nanostructures,” Light Sci. Appl. 7, 17158 (2018).
[Crossref]

Zeng, J.

M. Rajaei, J. Zeng, M. Albooyeh, M. Kamandi, M. Hanifeh, F. Capolino, and H. K. Wickramasinghe, “Giant circular dichroism at visible frequencies enabled by plasmonic ramp-shaped nanostructures,” ACS Photon. 6, 924–931 (2019).
[Crossref]

Zhan, Q.

Zhang, A.

H. Wang, Y. Li, H. Chen, Y. Shen, Z. Yang, J. Wang, J. Zhang, M. Ding, A. Zhang, T. Cui, and S. Qu, “Spin-to-orbital angular momentum conversion with quasi-continuous spatial phase response,” Adv. Opt. Mater. 7, 1901188 (2019).
[Crossref]

Zhang, C.

C. Zhang, F. Yue, D. Wen, M. Chen, Z. Zhang, W. Wang, and X. Chen, “Multichannel metasurface for simultaneous control of holograms and twisted light beams,” ACS Photon. 4, 1906–1912 (2017).
[Crossref]

Zhang, D.

X. Li, H. Zhao, C. Liu, J. Cai, Y. Zhang, Y. Jiang, and D. Zhang, “High-efficiency alignment of 3D biotemplated helices via rotating magnetic field for terahertz chiral metamaterials,” Adv. Opt. Mater. 7, 1900247 (2019).
[Crossref]

Zhang, J.

H. Wang, Y. Li, H. Chen, Y. Shen, Z. Yang, J. Wang, J. Zhang, M. Ding, A. Zhang, T. Cui, and S. Qu, “Spin-to-orbital angular momentum conversion with quasi-continuous spatial phase response,” Adv. Opt. Mater. 7, 1901188 (2019).
[Crossref]

W. Wang, Z. Guo, R. Li, J. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “Plasmonics metalens independent from the incident polarizations,” Opt. Express 23, 16782–16791 (2015).
[Crossref]

Zhang, S.

S. Yang, Z. Liu, S. Hu, A.-Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-selective transmission in chiral folded metasurfaces,” Nano Lett. 19, 3432–3439 (2019).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
[Crossref]

Zhang, W.

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7, 25 (2018).
[Crossref]

Zhang, X.

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7, 25 (2018).
[Crossref]

Zhang, Y.

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

X. Li, H. Zhao, C. Liu, J. Cai, Y. Zhang, Y. Jiang, and D. Zhang, “High-efficiency alignment of 3D biotemplated helices via rotating magnetic field for terahertz chiral metamaterials,” Adv. Opt. Mater. 7, 1900247 (2019).
[Crossref]

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[Crossref]

Zhang, Z.

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

C. Zhang, F. Yue, D. Wen, M. Chen, Z. Zhang, W. Wang, and X. Chen, “Multichannel metasurface for simultaneous control of holograms and twisted light beams,” ACS Photon. 4, 1906–1912 (2017).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4, 1196–1202 (2016).
[Crossref]

Y. Wang, X. Wen, Y. Qu, L. Wang, R. Wan, and Z. Zhang, “Co-occurrence of circular dichroism and asymmetric transmission in twist nanoslit-nanorod arrays,” Opt. Express 24, 16425–16433 (2016).
[Crossref]

Zhao, H.

X. Li, H. Zhao, C. Liu, J. Cai, Y. Zhang, Y. Jiang, and D. Zhang, “High-efficiency alignment of 3D biotemplated helices via rotating magnetic field for terahertz chiral metamaterials,” Adv. Opt. Mater. 7, 1900247 (2019).
[Crossref]

Zhao, J.

G. Ding, K. Chen, X. Luo, J. Zhao, T. Jiang, and Y. Feng, “Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion,” Phys. Rev. Appl. 11, 044043 (2019).
[Crossref]

H. Xu, G. Hu, L. Han, M. Jiang, Y. Huang, Y. Li, X. Yang, X. Ling, L. Chen, J. Zhao, and C. Qiu, “Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization,” Adv. Opt. Mater. 7, 1801479 (2018).
[Crossref]

Zhao, M.

Zhao, Q.

