Abstract

Light–matter coupling in van der Waal’s materials holds significant promise in realizing bosonic condensation and superfluidity. The underlying semiconductor’s crystal asymmetry, if any, can be utilized to form anisotropic half-light half-matter quasiparticles. We demonstrate generation of such highly anisotropic exciton-polaritons at the interface of a biaxial layered semiconductor, stacked on top of a distributed Bragg reflector. The spatially confined photonic mode in this geometry couples with polarized excitons and their Rydberg states, creating a system of highly anisotropic polariton manifolds, displaying Rabi splitting of up to 68 meV. Rotation of the incident beam polarization is used to tune coupling strength and smoothly switch regimes from weak to strong coupling, while also enabling transition from one three-body coupled oscillator system to another. Light–matter coupling is further tunable by varying the number of weakly coupled optically active layers. Our work provides a versatile method of engineering devices for applications in polarization-controlled polaritonics and optoelectronics.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Exciton-polaritons generated by light–matter coupling in solid-state systems have been a subject of intense research, revealing new pathways to many-body phenomena such as Bose–Einstein condensation, superfluidity, and polariton lasing, while also holding significant promise in myriad optoelectronic applications [16]. These half-light, half-matter particles formed by the hybridization of excitonic and photonic states have been investigated earlier in semiconductor quantum well systems [710], and more recently in two-dimensional monolayer transition metal dichalcogenides (TMDs) [1116]. This family of materials has provided a promising platform for exploring novel phenomena in two dimensions, such as valley- polarized polaritons [1721], anisotropic polaritons [2225], and more recently, Rydberg state exciton-polaritons (REPs) with enhanced nonlinear optical properties [2628]. Group VII TMDs like ${\rm{Re}}{{\rm{S}}_2}$ support excitons with binding energies of ${\sim}{{100}}\;{\rm{meV}}$, even in their bulk form [29]; these excitons show unique anisotropic optical and electronic properties due to the reduced crystal symmetry of the material [3035]. Two additional excitons, ${{\rm{X}}_3}$ and ${{\rm{X}}_4}$, were reported earlier along with the two highly polarized ${{\rm{X}}_1}$ and ${{\rm{X}}_{2,}}$ and their Rydberg states in ${\rm{Re}}{{\rm{S}}_2}$ [36]. More recently, splitting of ${{\rm{X}}_1}$ and ${{\rm{X}}_2}$ exciton peaks has been reported in ${\rm{Re}}{{\rm{S}}_2}$ placed on a gold mirror [24], which were attributed to self-hybridized polariton modes by the authors. However, it is unclear if these modes reported are polariton modes or the previously reported ${{\rm{X}}_3}$ and ${{\rm{X}}_4}$ peaks that were observed even for an 11 nm thin ${\rm{Re}}{{\rm{S}}_2}$ layer where there is no self-hybridized mode [36] and also on any substrate, even without a bottom gold mirror.

In this work, we demonstrate for the first time, to our knowledge, strong light–matter interaction with clear anticrossing and Rabi splitting of up to ${\sim}$${{68}}\;{\rm{meV}}$ in an exciton manifold that is selectively tunable using the polarization of incident excitation, by utilizing the interaction of excitons and the supported photonic mode in the interface of ${\rm{Re}}{{\rm{S}}_2}$ placed on a distributed Bragg reflector (DBR) structure. Our experiment and simulation results show that the DBR underneath the optically active layer plays an important role in enhancing the photon lifetime inside the material, resulting in the formation of interfacial exciton-polaritons, which inherit polarization-dependent properties from the excitons in ${\rm{Re}}{{\rm{S}}_2}$. Polaritons formed in these materials are likely to show unique, polarization-dependent properties, opening up possibilities for novel applications in polarization-sensitive switches, polarization-tunable polariton lasers [37,38] and engineering topologically nontrivial polariton dispersion [39]. Strong light–matter coupling has also been demonstrated as surface Bloch wave polaritonic states at the interface of a monolayer and a DBR [40]. Such geometries offer easy access to interface the optically active material for optoelectronic applications and probing quantum many-body physics. In addition, theoretical studies have predicted that low symmetry and strong anisotropic materials are most suitable for exhibiting superfluidity [41].

 figure: Fig. 1.

Fig. 1. Polarization-resolved optical measurements revealing exciton-polaritons in ReS2. (a) Schematic of the ${\rm{Re}}{{\rm{S}}_2}/{\rm{DBR}}$ structure. Top right, optical microscope image of a 120 nm thick ${\rm{Re}}{{\rm{S}}_2}$ flake transferred on the DBR, showing preferential cleavage along the crystal’s $b$ axis. Linearly polarized white light is used for reflectivity measurements, with polarization angle ${\theta _P}$ with the $b$ axis. The field profile for TE mode is overlaid on the structure, representing a photonic mode within the DBR stopband, which can couple with excitons. (b) Color plot representing the differential reflectance spectrum as a function of ${\theta _P}$ for the 120 nm ${\rm{Re}}{{\rm{S}}_2}/{\rm{DBR}}$ device. Line profile in the lower panel shows reflectance at ${\theta _P} = {{130}}^\circ$, where absorption dips from all four exciton species and the two prominent lower exciton-polariton branches can be observed. ${{\rm{X}}_R}$ denotes the Rydberg excitations. (c) Color plot showing the PL spectrum as a function of angle of the analyzer ${\theta _A}$ with respect to the $b$ axis. PL spectrum at ${\theta _A} = {{130}}^\circ$ is shown in the lower panel. The subscript 1 or 2 added to the polariton branch labels indicates association with ${{\rm{X}}_1}$ or ${{\rm{X}}_2}$ excitons. (d), (e) Experimental angle-resolved reflectance for two different incident polarization angles (${\theta _P} = {{170}}^\circ$ and 90°), corresponding to two different polariton manifolds associated with ${{\rm{X}}_1}$ and ${{\rm{X}}_2}$, respectively. Dashed white line used as a guide to the eye to show the polariton branches. $X_1^{(2)}$ and $X_2^{(3)}$ denote the first and second excited Rydberg states of ${{\rm{X}}_1}$ and ${{\rm{X}}_2}$, respectively. (f) Dispersion relations of the uncoupled excitons and photonic mode (dashed lines), and coupled polariton modes (solid lines). Black and blue colors are used to identify two different three-body coupled polariton manifolds corresponding to angle ${\theta _P} = {{170}}^\circ$ and 90°, respectively.

