Abstract

We present a unified and extended perspective of Bessel beams, irrespective of their orbital angular momentum (OAM)—zero, integer or noninteger—and mode—scalar or vectorial, and LSE/LSM or TE/TM in the latter case. The unification is based on the integral superposition of constituent waves along the angular-spectrum cone of the beam, and enables us to describe, compute, relate, and implement all Bessel beams, and even other types of beams, in a universal fashion. We first establish the integral superposition theory. Then, we demonstrate the existence of noninteger-OAM TE/TM Bessel beams, compare the LSE/LSM and TE/TM modes, and establish useful mathematical relations between them. We also provide an original description of the position of the noninteger-OAM singularity in terms of the initial phase of the constituent waves. Finally, we introduce a general technique for generating Bessel beams using an adequate superposition of properly tuned sources. This global perspective and theoretical extension may be useful in applications such as spectroscopy, microscopy, and optical/quantum force manipulations.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Electromagnetic Bessel beams represent a fundamental form of structured light. They are localized waves [1,2] with transverse Bessel function profiles that carry orbital angular momentum (OAM) along their propagation axis. Localized waves were first reported as soliton-like waves by Bateman [3], next derived for the Bessel case as the TE/TM solutions to the cylindrical wave equation by Stratton [4], and then generalized as solutions to a class of equations admitting “waves without distortion” as solution by Courant and Hilbert [5]. They are waves that propagate without spatial dispersion (or diffraction) and without temporal (or chromatic) dispersion. Their energy is, thus, uniformly confined and invariant perpendicular to and along, respectively, their direction of propagation. OAM is a beam property whose macroscopic manifestation is an isophase surface that has the form of a vortex along the axis of the beam. It may be integer or noninteger. In the former case, the wave has the transverse phase dependence ${{e}^{{in\phi}}}$ ($n \in {\mathbb Z}$), corresponding to an OAM of $n\hbar$ per photon [6], while in the latter case the wave is made of a superposition of integer-OAM waves that combine so as to produce noninteger OAM per photon [7]. This property association of localization and OAM confers to Bessel beams specific capabilities for manipulating light that may be exploited in diverse applications, such as nanoparticle guiding [8], orbiting and spinning [9], trapping [10,11] and tracting [1214], spectroscopy [15], microscopy [16], and quantum key distribution [17]. Figure 1 shows a general classification of Bessel beams that pertain to the sequel of the paper.

Bessel beams are the simplest form of light OAM after the Laguerre–Gauss beams and the most studied localized waves. They are monochromatic beams with a transverse amplitude pattern that follows Bessel functions of the first kind, ${J_n}(\alpha \rho)$, multiplied by the phase function ${{e}^{{in\phi}}}$ ($n \in {\mathbb Z}$) or combinations of such waves in the noninteger-OAM case. Their simplest forms are the scalar Bessel beams, also existing in acoustics and restricted to the paraxial approximation in optics. Such beams were first, to the best of our knowledge, experimentally showed by Durmin [18] for $n = 0$ (no-OAM), while their integer-OAM carrying versions were reported shortly thereafter [19]. Noninteger-OAM scalar Bessel beams were reported only 15 years later [20]. In the case of electromagnetic waves, such as light, Bessel beams are vectorial and may be either longitudinal section electric (LSE)/longitudinal section magnetic (LSM) or TE/TM, as mentioned in Fig. 1. Vectorial Bessel beams, the only exact forms of electromagnetic Bessel beams, were introduced in LSE/LSM [21]. Integer-OAM forms in [22] (51 years after their TE/TM form introduction by Stratton [4]) and is generalized to the noninteger case in [23]. Finally, Bessel beams of various complexities have been generated by an axicon illuminated with a Laguerre–Gaussian beam [24], by a single helical axicon (azimuthal phase plate) [25], by a spatial light modulator [20,26], by a leaky-wave antenna [27], and by a metasurface [28].

This paper fills up some fundamental gaps existing in the literature on Bessel beams. Specifically, it reports on (1) a unified representation of Bessel beams, (2) a demonstration of the existence of noninteger TE/TM OAM Bessel beams and their detailed characterization, and (3) a generic and efficient approach for the practical implementation of Bessel beams.

 figure: Fig. 1.

Fig. 1. Classification of electromagnetic Bessel beams.

Download Full Size | PPT Slide | PDF

A. Unified Representation of Bessel Beams

Bessel beams have been described either in the spatial direct (${\textbf r}$) domain [4,19,22,23] or in the spatial inverse (${\textbf k}$)—or spectral—domain [18,20,29]. While the spatial approach immediately describes the nature of the beam, it is restricted to the beam in question. In contrast, the spectral approach, although less explicit, allows generalizations and provides insight into simple generation techniques. The spectral approach is therefore more powerful. However, it has only been applied to the scalar case in the context of Bessel beams. This paper presents a general electromagnetic vectorial spectral formulation that applies to all Bessel beams (scalar and vectorial, with integer and noninteger OAM, LSE/LSM and TE/TM, and all related combinations) and even to other types of conical (e.g., Mathieu, Weber) and nonconical beams (e.g., Gauss–Laguerre and hypergeometric Gaussian beams), hence providing novel perspectives and possibilities.

B. Existence and Characterization of TE/TM with Noninteger OAMs

Whereas vectorial TE/TM Bessel beams [4,19,27,30] and scalar Bessel beams with arbitrary OAM [20,31] have been separately described in the literature, we report here for the first time, to the best of our knowledge, the existence of TE/TM Bessel beams with noninteger OAMs and present a detailed description of these new modes, showing superior focusing capabilities [32] than their LSE/LSM counterparts in addition to richer optical force opportunities.

C. Generic and Efficient Practical Implementation

Both scalar and vectorial Bessel beams have been experimentally generated using diverse technologies, all suffering from some drawbacks. The technologies for scalar beams include the helical axicon [25], which has the disadvantage of being a bulky lens, and spatial light modulators [20,26], which have restricted polarization flexibility due to their inherent phase-only and magnitude-only restriction. The technologies for vectorial beams include leaky-wave antennas [27], which can produce specific low and integer-order OAM TE/TM beams, and metasurfaces [28], which are the most attractive technology but have been conceived in the direct domain and have, hence, not yet benefited from the generality of the vectorial spectral-domain formulation [33] presented in this paper. Based on this approach, we present here an efficient and generic approach for the practical implementation of any Bessel beam (and other conical or nonconical beams).

 figure: Fig. 2.

Fig. 2. General description of a Bessel beam [Eq. (1)] as a superposition of waves [Eq. (2a)] with different phases [Eq. (2d)] propagating along a cone of opening angle $\delta = \mathop {\tan}\nolimits^{- 1} (\alpha /\beta)$ [Eq. (2b)] towards its apex. The field panel shows, as an example, $|{U_1}(x,y,0,0)| = |{J_1}(\alpha \rho)|$.

Download Full Size | PPT Slide | PDF

2. SCALAR SOLUTION

A Bessel beam may be generally described in a linear system by the scalar function of space ($x$, $y$, $z$) and time ($t$),

$${U_\nu}(x,y,z,t) = \int_0^{2\pi} {\psi _\nu}({\phi _{G}}){\rm d}{\phi _{G}},$$
where ${\psi _\nu}({\phi _{G}})$ represents a continuous set of waves that propagate at the angle ${\phi _{G}}$ along a circular cone towards its apex, so as to form a transverse interference pattern in the form of a Bessel function, as illustrated in Fig. 2, and where $\nu$ is equal to the OAM of the beam when it is integer or half-integer (see Supplement 1). These waves have the mathematical form
$${\psi _\nu}({\phi _{G}}) = {{e}^{i({\textbf k}({\phi _{G}}) \cdot {\textbf r} + {\gamma _\nu}({\phi _{G}}) - \omega t)}}w(\xi),$$
with the oblique wave vector
$${\textbf k}({\phi _{G}}) = - \alpha \left({\cos ({\phi _{G}}){\hat {\boldsymbol x}} + \sin ({\phi _{G}}){\hat {\boldsymbol y}}} \right) + \beta {\hat {\boldsymbol z}},$$
where
$$\alpha = {k_0}\sin (\delta),\quad \beta = {k_0}\cos (\delta),$$
so that ${\alpha ^2} + {\beta ^2} = k_0^2 = {({\omega /c})^2}$, and $\delta$ is called the axicon angle, with the linear phase
$${\gamma _\nu}({\phi _{G}}) = 2\pi \nu{\rm frac}\left({\frac{{{\phi _{G}}}}{{2\pi}} + \left({1 - \frac{{{\phi _{{G},0}}}}{{2\pi}}} \right)} \right),\quad \nu \in {\mathbb R}.$$

In these relations, $w(\xi)$ is the transverse apodization of each wave with respect to its propagation direction, ${\textbf k}({\phi _{G}})$, with $\xi$ being the radial variable of the corresponding local coordinate system, ${\rm frac}(\cdot)$ is the fractional part function [34], and ${\phi _{{G},0}}$ is related to the position of the phase singularity for $\nu \in {\mathbb R}\backslash {\mathbb Z}$, as will be seen later. Note that Eq. (2d) represents a sawtooth function of ${\phi _{G}}$ that reduces to ${\gamma _\nu}({\phi _{G}}) = \nu {\phi _{G}}$ for ${\phi _{G}} \in [0,2\pi [$ and ${\phi _{{G},0}} = 0$. Also note that possible loss may be simply accounted for by making the ${\textbf k}$ vector complex. Finally, note that the cone in Fig. 2 corresponds to the angular spectrum of the formulation in Eq. (1) with Eq. (2) [35].

Practically, the waves ${\psi _\nu}({\phi _{G}})$ must be spatially limited [e.g., Gaussian cross-sectional apodization $w(\xi)$], but they will be initially considered as plane waves [$w(\xi) = {\rm const.}$]. [36] because, as we shall see, an analytical solution can be derived for Eq. (1) in this case. Moreover, their azimuthal separation ($\Delta {\phi _{G}}$) is infinitesimally small, so that they effectively merge into the azimuthal continuum corresponding to Eq. (1). Finally, these waves may be temporarily considered as a scalar, but they will later be seen to represent any of the components of fully vectorial electromagnetic waves.

The Bessel beam superposition in Eq. (1) is plotted in Fig. 3 using 20 equi-spaced plane waves for ${\psi _\nu}({\phi _{G}})$ in Eq. (2), with the top row showing the superposition of the maxima and minima, and the bottom row plotting the superposition of the actual waves with continuous sinusoidal gradients. This figure shows that a perfectly smooth Bessel pattern is obtained around the axis of the beam with a restricted number of constituent waves [37] and illustrates the increasing structural complexity of the Bessel beam without OAM ($\nu = 0$), with integer OAM ($\nu = 1$), and with noninteger OAM ($\nu = 1.5$).

 figure: Fig. 3.

Fig. 3. Cross-sectional view of the beam numerically obtained by discretizing the integral in Eq. (1) with 20 equi-spaced constituent plane waves [Eq. (2a) with $w(\xi) = 1$] in the plane $z = 0$ of Fig. 2 for $\nu = 0,1,1.5$ at $t = 0$ and over the cross-sectional area of $7\lambda \times 7\lambda$ ($\lambda = 2\pi c/\omega$) co-centered with the beam axis. Top Row: maxima (red lines) and minima (blue lines). Bottom row: actual waves.

