Abstract

Monolithically combining silicon nitride (${{\rm{SiN}}_{\rm x}}$) photonics technology with III-V active devices could open a broad range of on-chip applications spanning a wide wavelength range of ${\sim}{{400 {-} 4000}}\;{\rm{nm}}$. With the development of nitride, arsenide, and antimonide lasers based on quantum well (QW) and quantum dot (QD) active regions, the wavelength palette of integrated III-V lasers on Si currently spans 400 nm to 11 µm, with a crucial gap in the red-wavelength regime of 630–750 nm. Here, we demonstrate red ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}\;{\rm{P}}$ QW and far-red InP QD lasers monolithically grown on CMOS-compatible Si (001) substrates with continuous-wave operation at room temperature. A low-threshold current density of ${{550}}\;{\rm{A}}/{{\rm{cm}}^2}$ and ${{690}}\;{\rm{A}}/{{\rm{cm}}^2}$ with emission at 680–730 nm was achieved for QW and QD lasers on Si, respectively. This work represents a step toward the integration of visible red lasers on Si, allowing the utilization of integrated photonics for applications including biophotonic sensing, quantum computing, and near-eye displays.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

The primary application for Si photonics technology to date has been integrated photonic transceivers for telecommunications where off-chip or hybrid-integrated InP-based lasers emitting in the C- or O-bands (${\sim}{{1.3 {-} 1}.{6}}\;{\rm{\unicode{x00B5}{\rm m}}}$) serve as the light source [1]. Leveraging the CMOS foundry, Si photonics now enables an increasing number of applications, including mapping and navigation [2], spectroscopy [3], and quantum communication [4]. Applications that rely on visible lasers, such as biosensing [5], atomic clocks [6], and spatial mapping [2] could greatly benefit from the ability to generate, guide, and sense light on a chip [7]. As another example, integrated photonics could help overcome the limitations of free-space optics for trapped-ion quantum computing relying on 674 nm lasers to drive transitions in ${}^{88}{\rm{S}}{{\rm{r}}^ +}$ ion qubits [8]. Low-loss ${{\rm{SiN}}_{\rm x}}$ waveguide technology [9] is a key enabler for visible photonics chips, but efforts to integrate visible sources on Si are currently lagging behind.

Despite elevated threading dislocation density (TDD) values of ${\sim}{{1}}{{{0}}^6} {-} {{1}}{{{0}}^8}\;{\rm{c}}{{\rm{m}}^{- 2}}$ [10], recent efforts have yielded a wide range of monolithic lasers on Si utilizing GaAs-, InP-, and GaSb-based active regions. For example, InAs quantum dot (QD) lasers on GaAs/Si (001) emitting at 1.3 µm, have been demonstrated with threshold current density (${{\rm{J}}_{\rm{th}}}$) values as low as ${62.5}\;{\rm{A}}/{{\rm{cm}}^2}$ for room temperature (RT), continuous-wave (CW) operation [11]; ${{\rm{J}}_{\rm{th}}} = {\rm{100 {-} 300}}\;{\rm{A}}/{{\rm{cm}}^2}$ is more typical for InAs QD lasers on Si [12,13]. In addition, Shang et al. demonstrated an extrapolated operation lifetime of 22 years with a constant current stress at 80°C by preventing the formation of misfit dislocations in the InAs QD active region [1214]. As another example, InGaAsP multiple quantum well (MQW) lasers on InP/Si (001) emitting at 1.55 µm with CW, RT operation and ${{\rm{J}}_{\rm{th}}} = {\rm{1 {-} 3}}\;{\rm{kA}}/{{\rm{cm}}^2}$ have also been reported [15,16]. Finally, GaSb-based quantum well (QW) lasers emitting at 2.3 µm were recently demonstrated using on-axis Si substrates with ${{\rm{J}}_{\rm{th}}} = {\rm{200 {-} 300}}\;{\rm{A}}/{{\rm{cm}}^2}$ and CW operation up to 80°C [17,18]; further references on epitaxial III-V lasers on Si can be found in recent review articles [10,19,20]. Despite the impressive development of near- and shortwave-infrared lasers on Si based on both QD and QW active regions, there are no reports for electrically injected red lasers on on-axis Si. Development of monolithic visible red lasers on Si would fill a crucial gap in the wavelength palette of integrated lasers on Si, which already spans 400 nm [21] to 11 µm [22].

${{\rm{In}}_{\rm x}}{{\rm{Ga}}_{1 - {\rm x}}}{\rm{P}}$ QWs and InP QDs are a versatile platform for high-efficiency diode lasers emitting in the 630–800 nm wavelength regime. InP QD lasers on GaAs emitting in the 680–750 nm [23,24] wavelength range have shown pulsed ${{\rm{J}}_{\rm{th}}}$ values as low as ${{190}}\;{\rm{A}}/{{\rm{cm}}^2}$ [24] and high-power output ${\gt}{{150}}\;{\rm{mW}}$ [25]. Compressively strained ${{\rm{In}}_{\rm x}}{{\rm{Ga}}_{1 - {\rm x}}}{\rm{P}}$ (${\rm{x}} \gt {0.49}$) QW lasers on GaAs are even more mature and have demonstrated watt-class power output [26] with ${{\rm{J}}_{\rm{th}}}$ of ${{295}}\;{\rm{A}}/{{\rm{cm}}^2}$ [27]. Kwon et al. demonstrated the first ${{\rm{In}}_{0.58}}{{\rm{Ga}}_{0.42}}{\rm{P}}$ QW lasers on 6° offcut Si (001) using a 10-µm-thick SiGe buffer with ${\rm{TDD}} = {{2}} \times {{1}}{{{0}}^6}\;{\rm{c}}{{\rm{m}}^{- 2}}$ [28]. Despite the well-controlled TDD, the lasers only operated pulsed with a high ${{\rm{J}}_{\rm{th}}}$ of ${1.65}\;{\rm{kA}}/{{\rm{cm}}^2}$, and moreover, the use of offcut Si substrates renders such devices incompatible with Si photonics foundries [28]. More recently, Luo et al. demonstrated optically pumped InP QD microdisk lasers on Si (001) [29]. Despite the excellent performance of phosphide-based visible lasers on GaAs, further work is required to monolithically integrate visible lasers and optical amplifiers on Si (001).

To date, no electrically injected red laser has been demonstrated on exact Si (001), preventing visible integrated photonics from fully leveraging advances in high-performance SiNx passive optical components and Si photodetectors. In this paper, we demonstrate what we believe are the first visible ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ QW and InP QD lasers monolithically grown on foundry-compatible Si (001) substrates with CW, RT operation. Despite a moderate increase in ${{\rm{J}}_{\rm{th}}}$ caused by threading dislocations, our visible lasers on Si (001) compare favorably with earlier-reported devices based on similar active regions grown on GaAs (001). Low-threshold, monolithically integrated visible lasers on Si can serve as an important low-cost enabler for visible optoelectronics applications ranging from quantum information [4] to near-eye displays [30].

All lasers were grown in a Veeco Mod Gen II solid-source molecular beam epitaxy (MBE) system on GaAs (001) and GaAs/Si (001) without any intentional offcut. We grew relaxed GaAs on GaP/Si (001) templates commercially available from ${\rm{NAs}}{{\rm{P}}_{\rm III - V}}$ GmbH using a combination of thermal cycle annealing and dislocation filtering [31] (Supplement 1); the total thickness of the buffer layer was ${\sim}{2.15}\;{\rm{\unicode{x00B5}{\rm m}}}$. The laser structure [Fig. 1(a)] includes an optical cavity consisting of 1000 nm n- and ${\rm{p}} \text{-} {\rm{A}}{{\rm{l}}_{0.51}}{{\rm{In}}_{0.49}}{\rm{P}}$ (AlInP, hereafter) cladding layers and a 150 nm ${({{\rm{A}}{{\rm{l}}_{\rm x}}{{\rm{Ga}}_{1 - {\rm x}}}})_{0.52}}{{\rm{In}}_{0.48}{\rm P}}({{\rm x} = 0.34 - 1})$ continuous graded index waveguide (GRIN-WG) layer. We grew ${{\rm{In}}_{0.48}}{{\rm{Ga}}_{0.52}}{\rm{P}}$ barrier reduction layers (BRLs) between the GaAs contact and AlInP cladding layers to mitigate voltage drops resulting from band offsets [32]. The cladding, waveguide, and BRLs were lattice-matched to GaAs, as confirmed by high-resolution x-ray diffraction. The active region of the single QW (SQW) laser consists of a compressively strained 7 nm ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ QW surrounded by 50 nm, 2.1 eV ${\rm{A}}{{\rm{l}}_{0.17}}{{\rm{Ga}}_{0.35}}{{\rm{In}}_{0.48}}{\rm{P}}$ (AlGaInP, hereafter) spacer layers, lattice-matched to GaAs. The active region of the InP multiple quantum dot (MQD) lasers utilizes a QD in a well design (QDWELL) with 3.5 monolayers (MLs) InP QDs capped by a 7 nm ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ QW and surrounded by 16 nm AlGaInP spacer layers; the QDWELL structure was repeated ${{3}} \times$ in the InP MQD laser. The MQD active region was utilized to increase modal overlap with the gain region, consistent with prior reports [2325]; in contrast, the majority of low-threshold ${{\rm{In}}_{\rm x}}{{\rm{Ga}}_{1 - {\rm x}}}{\rm{P}}$ QW lasers utilize an SQW active region [26,27]. All laser structures underwent post-growth rapid thermal annealing (RTA) at 950°C for 1 s to improve the optical quality of the active region [33] prior to fabrication of uncoated, broad-area lasers (Supplement 1). Details of the beneficial effect of RTA on both photoluminescence (PL) and laser threshold characteristics will be discussed in a future publication. Laser testing was performed under CW injection with devices sitting on a temperature-controlled stage (see Supplement 1 for current-voltage curves and other testing details). Reliability studies are planned for the future, but we see no evidence of degradation over the time spent characterizing these devices.

 figure: Fig. 1.

Fig. 1. (a) Growth schematic of InP MQD laser on GaAs/Si; the SQW laser is similar except without QDs and only one repeat of the active region; (b) BF-TEM image of InP MQD laser on GaAs/Si showing strain contrast around the InP QDs; (c) false-colored high-resolution HAADF-STEM image of a single InP QDWELL layer showing composition contrast from individual QDs; (d) CL map of n-GaAs/Si showing TDD of ${\sim}{{1}} \times {{1}}{{{0}}^7}\;{\rm{c}}{{\rm{m}}^{- 2}}$ with dark spots correlating to threading dislocations.

Download Full Size | PPT Slide | PDF

The bright-field transmission electron microscope (BF-TEM) image in Fig. 1(b) shows an entire InP MQD laser structure grown on GaAs/Si. The striated contrast throughout the device is common for ternary and quaternary AlGaInP alloys grown by MBE and results from weak phase separation during growth [34]. The active region shows three layers of coherently strained InP QDs exhibiting a mottled, dark strain contrast, while the apparent absence of threading dislocations indicates that the TDD in the active region is close to or below the detection limit of ${\sim}{{1}} \times {{1}}{{{0}}^7}\;{\rm{c}}{{\rm{m}}^{- 2}}$. Importantly, no misfit dislocations are observed in the active region, despite the compressive strain present in both the InP QDs and ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ QWs. A high-angle annular dark-field scanning TEM (HAADF-STEM) image of a single QDWELL layer in Fig. 1(c) shows the composition contrast of individual InP QDs. The density of buried InP QDs, calculated using BF-TEM is ${\gt}{{1}} \times {{1}}{{{0}}^{11}}\;{\rm{c}}{{\rm{m}}^{- 2}}$, consistent with our previous report [35]. The panchromatic cathodoluminescence (CL) map in Fig. 1(d) of the n-GaAs/Si virtual substrate used for the laser growth confirms the TDD value of ${\sim}{{1}} \times {{1}}{{{0}}^7}\;{\rm{c}}{{\rm{m}}^{- 2}}$.

A critical precursor towards demonstrating low-${{\rm{J}}_{\rm{th}}}$ red lasers on Si was to develop high-performance benchmark devices on native GaAs substrates, and Fig. 2(a) shows the light intensity versus current density (L-I) characteristics of broad-area ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW and InP MQD lasers on GaAs tested under CW operation at 20°C. The ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW laser shows a low ${{\rm{J}}_{\rm{th}}}$ of ${{170}}\;{\rm{A}}/{{\rm{cm}}^2}$ with an output power of ${\gt}{{10}}\;{\rm{mW}}$, while the InP MQD laser exhibits a slightly higher ${{\rm{J}}_{\rm{th}}}$ of ${{230}}\;{\rm{A}}/{{\rm{cm}}^2}$ (${{77}}\;{\rm{A}}/{{\rm{cm}}^2}$ per QDWELL layer) due to its thicker active region. Although a pulsed ${{\rm{J}}_{\rm{th}}}$ value of ${{190}}\;{\rm{A}}/{{\rm{cm}}^2}$ has been reported previously for InP MQD lasers [24], these are the lowest CW ${{\rm{J}}_{\rm{th}}}$ values on GaAs (001) that we are aware of. Figure 2(b) shows that the ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW laser emits at 691.5 nm and the InP MQD laser emits in the far-red regime at 726.8 nm; both exhibit multiple transverse and longitudinal modes, as expected for broad-area lasers; variation in cavity width over a range of 40–100 µm had no systematic effect on the ${{\rm{J}}_{\rm{th}}}$ or output power of the lasers described in this paper (Supplement 1). The ultralow CW ${{\rm{J}}_{\rm{th}}}$ of our ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW and InP MQD lasers on GaAs establishes that our material quality is at or near state-of-the-art values and enables us to observe the performance of our lasers on Si without the deleterious point defects that have been reported in MBE-grown phosphides [36].

 figure: Fig. 2.