Download Full Size | PPT Slide | PDF

The advantage of ${\rm{Re}}{{\rm{S}}_2}$ is that the material’s optical response remains unaffected with the layer thickness due to its weak interlayer coupling [42], which provides ample opportunity to engineer strong light–matter coupling by altering the thickness of the top ${\rm{Re}}{{\rm{S}}_2}$ layer. By varying the in-plane polarization of incident light, it is possible to switch the system between two independent sets of three-body coupled oscillators consisting of two different exciton-polariton manifolds. Such tunability allows the coupling strength $g$to change continuously to switch regimes from weak to strong coupling, and vice versa. We find two independent coupled oscillator systems with different in-plane polarizations existing on the same platform, each linked to the two prominent exciton-polariton species, along with their Rydberg states. Furthermore, we observe the formation of REPs, which have recently drawn attention due to their enhanced exciton–exciton interaction leading to polariton blockades [27]. Finally, we explore the possibility of temperature tuning as an additional knob to control the coupling strength by observing the temperature evolution of the polariton dispersion of this intriguing exciton-polariton manifold.

2. DBR-SUPPORTED ANISOTROPIC POLARITONS

As shown in Fig. 1(a), alternating layers of ${\rm{Si}}{{\rm{O}}_2}$ and Ta${_2{{\rm{O}}_5}}$ on an Si substrate are deposited using sputtering technique to form a 10-pair (20 layers) DBR with a stopband centered around a wavelength ${\lambda _c}$ (775 nm). This ensures all excitonic resonances present in ${\rm{Re}}{{\rm{S}}_2}$, as well as their Rydberg excitations, would lie inside the high-reflectance stopband. ${\rm{Re}}{{\rm{S}}_2}$ flakes are mechanically exfoliated from commercially available bulk ${\rm{Re}}{{\rm{S}}_2}$ crystal and dry-transferred on the predefined position on the DBR. The inset shows the optical microscope image of one such 120 nm thick ${\rm{Re}}{{\rm{S}}_2}$ flake (see Fig. S1 in Supplement 1 for atomic force microscopy measurement). The transverse electric (TE) mode electric field profile inside the structure for $\lambda = {{760}}\;{\rm{nm}}$ is overlaid on the schematic, demonstrating how interference in the ${\rm{Re}}{{\rm{S}}_2}/{\rm{DBR}}$ structure increases the electric field intensity in the optically active top layer of ${\rm{Re}}{{\rm{S}}_2}$. For the range of angles probed by the 0.7 NA objective lens used in our measurement setup, the transverse magnetic (TM) mode electric field has no significant difference and practically overlaps with the TE mode, and is therefore not separately considered. The photonic mode present inside the energy range of the DBR stopband is reminiscent of optical Tamm states [4345], but we make a distinction here, since the top ${\rm{Re}}{{\rm{S}}_2}$ layer is a semiconductor with exceptionally high refractive index [46] instead of a metallic layer. The ${\rm{Re}}{{\rm{S}}_2}$ layer on top of a DBR thus creates a highly dispersive photonic mode with narrower linewidth than Fabry–Pérot modes in freestanding ${\rm{Re}}{{\rm{S}}_2}$, which is capable of inducing strong light–matter coupling, thus forming exotic exciton-polaritons that inherit the unidirectional anisotropic properties of the parent excitons.

The signature of highly anisotropic exciton-polaritons was at first probed via polarization-resolved differential reflectance and photoluminescence (PL) at 3.2 K, the results of which are shown in Figs. 1(b) and 1(c), respectively, where the polarization angle ${\theta _P}$ of linearly polarized incident light is with respect to the $b$ axis of ${\rm{Re}}{{\rm{S}}_2}$. Incident light is focused within a submicrometer spot on the sample plane using a 0.70 NA objective. The input port contains a linear polarizer followed by a half-wave plate mounted on a motorized rotational stage in order to control the polarization of incident light. For polarization-resolved PL measurements, a 660 nm CW laser is used, with an analyzer kept in the output path.

Interestingly, we observe that absorption and PL at otherwise weak exciton resonances (${{\rm{X}}_3}$ and ${{\rm{X}}_4}$), which were reported in our earlier work in several-layer ${\rm{Re}}{{\rm{S}}_2}$ exfoliated on ${\rm{Si}}{{\rm{O}}_2}$/Si substrate [36], are now strongly enhanced due to light–matter coupling. Absorption maximum for (${{\rm{X}}_1}$, ${{\rm{X}}_3}$) and (${{\rm{X}}_2}$, ${{\rm{X}}_4}$) appears at ${\theta _P} = {{3}}^\circ$ and ${{7}}{{8}}^{{\rm o}}$, respectively, agreeing with previously reported values of their transition dipole moment orientation [30,47]. However, the shape of the absorption dip of excitons ${{\rm{X}}_1}$ and ${{\rm{X}}_2}$ in the color plot show a significant departure from that of ${\rm{Re}}{{\rm{S}}_2}$ on the ${\rm{Si}}{{\rm{O}}_2}$ substrate (a comparison plot is included as Fig. S2 in Supplement 1). This can be understood subsequently from the angle-resolved polariton dispersion, which shows an incident polarization dependence. Strong light–matter coupling around ${\theta _P} = {{3}}^\circ$ (${{7}}{{{8}}^{\rm o}}$), for which the exciton oscillator strength of ${{\rm{X}}_1}$ (${{\rm{X}}_2}$) is maximized, leads to the lower polariton branch (LPB) acquiring a large dispersion. This manifests as increased linewidth and a redshift in integrated reflectance. The absorption dips from all four excitons; the LPBs can be seen in the bottom panel of Fig. 1(b), which corresponds to differential reflectivity for ${\theta _P} = {{130}}^\circ$. We observe the absorption from the first and second Rydberg excitations (denoted subsequently as $X_i^{({n = 2})}$ and $X_i^{({n = 3})}$, $i = {{1}},{{2}}$) of ${{\rm{X}}_1}$ and ${{\rm{X}}_2}$ is greatly enhanced due to coupling with the overlapping photonic mode and formation of REPs. The PL as seen in Fig. 1(c) is similar to the reflectivity data with all the excitonic features, including the Rydberg states (also see polar plot Fig. S3 in Supplement 1). The PL intensity is dominated by the LPB corresponding to each particular analyzer angle ${\theta _A}$. The long tail in the reflectivity and PL data below 1.64 eV is attributed to the highly dispersed middle polariton branch (MPB).

Interestingly, faint absorption dips, as well as PL, are observed at the unperturbed energies of excitons ${{\rm{X}}_1}$ and ${{\rm{X}}_2}$ above the LPB, indicating a fraction of excitons are weakly coupling with light. This is because confined photon modes are in the lower-half plane (LHP), defined as the dielectric stack below the air-${\rm{Re}}{{\rm{S}}_2}$ interface, and are strongly coupled to the material, while there also exist unconfined continuum photon modes in the upper-half plane (UHP) above ${\rm{Re}}{{\rm{S}}_2}$. The LHP modes mix with a fraction of excitons in ${\rm{Re}}{{\rm{S}}_2}$, primarily in the layers that lie in the antinodes of the electric field. The rest of the excitons are still weakly coupled to the UHP modes, so they appear in the UHP reflection and PL.