Download Full Size | PPT Slide | PDF

Substituting Eq. (2) with $w(\xi) = {A^{{\rm PW}}}$ (const.) into Eq. (1), simplifying the resulting integral (see Supplement 1, Section 3), and decomposing the field into its transverse-dependence and longitudinal/temporal-dependence parts as ${U_\nu}(\rho ,\phi ,z,t) = {U_{\nu , \bot}}(\rho ,\phi){{e}^{i(\beta z - \omega t)}}$, then yields

$${U_{\nu , \bot}}(\rho ,\phi) = {A^{{\rm PW}}}\int_{{\phi _{{G},0}}}^{{\phi _{{G},0}} + 2\pi} {{e}^{- i\alpha \rho \cos (\phi ^\prime - \phi)}}{{e}^{i\nu (\phi ^\prime - {\phi _{{G},0}})}}{\rm d}\phi ^\prime .$$

For $\nu = n \in {\mathbb Z}$, the integral in Eq. (3) has a tabulated closed-form primitive [38], leading to ${U_{n, \bot}} = 2\pi {i^{- n}}{{e}^{- in{\phi _{{G},0}}}}{A^{{\rm PW}}}{J_n}(\alpha \rho){{e}^{{in\phi}}}$, which is the conventional integer-OAM Bessel solution for circular cylindrical problems. In contrast, for $\nu \in {\mathbb R}\backslash {\mathbb Z}$, the integral does not admit a simple primitive, and we must devise a strategy to lift this restriction so as to find the most general beam solution. This can be accomplished by the following procedure. First, we replace the generally non-periodic ($\nu \in {\mathbb R}\backslash {\mathbb Z}$) complex exponential function ${{e}^{i\nu \phi ^\prime}}$ in Eq. (3) by its expansion in terms of the complete and orthogonal set of periodic ($\nu = m \in {\mathbb Z}$) complex exponential functions ${{e}^{im\phi ^\prime}}$ (see Supplement 1) [39], i.e., 

$${{e}^{i\nu \phi ^\prime}} = \sum\limits_{m = - \infty}^{+ \infty} {\rm sinc}((m - \nu)\pi){{e}^{- i(m - \nu)({\phi _{{G},0}} + \pi)}}{{e}^{im\phi ^\prime}}.$$

Then, we substitute Eq. (4) into Eq. (3), which leads to

$$\begin{split}{U_{\nu , \bot}}(\rho ,\phi) &= {A^{{\rm PW}}}{{e}^{- i\nu {\phi _{{G},0}}}}\sum\limits_{m = - \infty}^{+ \infty} {\rm sinc}((m - \nu)\pi){{e}^{- i(m - \nu)({\phi _{{G},0}} + \pi)}}\\&\quad \times \int_{{\phi _{{G},0}}}^{{\phi _{{G},0}} + 2\pi} {{e}^{- i\alpha \rho \cos (\phi - \phi ^\prime)}}{{e}^{im\phi ^\prime}}{\rm d}\phi ^\prime .\end{split}$$

Finally, we eliminate the integral by applying the Bessel identity $\int_0^{2\pi} {{e}^{- i\alpha \rho \cos (\phi - \phi ^\prime)}}{{e}^{im\phi ^\prime}}{\rm d}\phi ^\prime = 2\pi {i^{- m}}{J_m}(\alpha \rho){{e}^{{im\phi}}}$ [40] and find the general solution to Eq. (5), with the singularity phase parameter ${\phi _{{G},0}}$ appended to the corresponding expression given in [20], in the closed form

$${U_{\nu , \bot}}(\rho ,\phi) = \sum\limits_{m = - \infty}^{+ \infty} A_m^{{\rm BB}}(\nu ,{\phi _{{G},0}}){J_m}(\alpha \rho){{e}^{{im\phi}}},$$
with the complex weighting distribution
$$\begin{split}A_m^{{\rm BB}}(\nu ,{\phi _{{G},0}}) = 2\pi {i^{- m}}{{e}^{- i\nu {\phi _{{G},0}}}}{A^{{\rm PW}}}{\rm sinc}((m - \nu)\pi){{e}^{- i(m - \nu)\left({{\phi _{{G},0}} + \pi} \right)}}.\end{split}$$

Equation (6) contains the integer-OAM Bessel solution, since $\nu = n \in {\mathbb Z}$ transforms Eq. (6b) into $A_m^{{\rm BB}} = 2\pi {i^{- m}}{{e}^{- in{\phi _{{G},0}}}}{A^{{\rm PW}}}{\delta _{{mn}}}$, which reduces the sum in Eq. (6a) to the single term ${U_{n, \bot}} = 2\pi {i^{- n}}{{e}^{- in{\phi _{{G},0}}}}{A^{{\rm PW}}}{J_n}(\alpha \rho){e^{{in\phi}}}$. But, it also contains noninteger-OAM ($\nu \in {\mathbb R}\backslash {\mathbb Z}$) solutions, where the satisfaction of the circular periodic boundary condition is realized by a superposition of integer-OAM Bessel waves with proper phase (${{e}^{{im\phi}}}$) and weighting coefficients [$A_m^{{\rm BB}}(\nu ,{\phi _{{G},0}})$]. In this noninteger-OAM case, the sum in Eq. (6a) must be practically truncated to an integer $m = \pm M$ that is large enough to provide a satisfactory approximation of the Bessel beam.

Equation (6a) reveals that the parameter $\alpha$ of the cone in Fig. 2 corresponds to the spatial frequency of the Bessel pattern. Since this parameter is proportional to the axicon angle, $\delta$, according to Eq. (2c), we find that increasing the aperture of the cone in the integral construction of Eq. (1) compresses the Bessel ring pattern towards the axis of the beam.

Figure 4 plots the magnitude and phase of the Bessel beam given by Eq. (6) for different integer and noninteger OAMs [41]. The cases $\nu = 0$, 1, and 1.5 correspond to the instantaneous field plots in Fig. 3. The OAM-less beam $\nu = 0$ has simultaneously azimuthally symmetric magnitude and phase. The integer beams $\nu = n \in {\mathbb N}$ have azimuthally symmetric magnitudes but asymmetric phase (OAM). The beams $\nu \in {\mathbb R}\backslash {\mathbb Z}$ have simultaneously asymmetric magnitude and phase. The parameter ${\phi _{{G},0}}$, which is zero here, corresponds to a dummy initial phase of the integer OAM and the position of the discontinuity of the noninteger OAM in the individual waves, with increasing ${\phi _{{G},0}}$ clockwise rotating the asymmetric magnitude of the noninteger-OAM pattern (see Supplement 1).

 figure: Fig. 4.

Fig. 4. Cross-sectional view of the complex Bessel beam analytically computed by Eq. (6) for different OAM orders ($\nu$), with ${\phi _{{G},0}} = 0$, $\delta = {25^ \circ}$, and $M = 100$, over the same area as in Fig. 3. Top row: transverse amplitude. Bottom row: transverse phase.

Download Full Size | PPT Slide | PDF

3. VECTORIAL SOLUTION CONSTRUCTION

The general [42] scalar Bessel solutions described above are restricted to acoustic waves, quantum waves, and vectorial waves under special conditions such as the paraxial condition ($\delta \ll \pi /2$) in the electromagnetic case. On the other hand, they fail to describe Bessel beams with a large axicon aperture (angle $\delta$ in Fig. 2), which are relevant to applications such as microscopy and optical force manipulations. Therefore, we extend here the previous scalar generalization to the vectorial case.

For the scalar case, we have established two alternative solutions: the integral solution of Eq. (1) and the analytical solution of Eq. (6). In the present extension to the vectorial case, we shall restrict our treatment to the integral approach [43], because it provides more insight into the physical nature of the beam, and because it will constitute the basis for the practical implementation to be discussed later. We shall still assume a plane wave construction [$w(\xi) = {A^{{\rm PW}}}$ (const.) in Eq. (2b)] for simplicity.

As indicated in Fig. 1, the vectorial Bessel beams can be ${{\rm LSE}_i}/{{\rm LSM}_i}$ with $i = \{x,y\}$ or ${{\rm TE}_z}/{{\rm TM}_z}$, where the subscript denotes the field component that is zero. In the former case, the electric/magnetic transverse field component that is nonzero is set as the scalar Bessel beam solution ${U_\nu}$ in Eq. (1), while, in the latter case, it is the magnetic/electric longitudinal component of the field that is set as ${U_\nu}$, and the other components are found from Eq. (2) via Maxwell equations (see Supplement 1).

The ${{\rm LSE}_y}$ (${E_y} = 0$, ${E_x} = {U_\nu}$) and ${{\rm TM}_z}$ (${H_z} = 0$, ${E_z} = {U_\nu}$) solutions are, respectively, given by (see Supplement 1)

$$\begin{split}{\textbf E}(\rho ,\phi ,z) &= \int_0^{2\pi} {\rm d}{\phi _{G}}{\psi _\nu}({\phi _{G}})\\ &\quad \times ({\hat {\boldsymbol x}} + \tan (\delta)\cos ({\phi _{G}}){\hat {\boldsymbol z}}),\end{split}$$
$$\begin{split}\eta {\textbf H}(\rho ,\phi ,z) &= \int_0^{2\pi} {\rm d}{\phi _{G}}{\psi _\nu}({\phi _{G}})\\ &\quad \times (- \sin (\delta)\tan (\delta)\sin ({\phi _{G}})\cos ({\phi _{G}}){\hat {\boldsymbol x}}\\&\quad + (\sin (\delta)\tan (\delta)\mathop {\cos}\nolimits^2 ({\phi _{G}}) + \cos (\delta)){\hat {\boldsymbol y}}\\&\quad + \sin (\delta)\sin ({\phi _{G}}){\hat {\boldsymbol z}}),\end{split}$$
and
$$\begin{split}{\textbf E}(\rho ,\phi ,z) &= \int_0^{2\pi} {\rm d}{\phi _{G}}{\psi _\nu}({\phi _{G}})\\ &\quad \times (\cot (\delta)\cos ({\phi _{G}}){\hat {\boldsymbol x}} + \cot (\delta)\sin ({\phi _{G}}){\hat {\boldsymbol y}} + {\hat {\boldsymbol z}}),\end{split}$$
$$\begin{split}\eta {\textbf H}(\rho ,\phi ,z) &= \int_0^{2\pi} {\rm d}{\phi _{G}}{\psi _\nu}({\phi _{G}})\\ &\quad \times (- \csc (\delta)\sin ({\phi _{G}}){\hat {\boldsymbol x}} + \csc (\delta)\cos ({\phi _{G}}){\hat {\boldsymbol y}}),\end{split}$$
where $\eta$ is the impedance of free-space. The most striking difference between the LSE/LSM and TE/TM beams resides in the simplest feature of their respective constituent waves. The former have a linear transverse polarization, while the latter have of a constant transverse magnitude.
 figure: Fig. 5.

Fig. 5. Noninteger global-order ($\nu = 1.5$) ${{\rm LSE}_y}$ Bessel beam computed by Eq. (7). (a) Transverse vectorial fields at $z = {z_G}$ for 12 plane wave samples. (b) Corresponding complete vectorial fields in four different cut planes (dotted circles) with axicon angle ${\delta = 25^ \circ}$. (c) Magnitude and phase of the fields over the cross-sectional area of $8\lambda \times 8\lambda$.

Download Full Size | PPT Slide | PDF

A detailed investigation of these solutions reveals that the axicon angle ($\delta$) distinctly affects the LSE/LSM and TE/TM modes (see Supplement 1). In both cases, increasing $\delta$ compresses the Bessel ring pattern towards the axis of the beam; however, this variation also breaks the symmetry of the transverse LSE/LSM patterns, even for $\nu = 0$, whereas it leaves the TE/TM pattern azimuthally symmetric. It is also interesting to note that, for a small axicon angle, i.e., $\delta \ll \pi /2$, the ${{\rm LSE}_y}$ modes essentially reduce to their ${E_x}$ and ${H_y}$ components, similar to the scalar form.