Fig. 2. Benchmark laser characteristics for devices grown on GaAs. (a) L-I curves for ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW (red, 1.8 mm cavity length with 100 µm ridge) and InP MQD (green, 1.7 mm cavity length with 60 µm ridge) lasers tested CW at 20°C, with ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW (InP MQD) laser exhibiting ${{\rm{J}}_{\rm{th}}} = {{170}}\;{\rm{A}}/{{\rm{cm}}^2}$ (${{230}}\;{\rm{A}}/{{\rm{cm}}^2}$); (b) semilogarithmic laser spectra showing ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW laser emitting at 691.5 nm and InP MQD laser emitting at 726.8 nm with multiple modes. The spectra were collected at RT under CW operation at ${1.7} \times {{\rm{J}}_{\rm{th}}}$ for SQW lasers and ${1.3} \times {{\rm{J}}_{\rm{th}}}$ for MQD lasers.

Download Full Size | PPT Slide | PDF

${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW lasers on Si (001) exhibit a CW ${{\rm{J}}_{\rm{th}}}$ of ${{550}}\;{\rm{A}}/{{\rm{cm}}^2}$ [Fig. 3(a)], ${{3}} \times$ lower than previously reported pulsed devices on offcut Si [28]. The inset of Fig. 3(a) shows a photograph of the laser (${\rm{cavity}}\;{\rm{length}} = {1.25}\;{\rm{mm}}$, ${\rm{ridge}}\;{\rm{width}} = {{40}}\;{\rm{\unicode{x00B5}{\rm m}}}$) located at the bottom/foreground operating at ${\sim}{{5}}\;{\rm{mW}}$ output power with the far-field pattern projected onto a wall, ${\sim}{{50}}\;{\rm{cm}}$ from the device under test; the dark/bright vertical stripes in the far-field result from diffraction effects in the elliptical emission pattern. The SQW laser on Si (001) emits with multiple modes centered at 693.9 nm as shown in Fig. 3(b), slightly redshifted compared to the laser grown on GaAs. The redshift could be attributed to tensile strain arising from the thermal mismatch between III-V layers and Si [37]. Despite a TDD of ${{1}} \times {{1}}{{{0}}^7}\;{\rm{c}}{{\rm{m}}^{- 2}}$, ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW lasers show only a moderate increase of ${3.2} \times$ in ${{\rm{J}}_{\rm{th}}}$ compared to SQW lasers on GaAs. Besides the impact of threading dislocations, the shorter cavity length (1.25 versus 1.8 mm) of the SQW laser on Si and the narrower ridge width (40 µm versus 100 µm) could be responsible for the increase in ${{\rm{J}}_{\rm{th}}}$. The relatively low ${{\rm{J}}_{\rm{th}}}$ of our ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW lasers on Si is noteworthy, considering that earlier work used GaAs/Si with a much lower TDD of ${{2}} \times {{1}}{{{0}}^6}\;{\rm{c}}{{\rm{m}}^{- 2}}$ [28]. We believe that non radiative recombination at point defects is the most likely reason for the high ${{\rm{J}}_{\rm{th}}}$ values observed by Kwon et al. on both GaAs and Si, which in turn dominates the effects of threading dislocations. For comparison, ${{\rm{In}}_{0.15}}{{\rm{Ga}}_{0.85}}{\rm{As}}$ QW lasers on GaAs/Si with emission at ${\sim}{{1}} \;{\unicode{x00B5}}{\rm m}$ and TDD ${\sim}{{1}} \times {{10}^8}\;{{\rm{cm}}^{- 2}}$ exhibited pulsed ${{\rm{J}}_{\rm{th}}}$ of ${5.6}\;{\rm{kA/cm}}^{2}$, ${\sim}{{60}} \times$ higher than their counterparts grown on GaAs (001) [37]. Our ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW lasers on Si appear to show a comparatively higher degree of tolerance to threading dislocations, which may result from the low carrier diffusivity in phosphides compared to arsenides [38]. In contrast, ${{\rm{Ga}}_{\rm x}}{{\rm{In}}_{1 - {\rm x}}}{\rm{A}}{{\rm{s}}_y}{\rm{S}}{{\rm{b}}_{1 - y}}$ QW lasers grown on GaSb on Si emitting at 2.3 µm with a ${\rm{TDD}} = {1.4} \times {{1}}{{{0}}^8}\;{\rm{c}}{{\rm{m}}^{- 2}}$ show only ${\sim}{{2}} \times$ increase in ${{\rm{J}}_{\rm{th}}}$ compared to lasers grown on GaSb [39]. Further study is needed to better understand the complex interplay of bandgap energy and composition on the dislocation tolerance of III-V lasers.

 figure: Fig. 3.

Fig. 3. (a) L-I curve for ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW laser on GaAs/Si (001) with a cavity length of 1.25 mm and ridge width of 40 µm operating CW at ${\rm{T}} = {{20}}^\circ {\rm{C}}$ with ${{\rm{J}}_{\rm{th}}} = {{550}}\;{\rm{A}}/{{\rm{cm}}^2}$; inset, photograph of ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW laser on Si lasing with output power ${\gt}{{5}}\;{\rm{mW}}$ projected on a wall ${\sim}{{50}}\;{\rm{cm}}$ away from device under test; (b) semilogarithmic lasing spectra of ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}\;{\rm{P}}$ SQW laser on Si operating at ${1.6} \times {{\rm{J}}_{\rm{th}}}$, collected at RT CW showing multiple mode emission centered at 693.9 nm.

Download Full Size | PPT Slide | PDF

Figure 4(a) shows the RT, CW L-I characteristics of the first electrically injected InP MQD laser on GaAs/Si. ${{\rm{J}}_{\rm{th}}}$ of this laser is ${{690}}\;{\rm{A}}/{{\rm{cm}}^2}$ (${{230}}\;{\rm{A}}/{{\rm{cm}}^2}$ per QDWELL layer), and the inset of Fig. 4(a) shows a photograph of the InP MQD laser (${\rm{cavity}}\;{\rm{length}} = {0.9}\;{\rm{mm}}$, ${\rm{ridge}}\;{\rm{width}} = {{40}}\;{\rm{\unicode{x00B5}{\rm m}}}$) operating at ${\sim}{{5}}\;{\rm{mW}}$ output. The InP MQD laser on Si emits with multiple modes centered at 726.2 nm [Fig. 4(b)], nearly identical to our MQD lasers on GaAs. Unlike the slightly different wavelengths of the SQW lasers described above, here we attribute the lack of redshift to minor differences in QD growth on GaAs versus GaAs/Si. In addition to differences in growth, the emission wavelength of QD lasers might be affected by differences in mirror loss due to the varying cavity lengths on GaAs and GaAs/Si. Figure 4(c) shows that ${{\rm{J}}_{\rm{th}}}$ of the InP MQD laser on Si increases from ${{690}}\;{\rm{A}}/{{\rm{cm}}^2}$ at 20°C to ${{1063}}\;{\rm{A}}/{{\rm{cm}}^2}$ at 50°C. We extracted a characteristic temperature To of 65 K for InP MQD lasers on Si, which is lower than the value of 88 K for lasers on GaAs (Supplement 1). The lower To on Si indicates the need for improved heat dissipation in the active region and further reduction of TDD [40].

 figure: Fig. 4.

Fig. 4. (a) L-I curve for InP MQD laser on GaAs/Si (001) with a cavity length of 0.9 mm and ridge width of 40 µm operating CW at ${\rm{T}} = {{20}}^\circ {\rm{C}}$ with ${{\rm{J}}_{\rm{th}}} = {{690}}\;{\rm{A}}/{{\rm{cm}}^2}$; inset, photograph of InP MQD laser on Si lasing with output power ${\sim}5 \;{\rm{mW}}$ projected on a wall ${\sim}{{50}}\;{\rm{cm}}$ away from device under test; (b) semilogarithmic lasing spectra of InP MQD laser on Si operating at ${1.1} \times {{\rm{J}}_{\rm{th}}}$, collected at RT under CW operation showing multiple mode emission centered in the far-red regime at 726.2 nm; (c) L-I curves for InP MQD laser on Si operating CW at elevated temperature of 20°C to 50°C showing an increase in ${{\rm{J}}_{\rm{th}}}$ with characteristic temperature of 65 K.

Download Full Size | PPT Slide | PDF

The InP MQD laser on GaAs/Si shows a ${{\rm{J}}_{\rm{th}}}$ increase of ${{3}} \times$ compared to its counterpart grown on GaAs, which is comparable to the ${{2}} \times$ increase typically seen in InAs MQD lasers on Si [10]. Like QW lasers on Si, a part of the increase in ${{\rm{J}}_{\rm{th}}}$ could be attributed to the shorter cavity length and narrower ridges. But based on previous PL studies where InP QDs showed similar intensity on both GaAs and GaAs/Si [29,35], we would have expected that the carrier confinement offered by the QDs would confer some ${{\rm{J}}_{\rm{th}}}$ advantage for laser operation over the QWs. The high-level carrier injection inherent to laser operation may partly explain the qualitative discrepancy between the PL (taken at very low-level injection) and laser results. Future studies with optimized device design and processing could help further unveil the effects of threading dislocations on visible QW and QD lasers grown on Si.

Figure 5(a) shows that we achieved low-${{\rm{J}}_{\rm{th}}}$ operation for red and far-red lasers on both GaAs and GaAs/Si substrates. Despite a ${{\rm{J}}_{\rm{th}}}$ increase of ${\sim}{{3}} \times$ caused by threading dislocations, both ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW and InP MQD lasers on Si show comparable ${{\rm{J}}_{\rm{th}}}$ to previously published red and far-red lasers grown on GaAs (Supplement 1). We believe that the use of a GRIN design for optical and electrical confinement, reduction of nonradiative recombination centers using RTA, and the inherent low diffusivity of carriers in phosphides are among the key factors for our low-${{\rm{J}}_{\rm{th}}}$ lasers on Si substrates. Figure 5(b) shows the spectra of ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW and InP MQD lasers on GaAs and Si spanning 680 to 730 nm. The emission wavelength range can be tailored to a wide range of applications by utilizing tensile-strained ${{\rm{In}}_{\rm x}}{{\rm{Ga}}_{1 - {\rm x}}}{\rm{P}}$ QWs [41] for shorter wavelength and alloying InP QDs with arsenic for longer wavelength emission [42]. The performance of both the SQW and MQD lasers could be further improved by reducing the TDD of GaAs/Si virtual substrates [13] and exploring p-modulation doping in the QD active regions [43]. Future work will also aim to lower the threshold voltage of the devices by reduction of barriers to majority carriers and optimization of contact resistances [44]. For example, the ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW lasers on both GaAs and Si operate with a threshold voltage of 2.7 V, which is higher than expected for a laser emitting at a photon energy of ${\sim}{1.8}\;{\rm{eV}}$; previously published lasers in this wavelength range operated at voltages of 2.1–2.3 V [33,45], indicating room for improvement. In addition to facet coating, we believe that lower ${{\rm{J}}_{\rm{th}}}$ operation of ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ QW and InP MQD lasers on Si can be achieved with systematic improvements in facet formation [18], as well as longer cavity lengths [33]. Future work will also aim toward testing the extrapolated operation lifetime of ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW and InP MQD lasers on Si and understanding their degradation mechanisms.

 figure: Fig. 5.

Fig. 5. (a) Comparison of L-I characteristics of ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW and InP MQD lasers on GaAs and GaAs/Si with both SQW and MQD lasers on Si showing a ${{\rm{J}}_{\rm{th}}}$ increase of ${\sim}3 \times$ compared to lasers on GaAs; (b) spectra of ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW and InP MQD lasers grown on GaAs and GaAs/Si in semilogarithmic scale.

Download Full Size | PPT Slide | PDF

In conclusion, we demonstrated what we believe are the first RT, CW, electrically injected red ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW and far-red InP MQD lasers on Si (001) with respective ${{\rm{J}}_{\rm{th}}}$ values of ${{550}}\;{\rm{A}}/{{\rm{cm}}^2}$ and ${{690}}\;{\rm{A}}/{{\rm{cm}}^2}$. This study indicates that the effect of dislocations on phosphide- and arsenide-based lasers on Si differ significantly, with arsenides showing stronger benefits in ${{\rm{J}}_{\rm{th}}}$ by switching from a QW to a QD active region. III-V lasers based on diverse active region designs, compositions, and bandgap energies can all behave differently when grown on Si, and future studies will undoubtedly lead to deeper insights on these differences. Phosphide-based QW and QD lasers offer high performance over a wide range of wavelengths from 630 to 800 nm, and this work establishes that such lasers can be grown on Si (001). Combined with ${{\rm{SiN}}_{\rm x}}$ waveguides, such short-wavelength lasers open the intriguing possibility of direct integration with highly sensitive Si photodetectors [46], circumventing the escalated dark current of epitaxial Ge/Si detectors [47]. Epitaxial QD and QW lasers emitting at 1.3–2.3 µm are becoming increasingly established, and this work takes a vital first step toward integration of red visible lasers that will allow integrated photonics to expand its impact into areas such as on-chip biosensing [48] and quantum computing [9].