The intriguing energy dispersion of the exciton-polariton manifolds was probed via single-shot imaging of the Fourier plane of the objective lens [15]. Figures 1(d) and 1(e) show angle-resolved reflectivity spectra at 3.2 K for the two cases, when incident light polarization is aligned to excite only ${{\rm{X}}_1}$ and ${{\rm{X}}_2}$, respectively (${\theta _P} = {{170}}^\circ$ and 90°), thus creating two different exciton-polariton manifolds. The lowermost absorption dips in both cases show a pronounced parabolic dispersion, which are identified as ${{\rm{X}}_1}$-LPB and ${{\rm{X}}_2}$-LPB. The upper polariton branch (UPB) in Fig. 1(d) and MPB in Fig. 1(e) are denoted as $X_1^{(2)}$-UPB and $X_2^{(3)}$ MPB, respectively. Figure 1(f) shows the polariton branches (solid black for ${\theta _P} = {{170}}^\circ$ and solid blue lines for ${\theta _P} = {{90}}^\circ$) obtained from the two independent three-body coupled oscillator models fitted with experimental data, which are discussed subsequently in detail.

The two associated shoulder peaks ${{\rm{X}}_3}$ and ${{\rm{X}}_4}$ show negligible dispersion in this system despite having significant oscillator strength, indicating an inherently lesser propensity to couple with the in-plane electric field. This could mean their dipole moments are partially oriented out-of-plane. The origin of ${{\rm{X}}_3}$ and ${{\rm{X}}_4}$, as also reported in our earlier work on 11 nm ${\rm{Re}}{{\rm{S}}_2}$ [36], still requires further theoretical investigation. We note that it is not possible to explain these additional peaks as self-hybridized polariton modes, as reported in a related work [24], since simulating their response required adding separate Lorentz oscillators to the permittivity model.

3. POLARIZATION TUNABLE DISPERSIONS IN EXCITON-POLARITON MANIFOLDS

Simulation obtained from the transfer matrix method is plotted alongside the experimental angle-resolved data for two different polarization angles (${\theta _P} = {{170}}^\circ$ and 90°) in Figs. 2(a) and 2(b) (see Notes 1 and 2 in Supplement 1 for details on polariton dispersion fitting, and Figures S4-6 for the reflectivity cross sections used to extract polariton dispersions). Fitting this with the experimental data, we obtain the background permittivity ${\epsilon _b}$ to be 23 and 18.5 along the ${{\rm{X}}_1}$ and ${{\rm{X}}_2}$ orientations, respectively, which is in good agreement with theoretically predicted values for the bulk crystal [46].

 figure: Fig. 2.

Fig. 2. Polarization-controlled light–matter coupling. (a) Angle-resolved reflectance of 120 nm ${\rm{Re}}{{\rm{S}}_2}$ on DBR for 3.2 K (left) compared with transfer matrix simulation (right) when the incident linear polarized light is aligned at ${\theta _P} = {{170}}^\circ$, so that only the ${{\rm{X}}_1}$ exciton-polariton manifold is excited. Dispersions of the uncoupled photon mode and excitons (white dashed lines) and the exciton-polariton modes (gray solid lines) are indicated. The spring and mass diagram below represents the corresponding three-body coupled oscillator system involving the photon mode (Ph), ${{\rm{X}}_1}$ and the first Rydberg excitation $X_1^{(2)}$. ${g_1}$ and $g_1^\prime$ are the coupling constants. (b) Angle-resolved reflectance of the system when ${\theta _P} = {{90}}^\circ$, such that incident polarized light excites only ${{\rm{X}}_2}$. The coupled oscillator system here consists of the photon mode for this polarization (Ph), ${{\rm{X}}_2}$, and the second Rydberg excitation $X_2^{(3)}$. ${g_2}$ and $g_2^\prime$ are the corresponding coupling constants. Springs drawn using dashed lines indicate weak coupling. Exciton-polariton modes for this polarization are indicated with blue solid lines. (c) Angle-resolved reflectance for ${\theta _P} = {{130}}^\circ$, where both the coupled oscillator systems shown in (a) and (b) are present, but with changed coupling strength. (d) ${{\rm and}}$ (e) show the Rabi splitting between $X_1^{(2)}$-UPB and MPB ranging from 6 meV to 17 meV as the polarization angle is changed from 130° to 170°. (f) Rabi splitting from (d) and (e) as a function of polarization angle ${\theta _P}$. Solid red line indicates a sinusoidal dependence of coupling with ${\theta _P}$.

Download Full Size | PPT Slide | PDF

At each polarization, the photonic mode supported in the semiconductor layer (dashed white line with parabolic dispersion) is modified due to the anisotropic background permittivity. We observe three prominent polariton modes in both cases, resulting from coupling between the photonic mode (${E_{P{h_i}}}$), the strongest exciton species $({{X_i}})$, and one of its Rydberg excitations $({X_i^{(n)}})$. Thus, for these two polarizations, we model the system using the three-body coupled oscillator Hamiltonian [8],

$$\left({\begin{array}{*{20}{c}}{{E_{P{h_i}}}\!\left({\hbar \omega} \right) + i\hbar {\Gamma _{P{h_i}}}}&{{g_i}}&{g_i^\prime}\\{{g_i}}&{{E_{{Xi}}} + i\hbar {\Gamma _{{Xi}}}}&0\\{g_i^\prime}&0&{{E_{X_i^{\left(n \right)}}} + i\hbar {\Gamma _{X_i^{\left(n \right)}}}}\end{array}} \right)\!.$$