Figures 5 and 6 depict the ${{\rm LSE}_y}$ and ${{\rm TM}_z}$ Bessel beams of global order $\nu = 1.5$ corresponding to the solutions of Eqs. (7) and (8), respectively. The vectorial field distributions plotted in the panels (a) and (b) of the Figs. 5 and 6 represent samples of the constituent waves of the integral construction of the beam (Fig. 2). Their strong vectorial nature starkly contrasts with the configuration of the scalar solution, except for the ${{\rm LSE}_y}$ case in the aforementioned axicon limit ($\delta \ll \pi /2$). Note that the electric field of the constituent waves of the ${{\rm LSE}_y}$ mode is linearly polarized in the $x$ direction, while that of the ${{\rm TM}_z}$ modes is radially polarized. Nonzero and noninteger $\nu$ vectorial modes are obtained from their fundamental counterpart by simply setting the $\nu$ parameter in the initial phase of the constituent waves, i.e., ${\gamma _\nu}({\phi _{G}})$ in Eq. (2d), to the desired OAM.

 figure: Fig. 6.

Fig. 6. Noninteger global-order ($\nu = 1.5$) ${{\rm TM}_z}$ Bessel beam computed by Eq. (8), with the same parameters and panels as in Fig. 5.

Download Full Size | PPT Slide | PDF

Figure 7 plots time-average Poynting vectors of integer and noninteger ${{\rm LSE}_y}$ and ${{\rm TM}_y}$ Bessel beams. Interestingly, whereas the maxima of the ${{\rm LSE}_y}$ transverse Poynting vector components are superimposed with those of the longitudinal Poynting vector component, the ${{\rm TM}_z}$ transverse maxima are not overlapping the longitudinal maxima. Also notice that the ${{\rm TM}_z}$ longitudinal Poynting vector component for $\nu = n = 1$ does not exhibit a null on the beam axis, contrarily to the case of all nonzero-OAM scalar solutions; this is allowed by the fact that the polarization singularities associated with the radial configuration of the constituent plane waves of the TM/TE modes cancel out the phase singularities in this particular case of $\nu = 1$. These various results, with the complementariness of the LSE/LSM–TE/TM modes, and their extension to higher OAMs, illustrate the structural diversity of the vectorial Bessel beams, including horizontal/vertical/right-circular/left-circular LSE/LSM polarization (see Visualization 1 and Visualization 2) and azimuthal/radial/hybrid TE/TM polarization (see Visualization 3), and suggest that they may lead to a wealth of still unexplored opportunities for the optical force manipulation of nanoparticles.

 figure: Fig. 7.

Fig. 7. Time-average Poynting vector components of ${\rm LSE}_y^ +$ [Eq. (7)] and ${\rm TM}_z^ +$ [Eq. (7)] modes with ${ \delta = 25^ \circ}$.

Download Full Size | PPT Slide | PDF

The LSE/LSM and TM/TE electromagnetic vectorial Bessel beams are related by the following relations, which may be easily verified upon comparing Eqs. (7) and (8):

$$\begin{split}& \frac{1}{2}\left({\left\{{\begin{array}{*{20}{c}}{{{{\rm LSE}}_{y,\nu - 1}} + {{{\rm LSE}}_{y,\nu + 1}}}\\{{{{\rm LSM}}_{y,\nu - 1}} + {{{\rm LSM}}_{y,\nu + 1}}}\end{array}} \right\}} \right)\\&\quad + i\frac{1}{2}\left({\left\{{\begin{array}{*{20}{c}}{{{{\rm LSE}}_{x,\nu - 1}} - {{{\rm LSE}}_{x,\nu + 1}}}\\{{{{\rm LSM}}_{x,\nu - 1}} - {{{\rm LSM}}_{x,\nu + 1}}}\end{array}} \right\}} \right) = \tan (\delta)\left\{{\begin{array}{*{20}{c}}{{{{\rm TM}}_{z,\nu}}}\\{{{{\rm TE}}_{z,\nu}}}\end{array}} \right\},\end{split}$$
$$\begin{split}&\frac{{\tan (\delta)}}{2}\left({\left\{{\begin{array}{*{20}{c}}{{{{\rm TM}}_{z,\nu - 1}} + {{{\rm TM}}_{z,\nu + 1}}}\\{{{{\rm TE}}_{z,\nu - 1}} + {{{\rm TE}}_{z,\nu + 1}}}\end{array}} \right\}} \right)\\&\quad \pm i\frac{{\sin (\delta)}}{2}\left({\left\{{\begin{array}{*{20}{c}}{{{{\rm TE}}_{z,\nu - 1}} - {{{\rm TE}}_{z,\nu + 1}}}\\{{{{\rm TM}}_{z,\nu - 1}} - {{{\rm TM}}_{z,\nu + 1}}}\end{array}} \right\}} \right) = \left\{{\begin{array}{*{20}{c}}{{{{\rm LSE}}_{y,\nu}}}\\{{{{\rm LSM}}_{y,\nu}}}\end{array}} \right\},\end{split}$$
$$\begin{split}&\mp \frac{{\sin (\delta)}}{2}\left({\left\{{\begin{array}{*{20}{c}}{{{{\rm TE}}_{z,\nu - 1}} + {{{\rm TE}}_{z,\nu + 1}}}\\{{{{\rm TM}}_{z,\nu - 1}} + {{{\rm TM}}_{z,\nu + 1}}}\end{array}} \right\}} \right)\\&\quad + i\frac{{\tan (\delta)}}{2}\left({\left\{{\begin{array}{*{20}{c}}{{{{\rm TM}}_{z,\nu - 1}} - {{{\rm TM}}_{z,\nu + 1}}}\\{{{{\rm TE}}_{z,\nu - 1}} - {{{\rm TE}}_{z,\nu + 1}}}\end{array}} \right\}} \right) = \left\{{\begin{array}{*{20}{c}}{{{{\rm LSE}}_{x,\nu}}}\\{{{{\rm LSM}}_{x,\nu}}}\end{array}} \right\},\end{split}$$
where the second subscripts ($\nu$ and $\nu \pm 1$) correspond, as usual, to the global OAM $\nu$ in Eq. (2a). Note the OAM conservation between the LSE/LSM and TM/TE modes in each of these relations and the interesting mediation of the axicon angle. Note also that, in the paraxial approximation ($\delta \ll \pi /2$), the TM/TE beams, with their complex cylindrical (radial/azimuthal/hybrid) polarizations, are realized, superpositing two transversally linearly polarized LSE/LSM beams, according to Eq. (9a).

4. PHYSICAL IMPLEMENTATION

Several techniques have been proposed for generating Bessel beams experimentally. The main ones are axicon lenses illuminated by a Laguerre–Gauss beam [24], spatial light modulators [26], open circular waveguides with selectively excited modes [44], antenna arrays with a proper phase feeding network [45], metasurfaces illuminated by plane waves [28], and two-dimensional (2D) circular leaky-wave antennas [46]. Unfortunately, these techniques are restricted to simple beams, excessively complex to implement, bulky and expensive, or suffering from poor efficiency.

The unified integral formulation presented in this paper [Fig. 2 with Eq. (1) for the scalar case and Eqs. (7) and (8) for the vectorial case] naturally points to a generation technique that is immune to these issues and that offers in addition a universal implementation framework. Indeed, circularly distributing a set of sources with the phases, amplitudes, and polarizations of the derived modal field solutions (e.g., top panels of Figs. 5 and 6) would exactly and efficiently produce the corresponding Bessel beams, irrespective to their order or complexity.

 figure: Fig. 8.

Fig. 8. Experimental implementation of the proposed general Bessel beam generation technique. (a) Using a circular array of $N$ laser sources. (b) Cross-sectional view of (a) with polarization and initial phase configuration corresponding to the ${{\rm TM}_{z,1.5}}$. (c) Metasurface implementation, with metasurface susceptibility tensor ${\bar {\bar \chi}} ({\phi _{G}})$, with a single laser source.

Download Full Size | PPT Slide | PDF

Specifically, the integral-formulation generation technique consists of the following design steps: (1) select a sufficient number of sources ($N$) to properly sample the desired OAM according to the Nyquist criterion, (2) determine an appropriate beam apodization [$w(\xi)$] for each of the constitutent waves to be radiated by these sources, and (3) adequately set the phase, magnitude, and polarization of each of the sources and orient them so as to launch the constituent waves along a cone with the selected axicon angle ($\delta$). This is mathematically expressed by the formula

$${\textbf E} = \sum\limits_{{\phi _{G}} \in [0,2\pi]}^N w({\phi _{G}}){{\textbf E}^{{\rm PW}}}({\phi _{G}})\Delta {\phi _{G}},$$
where $w({\phi _{G}})$ is the apodization of the constituent waves, ${{\textbf E}^{{\rm PW}}}({\phi _{G}})$ is their plane-wave modal field solution [e.g., Eqs. (7) or (8)], and $\Delta {\phi _{G}} = 2\pi /N$. In the case of a (typical) Gaussian apodization, we have
$$w({\phi _{G}}) = {e^{- (x_ \circ ^2({\phi _{G}}) + y_ \circ ^2({\phi _{G}}))/w_0^2}},$$
where ${w_0}$ is the waist of the beam, and $({x_ \circ}({\phi _{G}}),{y_ \circ}({\phi _{G}}))$ represents the local conical coordinates
$${x_ \circ}({\phi _{G}}) = (x\cos ({\phi _{G}}) + y\sin ({\phi _{G}}))\cos (\delta) - z\sin (\delta),$$
$${y_ \circ}({\phi _{G}}) = - x\sin ({\phi _{G}}) + y\cos ({\phi _{G}}),$$
which are related to the radial conical coordinate $\sqrt {{x_ \circ}{{({\phi _{G}})}^2} + {y_ \circ}{{({\phi _{G}})}^2}} = \xi ({\phi _{G}})$ in $w(\xi)$ [Eq. (2a)].

Note that apodization of the plane wave ${{\textbf E}^{{\rm PW}}}$ by the function $w(\xi)$ results in a localization of the beam in a restricted of extent $L = {w_0}/\sin (\delta)$ about the center of the cone at ($z = 0$). Moreover, the discretization of the integral induces a distortion of the Bessel pattern, which grows with the distance from the axis of the beam, as previously explained, so that $N$ may have to be increased to provide a satisfactory beam approximation across the transverse area of interest.

Figure 8 depicts the experimental implementation of the integral-formulation Bessel beam generation. Figure 8(a) represents a direct incarnation of this formulation, which consists of a circular array of laser beams with proper magnitudes, phases, and polarizations, as illustrated in Fig. 8(b). Such an implementation, involving $N$ independent lasers with respective magnitude, phase, and polarization controls, is quite complex and cumbersome. Fortunately, recent advances in metasurface technology suggest the much more practical implementation shown in Fig. 8(c). Indeed, this metasurface-based Bessel beam generator requires only one laser source, while being ideally compact and inexpensive.

The metasurface required in the implementation of the Bessel beam generator depicted in Fig. 8(c) can be easily realized using the latest metasurface synthesis techniques [47]. The simplest implementation strategy would consist of cascading metasurfaces that separately tailor the amplitude, phase, inclination, and polarization of the incident wave in the transverse plane of the system. Specifically, assuming a linearly polarized incident wave, such a design would then consist of three cascaded metasurfaces. Two of these metasurfaces would be common to the LSE/LSM and TE/TM cases, with one metasurface providing the required azimuthal phase distribution via azimuthal sectors made of particles inducing progressive transmission delays and the other providing the required conical inclination via a constant radial phase gradient. In contrast, the third metasurface would be different for the LSE/LSM and TE/TM cases. In the former case, given the linear transverse polarization [Eq. (7) and Fig. 5], there is no required polarization processing, and the third metasurface needs to provide the proper transverse magnitude distribution, which can be accomplished with dissipative particles, while, in the latter case, given the constant transverse magnitude [Eq. (8) and Fig. 6], there is no required magnitude processing, and the third metasurface needs to provide the proper transverse polarization distribution, which can be accomplished with birefringent particles.