K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2015).
[Crossref]

Zhao, S.

Zhao, X.

Zhao, Y.

F. Fu, L. Shang, Z. Chen, Y. Yu, and Y. Zhao, “Bioinspired living structural color hydrogels,” Sci. Robot. 3, eaar8580 (2018).
[Crossref]

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref]

Zheludev, N. I.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008).
[Crossref]

Zhen, Y.-R.

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[Crossref]

Zheng, C.

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

A. C. Overvig, S. Shrestha, S. C. Malek, M. Lu, A. Stein, C. Zheng, and N. Yu, “Dielectric metasurfaces for complete and independent control of the optical amplitude and phase,” Light Sci. Appl. 8, 92 (2019).
[Crossref]

Zhou, J.

S. Tang, X. Li, W. Pan, J. Zhou, T. Jiang, and F. Ding, “High-efficiency broadband vortex beam generator based on transmissive metasurface,” Opt. Express 27, 4281–4291 (2019).
[Crossref]

K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2015).
[Crossref]

Zhou, Y.

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4, 1196–1202 (2016).
[Crossref]

Zhou, Z.-K.

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

Zhu, A.

Zhu, A. Y.

A. Y. Zhu, W. T. Chen, A. Zaidi, Y.-W. Huang, M. Khorasaninejad, V. Sanjeev, C.-W. Qiu, and F. Capasso, “Giant intrinsic chiro-optical activity in planar dielectric nanostructures,” Light Sci. Appl. 7, 17158 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

Zhu, S.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Zhu, X.

ACS Nano (1)

W. Wan, J. Gao, and X. Yang, “Full-color plasmonic metasurface holograms,” ACS Nano 10, 10671–10680 (2016).
[Crossref]

ACS Photon. (2)

C. Zhang, F. Yue, D. Wen, M. Chen, Z. Zhang, W. Wang, and X. Chen, “Multichannel metasurface for simultaneous control of holograms and twisted light beams,” ACS Photon. 4, 1906–1912 (2017).
[Crossref]

M. Rajaei, J. Zeng, M. Albooyeh, M. Kamandi, M. Hanifeh, F. Capolino, and H. K. Wickramasinghe, “Giant circular dichroism at visible frequencies enabled by plasmonic ramp-shaped nanostructures,” ACS Photon. 6, 924–931 (2019).
[Crossref]

Adv. Mater. (1)

C. Liu, Z. Fan, Y. Tan, F. Fan, and H. Xu, “Tunable structural color patterns based on the visible-light-responsive dynamic diselenide metathesis,” Adv. Mater. 32, 1907569 (2020).
[Crossref]

Adv. Opt. Mater. (8)

H. Wang, Y. Li, H. Chen, Y. Shen, Z. Yang, J. Wang, J. Zhang, M. Ding, A. Zhang, T. Cui, and S. Qu, “Spin-to-orbital angular momentum conversion with quasi-continuous spatial phase response,” Adv. Opt. Mater. 7, 1901188 (2019).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective color filters and monolithic color printing based on asymmetric Fabry–Perot cavities using nickel as a broadband absorber,” Adv. Opt. Mater. 4, 1196–1202 (2016).
[Crossref]

S. V. Golod, V. A. Seyfi, A. F. Buldygin, A. E. Gayduk, and V. Y. Prinz, “Large-area 3D-printed chiral metasurface composed of metal helices,” Adv. Opt. Mater. 6, 1800424 (2018).
[Crossref]

X. Li, H. Zhao, C. Liu, J. Cai, Y. Zhang, Y. Jiang, and D. Zhang, “High-efficiency alignment of 3D biotemplated helices via rotating magnetic field for terahertz chiral metamaterials,” Adv. Opt. Mater. 7, 1900247 (2019).
[Crossref]

H. Xu, G. Hu, L. Han, M. Jiang, Y. Huang, Y. Li, X. Yang, X. Ling, L. Chen, J. Zhao, and C. Qiu, “Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization,” Adv. Opt. Mater. 7, 1801479 (2018).
[Crossref]