Here, the subscript $i = {{1}}$, 2 denotes ${{\rm{X}}_1}$ and ${{\rm{X}}_2}$ orientations, respectively. ${E_{P{h_i}}}({\hbar \omega})$ is the dispersion of the corresponding bare photonic mode for each orientation, which we have obtained experimentally using data taken at room temperature (see Fig. S7 and Note 3 in Supplement 1). $\hbar {\Gamma _{P{h_i}}}$ and $\hbar {\Gamma _{{Xi}}}$ are the half-widths at half maximum of the photonic mode and excitons, respectively. The exciton half-widths were typically 2 meV at 3.2 K for this system. $\hbar {\Gamma _{P{h_i}}}$ was found to be 6 meV. Note that we neglect exciton–exciton coupling here. We also neglect coupling of the ${{\rm{X}}_3}$ and ${{\rm{X}}_4}$ excitons with the photonic mode, since they show negligible dispersion experimentally. Diagonalizing this matrix yields the polariton mode dispersions, which can be fitted with experimentally observed dispersions to obtain the coupling strengths. For ${{\rm{X}}_1}$ polarization, we obtain coupling strengths ${g_1} = 30\;{\rm{meV}}$ and $g_1^\prime$(coupling with the first Rydberg excitation $X_1^{({n = 2})}$) = 7.5 meV, satisfying the condition for strong light–matter coupling [13] ($g \gt \;\hbar \sqrt {\Gamma _{P{h_i}}^2 + \Gamma _{{Xi}}^2} = 6.3\;{\rm{meV}}$ for both interactions. Rabi splitting of 17 meV is observed between the UPBs and MPBs. For ${{\rm{X}}_2}$ polarization, we obtain coupling strengths ${g_2} = 32\;{\rm{meV}}$, and $g_2^\prime$ (coupling with the second Rydberg excitation $X_2^{({n = 3})}$) = 3 meV. The former falls in the strong coupling regime, whereas the coupling with $X_2^{({n = 3})}$ is weak, likely due to the low oscillator density of the higher excited (${\rm{n}} = {{3}}$) exciton state.

Figure 2(c) shows reflectivity when the incident polarization angle is between ${{\rm{X}}_1}$ and ${{\rm{X}}_2}$’s orientations, specifically for ${\theta _P} = {{130}}^\circ$. Since the triclinic crystal structure of ${\rm{Re}}{{\rm{S}}_2}$ renders it an optically anisotropic biaxial medium, the incident electric field propagating in the $z$ direction (into the sample) gets decomposed into two components along the two optical axes, each of which has its own dielectric permittivity [48], the values of which we have obtained earlier. Thus, at this polarization angle, both the coupled oscillator systems in Figs. 2(a) and 2(b) are excited, independently of each other. As evidence of this, we see two different coupled photonic modes associated with both polarization orientations, along with ${{\rm{X}}_1}$-LPB and ${{\rm{X}}_2}$-LPB, appear in the reflectivity spectra. The coupling strength has the following dependence:

$$g \propto \sqrt {n*f/{V_m}},$$
where $n$, $f$, and ${V_m}$ are number of excitons, oscillator strength per exciton, and mode volume, respectively [10]. $n$ can be increased by increasing the number of decoupled layers of ${\rm{Re}}{{\rm{S}}_2}$. Since $f$ is proportional to the squared modulus of the transition dipole moment, for linearly polarized excitons we get $f \propto \;\cos^{2}({{\theta _x} - {\theta _P}})$, where ${\theta _x}$ is the angle along which the excitons are polarized. From Eq. (1), we find the modulation of $g$ is therefore a consequence of the change in incident polarization ${\theta _P}$, which becomes a convenient knob to tune the coupling strength. By fitting the experimental data with two independent three-body coupled oscillator systems, we find the coupling strengths ${g_1}$ and ${g_2}$ are both reduced to 22 meV. This agrees with the expected values $g_1^{X1,X2} = g_1^{X1}{\cos}({170^\circ \!-\! 130^\circ}) = 23.0\;{\rm{meV}}$ and $g_2^{X1,X2} = g_2^{X2}{\cos}({90^\circ \!-\! 130^\circ}) = 24.5\;{\rm{meV}}$, where the superscripts are used to denote the corresponding orientation of incident polarization.
 figure: Fig. 3.

Fig. 3. Thickness-tuned light–matter coupling. (a) Angle-resolved reflectance (left) and transfer matrix simulation (right) for 145 nm ${\rm{Re}}{{\rm{S}}_2}$ flake on the DBR, with linearly polarized incident light along ${{\rm{X}}_1}$. Dispersions of the uncoupled photon mode and excitons (white dashed lines) and the four exciton-polariton modes (gray solid lines) are indicated. The uncoupled photonic mode has zero detuning with ${{\rm{X}}_1}$, and the Rabi splitting between the upper and LPBs is found to be 68 meV. (b) Spring and mass diagram representing the four-body coupled oscillator system used as a model. Incident light polarization can be used to switch between two different coupled oscillator systems. The corresponding coupling strengths (${g_1}$, ${g_2}$, etc.) are indicated. (c) Angle-resolved reflectance for the system with linearly polarized incident light along ${{\rm{X}}_2}$. The uncoupled photonic mode has zero detuning with ${{\rm{X}}_2}$ (white dashed lines). Blue solid lines indicate the polariton mode dispersions. Rabi splitting of 68 meV is observed.

Download Full Size | PPT Slide | PDF

As a result of reduced coupling, the dispersion of the LPBs is also visibly reduced, which manifest as a modulation of the absorption dip linewidth in the integrated reflectance shown in Fig. 1(b). $g_1^\prime$ falls to 2.5 meV, entering the weak coupling regime, while $g_2^\prime$ becomes 2 meV. The transition from weak to strong coupling is evident in the appearance of Rabi splitting for the REP, which is difficult to resolve as we turn the incident linearly polarized light away from the dipole moment orientations of ${{\rm{X}}_1}$ or ${{\rm{X}}_2}$ [Fig. 2(d)], but becomes prominent in the strong coupling regime [Fig. 2(e)]. Figure 2(f) shows how the experimentally obtained Rabi splitting increases in a sinusoidal fashion as the incident polarization angle is tuned toward the dipole orientation of ${{\rm{X}}_1}$, consistent with the fact that the projection of the electric field on the dipole moment is being tuned. Thus, the coupling strength for both species of excitons can be smoothly tuned from their minimum to maximum values by changing the incident polarization.

4. THICKNESS-CONTROLLED DETUNING AND RABI SPLITTING

Next, we demonstrate the effect of detuning in the formation of exciton-polaritons in this system by varying the thickness of the ${\rm{Re}}{{\rm{S}}_2}$ layer and the central-wavelength at various positions on the DBR structure with thickness gradient of the dielectric layers [as shown in Fig. 1(a)]. Since the energy range of the photonic mode is determined by the thickness of the top ${\rm{Re}}{{\rm{S}}_2}$ layer, the ${\rm{Re}}{{\rm{S}}_2}/{\rm{DBR}}$ system can be easily utilized to achieve zero or negative detuning between the exciton resonance and photonic mode. The ability of thickness tuning to enhance absorption and light–matter coupling is captured clearly in the transfer-matrix simulation, shown as Visualization 1 in Supplement 1. Angle-resolved reflectance measurements were also performed on ${\rm{Re}}{{\rm{S}}_2}$ flakes of different thickness deposited on the same DBR. Figure 3(a) shows the angle-resolved reflectance spectrum for a 145 nm ${\rm{Re}}{{\rm{S}}_2}$ flake on DBR, with incident light polarization aligned along ${{\rm{X}}_1}$.