5. CONCLUSION

We have presented a unified perspective of Bessel beams of arbitrary OAM (zero, integer, and noninteger) and nature (scalar, LSE/LSM, and TE/TM) based on an integral formulation and deduced from this formulation as a universal and efficient generation technique. The proposed formulation may be extended to other conical beams, such as Mathieu [48] and Weber [49] beams, upon simply adjusting the amplitude modulation function $w(\xi)$ of Eq. (2a) as in [50,51] and to nonconical beams, such as the Gauss–Laguerre and hypergeometric Gaussian beams, upon nesting a corresponding extra integral for the proper spectrum in Eq. (1). This formulation increases the insight into their characteristics and facilitates their generation for non-complex spectra as conical ones. This global perspective opens up new horizons in structured light for a variety of applications, such as spectroscopy, microscopy, and optical/quantum force manipulations.

Disclosures

The authors declare no conflicts of interest.

Supplemental document

See Supplement 1 for supporting content.

REFERENCES AND NOTES

1. H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, Localized Waves (Wiley, 2008), Vol. 194.

2. H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, Non-diffracting Waves (Wiley, 2013).

3. H. Bateraen, Electrical and Optical Wave Motion (Cambridge University, 1915).

4. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

5. R. Courant and D. Hilbert, Methods of Mathematical Physics, (Wiley, 1966).

6. OAM waves, or optical vortices, behave to some extent as charged particles: they may repel and attract each other and mutually annihilate upon colliding [52]. For this reason, $n$ is also called the topological charge.

7. S. Khonina, V. Kotlyar, V. Soifer, P. Pääkkönen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001). [CrossRef]  

8. J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001). [CrossRef]  

9. F. Mitri, “Reverse orbiting and spinning of a Rayleigh dielectric spheroid in a J0 Bessel optical beam,” J. Opt. Soc. Am. B 34, 2169–2178 (2017). [CrossRef]  

10. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004). [CrossRef]  

11. T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical trapping in counter-propagating Bessel beams,” Proc. SPIE 5514, 643–651 (2004). [CrossRef]  

12. F. Mitri, “Single Bessel tractor-beam tweezers,” Wave Motion 51, 986–993 (2014). [CrossRef]  

13. F. Mitri, R. Li, L. Guo, and C. Ding, “Optical tractor Bessel polarized beams,” J. Quant. Spectrosc. Radiat. Transf. 187, 97–115 (2017). [CrossRef]  

14. F. Mitri, “Optical Bessel tractor beam on active dielectric Rayleigh prolate and oblate spheroids,” J. Opt. Soc. Am. B 34, 899–908 (2017). [CrossRef]  

15. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef]  

16. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using beam plane illumination,” Nat. Methods 8, 417 (2011). [CrossRef]  

17. I. Nape, E. Otte, A. Vallés, C. Rosales-Guzmán, F. Cardano, C. Denz, and A. Forbes, “Self-healing high-dimensional quantum key distribution using hybrid spin-orbit Bessel states,” Opt. Express 26, 26946–26960 (2018). [CrossRef]  

18. J. Durmin, “Exact solutions for nondiffracting beams,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]  

19. K. Shimoda, “Exact solutions of field vectors of diffraction-free electromagnetic waves,” J. Phys. Soc. Jpn. 60, 450–454 (1991). [CrossRef]  

20. J. C. Gutiérrez-Vega and C. López-Mariscal, “Nondiffracting vortex beams with continuous orbital angular momentum order dependence,” J. Opt. A 10, 015009 (2007). [CrossRef]  

21. The terminology LSE/LSM (longitudinal section electric/magnetic) is borrowed from the theory of waveguides [53]. Such modes are often referred to as linearly polarized beams in free-space optics [54], but the terminology longitudinal section (LS) is more rigorous since such fields also include a longitudinal component.

22. S. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991). [CrossRef]  

23. F. G. Mitri, “Vector wave analysis of an electromagnetic high-order Bessel vortex beam of fractional type α,” Opt. Lett. 36, 606–608 (2011). [CrossRef]  

24. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun 177, 297–301 (2000). [CrossRef]  

25. X. Wei, C. Liu, L. Niu, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range,” Appl. Opt. 54, 10641–10649 (2015). [CrossRef]  

26. N. Chattrapiban, E. A. Rogers, D. Cofield, W. T. Hill III, and R. Roy, “Generation of nondiffracting Bessel beams by use of a spatial light modulator,” Opt. Lett. 28, 2183–2185 (2003). [CrossRef]  

27. M. Ettorre and A. Grbic, “Generation of propagating Bessel beams using leaky-wave modes,” IEEE Trans. Antennas Propag. 60, 3605–3613 (2012). [CrossRef]  

28. C. Pfeiffer and A. Grbic, “Controlling vector Bessel beams with metasurfaces,” Phys. Rev. Appl. 2, 044012 (2014). [CrossRef]  

29. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989). [CrossRef]  

30. H. Feshbach, P. M. Morse, and M. Masujima, Methods of Theoretical Physics (Dover, 2019).

31. Z. Yang, X. Zhang, C. Bai, and M. Wang, “Nondiffracting light beams carrying fractional orbital angular momentum,” J. Opt. Soc. Am. 35, 452–461 (2018). [CrossRef]  

32. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000). [CrossRef]  

33. This formulation corresponds to an extended ($\nu \in {\mathbb R}$) scalar-spectrum formulation in [1,2] and is complementary to the method of carrying out a Fourier transform on a scalar Bessel beam with a Gaussian envelope [55] (see Supplement 1, Section 8).

34. E. W. Weisstein, “Fractional part,” From MathWorld–A Wolfram Web Resource.https://mathworld.wolfram.com/FractionalPart.html.

35. Equation (1) may indeed be alternatively expressed as the inverse Fourier transform ${U_\nu}(\rho ,\phi ,z) = {{\cal F}^{- 1}}\{{\tilde U_\nu}({k_\rho},{k_\phi},{k_z})\} = \int_0^\infty \int_0^{2\pi} \int_0^\infty {\tilde U_\nu}({k_\rho},{k_\phi},{k_z}){{e}^{i({\boldsymbol k} \cdot {\textbf r} - \omega t)}}{k_\rho}{\rm d}{k_\rho}{\rm d}{k_\phi}{\rm d}{k_z}$ with the conical spectrum ${\tilde U_\nu}({k_\rho},{k_\phi},{k_z}) = \frac{{\delta ({k_\rho} - \alpha)}}{{{k_\rho}}}{{e}^{i\nu ({k_\phi} + (2\pi - ({\phi _{{G},0}} \pm \pi)))}}\delta ({k_z} - \beta)$ if ${k_\phi} \lt {\phi _{{G},0}} \pm \pi$ and ${\tilde U_\nu}({k_\rho},{k_\phi},{k_z}) = \frac{{\delta ({k_\rho} - \alpha)}}{{{k_\rho}}}{{e}^{i\nu ({k_\phi} - ({\phi _{{G},0}} \pm \pi))}}\delta ({k_z} - \beta)$ if ${k_\phi} \ge {\phi _{{G},0}} \pm \pi$ (see Supplement 1, Section 2).

36. Note that the beam is still localized in this case due to the decreasing envelope of the Bessel interference pattern.

37. The top row of Fig. 3 shows that this radial effect is due to the radially decreasing density of the constituent waves.

38. M. Abramowitz, I. A. Stegun, and R. H. Romer, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1988).

39. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (1999).

40. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series (U.S. Department of Commerce, National Bureau of Standards, 1972).

41. The fractional superposition of Bessel waves produces novel beam properties, such as internal vortices [9] and negative wave propagation [56], which are beyond the scope of this paper.

42. By the term ‘general’, we refer both to the arbitrariness of $\nu$ ($\nu = n \in {\mathbb N}$ or $\nu \in {\mathbb R}\backslash {\mathbb N}$) and to the alternative constructions of Eqs. (1) (integral) and (3) (analytical), with the discontinuity parameter ${\phi _{{G},0}}$.

43. The vectorialization of the analytical solution is no more complicated than that of the integral solution, and it is formally equivalent to the auxiliary potential vector method [57].

44. M. A. Salem, A. H. Kamel, and E. Niver, “Microwave Bessel beams generation using guided modes,” IEEE Trans. Antennas Propag. 59, 2241–2247 (2011). [CrossRef]  

45. P. Lemaître-Auger, S. Abielmona, and C. Caloz, “Generation of Bessel beams by two-dimensional antenna arrays using sub-sampled distributions,” IEEE Trans. Antennas Propag. 61, 1838–1849 (2012). [CrossRef]  

46. W. Fuscaldo, G. Valerio, A. Galli, R. Sauleau, A. Grbic, and M. Ettorre, “Higher-order leaky-mode Bessel-beam launcher,” IEEE Trans. Antennas Propag. 64, 904–913 (2015). [CrossRef]  

47. K. Achouri and C. Caloz, “Design, concepts, and applications of electromagnetic metasurfaces,” Nanophotonics 7, 1095–1116 (2018). [CrossRef]  

48. J. C. Gutiérrez-Vega, M. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000). [CrossRef]  

49. M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chávez-Cerda, “Parabolic nondiffracting optical wave fields,” Opt. Lett. 29, 44–46 (2004). [CrossRef]  

50. In the case of Mathieu beams, we need to add the coefficient ${A}({\phi _{G}})$ as ${A_{e}}({\phi _{G}}) = {{\rm ce}_m}({\phi _{G}},q)$ and ${A_{o}}({\phi _{G}}) = {{\rm se}_m}({\phi _{G}},q)$ in Eq. (2a), where ${{\rm ce}_m}(\cdot)$ and ${{\rm se}_m}(\cdot)$ are the even (subscript ‘$e$’) and odd (subscript ‘$o$’) angular Mathieu functions of order $m$ and ellipticity $q$ [58], and we set $w(\xi) = 1$ and ${\gamma _\nu}({\phi _{G}}) = 0$ in Eq. (2a).

51. In the case of Weber beams, we need to add the coefficient ${A}({\phi _{G}})$ as ${A_{e}}({\phi _{G}}) = {e^{ia{\rm ln}| {\tan ({\phi _{G}}/2)} |}}/({2\sqrt {\pi | {\sin ({\phi _{G}})} |}})$ or ${A_{o}}({\phi _{G}}) = - i{A_{e}}({\phi _{G}})$ for $0 \le {\phi _{G}} \le \pi$ and ${A_{o}}({\phi _{G}}) = i{A_{e}}({\phi _{G}})$ for $\pi \lt {\phi _{G}} \le 2\pi$, with $a$ being a parameter, and we set $w(\xi) = 1$ and ${\gamma _\nu}({\phi _{G}}) = 0$ in Eq. (2a).

52. M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, and N. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997). [CrossRef]  

53. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2016).

54. Y. Wang, W. Dou, and H. Meng, “Vector analyses of linearly and circularly polarized Bessel beams using Hertz vector potentials,” Opt. Express 22, 7821–7830 (2014). [CrossRef]  

55. A. Chafiq and A. Belafhal, “Optical Fourier transform of pseudo-nondiffracting beams,” J. Quant. Spectrosc. Radiat. Transf. 258, 107357 (2020). [CrossRef]  

56. F. Mitri, “High-order Bessel nonvortex beam of fractional type α,” Phys. Rev. A 85, 025801 (2012). [CrossRef]  

57. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering from Fundamentals to Applications (Wiley, 2017).

58. J. C. Gutiérrez-Vega, “Formal analysis of the propagation of invariant optical fields in elliptic coordinates,” Ph.D. thesis (Instituto Nacional de Astrofísica Óptica y Electrónica, 2000).