Funding

Lincoln Laboratory, Massachusetts Institute of Technology; NASA Space Technology Research Fellowship (80NSSC18K1171, 80NSSC19K1174).

Acknowledgment

We thank Chris Heidelberger, Reuel Swint, and Paul Juodawlkis for helpful discussions and assistance. We also thank Katherine Lakomy and Prof. Kent Choquette for help with initial pulsed testing of the lasers. We gratefully acknowledge funding from MIT Lincoln Laboratory under the program, “Heteroepitaxial III-V/SiNx Integrated Photonics (HIP)”. R. D. H and B. D. L were supported by NASA Space Technology Research Fellowships.

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Supplemental document

See Supplement 1 for supporting content.

REFERENCES

1. T. Pinguet, S. Denton, S. Gloeckner, M. Mack, G. Masini, A. Mekis, S. Pang, M. Peterson, S. Sahni, and P. D. Dobbelaere, “High-volume manufacturing platform for silicon photonics,” Proc. IEEE 106, 2281–2290 (2018). [CrossRef]  

2. G. Sanders, S. Sanders, L. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016). [CrossRef]  

3. M. Boerkamp, T. van Leest, J. Heldens, A. Leinse, M. Hoekman, R. Heideman, and J. Caro, “On-chip optical trapping and Raman spectroscopy using a TripleX dual-waveguide trap,” Opt. Express 22, 30528–30537 (2014). [CrossRef]  

4. J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2020). [CrossRef]  

5. K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007). [CrossRef]  

6. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015). [CrossRef]  

7. C. Sorace-Agaskar, S. Bramhavar, D. Kharas, W. Loh, P. Juodawlkis, J. Chiaverini, and J. Sage, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018). [CrossRef]  

8. R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020). [CrossRef]  

9. D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018). [CrossRef]  

10. A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photon. Res. 3, B1–B9 (2015). [CrossRef]  

11. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016). [CrossRef]  

12. D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 µm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017). [CrossRef]  

13. C. Shang, E. Hughes, Y. Wan, M. Dumont, R. Koscica, J. Selvidge, R. Herrick, A. C. Gossard, K. Mukherjee, and J. E. Bowers, “High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters,” Optica 8, 749–754 (2021). [CrossRef]  

14. Y. Wan, C. Shang, J. Norman, B. Shi, Q. Li, N. Collins, M. Dumont, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si,” IEEE J. Sel. Top. Quantum Electron. 26, 1–9 (2020). [CrossRef]  

15. B. Shi, H. Zhao, L. Wang, B. Song, S. T. Suran Brunelli, and J. Klamkin, “Continuous-wave electrically pumped 1550 nm lasers epitaxially grown on on-axis (001) silicon,” Optica 6, 1507–1514 (2019). [CrossRef]  

16. B. Shi, S. Pinna, H. Zhao, S. Zhu, and J. Klamkin, “Lasing characteristics and reliability of 1550 nm laser diodes monolithically grown on silicon,” Phys. Status Solidi A 218, 2000374 (2021). [CrossRef]  

17. M. Rio Calvo, L. Monge Bartolomé, M. Bahriz, G. Boissier, L. Cerutti, J.-B. Rodriguez, and E. Tournié, “Mid-infrared laser diodes epitaxially grown on on-axis (001) silicon,” Optica 7, 263–266 (2020). [CrossRef]  

18. J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011). [CrossRef]  

19. S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate,” J. Semicond. 40, 101302 (2019). [CrossRef]  

20. C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W. W. Chow, and J. E. Bowers, “Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits,” ACS Photon. 8, 2555–2566 (2021). [CrossRef]  

21. Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7, 13 (2018). [CrossRef]  

22. H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018). [CrossRef]  

23. G. M. Lewis, J. Lutti, P. M. Smowton, P. Blood, A. B. Krysa, and S. L. Liew, “Optical properties of InP/GaInP quantum-dot laser structures,” Appl. Phys. Lett. 85, 1904–1906 (2004). [CrossRef]  

24. J. Lutti, P. M. Smowton, G. M. Lewis, A. B. Krysa, J. S. Roberts, P. A. Houston, Y. C. Xin, Y. Li, and L. F. Lester, “740 nm InP/GaInP quantum-dot laser with 190 A cm-2 room temperature threshold current density,” Electron. Lett. 41, 247–248 (2005). [CrossRef]  

25. S. Shutts, P. M. Smowton, and A. B. Krysa, “Dual-wavelength InP quantum dot lasers,” Appl. Phys. Lett. 104, 241106 (2014). [CrossRef]  

26. L. Z. Wu and Y. S. Zhang, “Selenium doping effects and low-threshold high-power GaInP-AlGaInP single-quantum-well lasers grown by MOVPE,” IEEE Photon. Technol. Lett. 12, 248–250 (2000). [CrossRef]  

27. P. Savolainen, M. Toivonen, J. Kongas, M. Pessa, P. Corvini, and M. Jansen, “Record quantum efficiency (92%) operation of 680 nm GaInP/AlGaInP ridge waveguide singlemode lasers,” Electron. Lett. 34, 1104–1105 (1998). [CrossRef]  

28. O. Kwon, J. J. Boeckl, M. L. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, “Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy,” J. Appl. Phys. 100, 013103 (2006). [CrossRef]  

29. W. Luo, L. Lin, J. Huang, Y. Han, and K. M. Lau, “Red-emitting InP quantum dot micro-disk lasers epitaxially grown on (001) silicon,” Opt. Lett. 46, 4514–4517 (2021). [CrossRef]  

30. C. Martinez, V. Krotov, B. Meynard, and D. Fowler, “See-through holographic retinal projection display concept,” Optica 5, 1200–1209 (2018). [CrossRef]  

31. D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017). [CrossRef]  

32. K. Itaya, M. Ishikawa, Y. Watanabe, K. Nitta, G.-I. Hatakoshi, and Y. Uematsu, “A new transverse-mode stabilized InGaAlP visible light laser diode using p-p isotype heterobarrier blocking,” Jpn. J. Appl. Phys. 27, L2414–L2416 (1988). [CrossRef]  

33. M. Jalonen, M. Toivonen, P. Savolainen, J. Köngäs, and M. Pessa, “Effects of rapid thermal annealing on GaInP/AlGaInP lasers grown by all-solid-source molecular beam epitaxy,” Appl. Phys. Lett. 71, 479–481 (1997). [CrossRef]  

34. S. Tomasulo, J. Simon, P. J. Simmonds, J. Biagiotti, and M. L. Lee, “Molecular beam epitaxy of metamorphic InyGa1−yP solar cells on mixed anion GaAsxP1−x/GaAs graded buffers,” J. Vac. Sci. Technol. B 29, 03C118 (2011). [CrossRef]  

35. P. Dhingra, S. Fan, Y. Sun, R. D. Hool, B. Eng, and M. L. Lee, “InP quantum dots for dislocation-tolerant, visible light emitters on Si,” Appl. Phys. Lett. 117, 181102 (2020). [CrossRef]  

36. Y. Sun, S. Fan, J. Faucher, R. D. Hool, B. D. Li, P. Dhingra, and M. L. Lee, “2.0–2.2 eV AlGaInP solar cells grown by molecular beam epitaxy,” Sol. Energy Mater. Sol. Cells 219, 110774 (2021). [CrossRef]  

37. X. Huang, Y. Song, T. Masuda, D. Jung, and M. Lee, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50, 1226–1227 (2014). [CrossRef]  

38. N. Jain and M. K. Hudait, “Impact of threading dislocations on the design of GaAs and InGaP/GaAs solar cells on Si using finite element analysis,” IEEE J. Photovolt. 3, 528–534 (2013). [CrossRef]  

39. L. Monge-Bartolome, B. Shi, B. Lai, G. Boissier, L. Cerutti, J.-B. Rodriguez, K. M. Lau, and E. Tournié, “GaSb-based laser diodes grown on MOCVD GaAs-on-Si templates,” Opt. Express 29, 11268–11276 (2021). [CrossRef]  

40. J. Kwoen, B. Jang, K. Watanabe, and Y. Arakawa, “High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 27, 2681–2688 (2019). [CrossRef]  

41. P. M. Smowton, G. M. Lewis, P. Blood, and W. W. Chow, “Optimization of 635-nm tensile strained GaInP laser diodes,” IEEE J. Sel. Top. Quantum Electron. 9, 1246–1251 (2003). [CrossRef]  

42. I. Karomi, P. M. Smowton, S. Shutts, A. B. Krysa, and R. Beanland, “InAsP quantum dot lasers grown by MOVPE,” Opt. Express 23, 27282–27291 (2015). [CrossRef]  

43. J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 1–11 (2019). [CrossRef]  

44. J. Piprek, “What limits the efficiency of high-power InGaN/GaN lasers?” IEEE J. Quantum Electron. 53, 1–4 (2017). [CrossRef]  

45. P. Savolainen and M. Pessa, “High-power, high-efficiency GaInP/AlGaInP laser diode,” Jpn. J. Appl. Phys. 35, L1501–L1502 (1996). [CrossRef]  

46. A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018). [CrossRef]  

47. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010). [CrossRef]  

48. D. Kohler, G. Schindler, L. Hahn, J. Milvich, A. Hofmann, K. Länge, W. Freude, and C. Koos, “Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics,” Light Sci. Appl. 10, 64 (2021). [CrossRef]  

References

  • View by:

  1. T. Pinguet, S. Denton, S. Gloeckner, M. Mack, G. Masini, A. Mekis, S. Pang, M. Peterson, S. Sahni, and P. D. Dobbelaere, “High-volume manufacturing platform for silicon photonics,” Proc. IEEE 106, 2281–2290 (2018).
    [Crossref]
  2. G. Sanders, S. Sanders, L. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
    [Crossref]
  3. M. Boerkamp, T. van Leest, J. Heldens, A. Leinse, M. Hoekman, R. Heideman, and J. Caro, “On-chip optical trapping and Raman spectroscopy using a TripleX dual-waveguide trap,” Opt. Express 22, 30528–30537 (2014).
    [Crossref]
  4. J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2020).
    [Crossref]
  5. K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
    [Crossref]
  6. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
    [Crossref]
  7. C. Sorace-Agaskar, S. Bramhavar, D. Kharas, W. Loh, P. Juodawlkis, J. Chiaverini, and J. Sage, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
    [Crossref]
  8. R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
    [Crossref]
  9. D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
    [Crossref]
  10. A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photon. Res. 3, B1–B9 (2015).
    [Crossref]
  11. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  12. D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 µm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
    [Crossref]
  13. C. Shang, E. Hughes, Y. Wan, M. Dumont, R. Koscica, J. Selvidge, R. Herrick, A. C. Gossard, K. Mukherjee, and J. E. Bowers, “High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters,” Optica 8, 749–754 (2021).
    [Crossref]
  14. Y. Wan, C. Shang, J. Norman, B. Shi, Q. Li, N. Collins, M. Dumont, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si,” IEEE J. Sel. Top. Quantum Electron. 26, 1–9 (2020).
    [Crossref]
  15. B. Shi, H. Zhao, L. Wang, B. Song, S. T. Suran Brunelli, and J. Klamkin, “Continuous-wave electrically pumped 1550 nm lasers epitaxially grown on on-axis (001) silicon,” Optica 6, 1507–1514 (2019).
    [Crossref]
  16. B. Shi, S. Pinna, H. Zhao, S. Zhu, and J. Klamkin, “Lasing characteristics and reliability of 1550 nm laser diodes monolithically grown on silicon,” Phys. Status Solidi A 218, 2000374 (2021).
    [Crossref]
  17. M. Rio Calvo, L. Monge Bartolomé, M. Bahriz, G. Boissier, L. Cerutti, J.-B. Rodriguez, and E. Tournié, “Mid-infrared laser diodes epitaxially grown on on-axis (001) silicon,” Optica 7, 263–266 (2020).
    [Crossref]
  18. J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
    [Crossref]
  19. S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate,” J. Semicond. 40, 101302 (2019).
    [Crossref]
  20. C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W. W. Chow, and J. E. Bowers, “Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits,” ACS Photon. 8, 2555–2566 (2021).
    [Crossref]
  21. Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7, 13 (2018).
    [Crossref]
  22. H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).
    [Crossref]
  23. G. M. Lewis, J. Lutti, P. M. Smowton, P. Blood, A. B. Krysa, and S. L. Liew, “Optical properties of InP/GaInP quantum-dot laser structures,” Appl. Phys. Lett. 85, 1904–1906 (2004).
    [Crossref]
  24. J. Lutti, P. M. Smowton, G. M. Lewis, A. B. Krysa, J. S. Roberts, P. A. Houston, Y. C. Xin, Y. Li, and L. F. Lester, “740 nm InP/GaInP quantum-dot laser with 190 A cm-2 room temperature threshold current density,” Electron. Lett. 41, 247–248 (2005).
    [Crossref]
  25. S. Shutts, P. M. Smowton, and A. B. Krysa, “Dual-wavelength InP quantum dot lasers,” Appl. Phys. Lett. 104, 241106 (2014).
    [Crossref]
  26. L. Z. Wu and Y. S. Zhang, “Selenium doping effects and low-threshold high-power GaInP-AlGaInP single-quantum-well lasers grown by MOVPE,” IEEE Photon. Technol. Lett. 12, 248–250 (2000).
    [Crossref]
  27. P. Savolainen, M. Toivonen, J. Kongas, M. Pessa, P. Corvini, and M. Jansen, “Record quantum efficiency (92%) operation of 680 nm GaInP/AlGaInP ridge waveguide singlemode lasers,” Electron. Lett. 34, 1104–1105 (1998).
    [Crossref]
  28. O. Kwon, J. J. Boeckl, M. L. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, “Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy,” J. Appl. Phys. 100, 013103 (2006).
    [Crossref]
  29. W. Luo, L. Lin, J. Huang, Y. Han, and K. M. Lau, “Red-emitting InP quantum dot micro-disk lasers epitaxially grown on (001) silicon,” Opt. Lett. 46, 4514–4517 (2021).
    [Crossref]
  30. C. Martinez, V. Krotov, B. Meynard, and D. Fowler, “See-through holographic retinal projection display concept,” Optica 5, 1200–1209 (2018).
    [Crossref]
  31. D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
    [Crossref]
  32. K. Itaya, M. Ishikawa, Y. Watanabe, K. Nitta, G.-I. Hatakoshi, and Y. Uematsu, “A new transverse-mode stabilized InGaAlP visible light laser diode using p-p isotype heterobarrier blocking,” Jpn. J. Appl. Phys. 27, L2414–L2416 (1988).
    [Crossref]
  33. M. Jalonen, M. Toivonen, P. Savolainen, J. Köngäs, and M. Pessa, “Effects of rapid thermal annealing on GaInP/AlGaInP lasers grown by all-solid-source molecular beam epitaxy,” Appl. Phys. Lett. 71, 479–481 (1997).
    [Crossref]
  34. S. Tomasulo, J. Simon, P. J. Simmonds, J. Biagiotti, and M. L. Lee, “Molecular beam epitaxy of metamorphic InyGa1−yP solar cells on mixed anion GaAsxP1−x/GaAs graded buffers,” J. Vac. Sci. Technol. B 29, 03C118 (2011).
    [Crossref]
  35. P. Dhingra, S. Fan, Y. Sun, R. D. Hool, B. Eng, and M. L. Lee, “InP quantum dots for dislocation-tolerant, visible light emitters on Si,” Appl. Phys. Lett. 117, 181102 (2020).
    [Crossref]
  36. Y. Sun, S. Fan, J. Faucher, R. D. Hool, B. D. Li, P. Dhingra, and M. L. Lee, “2.0–2.2 eV AlGaInP solar cells grown by molecular beam epitaxy,” Sol. Energy Mater. Sol. Cells 219, 110774 (2021).
    [Crossref]
  37. X. Huang, Y. Song, T. Masuda, D. Jung, and M. Lee, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50, 1226–1227 (2014).
    [Crossref]
  38. N. Jain and M. K. Hudait, “Impact of threading dislocations on the design of GaAs and InGaP/GaAs solar cells on Si using finite element analysis,” IEEE J. Photovolt. 3, 528–534 (2013).
    [Crossref]
  39. L. Monge-Bartolome, B. Shi, B. Lai, G. Boissier, L. Cerutti, J.-B. Rodriguez, K. M. Lau, and E. Tournié, “GaSb-based laser diodes grown on MOCVD GaAs-on-Si templates,” Opt. Express 29, 11268–11276 (2021).
    [Crossref]
  40. J. Kwoen, B. Jang, K. Watanabe, and Y. Arakawa, “High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 27, 2681–2688 (2019).
    [Crossref]
  41. P. M. Smowton, G. M. Lewis, P. Blood, and W. W. Chow, “Optimization of 635-nm tensile strained GaInP laser diodes,” IEEE J. Sel. Top. Quantum Electron. 9, 1246–1251 (2003).
    [Crossref]
  42. I. Karomi, P. M. Smowton, S. Shutts, A. B. Krysa, and R. Beanland, “InAsP quantum dot lasers grown by MOVPE,” Opt. Express 23, 27282–27291 (2015).
    [Crossref]
  43. J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 1–11 (2019).
    [Crossref]
  44. J. Piprek, “What limits the efficiency of high-power InGaN/GaN lasers?” IEEE J. Quantum Electron. 53, 1–4 (2017).
    [Crossref]
  45. P. Savolainen and M. Pessa, “High-power, high-efficiency GaInP/AlGaInP laser diode,” Jpn. J. Appl. Phys. 35, L1501–L1502 (1996).
    [Crossref]
  46. A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
    [Crossref]
  47. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
    [Crossref]
  48. D. Kohler, G. Schindler, L. Hahn, J. Milvich, A. Hofmann, K. Länge, W. Freude, and C. Koos, “Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics,” Light Sci. Appl. 10, 64 (2021).
    [Crossref]

2021 (7)

C. Shang, E. Hughes, Y. Wan, M. Dumont, R. Koscica, J. Selvidge, R. Herrick, A. C. Gossard, K. Mukherjee, and J. E. Bowers, “High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters,” Optica 8, 749–754 (2021).
[Crossref]

C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W. W. Chow, and J. E. Bowers, “Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits,” ACS Photon. 8, 2555–2566 (2021).
[Crossref]

B. Shi, S. Pinna, H. Zhao, S. Zhu, and J. Klamkin, “Lasing characteristics and reliability of 1550 nm laser diodes monolithically grown on silicon,” Phys. Status Solidi A 218, 2000374 (2021).
[Crossref]

W. Luo, L. Lin, J. Huang, Y. Han, and K. M. Lau, “Red-emitting InP quantum dot micro-disk lasers epitaxially grown on (001) silicon,” Opt. Lett. 46, 4514–4517 (2021).
[Crossref]

Y. Sun, S. Fan, J. Faucher, R. D. Hool, B. D. Li, P. Dhingra, and M. L. Lee, “2.0–2.2 eV AlGaInP solar cells grown by molecular beam epitaxy,” Sol. Energy Mater. Sol. Cells 219, 110774 (2021).
[Crossref]

L. Monge-Bartolome, B. Shi, B. Lai, G. Boissier, L. Cerutti, J.-B. Rodriguez, K. M. Lau, and E. Tournié, “GaSb-based laser diodes grown on MOCVD GaAs-on-Si templates,” Opt. Express 29, 11268–11276 (2021).
[Crossref]

D. Kohler, G. Schindler, L. Hahn, J. Milvich, A. Hofmann, K. Länge, W. Freude, and C. Koos, “Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics,” Light Sci. Appl. 10, 64 (2021).
[Crossref]

2020 (5)

P. Dhingra, S. Fan, Y. Sun, R. D. Hool, B. Eng, and M. L. Lee, “InP quantum dots for dislocation-tolerant, visible light emitters on Si,” Appl. Phys. Lett. 117, 181102 (2020).
[Crossref]

M. Rio Calvo, L. Monge Bartolomé, M. Bahriz, G. Boissier, L. Cerutti, J.-B. Rodriguez, and E. Tournié, “Mid-infrared laser diodes epitaxially grown on on-axis (001) silicon,” Optica 7, 263–266 (2020).
[Crossref]

Y. Wan, C. Shang, J. Norman, B. Shi, Q. Li, N. Collins, M. Dumont, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si,” IEEE J. Sel. Top. Quantum Electron. 26, 1–9 (2020).
[Crossref]

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2020).
[Crossref]

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

2019 (4)

B. Shi, H. Zhao, L. Wang, B. Song, S. T. Suran Brunelli, and J. Klamkin, “Continuous-wave electrically pumped 1550 nm lasers epitaxially grown on on-axis (001) silicon,” Optica 6, 1507–1514 (2019).
[Crossref]

S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate,” J. Semicond. 40, 101302 (2019).
[Crossref]

J. Kwoen, B. Jang, K. Watanabe, and Y. Arakawa, “High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 27, 2681–2688 (2019).
[Crossref]

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

2018 (7)

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

C. Martinez, V. Krotov, B. Meynard, and D. Fowler, “See-through holographic retinal projection display concept,” Optica 5, 1200–1209 (2018).
[Crossref]

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7, 13 (2018).
[Crossref]

H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).
[Crossref]

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
[Crossref]

C. Sorace-Agaskar, S. Bramhavar, D. Kharas, W. Loh, P. Juodawlkis, J. Chiaverini, and J. Sage, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
[Crossref]

T. Pinguet, S. Denton, S. Gloeckner, M. Mack, G. Masini, A. Mekis, S. Pang, M. Peterson, S. Sahni, and P. D. Dobbelaere, “High-volume manufacturing platform for silicon photonics,” Proc. IEEE 106, 2281–2290 (2018).
[Crossref]

2017 (3)

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 µm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

J. Piprek, “What limits the efficiency of high-power InGaN/GaN lasers?” IEEE J. Quantum Electron. 53, 1–4 (2017).
[Crossref]

2016 (2)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

G. Sanders, S. Sanders, L. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

2015 (3)

2014 (3)

M. Boerkamp, T. van Leest, J. Heldens, A. Leinse, M. Hoekman, R. Heideman, and J. Caro, “On-chip optical trapping and Raman spectroscopy using a TripleX dual-waveguide trap,” Opt. Express 22, 30528–30537 (2014).
[Crossref]

X. Huang, Y. Song, T. Masuda, D. Jung, and M. Lee, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50, 1226–1227 (2014).
[Crossref]

S. Shutts, P. M. Smowton, and A. B. Krysa, “Dual-wavelength InP quantum dot lasers,” Appl. Phys. Lett. 104, 241106 (2014).
[Crossref]

2013 (1)

N. Jain and M. K. Hudait, “Impact of threading dislocations on the design of GaAs and InGaP/GaAs solar cells on Si using finite element analysis,” IEEE J. Photovolt. 3, 528–534 (2013).
[Crossref]

2011 (2)

S. Tomasulo, J. Simon, P. J. Simmonds, J. Biagiotti, and M. L. Lee, “Molecular beam epitaxy of metamorphic InyGa1−yP solar cells on mixed anion GaAsxP1−x/GaAs graded buffers,” J. Vac. Sci. Technol. B 29, 03C118 (2011).
[Crossref]

J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

2010 (1)

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

2007 (1)

2006 (1)

O. Kwon, J. J. Boeckl, M. L. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, “Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy,” J. Appl. Phys. 100, 013103 (2006).
[Crossref]

2005 (1)

J. Lutti, P. M. Smowton, G. M. Lewis, A. B. Krysa, J. S. Roberts, P. A. Houston, Y. C. Xin, Y. Li, and L. F. Lester, “740 nm InP/GaInP quantum-dot laser with 190 A cm-2 room temperature threshold current density,” Electron. Lett. 41, 247–248 (2005).
[Crossref]

2004 (1)

G. M. Lewis, J. Lutti, P. M. Smowton, P. Blood, A. B. Krysa, and S. L. Liew, “Optical properties of InP/GaInP quantum-dot laser structures,” Appl. Phys. Lett. 85, 1904–1906 (2004).
[Crossref]

2003 (1)

P. M. Smowton, G. M. Lewis, P. Blood, and W. W. Chow, “Optimization of 635-nm tensile strained GaInP laser diodes,” IEEE J. Sel. Top. Quantum Electron. 9, 1246–1251 (2003).
[Crossref]

2000 (1)

L. Z. Wu and Y. S. Zhang, “Selenium doping effects and low-threshold high-power GaInP-AlGaInP single-quantum-well lasers grown by MOVPE,” IEEE Photon. Technol. Lett. 12, 248–250 (2000).
[Crossref]

1998 (1)

P. Savolainen, M. Toivonen, J. Kongas, M. Pessa, P. Corvini, and M. Jansen, “Record quantum efficiency (92%) operation of 680 nm GaInP/AlGaInP ridge waveguide singlemode lasers,” Electron. Lett. 34, 1104–1105 (1998).
[Crossref]

1997 (1)

M. Jalonen, M. Toivonen, P. Savolainen, J. Köngäs, and M. Pessa, “Effects of rapid thermal annealing on GaInP/AlGaInP lasers grown by all-solid-source molecular beam epitaxy,” Appl. Phys. Lett. 71, 479–481 (1997).
[Crossref]

1996 (1)

P. Savolainen and M. Pessa, “High-power, high-efficiency GaInP/AlGaInP laser diode,” Jpn. J. Appl. Phys. 35, L1501–L1502 (1996).
[Crossref]

1988 (1)

K. Itaya, M. Ishikawa, Y. Watanabe, K. Nitta, G.-I. Hatakoshi, and Y. Uematsu, “A new transverse-mode stabilized InGaAlP visible light laser diode using p-p isotype heterobarrier blocking,” Jpn. J. Appl. Phys. 27, L2414–L2416 (1988).
[Crossref]

Al Qubaisi, K.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Alloatti, L.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Arakawa, Y.

Arrizon, A.

G. Sanders, S. Sanders, L. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Atabaki, A. H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Baets, R.

Bahriz, M.

M. Rio Calvo, L. Monge Bartolomé, M. Bahriz, G. Boissier, L. Cerutti, J.-B. Rodriguez, and E. Tournié, “Mid-infrared laser diodes epitaxially grown on on-axis (001) silicon,” Optica 7, 263–266 (2020).
[Crossref]

H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).
[Crossref]

Baiocco, C. V.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Baranov, A. N.

H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).
[Crossref]

Bartolozzi, I.

Beanland, R.

Biagiotti, J.

S. Tomasulo, J. Simon, P. J. Simmonds, J. Biagiotti, and M. L. Lee, “Molecular beam epitaxy of metamorphic InyGa1−yP solar cells on mixed anion GaAsxP1−x/GaAs graded buffers,” J. Vac. Sci. Technol. B 29, 03C118 (2011).
[Crossref]

Bienstman, P.