In this case, there is zero detuning between the uncoupled photonic mode and ${{\rm{X}}_1}$ (shown with dashed white lines). The photonic mode here couples a manifold consisting of three exciton species: ${{\rm{X}}_1}$, ${{\rm{X}}_3}$, and the first Rydberg excitation of ${{\rm{X}}_1}$ (denoted as $X_1^{(2)}$), thus rendering this a four-body coupled oscillator system with the Hamiltonian,

$$\left({\begin{array}{*{20}{c}}{{E_{P{h_i}}}\!\left({\hbar \omega} \right) + i\hbar {\Gamma _{P{h_i}}}}&{{g_i}}&{{g_j}}&{g_i^\prime}\\{{g_i}}&{{E_{{Xi}}} + i\hbar {\Gamma _{{Xi}}}}&0&0\\{{g_j}}&0&{{E_{{Xj}}} + i\hbar {\Gamma _{{Xj}}}}&0\\{g_i^\prime}&0&0&{{E_{X_i^{\left(n \right)}}} + i\hbar {\Gamma _{X_i^{\left(n \right)}}}}\end{array}} \right)\!.$$

Here, the subscript $i$ takes the values 1 and 2, while $j = {{3}}$ and 4 for ${{\rm{X}}_1}$ and ${{\rm{X}}_2}$ polarization cases, respectively. Note that ${{\rm{X}}_3}$ and ${{\rm{X}}_4}$ were included in this case, despite being excluded in the case of 120 nm ${\rm{Re}}{{\rm{S}}_{2}}$, since the photonic mode overlaps with the energies of these excitons, and the addition of $\sim 30$ layers enhances the coupling strength of ${{\rm{X}}_3}$ and ${{\rm{X}}_4}$ substantially according to Eq. (1) because of increased $n$. By fitting the polariton mode dispersions with the experimentally observed ones, we obtain ${g_1} = 30\;{\rm{meV}}$, ${g_3} = 15\;{\rm{meV}}$, and $g_1^\prime = 10\;{\rm{meV}}$ . All of these interactions lie in the strong coupling regime. This is further evident from the large mode splitting of 68 meV between the lower- and upper-MPBs, and 30 meV between the two middle branches. Reflectance data taken at a larger angle show Rabi splitting = 20 meV for the Rydberg UPB (see Fig. S8 in Supplement 1).

Figure 3(b) shows schematically how we can also switch from one independent coupled oscillator system to another by rotating the incident linearly polarized light so that it is aligned along a different exciton dipole moment. Figure 3(c) shows the case when the polarized light is aligned along ${{\rm{X}}_2}$. There is zero detuning between the uncoupled photon mode and ${{\rm{X}}_2}$ in this case as well. We find the coupling strengths as follows: ${g_2} = 30\;{\rm{meV}}$, ${g_4} = 10\;{\rm{meV}}$, and $g_2^\prime = 5\;{\rm{meV}}$. All but the coupling with the Rydberg excitation satisfies the condition for strong coupling. Again, large Rabi splitting of 68 meV is achieved between the lower- and upper-MPB, and 27 meV between the two middle branches.

5. REVEALING THE BARE PHOTONIC MODE THROUGH TEMPERATURE DEPENDENCE

Finally, we look at temperature as an additional factor to control the degree of coupling. Figure 4 shows the results of temperature-dependent, angle-resolved reflectivity measurements on 120 nm ${\rm{Re}}{{\rm{S}}_2}/{\rm{DBR}}$, carried out at an incident polarization angle ${\theta _P}$ corresponding to ${{\rm{X}}_2}$ exciton. The redshift of the exciton energy with increasing temperature in ${\rm{Re}}{{\rm{S}}_2}$ [36,49] (see Fig. S9 in Supplement 1 for fitting) can be utilized to control the extent of detuning. The photon-like UPB (marked by a dashed white line) redshifts approximately 15 meV as temperature is varied from 3.2 K to room temperature, as a consequence of the reduced coupling strength and increased detuning. Coupling strength ${g_2}$ obtained from fitting falls from 32 meV to ${\sim}{{20}}\;{\rm{meV}}$ at 150 K, while at room temperature it is negligible, since the exciton population is drastically reduced. The dispersion can be treated as the bare photon mode, whose position is solely dependent on ${\epsilon _b}$ and the thickness of the dielectric layers. The dispersion of ${{\rm{X}}_2}$-LPB decreases as well, although this effect is masked by the increasing linewidth. The absorption dip originating from the associated shoulder peak ${{\rm{X}}_4}$ (marked with dashed black lines) shows negligible dispersion through all temperatures. Even though the absorption dip due to ${{\rm{X}}_4}$ has been significantly enhanced in this case, it cannot be resolved beyond 150 K, concurring with observations in our previous work [36]. ${{\rm{X}}_3}$ (not shown) shows the same temperature-dependent behavior. Thus, temperature works as a method to control the coupling strength, the number of exciton species involved, and additionally fine-tune the polariton detuning.

 figure: Fig. 4.

Fig. 4. Temperature-dependent detuning and coupling strength. Angle-resolved reflectance spectra for different temperatures, with linearly polarized electric field aligned to excite only ${{\rm{X}}_2}$ and ${{\rm{X}}_4}$. The photon-like UPB dispersion is marked with a dashed white line. Exciton-like LPB ${{\rm{X}}_2}$-LBP and ${{\rm{X}}_4}$ are indicated with blue and black dashed lines, respectively.

Download Full Size | PPT Slide | PDF

6. CONCLUSION

We have demonstrated polarization-tunable strong light–matter coupling in ${\rm{Re}}{{\rm{S}}_2}$ and established it as a unique platform for creating highly anisotropic exciton-polariton manifolds. Observed tunability of the interaction as a function of incident polarization is attributed to the variation of the oscillator strength of anisotropic excitons as a function of light polarization. In addition, the dispersion of the photonic mode supported in the ${\rm{Re}}{{\rm{S}}_2}$ layer itself is polarization-dependent due to optical anisotropy in the dielectric permittivity. Such systems, with large oscillator strength and optical anisotropy, can find applications in optoelectronics, since a top mirror is not required, allowing the optically active material to be easily interfaced with electronics. The ability to switch between two independent polaritonic states via tunable light––matter coupling can see potential applications in polarization-sensitive polaritonic devices.

Funding

Science and Engineering Research Board (CRG/2018/002845, ECR/2017/000498, SB/S2/RJN-110/2016); Ministry of Education, India (IIT/SRIC/PHY/NTS/2017-18/75); Indian Institute of Technology Kharagpur (IIT/SRIC/ISIRD/2017-2018); Council of Scientific and Industrial Research, India (09/081(1352)/2019-EMR-I); Department of Science and Technology, Ministry of Science and Technology, India (IF180046).