References

  • View by:
  • |
  • |
  • |

  1. H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, Localized Waves (Wiley, 2008), Vol. 194.
  2. H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, Non-diffracting Waves (Wiley, 2013).
  3. H. Bateraen, Electrical and Optical Wave Motion (Cambridge University, 1915).
  4. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  5. R. Courant and D. Hilbert, Methods of Mathematical Physics, (Wiley, 1966).
  6. OAM waves, or optical vortices, behave to some extent as charged particles: they may repel and attract each other and mutually annihilate upon colliding [52]. For this reason, $n$n is also called the topological charge.
  7. S. Khonina, V. Kotlyar, V. Soifer, P. Pääkkönen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).
    [Crossref]
  8. J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
    [Crossref]
  9. F. Mitri, “Reverse orbiting and spinning of a Rayleigh dielectric spheroid in a J0 Bessel optical beam,” J. Opt. Soc. Am. B 34, 2169–2178 (2017).
    [Crossref]
  10. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004).
    [Crossref]
  11. T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical trapping in counter-propagating Bessel beams,” Proc. SPIE 5514, 643–651 (2004).
    [Crossref]
  12. F. Mitri, “Single Bessel tractor-beam tweezers,” Wave Motion 51, 986–993 (2014).
    [Crossref]
  13. F. Mitri, R. Li, L. Guo, and C. Ding, “Optical tractor Bessel polarized beams,” J. Quant. Spectrosc. Radiat. Transf. 187, 97–115 (2017).
    [Crossref]
  14. F. Mitri, “Optical Bessel tractor beam on active dielectric Rayleigh prolate and oblate spheroids,” J. Opt. Soc. Am. B 34, 899–908 (2017).
    [Crossref]
  15. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [Crossref]
  16. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using beam plane illumination,” Nat. Methods 8, 417 (2011).
    [Crossref]
  17. I. Nape, E. Otte, A. Vallés, C. Rosales-Guzmán, F. Cardano, C. Denz, and A. Forbes, “Self-healing high-dimensional quantum key distribution using hybrid spin-orbit Bessel states,” Opt. Express 26, 26946–26960 (2018).
    [Crossref]
  18. J. Durmin, “Exact solutions for nondiffracting beams,” J. Opt. Soc. Am. A 4, 651–654 (1987).
    [Crossref]
  19. K. Shimoda, “Exact solutions of field vectors of diffraction-free electromagnetic waves,” J. Phys. Soc. Jpn. 60, 450–454 (1991).
    [Crossref]
  20. J. C. Gutiérrez-Vega and C. López-Mariscal, “Nondiffracting vortex beams with continuous orbital angular momentum order dependence,” J. Opt. A 10, 015009 (2007).
    [Crossref]
  21. The terminology LSE/LSM (longitudinal section electric/magnetic) is borrowed from the theory of waveguides [53]. Such modes are often referred to as linearly polarized beams in free-space optics [54], but the terminology longitudinal section (LS) is more rigorous since such fields also include a longitudinal component.
  22. S. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).
    [Crossref]
  23. F. G. Mitri, “Vector wave analysis of an electromagnetic high-order Bessel vortex beam of fractional type α,” Opt. Lett. 36, 606–608 (2011).
    [Crossref]
  24. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun 177, 297–301 (2000).
    [Crossref]
  25. X. Wei, C. Liu, L. Niu, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range,” Appl. Opt. 54, 10641–10649 (2015).
    [Crossref]
  26. N. Chattrapiban, E. A. Rogers, D. Cofield, W. T. Hill, and R. Roy, “Generation of nondiffracting Bessel beams by use of a spatial light modulator,” Opt. Lett. 28, 2183–2185 (2003).
    [Crossref]
  27. M. Ettorre and A. Grbic, “Generation of propagating Bessel beams using leaky-wave modes,” IEEE Trans. Antennas Propag. 60, 3605–3613 (2012).
    [Crossref]
  28. C. Pfeiffer and A. Grbic, “Controlling vector Bessel beams with metasurfaces,” Phys. Rev. Appl. 2, 044012 (2014).
    [Crossref]
  29. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
    [Crossref]
  30. H. Feshbach, P. M. Morse, and M. Masujima, Methods of Theoretical Physics (Dover, 2019).
  31. Z. Yang, X. Zhang, C. Bai, and M. Wang, “Nondiffracting light beams carrying fractional orbital angular momentum,” J. Opt. Soc. Am. 35, 452–461 (2018).
    [Crossref]
  32. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
    [Crossref]
  33. This formulation corresponds to an extended ($\nu \in {\mathbb R}$ν∈R) scalar-spectrum formulation in [1,2] and is complementary to the method of carrying out a Fourier transform on a scalar Bessel beam with a Gaussian envelope [55] (see Supplement 1, Section 8).
  34. E. W. Weisstein, “Fractional part,” From MathWorld–A Wolfram Web Resource.https://mathworld.wolfram.com/FractionalPart.html.
  35. Equation (1) may indeed be alternatively expressed as the inverse Fourier transform ${U_\nu}(\rho ,\phi ,z) = {{\cal F}^{- 1}}\{{\tilde U_\nu}({k_\rho},{k_\phi},{k_z})\} = \int_0^\infty \int_0^{2\pi} \int_0^\infty {\tilde U_\nu}({k_\rho},{k_\phi},{k_z}){{e}^{i({\boldsymbol k} \cdot {\textbf r} - \omega t)}}{k_\rho}{\rm d}{k_\rho}{\rm d}{k_\phi}{\rm d}{k_z}$Uν(ρ,ϕ,z)=F−1{U~ν(kρ,kϕ,kz)}=∫0∞∫02π∫0∞U~ν(kρ,kϕ,kz)ei(k⋅r−ωt)kρdkρdkϕdkz with the conical spectrum ${\tilde U_\nu}({k_\rho},{k_\phi},{k_z}) = \frac{{\delta ({k_\rho} - \alpha)}}{{{k_\rho}}}{{e}^{i\nu ({k_\phi} + (2\pi - ({\phi _{{G},0}} \pm \pi)))}}\delta ({k_z} - \beta)$U~ν(kρ,kϕ,kz)=δ(kρ−α)kρeiν(kϕ+(2π−(ϕG,0±π)))δ(kz−β) if ${k_\phi} \lt {\phi _{{G},0}} \pm \pi$kϕ<ϕG,0±π and ${\tilde U_\nu}({k_\rho},{k_\phi},{k_z}) = \frac{{\delta ({k_\rho} - \alpha)}}{{{k_\rho}}}{{e}^{i\nu ({k_\phi} - ({\phi _{{G},0}} \pm \pi))}}\delta ({k_z} - \beta)$U~ν(kρ,kϕ,kz)=δ(kρ−α)kρeiν(kϕ−(ϕG,0±π))δ(kz−β) if ${k_\phi} \ge {\phi _{{G},0}} \pm \pi$kϕ≥ϕG,0±π (see Supplement 1, Section 2).
  36. Note that the beam is still localized in this case due to the decreasing envelope of the Bessel interference pattern.
  37. The top row of Fig. 3 shows that this radial effect is due to the radially decreasing density of the constituent waves.
  38. M. Abramowitz, I. A. Stegun, and R. H. Romer, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1988).
  39. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (1999).
  40. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series (U.S. Department of Commerce, National Bureau of Standards, 1972).
  41. The fractional superposition of Bessel waves produces novel beam properties, such as internal vortices [9] and negative wave propagation [56], which are beyond the scope of this paper.
  42. By the term ‘general’, we refer both to the arbitrariness of $\nu$ν ($\nu = n \in {\mathbb N}$ν=n∈N or $\nu \in {\mathbb R}\backslash {\mathbb N}$ν∈R∖N) and to the alternative constructions of Eqs. (1) (integral) and (3) (analytical), with the discontinuity parameter ${\phi _{{G},0}}$ϕG,0.
  43. The vectorialization of the analytical solution is no more complicated than that of the integral solution, and it is formally equivalent to the auxiliary potential vector method [57].
  44. M. A. Salem, A. H. Kamel, and E. Niver, “Microwave Bessel beams generation using guided modes,” IEEE Trans. Antennas Propag. 59, 2241–2247 (2011).
    [Crossref]
  45. P. Lemaître-Auger, S. Abielmona, and C. Caloz, “Generation of Bessel beams by two-dimensional antenna arrays using sub-sampled distributions,” IEEE Trans. Antennas Propag. 61, 1838–1849 (2012).
    [Crossref]
  46. W. Fuscaldo, G. Valerio, A. Galli, R. Sauleau, A. Grbic, and M. Ettorre, “Higher-order leaky-mode Bessel-beam launcher,” IEEE Trans. Antennas Propag. 64, 904–913 (2015).
    [Crossref]
  47. K. Achouri and C. Caloz, “Design, concepts, and applications of electromagnetic metasurfaces,” Nanophotonics 7, 1095–1116 (2018).
    [Crossref]
  48. J. C. Gutiérrez-Vega, M. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000).
    [Crossref]
  49. M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chávez-Cerda, “Parabolic nondiffracting optical wave fields,” Opt. Lett. 29, 44–46 (2004).
    [Crossref]
  50. In the case of Mathieu beams, we need to add the coefficient ${A}({\phi _{G}})$A(ϕG) as ${A_{e}}({\phi _{G}}) = {{\rm ce}_m}({\phi _{G}},q)$Ae(ϕG)=cem(ϕG,q) and ${A_{o}}({\phi _{G}}) = {{\rm se}_m}({\phi _{G}},q)$Ao(ϕG)=sem(ϕG,q) in Eq. (2a), where ${{\rm ce}_m}(\cdot)$cem(⋅) and ${{\rm se}_m}(\cdot)$sem(⋅) are the even (subscript ‘$e$e’) and odd (subscript ‘$o$o’) angular Mathieu functions of order $m$m and ellipticity $q$q [58], and we set $w(\xi) = 1$w(ξ)=1 and ${\gamma _\nu}({\phi _{G}}) = 0$γν(ϕG)=0 in Eq. (2a).
  51. In the case of Weber beams, we need to add the coefficient ${A}({\phi _{G}})$A(ϕG) as ${A_{e}}({\phi _{G}}) = {e^{ia{\rm ln}| {\tan ({\phi _{G}}/2)} |}}/({2\sqrt {\pi | {\sin ({\phi _{G}})} |}})$Ae(ϕG)=eialn|tan⁡(ϕG/2)|/(2π|sin⁡(ϕG)|) or ${A_{o}}({\phi _{G}}) = - i{A_{e}}({\phi _{G}})$Ao(ϕG)=−iAe(ϕG) for $0 \le {\phi _{G}} \le \pi$0≤ϕG≤π and ${A_{o}}({\phi _{G}}) = i{A_{e}}({\phi _{G}})$Ao(ϕG)=iAe(ϕG) for $\pi \lt {\phi _{G}} \le 2\pi$π<ϕG≤2π, with $a$a being a parameter, and we set $w(\xi) = 1$w(ξ)=1 and ${\gamma _\nu}({\phi _{G}}) = 0$γν(ϕG)=0 in Eq. (2a).
  52. M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, and N. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
    [Crossref]
  53. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2016).
  54. Y. Wang, W. Dou, and H. Meng, “Vector analyses of linearly and circularly polarized Bessel beams using Hertz vector potentials,” Opt. Express 22, 7821–7830 (2014).
    [Crossref]
  55. A. Chafiq and A. Belafhal, “Optical Fourier transform of pseudo-nondiffracting beams,” J. Quant. Spectrosc. Radiat. Transf. 258, 107357 (2020).
    [Crossref]
  56. F. Mitri, “High-order Bessel nonvortex beam of fractional type α,” Phys. Rev. A 85, 025801 (2012).
    [Crossref]
  57. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering from Fundamentals to Applications (Wiley, 2017).
  58. J. C. Gutiérrez-Vega, “Formal analysis of the propagation of invariant optical fields in elliptic coordinates,” Ph.D. thesis (Instituto Nacional de Astrofísica Óptica y Electrónica, 2000).