C. He, T. Sun, J. Guo, M. Cao, J. Xia, J. Hu, Y. Yan, and C. Wang, “Chiral metalens of circular polarization dichroism with helical surface arrays in mid-infrared region,” Adv. Opt. Mater. 7, 1901129 (2019).
[Crossref]

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, and M. Wegener, “A helical metamaterial for broadband circular polarization conversion,” Adv. Opt. Mater. 3, 1411–1417 (2015).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
[Crossref]

Carbon (1)

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

Light Sci. Appl. (10)

A. Basiri, X. Chen, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, and Y. Yao, “Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements,” Light Sci. Appl. 8, 78 (2019).
[Crossref]

Y. Chen, X. Yang, and J. Gao, “Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces,” Light Sci. Appl. 7, 84 (2018).
[Crossref]

Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, and W. Zhang, “Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves,” Light Sci. Appl. 7, 25 (2018).
[Crossref]

M. Wang, R. Salut, H. Lu, M.-A. Suarez, N. Martin, and T. Grosjean, “Subwavelength polarization optics via individual and coupled helical traveling-wave nanoantennas,” Light Sci. Appl. 8, 76 (2019).
[Crossref]

A. Y. Zhu, W. T. Chen, A. Zaidi, Y.-W. Huang, M. Khorasaninejad, V. Sanjeev, C.-W. Qiu, and F. Capasso, “Giant intrinsic chiro-optical activity in planar dielectric nanostructures,” Light Sci. Appl. 7, 17158 (2018).
[Crossref]

B. Semnani, J. Flannery, R. Al Maruf, and M. Bajcsy, “Spin-preserving chiral photonic crystal mirror,” Light Sci. Appl. 9, 23 (2020).
[Crossref]

C. Yan, K.-Y. Yang, and O. J. F. Martin, “Fano-resonance-assisted metasurface for color routing,” Light Sci. Appl. 6, e17017 (2017).
[Crossref]

K. Huang, H. Liu, S. Restuccia, M. Q. Mehmood, S.-T. Mei, D. Giovannini, A. Danner, M. J. Padgett, J.-H. Teng, and C.-W. Qiu, “Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum,” Light Sci. Appl. 7, 17156 (2018).
[Crossref]

Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z.-K. Zhou, C.-W. Qiu, and X.-H. Wang, “Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control,” Light Sci. Appl. 8, 95 (2019).
[Crossref]

A. C. Overvig, S. Shrestha, S. C. Malek, M. Lu, A. Stein, C. Zheng, and N. Yu, “Dielectric metasurfaces for complete and independent control of the optical amplitude and phase,” Light Sci. Appl. 8, 92 (2019).
[Crossref]

Nano Lett. (5)

Y. Hu, L. Li, Y. Wang, M. Meng, L. Jin, X. Luo, Y. Chen, X. Li, S. Xiao, H. Wang, Y. Luo, C.-W. Qiu, and H. Duan, “Trichromatic and tri-polarization-channel holography with non-interleaved dielectric metasurface,” Nano Lett. 20, 994–1002 (2019).
[Crossref]

B. Yang, W. Liu, Z. Li, H. Cheng, D.-Y. Choi, S. Chen, and J. Tian, “Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces,” Nano Lett. 19, 4221–4228 (2019).
[Crossref]

S. Yang, Z. Liu, S. Hu, A.-Z. Jin, H. Yang, S. Zhang, J. Li, and C. Gu, “Spin-selective transmission in chiral folded metasurfaces,” Nano Lett. 19, 3432–3439 (2019).
[Crossref]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8, 2940–2943 (2008).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

Nat. Commun. (6)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref]

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref]

Y. Zhang, Y.-R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, “Coherent anti-stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance,” Nat. Commun. 5, 4424 (2014).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

G. Yoon, K. Kim, D. Huh, H. Lee, and J. Rho, “Single-step manufacturing of hierarchical dielectric metalens in the visible,” Nat. Commun. 11, 2268 (2020).
[Crossref]

Nat. Nanotechnol. (3)

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref]

Opt. Express (8)

S. Tang, X. Li, W. Pan, J. Zhou, T. Jiang, and F. Ding, “High-efficiency broadband vortex beam generator based on transmissive metasurface,” Opt. Express 27, 4281–4291 (2019).
[Crossref]