Acknowledgment

We acknowledge D. K. Goswami and his group for the AFM measurement on the sample. We thank Joel Yuen-Zhou and S. B. N. Bhaktha for their valuable comments on this work.

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are available on request.

Supplemental document

Please see Supplement 1 for supporting content.

REFERENCES

1. C. Schneider, M. M. Glazov, T. Korn, S. Höfling, and B. Urbaszek, “Two-dimensional semiconductors in the regime of strong light-matter coupling,” Nat. Commun. 9, 2695 (2018). [CrossRef]  

2. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007). [CrossRef]  

3. T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182–194 (2017). [CrossRef]  

4. D. N. Basov, M. M. Fogler, and F. J. Garcia de Abajo, “Polaritons in van der Waals materials,” Science 354, aag1992 (2016). [CrossRef]  

5. S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4, 371–375 (2010). [CrossRef]  

6. C. Anton-Solanas, M. Waldherr, M. Klaas, H. Suchomel, T. H. Harder, H. Cai, E. Sedov, S. Klembt, A. V. Kavokin, S. Tongay, K. Watanabe, T. Taniguchi, S. Höfling, and C. Schneider, “Bosonic condensation of exciton–polaritons in an atomically thin crystal,” Nat. Mater. 20, 1233–1239 (2021). [CrossRef]  

7. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992). [CrossRef]  

8. V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes,” Solid State Commun. 93, 733–739 (1995). [CrossRef]  

9. D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton–photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998). [CrossRef]  

10. L. C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: theory,” Phys. Rev. B 60, 13276–13279 (1999). [CrossRef]  

11. N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016). [CrossRef]  

12. S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015). [CrossRef]  

13. X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015). [CrossRef]  

14. M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13, 255–261 (2017). [CrossRef]  

15. S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018). [CrossRef]  

16. B. Munkhbat, D. G. Baranov, and M. Stu, “Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption,” ACS Photon. 6, 139–147 (2019). [CrossRef]  

17. S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017). [CrossRef]  

18. Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11, 491–496 (2017). [CrossRef]  

19. Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11, 431–435 (2017). [CrossRef]  

20. L. Qiu, C. Chakraborty, S. Dhara, and A. N. Vamivakas, “Room-temperature valley coherence in a polaritonic system,” Nat. Commun. 10, 1513 (2019). [CrossRef]  

21. B. Ding, Z. Zhang, Y.-H. Chen, Y. Zhang, R. J. Blaikie, and M. Qiu, “Tunable valley polarized plasmon-exciton polaritons in two-dimensional semiconductors,” ACS Nano 13, 1333–1341 (2019). [CrossRef]  

22. W. Gao, X. Li, M. Bamba, and J. Kono, “Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons,” Nat. Photonics 12, 362–367 (2018). [CrossRef]  

23. W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019). [CrossRef]  

24. R. Gogna, L. Zhang, and H. Deng, “Self-hybridized, polarized polaritons in ReS2 crystals,” ACS Photon. 7, 3328–3332 (2020). [CrossRef]  

25. A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021). [CrossRef]  

26. V. Walther, R. Johne, and T. Pohl, “Giant optical nonlinearities from Rydberg excitons in semiconductor microcavities,” Nat. Commun. 9, 1309 (2018). [CrossRef]  

27. J. Gu, V. Walther, L. Waldecker, D. Rhodes, A. Raja, J. C. Hone, T. F. Heinz, S. Kéna-Cohen, T. Pohl, and V. M. Menon, “Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2,” Nat. Commun. 12, 2269 (2021). [CrossRef]  

28. A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014). [CrossRef]  

29. J. Jadczak, J. Kutrowska-Girzycka, T. Smoleński, P. Kossacki, Y. S. Huang, and L. Bryja, “Exciton binding energy and hydrogenic Rydberg series in layered ReS2,” Sci. Rep. 9, 1578 (2019). [CrossRef]  

30. O. B. Aslan, D. A. Chenet, A. M. van der Zande, J. C. Hone, and T. F. Heinz, “Linearly polarized excitons in single- and few-layer ReS2 crystals,” ACS Photon. 3, 96–101 (2016). [CrossRef]  

31. F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016). [CrossRef]  

32. R. Oliva, M. Laurien, F. Dybala, J. Kopaczek, Y. Qin, S. Tongay, O. Rubel, and R. Kudrawiec, “Pressure dependence of direct optical transitions in ReS2 and ReSe2,” Npj 2D Mater. Appl. 3, 20 (2019). [CrossRef]  

33. E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015). [CrossRef]  

34. A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulklike 1 ${\rm T}^{\prime}$-ReSe2,” Nano Lett. 17, 3202–3207 (2017). [CrossRef]  

35. S. Sim, D. Lee, J. Lee, H. Bae, M. Noh, S. Cha, M.-H. Jo, K. Lee, and H. Choi, “Light polarization-controlled conversion of ultrafast coherent–incoherent exciton dynamics in few-layer ReS2,” Nano Lett. 19, 7464–7469 (2019). [CrossRef]  

36. A. Dhara, D. Chakrabarty, P. Das, A. K. Pattanayak, S. Paul, S. Mukherjee, and S. Dhara, “Additional excitonic features and momentum-dark states in ReS2,” Phys. Rev. B 102, 161404 (2020). [CrossRef]  

37. S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016). [CrossRef]  

38. T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton–polariton condensates,” Nat. Phys. 10, 803–813 (2014). [CrossRef]  

39. J. Yuen-Zhou, S. K. Saikin, T. Zhu, M. C. Onbasli, C. A. Ross, V. Bulovic, and M. A. Baldo, “Plexciton Dirac points and topological modes,” Nat. Commun. 7, 11783 (2016). [CrossRef]  

40. F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018). [CrossRef]  

41. E. Altman, L. M. Sieberer, L. Chen, S. Diehl, and J. Toner, “Two-dimensional superfluidity of exciton polaritons requires strong anisotropy,” Phys. Rev. X 5, 011017 (2015). [CrossRef]  

42. S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014). [CrossRef]  

43. M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8, 259 (2017). [CrossRef]  

44. S. Núñez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular–dielectric photonic integration,” ACS Photon. 3, 743–748 (2016). [CrossRef]  

45. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007). [CrossRef]  

46. A. A. Shubnic, R. G. Polozkov, I. A. Shelykh, and I. V. Iorsh, “High refractive index and extreme biaxial optical anisotropy of rhenium diselenide for applications in all-dielectric nanophotonics,” Nanophotonics 9, 4737–4742 (2020). [CrossRef]  