Blood, P.

G. M. Lewis, J. Lutti, P. M. Smowton, P. Blood, A. B. Krysa, and S. L. Liew, “Optical properties of InP/GaInP quantum-dot laser structures,” Appl. Phys. Lett. 85, 1904–1906 (2004).
[Crossref]

P. M. Smowton, G. M. Lewis, P. Blood, and W. W. Chow, “Optimization of 635-nm tensile strained GaInP laser diodes,” IEEE J. Sel. Top. Quantum Electron. 9, 1246–1251 (2003).
[Crossref]

Blumenthal, D. J.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
[Crossref]

Boeckl, J. J.

O. Kwon, J. J. Boeckl, M. L. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, “Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy,” J. Appl. Phys. 100, 013103 (2006).
[Crossref]

Boerkamp, M.

Boissier, G.

Bowers, J. E.

C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W. W. Chow, and J. E. Bowers, “Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits,” ACS Photon. 8, 2555–2566 (2021).
[Crossref]

C. Shang, E. Hughes, Y. Wan, M. Dumont, R. Koscica, J. Selvidge, R. Herrick, A. C. Gossard, K. Mukherjee, and J. E. Bowers, “High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters,” Optica 8, 749–754 (2021).
[Crossref]

Y. Wan, C. Shang, J. Norman, B. Shi, Q. Li, N. Collins, M. Dumont, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si,” IEEE J. Sel. Top. Quantum Electron. 26, 1–9 (2020).
[Crossref]

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 µm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photon. Res. 3, B1–B9 (2015).
[Crossref]

Boyd, M. M.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Bramhavar, S.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

C. Sorace-Agaskar, S. Bramhavar, D. Kharas, W. Loh, P. Juodawlkis, J. Chiaverini, and J. Sage, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
[Crossref]

Bruzewicz, C. D.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

Callahan, P. G.

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

Cao, V.

S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate,” J. Semicond. 40, 101302 (2019).
[Crossref]

Caro, J.

Cerutti, L.

L. Monge-Bartolome, B. Shi, B. Lai, G. Boissier, L. Cerutti, J.-B. Rodriguez, K. M. Lau, and E. Tournié, “GaSb-based laser diodes grown on MOCVD GaAs-on-Si templates,” Opt. Express 29, 11268–11276 (2021).
[Crossref]

M. Rio Calvo, L. Monge Bartolomé, M. Bahriz, G. Boissier, L. Cerutti, J.-B. Rodriguez, and E. Tournié, “Mid-infrared laser diodes epitaxially grown on on-axis (001) silicon,” Optica 7, 263–266 (2020).
[Crossref]

H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).
[Crossref]

J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Chen, S.

S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate,” J. Semicond. 40, 101302 (2019).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Chiaverini, J.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

C. Sorace-Agaskar, S. Bramhavar, D. Kharas, W. Loh, P. Juodawlkis, J. Chiaverini, and J. Sage, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
[Crossref]

Chow, W. W.

C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W. W. Chow, and J. E. Bowers, “Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits,” ACS Photon. 8, 2555–2566 (2021).
[Crossref]

P. M. Smowton, G. M. Lewis, P. Blood, and W. W. Chow, “Optimization of 635-nm tensile strained GaInP laser diodes,” IEEE J. Sel. Top. Quantum Electron. 9, 1246–1251 (2003).
[Crossref]

Collins, N.

Y. Wan, C. Shang, J. Norman, B. Shi, Q. Li, N. Collins, M. Dumont, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si,” IEEE J. Sel. Top. Quantum Electron. 26, 1–9 (2020).
[Crossref]

Corvini, P.

P. Savolainen, M. Toivonen, J. Kongas, M. Pessa, P. Corvini, and M. Jansen, “Record quantum efficiency (92%) operation of 680 nm GaInP/AlGaInP ridge waveguide singlemode lasers,” Electron. Lett. 34, 1104–1105 (1998).
[Crossref]

Denton, S.

T. Pinguet, S. Denton, S. Gloeckner, M. Mack, G. Masini, A. Mekis, S. Pang, M. Peterson, S. Sahni, and P. D. Dobbelaere, “High-volume manufacturing platform for silicon photonics,” Proc. IEEE 106, 2281–2290 (2018).
[Crossref]

Dhingra, P.

Y. Sun, S. Fan, J. Faucher, R. D. Hool, B. D. Li, P. Dhingra, and M. L. Lee, “2.0–2.2 eV AlGaInP solar cells grown by molecular beam epitaxy,” Sol. Energy Mater. Sol. Cells 219, 110774 (2021).
[Crossref]

P. Dhingra, S. Fan, Y. Sun, R. D. Hool, B. Eng, and M. L. Lee, “InP quantum dots for dislocation-tolerant, visible light emitters on Si,” Appl. Phys. Lett. 117, 181102 (2020).
[Crossref]

Dobbelaere, P. D.

T. Pinguet, S. Denton, S. Gloeckner, M. Mack, G. Masini, A. Mekis, S. Pang, M. Peterson, S. Sahni, and P. D. Dobbelaere, “High-volume manufacturing platform for silicon photonics,” Proc. IEEE 106, 2281–2290 (2018).
[Crossref]

Duan, J.

C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W. W. Chow, and J. E. Bowers, “Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits,” ACS Photon. 8, 2555–2566 (2021).
[Crossref]

Dumont, M.

C. Shang, E. Hughes, Y. Wan, M. Dumont, R. Koscica, J. Selvidge, R. Herrick, A. C. Gossard, K. Mukherjee, and J. E. Bowers, “High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters,” Optica 8, 749–754 (2021).
[Crossref]

Y. Wan, C. Shang, J. Norman, B. Shi, Q. Li, N. Collins, M. Dumont, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si,” IEEE J. Sel. Top. Quantum Electron. 26, 1–9 (2020).
[Crossref]

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Eng, B.

P. Dhingra, S. Fan, Y. Sun, R. D. Hool, B. Eng, and M. L. Lee, “InP quantum dots for dislocation-tolerant, visible light emitters on Si,” Appl. Phys. Lett. 117, 181102 (2020).
[Crossref]

Fan, S.

Y. Sun, S. Fan, J. Faucher, R. D. Hool, B. D. Li, P. Dhingra, and M. L. Lee, “2.0–2.2 eV AlGaInP solar cells grown by molecular beam epitaxy,” Sol. Energy Mater. Sol. Cells 219, 110774 (2021).
[Crossref]

P. Dhingra, S. Fan, Y. Sun, R. D. Hool, B. Eng, and M. L. Lee, “InP quantum dots for dislocation-tolerant, visible light emitters on Si,” Appl. Phys. Lett. 117, 181102 (2020).
[Crossref]

Faucher, J.

Y. Sun, S. Fan, J. Faucher, R. D. Hool, B. D. Li, P. Dhingra, and M. L. Lee, “2.0–2.2 eV AlGaInP solar cells grown by molecular beam epitaxy,” Sol. Energy Mater. Sol. Cells 219, 110774 (2021).
[Crossref]

Feng, M.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7, 13 (2018).
[Crossref]

Fitzgerald, E. A.

O. Kwon, J. J. Boeckl, M. L. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, “Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy,” J. Appl. Phys. 100, 013103 (2006).
[Crossref]

Fowler, D.

Freude, W.

D. Kohler, G. Schindler, L. Hahn, J. Milvich, A. Hofmann, K. Länge, W. Freude, and C. Koos, “Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics,” Light Sci. Appl. 10, 64 (2021).
[Crossref]

Geuzebroek, D.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
[Crossref]

Gevorgyan, H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Gloeckner, S.

T. Pinguet, S. Denton, S. Gloeckner, M. Mack, G. Masini, A. Mekis, S. Pang, M. Peterson, S. Sahni, and P. D. Dobbelaere, “High-volume manufacturing platform for silicon photonics,” Proc. IEEE 106, 2281–2290 (2018).
[Crossref]

Gossard, A. C.

C. Shang, E. Hughes, Y. Wan, M. Dumont, R. Koscica, J. Selvidge, R. Herrick, A. C. Gossard, K. Mukherjee, and J. E. Bowers, “High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters,” Optica 8, 749–754 (2021).
[Crossref]

Y. Wan, C. Shang, J. Norman, B. Shi, Q. Li, N. Collins, M. Dumont, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si,” IEEE J. Sel. Top. Quantum Electron. 26, 1–9 (2020).
[Crossref]

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 µm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photon. Res. 3, B1–B9 (2015).
[Crossref]

Grech, P.

J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Grillot, F.

C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W. W. Chow, and J. E. Bowers, “Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits,” ACS Photon. 8, 2555–2566 (2021).
[Crossref]

Hahn, L.

D. Kohler, G. Schindler, L. Hahn, J. Milvich, A. Hofmann, K. Länge, W. Freude, and C. Koos, “Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics,” Light Sci. Appl. 10, 64 (2021).
[Crossref]

Han, Y.

Hatakoshi, G.-I.

K. Itaya, M. Ishikawa, Y. Watanabe, K. Nitta, G.-I. Hatakoshi, and Y. Uematsu, “A new transverse-mode stabilized InGaAlP visible light laser diode using p-p isotype heterobarrier blocking,” Jpn. J. Appl. Phys. 27, L2414–L2416 (1988).
[Crossref]

Heideman, R.

Heldens, J.

Herrick, R.

C. Shang, E. Hughes, Y. Wan, M. Dumont, R. Koscica, J. Selvidge, R. Herrick, A. C. Gossard, K. Mukherjee, and J. E. Bowers, “High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters,” Optica 8, 749–754 (2021).
[Crossref]

C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W. W. Chow, and J. E. Bowers, “Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits,” ACS Photon. 8, 2555–2566 (2021).
[Crossref]

Herrick, R. W.

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

Ho, W.

G. Sanders, S. Sanders, L. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Hoekman, M.

Hofmann, A.

D. Kohler, G. Schindler, L. Hahn, J. Milvich, A. Hofmann, K. Länge, W. Freude, and C. Koos, “Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics,” Light Sci. Appl. 10, 64 (2021).
[Crossref]

Hool, R. D.

Y. Sun, S. Fan, J. Faucher, R. D. Hool, B. D. Li, P. Dhingra, and M. L. Lee, “2.0–2.2 eV AlGaInP solar cells grown by molecular beam epitaxy,” Sol. Energy Mater. Sol. Cells 219, 110774 (2021).
[Crossref]

P. Dhingra, S. Fan, Y. Sun, R. D. Hool, B. Eng, and M. L. Lee, “InP quantum dots for dislocation-tolerant, visible light emitters on Si,” Appl. Phys. Lett. 117, 181102 (2020).
[Crossref]

Houston, P. A.

J. Lutti, P. M. Smowton, G. M. Lewis, A. B. Krysa, J. S. Roberts, P. A. Houston, Y. C. Xin, Y. Li, and L. F. Lester, “740 nm InP/GaInP quantum-dot laser with 190 A cm-2 room temperature threshold current density,” Electron. Lett. 41, 247–248 (2005).
[Crossref]

Huang, J.

Huang, X.

X. Huang, Y. Song, T. Masuda, D. Jung, and M. Lee, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50, 1226–1227 (2014).
[Crossref]

Hudait, M. K.

N. Jain and M. K. Hudait, “Impact of threading dislocations on the design of GaAs and InGaP/GaAs solar cells on Si using finite element analysis,” IEEE J. Photovolt. 3, 528–534 (2013).
[Crossref]

Hughes, E.

C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W. W. Chow, and J. E. Bowers, “Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits,” ACS Photon. 8, 2555–2566 (2021).
[Crossref]

C. Shang, E. Hughes, Y. Wan, M. Dumont, R. Koscica, J. Selvidge, R. Herrick, A. C. Gossard, K. Mukherjee, and J. E. Bowers, “High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters,” Optica 8, 749–754 (2021).
[Crossref]

Ikeda, M.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7, 13 (2018).
[Crossref]

Ishikawa, M.

K. Itaya, M. Ishikawa, Y. Watanabe, K. Nitta, G.-I. Hatakoshi, and Y. Uematsu, “A new transverse-mode stabilized InGaAlP visible light laser diode using p-p isotype heterobarrier blocking,” Jpn. J. Appl. Phys. 27, L2414–L2416 (1988).
[Crossref]

Itaya, K.

K. Itaya, M. Ishikawa, Y. Watanabe, K. Nitta, G.-I. Hatakoshi, and Y. Uematsu, “A new transverse-mode stabilized InGaAlP visible light laser diode using p-p isotype heterobarrier blocking,” Jpn. J. Appl. Phys. 27, L2414–L2416 (1988).
[Crossref]

Jain, N.

N. Jain and M. K. Hudait, “Impact of threading dislocations on the design of GaAs and InGaP/GaAs solar cells on Si using finite element analysis,” IEEE J. Photovolt. 3, 528–534 (2013).
[Crossref]

Jalonen, M.

M. Jalonen, M. Toivonen, P. Savolainen, J. Köngäs, and M. Pessa, “Effects of rapid thermal annealing on GaInP/AlGaInP lasers grown by all-solid-source molecular beam epitaxy,” Appl. Phys. Lett. 71, 479–481 (1997).
[Crossref]

Jang, B.

Jansen, M.

P. Savolainen, M. Toivonen, J. Kongas, M. Pessa, P. Corvini, and M. Jansen, “Record quantum efficiency (92%) operation of 680 nm GaInP/AlGaInP ridge waveguide singlemode lasers,” Electron. Lett. 34, 1104–1105 (1998).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Jung, D.