2020 (1)

A. Chafiq and A. Belafhal, “Optical Fourier transform of pseudo-nondiffracting beams,” J. Quant. Spectrosc. Radiat. Transf. 258, 107357 (2020).
[Crossref]

2018 (3)

K. Achouri and C. Caloz, “Design, concepts, and applications of electromagnetic metasurfaces,” Nanophotonics 7, 1095–1116 (2018).
[Crossref]

Z. Yang, X. Zhang, C. Bai, and M. Wang, “Nondiffracting light beams carrying fractional orbital angular momentum,” J. Opt. Soc. Am. 35, 452–461 (2018).
[Crossref]

I. Nape, E. Otte, A. Vallés, C. Rosales-Guzmán, F. Cardano, C. Denz, and A. Forbes, “Self-healing high-dimensional quantum key distribution using hybrid spin-orbit Bessel states,” Opt. Express 26, 26946–26960 (2018).
[Crossref]

2017 (3)

2015 (2)

X. Wei, C. Liu, L. Niu, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range,” Appl. Opt. 54, 10641–10649 (2015).
[Crossref]

W. Fuscaldo, G. Valerio, A. Galli, R. Sauleau, A. Grbic, and M. Ettorre, “Higher-order leaky-mode Bessel-beam launcher,” IEEE Trans. Antennas Propag. 64, 904–913 (2015).
[Crossref]

2014 (3)

Y. Wang, W. Dou, and H. Meng, “Vector analyses of linearly and circularly polarized Bessel beams using Hertz vector potentials,” Opt. Express 22, 7821–7830 (2014).
[Crossref]

C. Pfeiffer and A. Grbic, “Controlling vector Bessel beams with metasurfaces,” Phys. Rev. Appl. 2, 044012 (2014).
[Crossref]

F. Mitri, “Single Bessel tractor-beam tweezers,” Wave Motion 51, 986–993 (2014).
[Crossref]

2012 (3)

M. Ettorre and A. Grbic, “Generation of propagating Bessel beams using leaky-wave modes,” IEEE Trans. Antennas Propag. 60, 3605–3613 (2012).
[Crossref]

P. Lemaître-Auger, S. Abielmona, and C. Caloz, “Generation of Bessel beams by two-dimensional antenna arrays using sub-sampled distributions,” IEEE Trans. Antennas Propag. 61, 1838–1849 (2012).
[Crossref]

F. Mitri, “High-order Bessel nonvortex beam of fractional type α,” Phys. Rev. A 85, 025801 (2012).
[Crossref]

2011 (3)

M. A. Salem, A. H. Kamel, and E. Niver, “Microwave Bessel beams generation using guided modes,” IEEE Trans. Antennas Propag. 59, 2241–2247 (2011).
[Crossref]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using beam plane illumination,” Nat. Methods 8, 417 (2011).
[Crossref]

F. G. Mitri, “Vector wave analysis of an electromagnetic high-order Bessel vortex beam of fractional type α,” Opt. Lett. 36, 606–608 (2011).
[Crossref]

2007 (1)

J. C. Gutiérrez-Vega and C. López-Mariscal, “Nondiffracting vortex beams with continuous orbital angular momentum order dependence,” J. Opt. A 10, 015009 (2007).
[Crossref]

2004 (3)

2003 (2)

2001 (2)

S. Khonina, V. Kotlyar, V. Soifer, P. Pääkkönen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).
[Crossref]

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

2000 (3)

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun 177, 297–301 (2000).
[Crossref]

J. C. Gutiérrez-Vega, M. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000).
[Crossref]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

1997 (1)

M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, and N. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

1991 (2)

K. Shimoda, “Exact solutions of field vectors of diffraction-free electromagnetic waves,” J. Phys. Soc. Jpn. 60, 450–454 (1991).
[Crossref]

S. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).
[Crossref]

1989 (1)

1987 (1)

Abielmona, S.

P. Lemaître-Auger, S. Abielmona, and C. Caloz, “Generation of Bessel beams by two-dimensional antenna arrays using sub-sampled distributions,” IEEE Trans. Antennas Propag. 61, 1838–1849 (2012).
[Crossref]

Abramowitz, M.

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series (U.S. Department of Commerce, National Bureau of Standards, 1972).

M. Abramowitz, I. A. Stegun, and R. H. Romer, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1988).

Achouri, K.

K. Achouri and C. Caloz, “Design, concepts, and applications of electromagnetic metasurfaces,” Nanophotonics 7, 1095–1116 (2018).
[Crossref]

Arfken, G. B.

G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (1999).

Arlt, J.

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun 177, 297–301 (2000).
[Crossref]

Bai, C.

Z. Yang, X. Zhang, C. Bai, and M. Wang, “Nondiffracting light beams carrying fractional orbital angular momentum,” J. Opt. Soc. Am. 35, 452–461 (2018).
[Crossref]

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2016).

Bandres, M. A.

Bateraen, H.

H. Bateraen, Electrical and Optical Wave Motion (Cambridge University, 1915).

Belafhal, A.

A. Chafiq and A. Belafhal, “Optical Fourier transform of pseudo-nondiffracting beams,” J. Quant. Spectrosc. Radiat. Transf. 258, 107357 (2020).
[Crossref]

Betzig, E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using beam plane illumination,” Nat. Methods 8, 417 (2011).
[Crossref]

Caloz, C.

K. Achouri and C. Caloz, “Design, concepts, and applications of electromagnetic metasurfaces,” Nanophotonics 7, 1095–1116 (2018).
[Crossref]

P. Lemaître-Auger, S. Abielmona, and C. Caloz, “Generation of Bessel beams by two-dimensional antenna arrays using sub-sampled distributions,” IEEE Trans. Antennas Propag. 61, 1838–1849 (2012).
[Crossref]

Cardano, F.

Chafiq, A.

A. Chafiq and A. Belafhal, “Optical Fourier transform of pseudo-nondiffracting beams,” J. Quant. Spectrosc. Radiat. Transf. 258, 107357 (2020).
[Crossref]

Chattrapiban, N.

Chávez-Cerda, S.

Cizmar, T.

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical trapping in counter-propagating Bessel beams,” Proc. SPIE 5514, 643–651 (2004).
[Crossref]

Cofield, D.

Courant, R.

R. Courant and D. Hilbert, Methods of Mathematical Physics, (Wiley, 1966).

Davidson, M. W.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using beam plane illumination,” Nat. Methods 8, 417 (2011).
[Crossref]

Denz, C.

Dholakia, K.

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical trapping in counter-propagating Bessel beams,” Proc. SPIE 5514, 643–651 (2004).
[Crossref]

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun 177, 297–301 (2000).
[Crossref]

Ding, C.

F. Mitri, R. Li, L. Guo, and C. Ding, “Optical tractor Bessel polarized beams,” J. Quant. Spectrosc. Radiat. Transf. 187, 97–115 (2017).
[Crossref]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Dou, W.

Durmin, J.

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Ettorre, M.

W. Fuscaldo, G. Valerio, A. Galli, R. Sauleau, A. Grbic, and M. Ettorre, “Higher-order leaky-mode Bessel-beam launcher,” IEEE Trans. Antennas Propag. 64, 904–913 (2015).
[Crossref]

M. Ettorre and A. Grbic, “Generation of propagating Bessel beams using leaky-wave modes,” IEEE Trans. Antennas Propag. 60, 3605–3613 (2012).
[Crossref]

Feshbach, H.

H. Feshbach, P. M. Morse, and M. Masujima, Methods of Theoretical Physics (Dover, 2019).

Forbes, A.

Friberg, A. T.

Fuscaldo, W.

W. Fuscaldo, G. Valerio, A. Galli, R. Sauleau, A. Grbic, and M. Ettorre, “Higher-order leaky-mode Bessel-beam launcher,” IEEE Trans. Antennas Propag. 64, 904–913 (2015).
[Crossref]

Galbraith, C. G.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using beam plane illumination,” Nat. Methods 8, 417 (2011).
[Crossref]

Galbraith, J. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using beam plane illumination,” Nat. Methods 8, 417 (2011).
[Crossref]

Galli, A.

W. Fuscaldo, G. Valerio, A. Galli, R. Sauleau, A. Grbic, and M. Ettorre, “Higher-order leaky-mode Bessel-beam launcher,” IEEE Trans. Antennas Propag. 64, 904–913 (2015).
[Crossref]

Gao, L.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using beam plane illumination,” Nat. Methods 8, 417 (2011).
[Crossref]

Garces-Chavez, V.

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical trapping in counter-propagating Bessel beams,” Proc. SPIE 5514, 643–651 (2004).
[Crossref]

Garcés-Chávez, V.

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Gorshkov, V.

M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, and N. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

Grbic, A.

W. Fuscaldo, G. Valerio, A. Galli, R. Sauleau, A. Grbic, and M. Ettorre, “Higher-order leaky-mode Bessel-beam launcher,” IEEE Trans. Antennas Propag. 64, 904–913 (2015).
[Crossref]

C. Pfeiffer and A. Grbic, “Controlling vector Bessel beams with metasurfaces,” Phys. Rev. Appl. 2, 044012 (2014).
[Crossref]

M. Ettorre and A. Grbic, “Generation of propagating Bessel beams using leaky-wave modes,” IEEE Trans. Antennas Propag. 60, 3605–3613 (2012).
[Crossref]

Guo, L.

F. Mitri, R. Li, L. Guo, and C. Ding, “Optical tractor Bessel polarized beams,” J. Quant. Spectrosc. Radiat. Transf. 187, 97–115 (2017).
[Crossref]

Gutiérrez-Vega, J. C.

J. C. Gutiérrez-Vega and C. López-Mariscal, “Nondiffracting vortex beams with continuous orbital angular momentum order dependence,” J. Opt. A 10, 015009 (2007).
[Crossref]

M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chávez-Cerda, “Parabolic nondiffracting optical wave fields,” Opt. Lett. 29, 44–46 (2004).
[Crossref]

J. C. Gutiérrez-Vega, M. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000).
[Crossref]

J. C. Gutiérrez-Vega, “Formal analysis of the propagation of invariant optical fields in elliptic coordinates,” Ph.D. thesis (Instituto Nacional de Astrofísica Óptica y Electrónica, 2000).

Heckenberg, N.

M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, and N. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

Hernández-Figueroa, H. E.

H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, Localized Waves (Wiley, 2008), Vol. 194.

H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, Non-diffracting Waves (Wiley, 2013).

Hilbert, D.

R. Courant and D. Hilbert, Methods of Mathematical Physics, (Wiley, 1966).

Hill, W. T.

Ishimaru, A.

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering from Fundamentals to Applications (Wiley, 2017).

Iturbe-Castillo, M.

Kamel, A. H.

M. A. Salem, A. H. Kamel, and E. Niver, “Microwave Bessel beams generation using guided modes,” IEEE Trans. Antennas Propag. 59, 2241–2247 (2011).
[Crossref]

Khonina, S.

S. Khonina, V. Kotlyar, V. Soifer, P. Pääkkönen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).
[Crossref]

Kotlyar, V.

S. Khonina, V. Kotlyar, V. Soifer, P. Pääkkönen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).
[Crossref]

Lemaître-Auger, P.

P. Lemaître-Auger, S. Abielmona, and C. Caloz, “Generation of Bessel beams by two-dimensional antenna arrays using sub-sampled distributions,” IEEE Trans. Antennas Propag. 61, 1838–1849 (2012).
[Crossref]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Li, R.