47. S. Sim, D. Lee, M. Noh, S. Cha, C. H. Soh, J. H. Sung, M.-H. Jo, and H. Choi, “Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2,” Nat. Commun. 7, 13569 (2016). [CrossRef]  

48. J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: generalized 4x4 transfer-matrix method,” Phys. Rev. B 77, 094201 (2008). [CrossRef]  

49. K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58, 2924–2926 (1991). [CrossRef]  

References

  • View by:

  1. C. Schneider, M. M. Glazov, T. Korn, S. Höfling, and B. Urbaszek, “Two-dimensional semiconductors in the regime of strong light-matter coupling,” Nat. Commun. 9, 2695 (2018).
    [Crossref]
  2. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
    [Crossref]
  3. T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182–194 (2017).
    [Crossref]
  4. D. N. Basov, M. M. Fogler, and F. J. Garcia de Abajo, “Polaritons in van der Waals materials,” Science 354, aag1992 (2016).
    [Crossref]
  5. S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4, 371–375 (2010).
    [Crossref]
  6. C. Anton-Solanas, M. Waldherr, M. Klaas, H. Suchomel, T. H. Harder, H. Cai, E. Sedov, S. Klembt, A. V. Kavokin, S. Tongay, K. Watanabe, T. Taniguchi, S. Höfling, and C. Schneider, “Bosonic condensation of exciton–polaritons in an atomically thin crystal,” Nat. Mater. 20, 1233–1239 (2021).
    [Crossref]
  7. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
    [Crossref]
  8. V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes,” Solid State Commun. 93, 733–739 (1995).
    [Crossref]
  9. D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton–photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
    [Crossref]
  10. L. C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: theory,” Phys. Rev. B 60, 13276–13279 (1999).
    [Crossref]
  11. N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
    [Crossref]
  12. S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
    [Crossref]
  13. X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015).
    [Crossref]
  14. M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13, 255–261 (2017).
    [Crossref]
  15. S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
    [Crossref]
  16. B. Munkhbat, D. G. Baranov, and M. Stu, “Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption,” ACS Photon. 6, 139–147 (2019).
    [Crossref]
  17. S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
    [Crossref]
  18. Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11, 491–496 (2017).
    [Crossref]
  19. Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11, 431–435 (2017).
    [Crossref]
  20. L. Qiu, C. Chakraborty, S. Dhara, and A. N. Vamivakas, “Room-temperature valley coherence in a polaritonic system,” Nat. Commun. 10, 1513 (2019).
    [Crossref]
  21. B. Ding, Z. Zhang, Y.-H. Chen, Y. Zhang, R. J. Blaikie, and M. Qiu, “Tunable valley polarized plasmon-exciton polaritons in two-dimensional semiconductors,” ACS Nano 13, 1333–1341 (2019).
    [Crossref]
  22. W. Gao, X. Li, M. Bamba, and J. Kono, “Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons,” Nat. Photonics 12, 362–367 (2018).
    [Crossref]
  23. W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019).
    [Crossref]
  24. R. Gogna, L. Zhang, and H. Deng, “Self-hybridized, polarized polaritons in ReS2 crystals,” ACS Photon. 7, 3328–3332 (2020).
    [Crossref]
  25. A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021).
    [Crossref]
  26. V. Walther, R. Johne, and T. Pohl, “Giant optical nonlinearities from Rydberg excitons in semiconductor microcavities,” Nat. Commun. 9, 1309 (2018).
    [Crossref]
  27. J. Gu, V. Walther, L. Waldecker, D. Rhodes, A. Raja, J. C. Hone, T. F. Heinz, S. Kéna-Cohen, T. Pohl, and V. M. Menon, “Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2,” Nat. Commun. 12, 2269 (2021).
    [Crossref]
  28. A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
    [Crossref]
  29. J. Jadczak, J. Kutrowska-Girzycka, T. Smoleński, P. Kossacki, Y. S. Huang, and L. Bryja, “Exciton binding energy and hydrogenic Rydberg series in layered ReS2,” Sci. Rep. 9, 1578 (2019).
    [Crossref]
  30. O. B. Aslan, D. A. Chenet, A. M. van der Zande, J. C. Hone, and T. F. Heinz, “Linearly polarized excitons in single- and few-layer ReS2 crystals,” ACS Photon. 3, 96–101 (2016).
    [Crossref]
  31. F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
    [Crossref]
  32. R. Oliva, M. Laurien, F. Dybala, J. Kopaczek, Y. Qin, S. Tongay, O. Rubel, and R. Kudrawiec, “Pressure dependence of direct optical transitions in ReS2 and ReSe2,” Npj 2D Mater. Appl. 3, 20 (2019).
    [Crossref]
  33. E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
    [Crossref]
  34. A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulklike 1 ${\rm T}^{\prime}$ReS2-ReSe2,” Nano Lett. 17, 3202–3207 (2017).
    [Crossref]
  35. S. Sim, D. Lee, J. Lee, H. Bae, M. Noh, S. Cha, M.-H. Jo, K. Lee, and H. Choi, “Light polarization-controlled conversion of ultrafast coherent–incoherent exciton dynamics in few-layer ReS2,” Nano Lett. 19, 7464–7469 (2019).
    [Crossref]
  36. A. Dhara, D. Chakrabarty, P. Das, A. K. Pattanayak, S. Paul, S. Mukherjee, and S. Dhara, “Additional excitonic features and momentum-dark states in ReS2,” Phys. Rev. B 102, 161404 (2020).
    [Crossref]
  37. S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
    [Crossref]
  38. T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton–polariton condensates,” Nat. Phys. 10, 803–813 (2014).
    [Crossref]
  39. J. Yuen-Zhou, S. K. Saikin, T. Zhu, M. C. Onbasli, C. A. Ross, V. Bulovic, and M. A. Baldo, “Plexciton Dirac points and topological modes,” Nat. Commun. 7, 11783 (2016).
    [Crossref]
  40. F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
    [Crossref]
  41. E. Altman, L. M. Sieberer, L. Chen, S. Diehl, and J. Toner, “Two-dimensional superfluidity of exciton polaritons requires strong anisotropy,” Phys. Rev. X 5, 011017 (2015).
    [Crossref]
  42. S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
    [Crossref]
  43. M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
    [Crossref]
  44. S. Núñez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular–dielectric photonic integration,” ACS Photon. 3, 743–748 (2016).
    [Crossref]
  45. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
    [Crossref]
  46. A. A. Shubnic, R. G. Polozkov, I. A. Shelykh, and I. V. Iorsh, “High refractive index and extreme biaxial optical anisotropy of rhenium diselenide for applications in all-dielectric nanophotonics,” Nanophotonics 9, 4737–4742 (2020).
    [Crossref]
  47. S. Sim, D. Lee, M. Noh, S. Cha, C. H. Soh, J. H. Sung, M.-H. Jo, and H. Choi, “Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2,” Nat. Commun. 7, 13569 (2016).
    [Crossref]
  48. J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: generalized 4x4 transfer-matrix method,” Phys. Rev. B 77, 094201 (2008).
    [Crossref]
  49. K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58, 2924–2926 (1991).
    [Crossref]