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 µm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

X. Huang, Y. Song, T. Masuda, D. Jung, and M. Lee, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50, 1226–1227 (2014).
[Crossref]

Juodawlkis, P.

C. Sorace-Agaskar, S. Bramhavar, D. Kharas, W. Loh, P. Juodawlkis, J. Chiaverini, and J. Sage, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
[Crossref]

Karomi, I.

Kennedy, M.

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

Kennedy, M. J.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 µm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Kharas, D.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

C. Sorace-Agaskar, S. Bramhavar, D. Kharas, W. Loh, P. Juodawlkis, J. Chiaverini, and J. Sage, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
[Crossref]

Khilo, A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Klamkin, J.

B. Shi, S. Pinna, H. Zhao, S. Zhu, and J. Klamkin, “Lasing characteristics and reliability of 1550 nm laser diodes monolithically grown on silicon,” Phys. Status Solidi A 218, 2000374 (2021).
[Crossref]

B. Shi, H. Zhao, L. Wang, B. Song, S. T. Suran Brunelli, and J. Klamkin, “Continuous-wave electrically pumped 1550 nm lasers epitaxially grown on on-axis (001) silicon,” Optica 6, 1507–1514 (2019).
[Crossref]

Kohler, D.

D. Kohler, G. Schindler, L. Hahn, J. Milvich, A. Hofmann, K. Länge, W. Freude, and C. Koos, “Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics,” Light Sci. Appl. 10, 64 (2021).
[Crossref]

Kongas, J.

P. Savolainen, M. Toivonen, J. Kongas, M. Pessa, P. Corvini, and M. Jansen, “Record quantum efficiency (92%) operation of 680 nm GaInP/AlGaInP ridge waveguide singlemode lasers,” Electron. Lett. 34, 1104–1105 (1998).
[Crossref]

Köngäs, J.

M. Jalonen, M. Toivonen, P. Savolainen, J. Köngäs, and M. Pessa, “Effects of rapid thermal annealing on GaInP/AlGaInP lasers grown by all-solid-source molecular beam epitaxy,” Appl. Phys. Lett. 71, 479–481 (1997).
[Crossref]

Koos, C.

D. Kohler, G. Schindler, L. Hahn, J. Milvich, A. Hofmann, K. Länge, W. Freude, and C. Koos, “Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics,” Light Sci. Appl. 10, 64 (2021).
[Crossref]

Koscica, R.

Krotov, V.

Kruger, S. A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Krysa, A. B.

I. Karomi, P. M. Smowton, S. Shutts, A. B. Krysa, and R. Beanland, “InAsP quantum dot lasers grown by MOVPE,” Opt. Express 23, 27282–27291 (2015).
[Crossref]

S. Shutts, P. M. Smowton, and A. B. Krysa, “Dual-wavelength InP quantum dot lasers,” Appl. Phys. Lett. 104, 241106 (2014).
[Crossref]

J. Lutti, P. M. Smowton, G. M. Lewis, A. B. Krysa, J. S. Roberts, P. A. Houston, Y. C. Xin, Y. Li, and L. F. Lester, “740 nm InP/GaInP quantum-dot laser with 190 A cm-2 room temperature threshold current density,” Electron. Lett. 41, 247–248 (2005).
[Crossref]

G. M. Lewis, J. Lutti, P. M. Smowton, P. Blood, A. B. Krysa, and S. L. Liew, “Optical properties of InP/GaInP quantum-dot laser structures,” Appl. Phys. Lett. 85, 1904–1906 (2004).
[Crossref]

Kwoen, J.

Kwon, O.

O. Kwon, J. J. Boeckl, M. L. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, “Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy,” J. Appl. Phys. 100, 013103 (2006).
[Crossref]

Lai, B.

Laing, A.

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2020).
[Crossref]

Länge, K.

D. Kohler, G. Schindler, L. Hahn, J. Milvich, A. Hofmann, K. Länge, W. Freude, and C. Koos, “Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics,” Light Sci. Appl. 10, 64 (2021).
[Crossref]

Lau, K. M.

Lee, M.

X. Huang, Y. Song, T. Masuda, D. Jung, and M. Lee, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50, 1226–1227 (2014).
[Crossref]

Lee, M. L.

Y. Sun, S. Fan, J. Faucher, R. D. Hool, B. D. Li, P. Dhingra, and M. L. Lee, “2.0–2.2 eV AlGaInP solar cells grown by molecular beam epitaxy,” Sol. Energy Mater. Sol. Cells 219, 110774 (2021).
[Crossref]

P. Dhingra, S. Fan, Y. Sun, R. D. Hool, B. Eng, and M. L. Lee, “InP quantum dots for dislocation-tolerant, visible light emitters on Si,” Appl. Phys. Lett. 117, 181102 (2020).
[Crossref]

S. Tomasulo, J. Simon, P. J. Simmonds, J. Biagiotti, and M. L. Lee, “Molecular beam epitaxy of metamorphic InyGa1−yP solar cells on mixed anion GaAsxP1−x/GaAs graded buffers,” J. Vac. Sci. Technol. B 29, 03C118 (2011).
[Crossref]

O. Kwon, J. J. Boeckl, M. L. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, “Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy,” J. Appl. Phys. 100, 013103 (2006).
[Crossref]

Leinse, A.

Lester, L. F.

J. Lutti, P. M. Smowton, G. M. Lewis, A. B. Krysa, J. S. Roberts, P. A. Houston, Y. C. Xin, Y. Li, and L. F. Lester, “740 nm InP/GaInP quantum-dot laser with 190 A cm-2 room temperature threshold current density,” Electron. Lett. 41, 247–248 (2005).
[Crossref]

Lewis, G. M.

J. Lutti, P. M. Smowton, G. M. Lewis, A. B. Krysa, J. S. Roberts, P. A. Houston, Y. C. Xin, Y. Li, and L. F. Lester, “740 nm InP/GaInP quantum-dot laser with 190 A cm-2 room temperature threshold current density,” Electron. Lett. 41, 247–248 (2005).
[Crossref]

G. M. Lewis, J. Lutti, P. M. Smowton, P. Blood, A. B. Krysa, and S. L. Liew, “Optical properties of InP/GaInP quantum-dot laser structures,” Appl. Phys. Lett. 85, 1904–1906 (2004).
[Crossref]

P. M. Smowton, G. M. Lewis, P. Blood, and W. W. Chow, “Optimization of 635-nm tensile strained GaInP laser diodes,” IEEE J. Sel. Top. Quantum Electron. 9, 1246–1251 (2003).
[Crossref]

Li, B. D.

Y. Sun, S. Fan, J. Faucher, R. D. Hool, B. D. Li, P. Dhingra, and M. L. Lee, “2.0–2.2 eV AlGaInP solar cells grown by molecular beam epitaxy,” Sol. Energy Mater. Sol. Cells 219, 110774 (2021).
[Crossref]

Li, D.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7, 13 (2018).
[Crossref]

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7, 13 (2018).
[Crossref]

Li, Q.

Y. Wan, C. Shang, J. Norman, B. Shi, Q. Li, N. Collins, M. Dumont, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si,” IEEE J. Sel. Top. Quantum Electron. 26, 1–9 (2020).
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Li, Y.

J. Lutti, P. M. Smowton, G. M. Lewis, A. B. Krysa, J. S. Roberts, P. A. Houston, Y. C. Xin, Y. Li, and L. F. Lester, “740 nm InP/GaInP quantum-dot laser with 190 A cm-2 room temperature threshold current density,” Electron. Lett. 41, 247–248 (2005).
[Crossref]

Li, Z.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7, 13 (2018).
[Crossref]

Liao, M.

S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate,” J. Semicond. 40, 101302 (2019).
[Crossref]

Liew, S. L.

G. M. Lewis, J. Lutti, P. M. Smowton, P. Blood, A. B. Krysa, and S. L. Liew, “Optical properties of InP/GaInP quantum-dot laser structures,” Appl. Phys. Lett. 85, 1904–1906 (2004).
[Crossref]

Lin, L.

Liu, A. Y.

Liu, H.

S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate,” J. Semicond. 40, 101302 (2019).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liu, J.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7, 13 (2018).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Liu, Z.

S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate,” J. Semicond. 40, 101302 (2019).
[Crossref]

Loghmari, Z.

H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).
[Crossref]

Loh, W.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

C. Sorace-Agaskar, S. Bramhavar, D. Kharas, W. Loh, P. Juodawlkis, J. Chiaverini, and J. Sage, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
[Crossref]

Lu, Y.

S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate,” J. Semicond. 40, 101302 (2019).
[Crossref]

Ludlow, A. D.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Luo, W.

Lutti, J.

J. Lutti, P. M. Smowton, G. M. Lewis, A. B. Krysa, J. S. Roberts, P. A. Houston, Y. C. Xin, Y. Li, and L. F. Lester, “740 nm InP/GaInP quantum-dot laser with 190 A cm-2 room temperature threshold current density,” Electron. Lett. 41, 247–248 (2005).
[Crossref]

G. M. Lewis, J. Lutti, P. M. Smowton, P. Blood, A. B. Krysa, and S. L. Liew, “Optical properties of InP/GaInP quantum-dot laser structures,” Appl. Phys. Lett. 85, 1904–1906 (2004).
[Crossref]

Mack, M.

T. Pinguet, S. Denton, S. Gloeckner, M. Mack, G. Masini, A. Mekis, S. Pang, M. Peterson, S. Sahni, and P. D. Dobbelaere, “High-volume manufacturing platform for silicon photonics,” Proc. IEEE 106, 2281–2290 (2018).
[Crossref]

Martinez, C.

Masini, G.

T. Pinguet, S. Denton, S. Gloeckner, M. Mack, G. Masini, A. Mekis, S. Pang, M. Peterson, S. Sahni, and P. D. Dobbelaere, “High-volume manufacturing platform for silicon photonics,” Proc. IEEE 106, 2281–2290 (2018).
[Crossref]

Masuda, T.

X. Huang, Y. Song, T. Masuda, D. Jung, and M. Lee, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50, 1226–1227 (2014).
[Crossref]

Maxson, R. T.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

McConnell, R.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

Mead, D.

G. Sanders, S. Sanders, L. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Mekis, A.

T. Pinguet, S. Denton, S. Gloeckner, M. Mack, G. Masini, A. Mekis, S. Pang, M. Peterson, S. Sahni, and P. D. Dobbelaere, “High-volume manufacturing platform for silicon photonics,” Proc. IEEE 106, 2281–2290 (2018).
[Crossref]

Meng, H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Meynard, B.

Michel, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Milvich, J.

D. Kohler, G. Schindler, L. Hahn, J. Milvich, A. Hofmann, K. Länge, W. Freude, and C. Koos, “Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics,” Light Sci. Appl. 10, 64 (2021).
[Crossref]

Moazeni, S.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Monge Bartolomé, L.

Monge-Bartolome, L.

Mosor, S.

G. Sanders, S. Sanders, L. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Mukherjee, K.

C. Shang, E. Hughes, Y. Wan, M. Dumont, R. Koscica, J. Selvidge, R. Herrick, A. C. Gossard, K. Mukherjee, and J. E. Bowers, “High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters,” Optica 8, 749–754 (2021).
[Crossref]

C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W. W. Chow, and J. E. Bowers, “Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits,” ACS Photon. 8, 2555–2566 (2021).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

Narcy, G.

H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).
[Crossref]

Nguyen-Van, H.

H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).
[Crossref]

Niffenegger, R. J.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

Nitta, K.

K. Itaya, M. Ishikawa, Y. Watanabe, K. Nitta, G.-I. Hatakoshi, and Y. Uematsu, “A new transverse-mode stabilized InGaAlP visible light laser diode using p-p isotype heterobarrier blocking,” Jpn. J. Appl. Phys. 27, L2414–L2416 (1988).
[Crossref]

Norman, J.

Y. Wan, C. Shang, J. Norman, B. Shi, Q. Li, N. Collins, M. Dumont, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si,” IEEE J. Sel. Top. Quantum Electron. 26, 1–9 (2020).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 µm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photon. Res. 3, B1–B9 (2015).
[Crossref]

Norman, J. C.

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

Notaros, J.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Pan, S.

S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate,” J. Semicond. 40, 101302 (2019).
[Crossref]

Pang, S.

T. Pinguet, S. Denton, S. Gloeckner, M. Mack, G. Masini, A. Mekis, S. Pang, M. Peterson, S. Sahni, and P. D. Dobbelaere, “High-volume manufacturing platform for silicon photonics,” Proc. IEEE 106, 2281–2290 (2018).
[Crossref]

Patriarche, G.

H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).
[Crossref]

Pavanello, F.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Peik, E.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Pessa, M.

P. Savolainen, M. Toivonen, J. Kongas, M. Pessa, P. Corvini, and M. Jansen, “Record quantum efficiency (92%) operation of 680 nm GaInP/AlGaInP ridge waveguide singlemode lasers,” Electron. Lett. 34, 1104–1105 (1998).
[Crossref]

M. Jalonen, M. Toivonen, P. Savolainen, J. Köngäs, and M. Pessa, “Effects of rapid thermal annealing on GaInP/AlGaInP lasers grown by all-solid-source molecular beam epitaxy,” Appl. Phys. Lett. 71, 479–481 (1997).
[Crossref]

P. Savolainen and M. Pessa, “High-power, high-efficiency GaInP/AlGaInP laser diode,” Jpn. J. Appl. Phys. 35, L1501–L1502 (1996).
[Crossref]

Peterson, M.