F. Mitri, R. Li, L. Guo, and C. Ding, “Optical tractor Bessel polarized beams,” J. Quant. Spectrosc. Radiat. Transf. 187, 97–115 (2017).
[Crossref]

Liu, C.

Liu, J.

López-Mariscal, C.

J. C. Gutiérrez-Vega and C. López-Mariscal, “Nondiffracting vortex beams with continuous orbital angular momentum order dependence,” J. Opt. A 10, 015009 (2007).
[Crossref]

Malos, J.

M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, and N. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

Masujima, M.

H. Feshbach, P. M. Morse, and M. Masujima, Methods of Theoretical Physics (Dover, 2019).

Meng, H.

Milkie, D. E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using beam plane illumination,” Nat. Methods 8, 417 (2011).
[Crossref]

Mishra, S.

S. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).
[Crossref]

Mitri, F.

F. Mitri, “Optical Bessel tractor beam on active dielectric Rayleigh prolate and oblate spheroids,” J. Opt. Soc. Am. B 34, 899–908 (2017).
[Crossref]

F. Mitri, “Reverse orbiting and spinning of a Rayleigh dielectric spheroid in a J0 Bessel optical beam,” J. Opt. Soc. Am. B 34, 2169–2178 (2017).
[Crossref]

F. Mitri, R. Li, L. Guo, and C. Ding, “Optical tractor Bessel polarized beams,” J. Quant. Spectrosc. Radiat. Transf. 187, 97–115 (2017).
[Crossref]

F. Mitri, “Single Bessel tractor-beam tweezers,” Wave Motion 51, 986–993 (2014).
[Crossref]

F. Mitri, “High-order Bessel nonvortex beam of fractional type α,” Phys. Rev. A 85, 025801 (2012).
[Crossref]

Mitri, F. G.

Morse, P. M.

H. Feshbach, P. M. Morse, and M. Masujima, Methods of Theoretical Physics (Dover, 2019).

Nape, I.

Niu, L.

Niver, E.

M. A. Salem, A. H. Kamel, and E. Niver, “Microwave Bessel beams generation using guided modes,” IEEE Trans. Antennas Propag. 59, 2241–2247 (2011).
[Crossref]

Otte, E.

Pääkkönen, P.

S. Khonina, V. Kotlyar, V. Soifer, P. Pääkkönen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).
[Crossref]

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Controlling vector Bessel beams with metasurfaces,” Phys. Rev. Appl. 2, 044012 (2014).
[Crossref]

Planchon, T. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using beam plane illumination,” Nat. Methods 8, 417 (2011).
[Crossref]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Recami, E.

H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, Localized Waves (Wiley, 2008), Vol. 194.

H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, Non-diffracting Waves (Wiley, 2013).

Rogers, E. A.

Romer, R. H.

M. Abramowitz, I. A. Stegun, and R. H. Romer, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1988).

Rosales-Guzmán, C.

Roy, R.

Salem, M. A.

M. A. Salem, A. H. Kamel, and E. Niver, “Microwave Bessel beams generation using guided modes,” IEEE Trans. Antennas Propag. 59, 2241–2247 (2011).
[Crossref]

Sauleau, R.

W. Fuscaldo, G. Valerio, A. Galli, R. Sauleau, A. Grbic, and M. Ettorre, “Higher-order leaky-mode Bessel-beam launcher,” IEEE Trans. Antennas Propag. 64, 904–913 (2015).
[Crossref]

Shimoda, K.

K. Shimoda, “Exact solutions of field vectors of diffraction-free electromagnetic waves,” J. Phys. Soc. Jpn. 60, 450–454 (1991).
[Crossref]

Sibbett, W.

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

Simonen, J.

S. Khonina, V. Kotlyar, V. Soifer, P. Pääkkönen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).
[Crossref]

Soifer, V.

S. Khonina, V. Kotlyar, V. Soifer, P. Pääkkönen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).
[Crossref]

Soskin, M.

M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, and N. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

Stegun, I.

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series (U.S. Department of Commerce, National Bureau of Standards, 1972).

Stegun, I. A.

M. Abramowitz, I. A. Stegun, and R. H. Romer, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1988).

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

Turunen, J.

S. Khonina, V. Kotlyar, V. Soifer, P. Pääkkönen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).
[Crossref]

A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
[Crossref]

Valerio, G.

W. Fuscaldo, G. Valerio, A. Galli, R. Sauleau, A. Grbic, and M. Ettorre, “Higher-order leaky-mode Bessel-beam launcher,” IEEE Trans. Antennas Propag. 64, 904–913 (2015).
[Crossref]

Vallés, A.

Vasara, A.

Vasnetsov, M.

M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, and N. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

Wang, K.

Wang, M.

Z. Yang, X. Zhang, C. Bai, and M. Wang, “Nondiffracting light beams carrying fractional orbital angular momentum,” J. Opt. Soc. Am. 35, 452–461 (2018).
[Crossref]

Wang, Y.

Weber, H. J.

G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (1999).

Wei, X.

Weisstein, E. W.

E. W. Weisstein, “Fractional part,” From MathWorld–A Wolfram Web Resource.https://mathworld.wolfram.com/FractionalPart.html.

Yang, Z.

Z. Yang, X. Zhang, C. Bai, and M. Wang, “Nondiffracting light beams carrying fractional orbital angular momentum,” J. Opt. Soc. Am. 35, 452–461 (2018).
[Crossref]

X. Wei, C. Liu, L. Niu, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range,” Appl. Opt. 54, 10641–10649 (2015).
[Crossref]

Zamboni-Rached, M.

H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, Non-diffracting Waves (Wiley, 2013).

H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, Localized Waves (Wiley, 2008), Vol. 194.

Zemanek, P.

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical trapping in counter-propagating Bessel beams,” Proc. SPIE 5514, 643–651 (2004).
[Crossref]

Zhan, Q.

Zhang, X.

Z. Yang, X. Zhang, C. Bai, and M. Wang, “Nondiffracting light beams carrying fractional orbital angular momentum,” J. Opt. Soc. Am. 35, 452–461 (2018).
[Crossref]

Zhang, Z.

Appl. Opt. (1)

IEEE Trans. Antennas Propag. (4)

M. A. Salem, A. H. Kamel, and E. Niver, “Microwave Bessel beams generation using guided modes,” IEEE Trans. Antennas Propag. 59, 2241–2247 (2011).
[Crossref]

P. Lemaître-Auger, S. Abielmona, and C. Caloz, “Generation of Bessel beams by two-dimensional antenna arrays using sub-sampled distributions,” IEEE Trans. Antennas Propag. 61, 1838–1849 (2012).
[Crossref]

W. Fuscaldo, G. Valerio, A. Galli, R. Sauleau, A. Grbic, and M. Ettorre, “Higher-order leaky-mode Bessel-beam launcher,” IEEE Trans. Antennas Propag. 64, 904–913 (2015).
[Crossref]

M. Ettorre and A. Grbic, “Generation of propagating Bessel beams using leaky-wave modes,” IEEE Trans. Antennas Propag. 60, 3605–3613 (2012).
[Crossref]

J. Mod. Opt. (1)

S. Khonina, V. Kotlyar, V. Soifer, P. Pääkkönen, J. Simonen, and J. Turunen, “An analysis of the angular momentum of a light field in terms of angular harmonics,” J. Mod. Opt. 48, 1543–1557 (2001).
[Crossref]

J. Opt. A (1)

J. C. Gutiérrez-Vega and C. López-Mariscal, “Nondiffracting vortex beams with continuous orbital angular momentum order dependence,” J. Opt. A 10, 015009 (2007).
[Crossref]

J. Opt. Soc. Am. (1)

Z. Yang, X. Zhang, C. Bai, and M. Wang, “Nondiffracting light beams carrying fractional orbital angular momentum,” J. Opt. Soc. Am. 35, 452–461 (2018).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

J. Phys. Soc. Jpn. (1)

K. Shimoda, “Exact solutions of field vectors of diffraction-free electromagnetic waves,” J. Phys. Soc. Jpn. 60, 450–454 (1991).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (2)

F. Mitri, R. Li, L. Guo, and C. Ding, “Optical tractor Bessel polarized beams,” J. Quant. Spectrosc. Radiat. Transf. 187, 97–115 (2017).
[Crossref]

A. Chafiq and A. Belafhal, “Optical Fourier transform of pseudo-nondiffracting beams,” J. Quant. Spectrosc. Radiat. Transf. 258, 107357 (2020).
[Crossref]

Nanophotonics (1)

K. Achouri and C. Caloz, “Design, concepts, and applications of electromagnetic metasurfaces,” Nanophotonics 7, 1095–1116 (2018).
[Crossref]

Nat. Methods (1)

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using beam plane illumination,” Nat. Methods 8, 417 (2011).
[Crossref]

Opt. Commun (1)

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun 177, 297–301 (2000).
[Crossref]

Opt. Commun. (3)

S. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).
[Crossref]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. A (2)

F. Mitri, “High-order Bessel nonvortex beam of fractional type α,” Phys. Rev. A 85, 025801 (2012).
[Crossref]

M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, and N. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

Phys. Rev. Appl. (1)

C. Pfeiffer and A. Grbic, “Controlling vector Bessel beams with metasurfaces,” Phys. Rev. Appl. 2, 044012 (2014).
[Crossref]

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

Proc. SPIE (1)

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical trapping in counter-propagating Bessel beams,” Proc. SPIE 5514, 643–651 (2004).
[Crossref]

Wave Motion (1)

F. Mitri, “Single Bessel tractor-beam tweezers,” Wave Motion 51, 986–993 (2014).
[Crossref]

Other (24)

H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, Localized Waves (Wiley, 2008), Vol. 194.

H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, Non-diffracting Waves (Wiley, 2013).

H. Bateraen, Electrical and Optical Wave Motion (Cambridge University, 1915).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).

R. Courant and D. Hilbert, Methods of Mathematical Physics, (Wiley, 1966).

OAM waves, or optical vortices, behave to some extent as charged particles: they may repel and attract each other and mutually annihilate upon colliding [52]. For this reason, $n$n is also called the topological charge.

The terminology LSE/LSM (longitudinal section electric/magnetic) is borrowed from the theory of waveguides [53]. Such modes are often referred to as linearly polarized beams in free-space optics [54], but the terminology longitudinal section (LS) is more rigorous since such fields also include a longitudinal component.

This formulation corresponds to an extended ($\nu \in {\mathbb R}$ν∈R) scalar-spectrum formulation in [1,2] and is complementary to the method of carrying out a Fourier transform on a scalar Bessel beam with a Gaussian envelope [55] (see Supplement 1, Section 8).

E. W. Weisstein, “Fractional part,” From MathWorld–A Wolfram Web Resource.https://mathworld.wolfram.com/FractionalPart.html.

Equation (1) may indeed be alternatively expressed as the inverse Fourier transform ${U_\nu}(\rho ,\phi ,z) = {{\cal F}^{- 1}}\{{\tilde U_\nu}({k_\rho},{k_\phi},{k_z})\} = \int_0^\infty \int_0^{2\pi} \int_0^\infty {\tilde U_\nu}({k_\rho},{k_\phi},{k_z}){{e}^{i({\boldsymbol k} \cdot {\textbf r} - \omega t)}}{k_\rho}{\rm d}{k_\rho}{\rm d}{k_\phi}{\rm d}{k_z}$Uν(ρ,ϕ,z)=F−1{U~ν(kρ,kϕ,kz)}=∫0∞∫02π∫0∞U~ν(kρ,kϕ,kz)ei(k⋅r−ωt)kρdkρdkϕdkz with the conical spectrum ${\tilde U_\nu}({k_\rho},{k_\phi},{k_z}) = \frac{{\delta ({k_\rho} - \alpha)}}{{{k_\rho}}}{{e}^{i\nu ({k_\phi} + (2\pi - ({\phi _{{G},0}} \pm \pi)))}}\delta ({k_z} - \beta)$U~ν(kρ,kϕ,kz)=δ(kρ−α)kρeiν(kϕ+(2π−(ϕG,0±π)))δ(kz−β) if ${k_\phi} \lt {\phi _{{G},0}} \pm \pi$kϕ<ϕG,0±π and ${\tilde U_\nu}({k_\rho},{k_\phi},{k_z}) = \frac{{\delta ({k_\rho} - \alpha)}}{{{k_\rho}}}{{e}^{i\nu ({k_\phi} - ({\phi _{{G},0}} \pm \pi))}}\delta ({k_z} - \beta)$U~ν(kρ,kϕ,kz)=δ(kρ−α)kρeiν(kϕ−(ϕG,0±π))δ(kz−β) if ${k_\phi} \ge {\phi _{{G},0}} \pm \pi$kϕ≥ϕG,0±π (see Supplement 1, Section 2).