A. Martins, J. Li, A. F. da Mota, Y. Wang, L. G. Neto, J. P. do Carmo, F. L. Teixeira, E. R. Martins, and B.-H. V. Borges, “Highly efficient holograms based on c-Si metasurfaces in the visible range,” Opt. Express 26, 9573–9583 (2018).
[Crossref]

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18, 1059–1069 (2010).
[Crossref]

W. Wang, Z. Guo, R. Li, J. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “Plasmonics metalens independent from the incident polarizations,” Opt. Express 23, 16782–16791 (2015).
[Crossref]

Z. Ma, Y. Li, Y. Li, Y. Gong, S. A. Maier, and M. Hong, “All-dielectric planar chiral metasurface with gradient geometric phase,” Opt. Express 26, 6067–6078 (2018).
[Crossref]

J. Hu, X. Zhao, R. Li, A. Zhu, L. Chen, Y. Lin, B. Cao, X. Zhu, and C. Wang, “Broadband circularly polarizing dichroism with high efficient plasmonic helical surface,” Opt. Express 24, 11023–11032 (2016).
[Crossref]

Z. Yang, Z. Wang, H. Tao, and M. Zhao, “Manipulation of wavefront using helical metamaterials,” Opt. Express 24, 18266–18276 (2016).
[Crossref]

Y. Wang, X. Wen, Y. Qu, L. Wang, R. Wan, and Z. Zhang, “Co-occurrence of circular dichroism and asymmetric transmission in twist nanoslit-nanorod arrays,” Opt. Express 24, 16425–16433 (2016).
[Crossref]

Opt. Lett. (2)

Phys. Rev. Appl. (1)

G. Ding, K. Chen, X. Luo, J. Zhao, T. Jiang, and Y. Feng, “Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion,” Phys. Rev. Appl. 11, 044043 (2019).
[Crossref]

Phys. Rev. Lett. (1)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95, 227401 (2005).
[Crossref]

Sci. Rep. (2)

K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, and J. Zhou, “Magnetically tunable Mie resonance-based dielectric metamaterials,” Sci. Rep. 4, 7001 (2015).
[Crossref]

B. Groever, N. A. Rubin, J. P. B. Mueller, R. C. Devlin, and F. Capasso, “High-efficiency chiral meta-lens,” Sci. Rep. 8, 7240 (2018).
[Crossref]

Sci. Robot. (1)

F. Fu, L. Shang, Z. Chen, Y. Yu, and Y. Zhao, “Bioinspired living structural color hydrogels,” Sci. Robot. 3, eaar8580 (2018).
[Crossref]