T. Pinguet, S. Denton, S. Gloeckner, M. Mack, G. Masini, A. Mekis, S. Pang, M. Peterson, S. Sahni, and P. D. Dobbelaere, “High-volume manufacturing platform for silicon photonics,” Proc. IEEE 106, 2281–2290 (2018).
[Crossref]

Pinguet, T.

T. Pinguet, S. Denton, S. Gloeckner, M. Mack, G. Masini, A. Mekis, S. Pang, M. Peterson, S. Sahni, and P. D. Dobbelaere, “High-volume manufacturing platform for silicon photonics,” Proc. IEEE 106, 2281–2290 (2018).
[Crossref]

Pinna, S.

B. Shi, S. Pinna, H. Zhao, S. Zhu, and J. Klamkin, “Lasing characteristics and reliability of 1550 nm laser diodes monolithically grown on silicon,” Phys. Status Solidi A 218, 2000374 (2021).
[Crossref]

Piprek, J.

J. Piprek, “What limits the efficiency of high-power InGaN/GaN lasers?” IEEE J. Quantum Electron. 53, 1–4 (2017).
[Crossref]

Pitera, A. J.

O. Kwon, J. J. Boeckl, M. L. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, “Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy,” J. Appl. Phys. 100, 013103 (2006).
[Crossref]

Popovic, M. A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Qiu, T.

G. Sanders, S. Sanders, L. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Ram, R. J.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Reboul, J. R.

J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Reens, D.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

Ringel, S. A.

O. Kwon, J. J. Boeckl, M. L. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, “Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy,” J. Appl. Phys. 100, 013103 (2006).
[Crossref]

Rio Calvo, M.

Roberts, J. S.

J. Lutti, P. M. Smowton, G. M. Lewis, A. B. Krysa, J. S. Roberts, P. A. Houston, Y. C. Xin, Y. Li, and L. F. Lester, “740 nm InP/GaInP quantum-dot laser with 190 A cm-2 room temperature threshold current density,” Electron. Lett. 41, 247–248 (2005).
[Crossref]

Rodriguez, J. B.

J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Rodriguez, J.-B.

Roeloffzen, C.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sage, J.

C. Sorace-Agaskar, S. Bramhavar, D. Kharas, W. Loh, P. Juodawlkis, J. Chiaverini, and J. Sage, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
[Crossref]

Sage, J. M.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

Sahni, S.

T. Pinguet, S. Denton, S. Gloeckner, M. Mack, G. Masini, A. Mekis, S. Pang, M. Peterson, S. Sahni, and P. D. Dobbelaere, “High-volume manufacturing platform for silicon photonics,” Proc. IEEE 106, 2281–2290 (2018).
[Crossref]

Salit, M.

G. Sanders, S. Sanders, L. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Sanders, G.

G. Sanders, S. Sanders, L. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Sanders, S.

G. Sanders, S. Sanders, L. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Savolainen, P.

P. Savolainen, M. Toivonen, J. Kongas, M. Pessa, P. Corvini, and M. Jansen, “Record quantum efficiency (92%) operation of 680 nm GaInP/AlGaInP ridge waveguide singlemode lasers,” Electron. Lett. 34, 1104–1105 (1998).
[Crossref]

M. Jalonen, M. Toivonen, P. Savolainen, J. Köngäs, and M. Pessa, “Effects of rapid thermal annealing on GaInP/AlGaInP lasers grown by all-solid-source molecular beam epitaxy,” Appl. Phys. Lett. 71, 479–481 (1997).
[Crossref]

P. Savolainen and M. Pessa, “High-power, high-efficiency GaInP/AlGaInP laser diode,” Jpn. J. Appl. Phys. 35, L1501–L1502 (1996).
[Crossref]

Schacht, E.

Schindler, G.

D. Kohler, G. Schindler, L. Hahn, J. Milvich, A. Hofmann, K. Länge, W. Freude, and C. Koos, “Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics,” Light Sci. Appl. 10, 64 (2021).
[Crossref]

Schmidt, P. O.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Sciarrino, F.

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2020).
[Crossref]

Seeds, A.

S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate,” J. Semicond. 40, 101302 (2019).
[Crossref]

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Selvidge, J.

C. Shang, E. Hughes, Y. Wan, M. Dumont, R. Koscica, J. Selvidge, R. Herrick, A. C. Gossard, K. Mukherjee, and J. E. Bowers, “High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters,” Optica 8, 749–754 (2021).
[Crossref]

C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W. W. Chow, and J. E. Bowers, “Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits,” ACS Photon. 8, 2555–2566 (2021).
[Crossref]

Shang, C.

C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W. W. Chow, and J. E. Bowers, “Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits,” ACS Photon. 8, 2555–2566 (2021).
[Crossref]

C. Shang, E. Hughes, Y. Wan, M. Dumont, R. Koscica, J. Selvidge, R. Herrick, A. C. Gossard, K. Mukherjee, and J. E. Bowers, “High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters,” Optica 8, 749–754 (2021).
[Crossref]

Y. Wan, C. Shang, J. Norman, B. Shi, Q. Li, N. Collins, M. Dumont, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si,” IEEE J. Sel. Top. Quantum Electron. 26, 1–9 (2020).
[Crossref]

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 µm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Shi, B.

B. Shi, S. Pinna, H. Zhao, S. Zhu, and J. Klamkin, “Lasing characteristics and reliability of 1550 nm laser diodes monolithically grown on silicon,” Phys. Status Solidi A 218, 2000374 (2021).
[Crossref]

L. Monge-Bartolome, B. Shi, B. Lai, G. Boissier, L. Cerutti, J.-B. Rodriguez, K. M. Lau, and E. Tournié, “GaSb-based laser diodes grown on MOCVD GaAs-on-Si templates,” Opt. Express 29, 11268–11276 (2021).
[Crossref]

Y. Wan, C. Shang, J. Norman, B. Shi, Q. Li, N. Collins, M. Dumont, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si,” IEEE J. Sel. Top. Quantum Electron. 26, 1–9 (2020).
[Crossref]

B. Shi, H. Zhao, L. Wang, B. Song, S. T. Suran Brunelli, and J. Klamkin, “Continuous-wave electrically pumped 1550 nm lasers epitaxially grown on on-axis (001) silicon,” Optica 6, 1507–1514 (2019).
[Crossref]

Shin, B.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 µm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

I. Karomi, P. M. Smowton, S. Shutts, A. B. Krysa, and R. Beanland, “InAsP quantum dot lasers grown by MOVPE,” Opt. Express 23, 27282–27291 (2015).
[Crossref]

S. Shutts, P. M. Smowton, and A. B. Krysa, “Dual-wavelength InP quantum dot lasers,” Appl. Phys. Lett. 104, 241106 (2014).
[Crossref]

Simmonds, P. J.

S. Tomasulo, J. Simon, P. J. Simmonds, J. Biagiotti, and M. L. Lee, “Molecular beam epitaxy of metamorphic InyGa1−yP solar cells on mixed anion GaAsxP1−x/GaAs graded buffers,” J. Vac. Sci. Technol. B 29, 03C118 (2011).
[Crossref]

Simon, J.

S. Tomasulo, J. Simon, P. J. Simmonds, J. Biagiotti, and M. L. Lee, “Molecular beam epitaxy of metamorphic InyGa1−yP solar cells on mixed anion GaAsxP1−x/GaAs graded buffers,” J. Vac. Sci. Technol. B 29, 03C118 (2011).
[Crossref]

Smiciklas, M.

G. Sanders, S. Sanders, L. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

I. Karomi, P. M. Smowton, S. Shutts, A. B. Krysa, and R. Beanland, “InAsP quantum dot lasers grown by MOVPE,” Opt. Express 23, 27282–27291 (2015).
[Crossref]

S. Shutts, P. M. Smowton, and A. B. Krysa, “Dual-wavelength InP quantum dot lasers,” Appl. Phys. Lett. 104, 241106 (2014).
[Crossref]

J. Lutti, P. M. Smowton, G. M. Lewis, A. B. Krysa, J. S. Roberts, P. A. Houston, Y. C. Xin, Y. Li, and L. F. Lester, “740 nm InP/GaInP quantum-dot laser with 190 A cm-2 room temperature threshold current density,” Electron. Lett. 41, 247–248 (2005).
[Crossref]

G. M. Lewis, J. Lutti, P. M. Smowton, P. Blood, A. B. Krysa, and S. L. Liew, “Optical properties of InP/GaInP quantum-dot laser structures,” Appl. Phys. Lett. 85, 1904–1906 (2004).
[Crossref]

P. M. Smowton, G. M. Lewis, P. Blood, and W. W. Chow, “Optimization of 635-nm tensile strained GaInP laser diodes,” IEEE J. Sel. Top. Quantum Electron. 9, 1246–1251 (2003).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Song, B.

Song, Y.

X. Huang, Y. Song, T. Masuda, D. Jung, and M. Lee, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50, 1226–1227 (2014).
[Crossref]

Sorace-Agaskar, C.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

C. Sorace-Agaskar, S. Bramhavar, D. Kharas, W. Loh, P. Juodawlkis, J. Chiaverini, and J. Sage, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
[Crossref]

Srinivasan, S.

Stojanovic, V. M.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Strandjord, L.

G. Sanders, S. Sanders, L. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Stuart, J.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

Sun, C.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Sun, Q.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7, 13 (2018).
[Crossref]

Sun, X.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7, 13 (2018).
[Crossref]

Sun, Y.

Y. Sun, S. Fan, J. Faucher, R. D. Hool, B. D. Li, P. Dhingra, and M. L. Lee, “2.0–2.2 eV AlGaInP solar cells grown by molecular beam epitaxy,” Sol. Energy Mater. Sol. Cells 219, 110774 (2021).
[Crossref]

P. Dhingra, S. Fan, Y. Sun, R. D. Hool, B. Eng, and M. L. Lee, “InP quantum dots for dislocation-tolerant, visible light emitters on Si,” Appl. Phys. Lett. 117, 181102 (2020).
[Crossref]

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7, 13 (2018).
[Crossref]

Suran Brunelli, S. T.

Tang, M.

S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate,” J. Semicond. 40, 101302 (2019).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Teissier, R.

H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).
[Crossref]

Thompson, M. G.

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2020).
[Crossref]

Toivonen, M.

P. Savolainen, M. Toivonen, J. Kongas, M. Pessa, P. Corvini, and M. Jansen, “Record quantum efficiency (92%) operation of 680 nm GaInP/AlGaInP ridge waveguide singlemode lasers,” Electron. Lett. 34, 1104–1105 (1998).
[Crossref]

M. Jalonen, M. Toivonen, P. Savolainen, J. Köngäs, and M. Pessa, “Effects of rapid thermal annealing on GaInP/AlGaInP lasers grown by all-solid-source molecular beam epitaxy,” Appl. Phys. Lett. 71, 479–481 (1997).
[Crossref]

Tomasulo, S.

S. Tomasulo, J. Simon, P. J. Simmonds, J. Biagiotti, and M. L. Lee, “Molecular beam epitaxy of metamorphic InyGa1−yP solar cells on mixed anion GaAsxP1−x/GaAs graded buffers,” J. Vac. Sci. Technol. B 29, 03C118 (2011).
[Crossref]

Tournet, J.

H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).
[Crossref]

Tournié, E.

L. Monge-Bartolome, B. Shi, B. Lai, G. Boissier, L. Cerutti, J.-B. Rodriguez, K. M. Lau, and E. Tournié, “GaSb-based laser diodes grown on MOCVD GaAs-on-Si templates,” Opt. Express 29, 11268–11276 (2021).
[Crossref]

M. Rio Calvo, L. Monge Bartolomé, M. Bahriz, G. Boissier, L. Cerutti, J.-B. Rodriguez, and E. Tournié, “Mid-infrared laser diodes epitaxially grown on on-axis (001) silicon,” Optica 7, 263–266 (2020).
[Crossref]

H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).
[Crossref]

J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Uematsu, Y.

K. Itaya, M. Ishikawa, Y. Watanabe, K. Nitta, G.-I. Hatakoshi, and Y. Uematsu, “A new transverse-mode stabilized InGaAlP visible light laser diode using p-p isotype heterobarrier blocking,” Jpn. J. Appl. Phys. 27, L2414–L2416 (1988).
[Crossref]

van Leest, T.

Vos, K. D.

Wade, M. T.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Wan, Y.

C. Shang, E. Hughes, Y. Wan, M. Dumont, R. Koscica, J. Selvidge, R. Herrick, A. C. Gossard, K. Mukherjee, and J. E. Bowers, “High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters,” Optica 8, 749–754 (2021).
[Crossref]

C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W. W. Chow, and J. E. Bowers, “Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits,” ACS Photon. 8, 2555–2566 (2021).
[Crossref]

Y. Wan, C. Shang, J. Norman, B. Shi, Q. Li, N. Collins, M. Dumont, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si,” IEEE J. Sel. Top. Quantum Electron. 26, 1–9 (2020).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 µm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Wang, I.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Wang, J.

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2020).
[Crossref]

Wang, L.

Watanabe, K.

Watanabe, Y.

K. Itaya, M. Ishikawa, Y. Watanabe, K. Nitta, G.-I. Hatakoshi, and Y. Uematsu, “A new transverse-mode stabilized InGaAlP visible light laser diode using p-p isotype heterobarrier blocking,” Jpn. J. Appl. Phys. 27, L2414–L2416 (1988).
[Crossref]

West, G. N.