Note that the beam is still localized in this case due to the decreasing envelope of the Bessel interference pattern.

The top row of Fig. 3 shows that this radial effect is due to the radially decreasing density of the constituent waves.

M. Abramowitz, I. A. Stegun, and R. H. Romer, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1988).

G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (1999).

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series (U.S. Department of Commerce, National Bureau of Standards, 1972).

The fractional superposition of Bessel waves produces novel beam properties, such as internal vortices [9] and negative wave propagation [56], which are beyond the scope of this paper.

By the term ‘general’, we refer both to the arbitrariness of $\nu$ν ($\nu = n \in {\mathbb N}$ν=n∈N or $\nu \in {\mathbb R}\backslash {\mathbb N}$ν∈R∖N) and to the alternative constructions of Eqs. (1) (integral) and (3) (analytical), with the discontinuity parameter ${\phi _{{G},0}}$ϕG,0.

The vectorialization of the analytical solution is no more complicated than that of the integral solution, and it is formally equivalent to the auxiliary potential vector method [57].

H. Feshbach, P. M. Morse, and M. Masujima, Methods of Theoretical Physics (Dover, 2019).

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering from Fundamentals to Applications (Wiley, 2017).

J. C. Gutiérrez-Vega, “Formal analysis of the propagation of invariant optical fields in elliptic coordinates,” Ph.D. thesis (Instituto Nacional de Astrofísica Óptica y Electrónica, 2000).

In the case of Mathieu beams, we need to add the coefficient ${A}({\phi _{G}})$A(ϕG) as ${A_{e}}({\phi _{G}}) = {{\rm ce}_m}({\phi _{G}},q)$Ae(ϕG)=cem(ϕG,q) and ${A_{o}}({\phi _{G}}) = {{\rm se}_m}({\phi _{G}},q)$Ao(ϕG)=sem(ϕG,q) in Eq. (2a), where ${{\rm ce}_m}(\cdot)$cem(⋅) and ${{\rm se}_m}(\cdot)$sem(⋅) are the even (subscript ‘$e$e’) and odd (subscript ‘$o$o’) angular Mathieu functions of order $m$m and ellipticity $q$q [58], and we set $w(\xi) = 1$w(ξ)=1 and ${\gamma _\nu}({\phi _{G}}) = 0$γν(ϕG)=0 in Eq. (2a).

In the case of Weber beams, we need to add the coefficient ${A}({\phi _{G}})$A(ϕG) as ${A_{e}}({\phi _{G}}) = {e^{ia{\rm ln}| {\tan ({\phi _{G}}/2)} |}}/({2\sqrt {\pi | {\sin ({\phi _{G}})} |}})$Ae(ϕG)=eialn|tan⁡(ϕG/2)|/(2π|sin⁡(ϕG)|) or ${A_{o}}({\phi _{G}}) = - i{A_{e}}({\phi _{G}})$Ao(ϕG)=−iAe(ϕG) for $0 \le {\phi _{G}} \le \pi$0≤ϕG≤π and ${A_{o}}({\phi _{G}}) = i{A_{e}}({\phi _{G}})$Ao(ϕG)=iAe(ϕG) for $\pi \lt {\phi _{G}} \le 2\pi$π<ϕG≤2π, with $a$a being a parameter, and we set $w(\xi) = 1$w(ξ)=1 and ${\gamma _\nu}({\phi _{G}}) = 0$γν(ϕG)=0 in Eq. (2a).

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2016).

Supplementary Material (4)

NameDescription
» Supplement 1       Supplement 1
» Visualization 1       Horizontal and vertical LSE/LSM polarization of the fundamental zero-order Bessel beam
» Visualization 2       Right-circular and left-circular LSE/LSM polarization of the fundamental zero-order Bessel beam
» Visualization 3       Azimuthal and radial LSE/LSM polarization of the fundamental zero-order Bessel beam

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Classification of electromagnetic Bessel beams.
Fig. 2.
Fig. 2. General description of a Bessel beam [Eq. (1)] as a superposition of waves [Eq. (2a)] with different phases [Eq. (2d)] propagating along a cone of opening angle $\delta = \mathop {\tan}\nolimits^{- 1} (\alpha /\beta)$ [Eq. (2b)] towards its apex. The field panel shows, as an example, $|{U_1}(x,y,0,0)| = |{J_1}(\alpha \rho)|$.
Fig. 3.
Fig. 3. Cross-sectional view of the beam numerically obtained by discretizing the integral in Eq. (1) with 20 equi-spaced constituent plane waves [Eq. (2a) with $w(\xi) = 1$] in the plane $z = 0$ of Fig. 2 for $\nu = 0,1,1.5$ at $t = 0$ and over the cross-sectional area of $7\lambda \times 7\lambda$ ($\lambda = 2\pi c/\omega$) co-centered with the beam axis. Top Row: maxima (red lines) and minima (blue lines). Bottom row: actual waves.
Fig. 4.
Fig. 4. Cross-sectional view of the complex Bessel beam analytically computed by Eq. (6) for different OAM orders ($\nu$), with ${\phi _{{G},0}} = 0$, $\delta = {25^ \circ}$, and $M = 100$, over the same area as in Fig. 3. Top row: transverse amplitude. Bottom row: transverse phase.
Fig. 5.
Fig. 5. Noninteger global-order ($\nu = 1.5$) ${{\rm LSE}_y}$ Bessel beam computed by Eq. (7). (a) Transverse vectorial fields at $z = {z_G}$ for 12 plane wave samples. (b) Corresponding complete vectorial fields in four different cut planes (dotted circles) with axicon angle ${\delta = 25^ \circ}$. (c) Magnitude and phase of the fields over the cross-sectional area of $8\lambda \times 8\lambda$.
Fig. 6.
Fig. 6. Noninteger global-order ($\nu = 1.5$) ${{\rm TM}_z}$ Bessel beam computed by Eq. (8), with the same parameters and panels as in Fig. 5.
Fig. 7.
Fig. 7. Time-average Poynting vector components of ${\rm LSE}_y^ +$ [Eq. (7)] and ${\rm TM}_z^ +$ [Eq. (7)] modes with ${ \delta = 25^ \circ}$.
Fig. 8.
Fig. 8. Experimental implementation of the proposed general Bessel beam generation technique. (a) Using a circular array of $N$ laser sources. (b) Cross-sectional view of (a) with polarization and initial phase configuration corresponding to the ${{\rm TM}_{z,1.5}}$. (c) Metasurface implementation, with metasurface susceptibility tensor ${\bar {\bar \chi}} ({\phi _{G}})$, with a single laser source.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

U ν ( x , y , z , t ) = 0 2 π ψ ν ( ϕ G ) d ϕ G ,
ψ ν ( ϕ G ) = e i ( k ( ϕ G ) r + γ ν ( ϕ G ) ω t ) w ( ξ ) ,
k ( ϕ G ) = α ( cos ( ϕ G ) x ^ + sin ( ϕ G ) y ^ ) + β z ^ ,
α = k 0 sin ( δ ) , β = k 0 cos ( δ ) ,
γ ν ( ϕ G ) = 2 π ν f r a c ( ϕ G 2 π + ( 1 ϕ G , 0 2 π ) ) , ν R .
U ν , ( ρ , ϕ ) = A P W ϕ G , 0 ϕ G , 0 + 2 π e i α ρ cos ( ϕ ϕ ) e i ν ( ϕ ϕ G , 0 ) d ϕ .
e i ν ϕ = m = + s i n c ( ( m ν ) π ) e i ( m ν ) ( ϕ G , 0 + π ) e i m ϕ .
U ν , ( ρ , ϕ ) = A P W e i ν ϕ G , 0 m = + s i n c ( ( m ν ) π ) e i ( m ν ) ( ϕ G , 0 + π ) × ϕ G , 0 ϕ G , 0 + 2 π e i α ρ cos ( ϕ ϕ ) e i m ϕ d ϕ .
U ν , ( ρ , ϕ ) = m = + A m B B ( ν , ϕ G , 0 ) J m ( α ρ ) e i m ϕ ,
A m B B ( ν , ϕ G , 0 ) = 2 π i m e i ν ϕ G , 0 A P W s i n c ( ( m ν ) π ) e i ( m ν ) ( ϕ G , 0 + π ) .
E ( ρ , ϕ , z ) = 0 2 π d ϕ G ψ ν ( ϕ G ) × ( x ^ + tan ( δ ) cos ( ϕ G ) z ^ ) ,
η H ( ρ , ϕ , z ) = 0 2 π d ϕ G ψ ν ( ϕ G ) × ( sin ( δ ) tan ( δ ) sin ( ϕ G ) cos ( ϕ G ) x ^ + ( sin ( δ ) tan ( δ ) cos 2 ( ϕ G ) + cos ( δ ) ) y ^ + sin ( δ ) sin ( ϕ G ) z ^ ) ,
E ( ρ , ϕ , z ) = 0 2 π d ϕ G ψ ν ( ϕ G ) × ( cot ( δ ) cos ( ϕ G ) x ^ + cot ( δ ) sin ( ϕ G ) y ^ + z ^ ) ,
η H ( ρ , ϕ , z ) = 0 2 π d ϕ G ψ ν ( ϕ G ) × ( csc ( δ ) sin ( ϕ G ) x ^ + csc ( δ ) cos ( ϕ G ) y ^ ) ,
1 2 ( { L S E y , ν 1 + L S E y , ν + 1 L S M y , ν 1 + L S M y , ν + 1 } ) + i 1 2 ( { L S E x , ν 1 L S E x , ν + 1 L S M x , ν 1 L S M x , ν + 1 } ) = tan ( δ ) { T M z , ν T E z , ν } ,
tan ( δ ) 2 ( { T M z , ν 1 + T M z , ν + 1 T E z , ν 1 + T E z , ν + 1 } ) ± i sin ( δ ) 2 ( { T E z , ν 1 T E z , ν + 1 T M z , ν 1 T M z , ν + 1 } ) = { L S E y , ν L S M y , ν } ,
sin ( δ ) 2 ( { T E z , ν 1 + T E z , ν + 1 T M z , ν 1 + T M z , ν + 1 } ) + i tan ( δ ) 2 ( { T M z , ν 1 T M z , ν + 1 T E z , ν 1 T E z , ν + 1 } ) = { L S E x , ν L S M x , ν } ,
E = ϕ G [ 0 , 2 π ] N w ( ϕ G ) E P W ( ϕ G ) Δ ϕ G ,
w ( ϕ G ) = e ( x 2 ( ϕ G ) + y 2 ( ϕ G ) ) / w 0 2 ,
x ( ϕ G ) = ( x cos ( ϕ G ) + y sin ( ϕ G ) ) cos ( δ ) z sin ( δ ) ,
y ( ϕ G ) = x sin ( ϕ G ) + y cos ( ϕ G ) ,