Science (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the proposed chiral metalens. (a) Overview of the chiral metalens formed from arrays of unit cells composed of nested dual-helical surfaces (NDHSs). (b) Enlarged structure showing arrays of NDHSs with a period of $P$; the azimuth angle of each NDHS varies across the metalens. (c) Perspective view of the NDHS unit cell with inner and outer radii ${{\rm{R}}_1}$ and ${{\rm{R}}_2}$, heights ${{\rm{H}}_1}$ and ${{\rm{H}}_2}$, and gold (Au) film of thickness $d$. (d) Top view of the NDHS unit cell, where $\theta$ and $\phi$ denote the azimuthal angle for the inner and outer helical surfaces, respectively. (e) Typical functions of the chiral metalens. Transmission (under the LCP incidence) or reflection (under the RCP incidence) can be specified using a left-handed NDHS metalens with a positive twist angle of $\Psi$.
Fig. 2.
Fig. 2. Circular polarization components of transmission field. (a) Transmittivity (${{\rm{T}}_{\rm{LR}\Psi}}$) and phase shift (${\varphi _{\rm{LR}\Psi}}$) of the cross-polarized components in the transmission field, expressed as a function of $\theta$ at a wavelength of 4 µm for $\Psi = {{0}}$ and 75°, respectively. (b) Transmittivity (${{\rm{T}}_{\rm{LL}\Psi}}$) and phase shift (${\varphi _{\rm{LL}\Psi}}$) of the co-polarized components in the transmission field, expressed as a function of $\theta$ at a wavelength of 4 µm for $\Psi = {{0}}$ and 75°, respectively. (c) Diagram of a CMHS (i.e., a NDHS with $\Psi = {{0}}$) and a 75° NDHS. (d) Transmission spectrum of 75° NDHS array under LCP and RCP incidences.
Fig. 3.
Fig. 3. Dependences of the transmission cross-polarization conversion and circular dichroism upon the azimuthal angle of the inner and outer helical surfaces in NDHS. (a) Transmission and (b) phase maps for the cross-polarized components at different $\theta$ and $\phi$ for the LCP incidences. (c) Line scans along Lines 1, 2, and 3 in (a) and (b) taken for $\Psi = {{60}}^\circ$, ${-}{{120}}^\circ$, and 0°, respectively. (d) Transmission and (e) phase maps for the cross-polarized components at different $\theta$ and $\phi$ for the RCP incidences. (f) Line scans along Lines 1, 2, and 3 in (d) and (e) taken at $\Psi = - {{60}}^\circ$, 120°, and 0°, respectively. Map of the total transmissions at different $\theta$ and $\phi$ for (g) the LCP and (h) RCP incidences. (i) Line scans along Lines 1, 2, and 3 in (g) and (h), taken at $\Psi = {{60}}^\circ$, 0°, or ${-}{{60}}^\circ$.
Fig. 4.
Fig. 4. Simulated transmission optical field of a designed IE-ChiML under LCP and RCP incidences. (a)–(b) Focusing behavior of the Pos-IE-ChiML under LCP and RCP incidences, respectively. (c)–(d) Focal depth of the Pos-IE-ChiML at different incident wavelengths under LCP and RCP incidences, respectively. (e)–(f) Focusing behavior of the Neg-IE-ChiML under LCP and RCP incidences, respectively. (g)–(h) Focusing behavior of the C-ChiML under LCP and RCP incidences, respectively. (i) Line scans along X in (a), (b), (e), (f), (g), and (h).
Fig. 5.
Fig. 5. SEM images of the fabricated Pos-IE-ChiML at different viewing angles. (a)–(b) Top views with different magnifications. (c)–(d) Side views at 45° view angle with different magnifications. (e) Schematic of the optical measurement system for imaging. SiN, silicon nitride infrared source; LP, linear polarizer; QWP, quarter-wave plate; L1, Lens 1; L2, Lens 2; and L3, Lens 3.
Fig. 6.
Fig. 6. Experimental chiral focusing and circular dichroism of the fabricated Pos-IE-ChiML. (a)–(b) Set of time-sequential infrared pictures taken under LCP and RCP incidences, respectively. (c)–(d) Chiral focusing pictures obtained with the phase lock-in processing of (a) and (b); the inset in (c) is a magnified image of the focal spot. (e) Line scans of the intensity distribution along the X and Y axes at the centers of (c) and (d). (f) Comparison of simulated and experimental transmissions under LCP and RCP incidences.
Fig. 7.
Fig. 7. Experimental chiral images under LCP and RCP incidences for the standard USAF resolution target. (a) Groups 2 and 3 of USAF target under LCP incidence. The right-side image is a magnification of the center part of left-side one (dotted box). (b) Elements 3–5 of Group 1 in the USAF target under LCP incidence. The right-side image is a magnification of the center part of left-side one (dotted box). (c) Groups 2 and 3 of USAF target under RCP incidence. (d) Elements 3–5 of Group 1 of USAF target under RCP incidence.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ T L R T R R T L L T R L ] = 1 2 [ ( T x x T y y ) + i ( T x y + T y x ) ( T x x + T y y ) + i ( T x y T y x ) ( T x x + T y y ) i ( T x y T y x ) ( T x x T y y ) i ( T x y + T y x ) ] ,
E L R t 1 L R E i e i Φ 1 + t 2 L R E i e i ( Φ 2 + 2 Ψ ) E L L t 3 L L E i e i Φ 3 + t 4 L L E i e i ( Φ 4 + 2 Ψ ) ,
Φ 1 Φ 2 2 ψ = 2 n π .
Φ ( x , y ) = Φ ( 0 , 0 ) + 2 π λ ( f x 2 + y 2 + f 2 ) ,