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

G. Sanders, S. Sanders, L. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Wu, L. Z.

L. Z. Wu and Y. S. Zhang, “Selenium doping effects and low-threshold high-power GaInP-AlGaInP single-quantum-well lasers grown by MOVPE,” IEEE Photon. Technol. Lett. 12, 248–250 (2000).
[Crossref]

Xin, Y. C.

J. Lutti, P. M. Smowton, G. M. Lewis, A. B. Krysa, J. S. Roberts, P. A. Houston, Y. C. Xin, Y. Li, and L. F. Lester, “740 nm InP/GaInP quantum-dot laser with 190 A cm-2 room temperature threshold current density,” Electron. Lett. 41, 247–248 (2005).
[Crossref]

Yang, H.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7, 13 (2018).
[Crossref]

Ye, J.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Zhang, B.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Zhang, L.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7, 13 (2018).
[Crossref]

Zhang, S.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7, 13 (2018).
[Crossref]

Zhang, Y. S.

L. Z. Wu and Y. S. Zhang, “Selenium doping effects and low-threshold high-power GaInP-AlGaInP single-quantum-well lasers grown by MOVPE,” IEEE Photon. Technol. Lett. 12, 248–250 (2000).
[Crossref]

Zhang, Z.

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

Zhao, H.

B. Shi, S. Pinna, H. Zhao, S. Zhu, and J. Klamkin, “Lasing characteristics and reliability of 1550 nm laser diodes monolithically grown on silicon,” Phys. Status Solidi A 218, 2000374 (2021).
[Crossref]

B. Shi, H. Zhao, L. Wang, B. Song, S. T. Suran Brunelli, and J. Klamkin, “Continuous-wave electrically pumped 1550 nm lasers epitaxially grown on on-axis (001) silicon,” Optica 6, 1507–1514 (2019).
[Crossref]

Zhou, K.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7, 13 (2018).
[Crossref]

Zhou, Y.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7, 13 (2018).
[Crossref]

Zhu, S.

B. Shi, S. Pinna, H. Zhao, S. Zhu, and J. Klamkin, “Lasing characteristics and reliability of 1550 nm laser diodes monolithically grown on silicon,” Phys. Status Solidi A 218, 2000374 (2021).
[Crossref]

ACS Photon. (1)

C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W. W. Chow, and J. E. Bowers, “Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits,” ACS Photon. 8, 2555–2566 (2021).
[Crossref]

Appl. Phys. Lett. (6)

G. M. Lewis, J. Lutti, P. M. Smowton, P. Blood, A. B. Krysa, and S. L. Liew, “Optical properties of InP/GaInP quantum-dot laser structures,” Appl. Phys. Lett. 85, 1904–1906 (2004).
[Crossref]

S. Shutts, P. M. Smowton, and A. B. Krysa, “Dual-wavelength InP quantum dot lasers,” Appl. Phys. Lett. 104, 241106 (2014).
[Crossref]

M. Jalonen, M. Toivonen, P. Savolainen, J. Köngäs, and M. Pessa, “Effects of rapid thermal annealing on GaInP/AlGaInP lasers grown by all-solid-source molecular beam epitaxy,” Appl. Phys. Lett. 71, 479–481 (1997).
[Crossref]

P. Dhingra, S. Fan, Y. Sun, R. D. Hool, B. Eng, and M. L. Lee, “InP quantum dots for dislocation-tolerant, visible light emitters on Si,” Appl. Phys. Lett. 117, 181102 (2020).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 µm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

J. R. Reboul, L. Cerutti, J. B. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Electron. Lett. (3)

J. Lutti, P. M. Smowton, G. M. Lewis, A. B. Krysa, J. S. Roberts, P. A. Houston, Y. C. Xin, Y. Li, and L. F. Lester, “740 nm InP/GaInP quantum-dot laser with 190 A cm-2 room temperature threshold current density,” Electron. Lett. 41, 247–248 (2005).
[Crossref]

P. Savolainen, M. Toivonen, J. Kongas, M. Pessa, P. Corvini, and M. Jansen, “Record quantum efficiency (92%) operation of 680 nm GaInP/AlGaInP ridge waveguide singlemode lasers,” Electron. Lett. 34, 1104–1105 (1998).
[Crossref]

X. Huang, Y. Song, T. Masuda, D. Jung, and M. Lee, “InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001),” Electron. Lett. 50, 1226–1227 (2014).
[Crossref]

IEEE J. Photovolt. (1)

N. Jain and M. K. Hudait, “Impact of threading dislocations on the design of GaAs and InGaP/GaAs solar cells on Si using finite element analysis,” IEEE J. Photovolt. 3, 528–534 (2013).
[Crossref]

IEEE J. Quantum Electron. (2)

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 1–11 (2019).
[Crossref]

J. Piprek, “What limits the efficiency of high-power InGaN/GaN lasers?” IEEE J. Quantum Electron. 53, 1–4 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

P. M. Smowton, G. M. Lewis, P. Blood, and W. W. Chow, “Optimization of 635-nm tensile strained GaInP laser diodes,” IEEE J. Sel. Top. Quantum Electron. 9, 1246–1251 (2003).
[Crossref]

Y. Wan, C. Shang, J. Norman, B. Shi, Q. Li, N. Collins, M. Dumont, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Low threshold quantum dot lasers directly grown on unpatterned quasi-nominal (001) Si,” IEEE J. Sel. Top. Quantum Electron. 26, 1–9 (2020).
[Crossref]

IEEE Photon. Technol. Lett. (1)

L. Z. Wu and Y. S. Zhang, “Selenium doping effects and low-threshold high-power GaInP-AlGaInP single-quantum-well lasers grown by MOVPE,” IEEE Photon. Technol. Lett. 12, 248–250 (2000).
[Crossref]

J. Appl. Phys. (2)

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122, 225703 (2017).
[Crossref]

O. Kwon, J. J. Boeckl, M. L. Lee, A. J. Pitera, E. A. Fitzgerald, and S. A. Ringel, “Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy,” J. Appl. Phys. 100, 013103 (2006).
[Crossref]

J. Semicond. (1)

S. Pan, V. Cao, M. Liao, Y. Lu, Z. Liu, M. Tang, S. Chen, A. Seeds, and H. Liu, “Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate,” J. Semicond. 40, 101302 (2019).
[Crossref]

J. Vac. Sci. Technol. B (1)

S. Tomasulo, J. Simon, P. J. Simmonds, J. Biagiotti, and M. L. Lee, “Molecular beam epitaxy of metamorphic InyGa1−yP solar cells on mixed anion GaAsxP1−x/GaAs graded buffers,” J. Vac. Sci. Technol. B 29, 03C118 (2011).
[Crossref]

Jpn. J. Appl. Phys. (2)

K. Itaya, M. Ishikawa, Y. Watanabe, K. Nitta, G.-I. Hatakoshi, and Y. Uematsu, “A new transverse-mode stabilized InGaAlP visible light laser diode using p-p isotype heterobarrier blocking,” Jpn. J. Appl. Phys. 27, L2414–L2416 (1988).
[Crossref]

P. Savolainen and M. Pessa, “High-power, high-efficiency GaInP/AlGaInP laser diode,” Jpn. J. Appl. Phys. 35, L1501–L1502 (1996).
[Crossref]

Light Sci. Appl. (2)

D. Kohler, G. Schindler, L. Hahn, J. Milvich, A. Hofmann, K. Länge, W. Freude, and C. Koos, “Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics,” Light Sci. Appl. 10, 64 (2021).
[Crossref]

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7, 13 (2018).
[Crossref]

Nat. Photonics (3)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2020).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Nature (2)

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” Nature 586, 538–542 (2020).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optica (4)

Photon. Res. (1)

Phys. Status Solidi A (1)

B. Shi, S. Pinna, H. Zhao, S. Zhu, and J. Klamkin, “Lasing characteristics and reliability of 1550 nm laser diodes monolithically grown on silicon,” Phys. Status Solidi A 218, 2000374 (2021).
[Crossref]

Proc. IEEE (2)

T. Pinguet, S. Denton, S. Gloeckner, M. Mack, G. Masini, A. Mekis, S. Pang, M. Peterson, S. Sahni, and P. D. Dobbelaere, “High-volume manufacturing platform for silicon photonics,” Proc. IEEE 106, 2281–2290 (2018).
[Crossref]

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
[Crossref]

Proc. SPIE (2)

C. Sorace-Agaskar, S. Bramhavar, D. Kharas, W. Loh, P. Juodawlkis, J. Chiaverini, and J. Sage, “Multi-layer integrated photonics from the ultraviolet to the infrared,” Proc. SPIE 10510, 105100D (2018).
[Crossref]

G. Sanders, S. Sanders, L. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Rev. Mod. Phys. (1)

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87, 637–701 (2015).
[Crossref]

Sci. Rep. (1)

H. Nguyen-Van, A. N. Baranov, Z. Loghmari, L. Cerutti, J.-B. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G. Patriarche, M. Bahriz, E. Tournié, and R. Teissier, “Quantum cascade lasers grown on silicon,” Sci. Rep. 8, 7206 (2018).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

Y. Sun, S. Fan, J. Faucher, R. D. Hool, B. D. Li, P. Dhingra, and M. L. Lee, “2.0–2.2 eV AlGaInP solar cells grown by molecular beam epitaxy,” Sol. Energy Mater. Sol. Cells 219, 110774 (2021).
[Crossref]

Supplementary Material (1)

NameDescription
Supplement 1       High-temperature L-I, Comparison with literature, I-V characteristics, Cavity length effects

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Growth schematic of InP MQD laser on GaAs/Si; the SQW laser is similar except without QDs and only one repeat of the active region; (b) BF-TEM image of InP MQD laser on GaAs/Si showing strain contrast around the InP QDs; (c) false-colored high-resolution HAADF-STEM image of a single InP QDWELL layer showing composition contrast from individual QDs; (d) CL map of n-GaAs/Si showing TDD of ${\sim}{{1}} \times {{1}}{{{0}}^7}\;{\rm{c}}{{\rm{m}}^{- 2}}$ with dark spots correlating to threading dislocations.
Fig. 2.
Fig. 2. Benchmark laser characteristics for devices grown on GaAs. (a) L-I curves for ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW (red, 1.8 mm cavity length with 100 µm ridge) and InP MQD (green, 1.7 mm cavity length with 60 µm ridge) lasers tested CW at 20°C, with ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW (InP MQD) laser exhibiting ${{\rm{J}}_{\rm{th}}} = {{170}}\;{\rm{A}}/{{\rm{cm}}^2}$ (${{230}}\;{\rm{A}}/{{\rm{cm}}^2}$); (b) semilogarithmic laser spectra showing ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW laser emitting at 691.5 nm and InP MQD laser emitting at 726.8 nm with multiple modes. The spectra were collected at RT under CW operation at ${1.7} \times {{\rm{J}}_{\rm{th}}}$ for SQW lasers and ${1.3} \times {{\rm{J}}_{\rm{th}}}$ for MQD lasers.
Fig. 3.
Fig. 3. (a) L-I curve for ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW laser on GaAs/Si (001) with a cavity length of 1.25 mm and ridge width of 40 µm operating CW at ${\rm{T}} = {{20}}^\circ {\rm{C}}$ with ${{\rm{J}}_{\rm{th}}} = {{550}}\;{\rm{A}}/{{\rm{cm}}^2}$; inset, photograph of ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW laser on Si lasing with output power ${\gt}{{5}}\;{\rm{mW}}$ projected on a wall ${\sim}{{50}}\;{\rm{cm}}$ away from device under test; (b) semilogarithmic lasing spectra of ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}\;{\rm{P}}$ SQW laser on Si operating at ${1.6} \times {{\rm{J}}_{\rm{th}}}$, collected at RT CW showing multiple mode emission centered at 693.9 nm.
Fig. 4.
Fig. 4. (a) L-I curve for InP MQD laser on GaAs/Si (001) with a cavity length of 0.9 mm and ridge width of 40 µm operating CW at ${\rm{T}} = {{20}}^\circ {\rm{C}}$ with ${{\rm{J}}_{\rm{th}}} = {{690}}\;{\rm{A}}/{{\rm{cm}}^2}$; inset, photograph of InP MQD laser on Si lasing with output power ${\sim}5 \;{\rm{mW}}$ projected on a wall ${\sim}{{50}}\;{\rm{cm}}$ away from device under test; (b) semilogarithmic lasing spectra of InP MQD laser on Si operating at ${1.1} \times {{\rm{J}}_{\rm{th}}}$, collected at RT under CW operation showing multiple mode emission centered in the far-red regime at 726.2 nm; (c) L-I curves for InP MQD laser on Si operating CW at elevated temperature of 20°C to 50°C showing an increase in ${{\rm{J}}_{\rm{th}}}$ with characteristic temperature of 65 K.
Fig. 5.
Fig. 5. (a) Comparison of L-I characteristics of ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW and InP MQD lasers on GaAs and GaAs/Si with both SQW and MQD lasers on Si showing a ${{\rm{J}}_{\rm{th}}}$ increase of ${\sim}3 \times$ compared to lasers on GaAs; (b) spectra of ${{\rm{In}}_{0.6}}{{\rm{Ga}}_{0.4}}{\rm{P}}$ SQW and InP MQD lasers grown on GaAs and GaAs/Si in semilogarithmic scale.