2021 (3)

C. Anton-Solanas, M. Waldherr, M. Klaas, H. Suchomel, T. H. Harder, H. Cai, E. Sedov, S. Klembt, A. V. Kavokin, S. Tongay, K. Watanabe, T. Taniguchi, S. Höfling, and C. Schneider, “Bosonic condensation of exciton–polaritons in an atomically thin crystal,” Nat. Mater. 20, 1233–1239 (2021).
[Crossref]

A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021).
[Crossref]

J. Gu, V. Walther, L. Waldecker, D. Rhodes, A. Raja, J. C. Hone, T. F. Heinz, S. Kéna-Cohen, T. Pohl, and V. M. Menon, “Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2,” Nat. Commun. 12, 2269 (2021).
[Crossref]

2020 (3)

R. Gogna, L. Zhang, and H. Deng, “Self-hybridized, polarized polaritons in ReS2 crystals,” ACS Photon. 7, 3328–3332 (2020).
[Crossref]

A. Dhara, D. Chakrabarty, P. Das, A. K. Pattanayak, S. Paul, S. Mukherjee, and S. Dhara, “Additional excitonic features and momentum-dark states in ReS2,” Phys. Rev. B 102, 161404 (2020).
[Crossref]

A. A. Shubnic, R. G. Polozkov, I. A. Shelykh, and I. V. Iorsh, “High refractive index and extreme biaxial optical anisotropy of rhenium diselenide for applications in all-dielectric nanophotonics,” Nanophotonics 9, 4737–4742 (2020).
[Crossref]

2019 (7)

S. Sim, D. Lee, J. Lee, H. Bae, M. Noh, S. Cha, M.-H. Jo, K. Lee, and H. Choi, “Light polarization-controlled conversion of ultrafast coherent–incoherent exciton dynamics in few-layer ReS2,” Nano Lett. 19, 7464–7469 (2019).
[Crossref]

J. Jadczak, J. Kutrowska-Girzycka, T. Smoleński, P. Kossacki, Y. S. Huang, and L. Bryja, “Exciton binding energy and hydrogenic Rydberg series in layered ReS2,” Sci. Rep. 9, 1578 (2019).
[Crossref]

R. Oliva, M. Laurien, F. Dybala, J. Kopaczek, Y. Qin, S. Tongay, O. Rubel, and R. Kudrawiec, “Pressure dependence of direct optical transitions in ReS2 and ReSe2,” Npj 2D Mater. Appl. 3, 20 (2019).
[Crossref]

L. Qiu, C. Chakraborty, S. Dhara, and A. N. Vamivakas, “Room-temperature valley coherence in a polaritonic system,” Nat. Commun. 10, 1513 (2019).
[Crossref]

B. Ding, Z. Zhang, Y.-H. Chen, Y. Zhang, R. J. Blaikie, and M. Qiu, “Tunable valley polarized plasmon-exciton polaritons in two-dimensional semiconductors,” ACS Nano 13, 1333–1341 (2019).
[Crossref]

W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019).
[Crossref]

B. Munkhbat, D. G. Baranov, and M. Stu, “Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption,” ACS Photon. 6, 139–147 (2019).
[Crossref]

2018 (5)

C. Schneider, M. M. Glazov, T. Korn, S. Höfling, and B. Urbaszek, “Two-dimensional semiconductors in the regime of strong light-matter coupling,” Nat. Commun. 9, 2695 (2018).
[Crossref]

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

W. Gao, X. Li, M. Bamba, and J. Kono, “Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons,” Nat. Photonics 12, 362–367 (2018).
[Crossref]

V. Walther, R. Johne, and T. Pohl, “Giant optical nonlinearities from Rydberg excitons in semiconductor microcavities,” Nat. Commun. 9, 1309 (2018).
[Crossref]

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref]

2017 (7)

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
[Crossref]

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulklike 1 ${\rm T}^{\prime}$ReS2-ReSe2,” Nano Lett. 17, 3202–3207 (2017).
[Crossref]

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182–194 (2017).
[Crossref]

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11, 491–496 (2017).
[Crossref]

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11, 431–435 (2017).
[Crossref]

M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13, 255–261 (2017).
[Crossref]

2016 (8)

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

D. N. Basov, M. M. Fogler, and F. J. Garcia de Abajo, “Polaritons in van der Waals materials,” Science 354, aag1992 (2016).
[Crossref]

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

O. B. Aslan, D. A. Chenet, A. M. van der Zande, J. C. Hone, and T. F. Heinz, “Linearly polarized excitons in single- and few-layer ReS2 crystals,” ACS Photon. 3, 96–101 (2016).
[Crossref]

F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
[Crossref]

S. Núñez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular–dielectric photonic integration,” ACS Photon. 3, 743–748 (2016).
[Crossref]

J. Yuen-Zhou, S. K. Saikin, T. Zhu, M. C. Onbasli, C. A. Ross, V. Bulovic, and M. A. Baldo, “Plexciton Dirac points and topological modes,” Nat. Commun. 7, 11783 (2016).
[Crossref]

S. Sim, D. Lee, M. Noh, S. Cha, C. H. Soh, J. H. Sung, M.-H. Jo, and H. Choi, “Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2,” Nat. Commun. 7, 13569 (2016).
[Crossref]

2015 (4)

E. Altman, L. M. Sieberer, L. Chen, S. Diehl, and J. Toner, “Two-dimensional superfluidity of exciton polaritons requires strong anisotropy,” Phys. Rev. X 5, 011017 (2015).
[Crossref]

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015).
[Crossref]

2014 (3)

T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton–polariton condensates,” Nat. Phys. 10, 803–813 (2014).
[Crossref]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref]

2010 (1)

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4, 371–375 (2010).
[Crossref]

2008 (1)

J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: generalized 4x4 transfer-matrix method,” Phys. Rev. B 77, 094201 (2008).
[Crossref]

2007 (2)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

1999 (1)

L. C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: theory,” Phys. Rev. B 60, 13276–13279 (1999).
[Crossref]

1998 (1)

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton–photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

1995 (1)

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes,” Solid State Commun. 93, 733–739 (1995).
[Crossref]

1992 (1)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

1991 (1)

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58, 2924–2926 (1991).
[Crossref]

Abdel-Hady, A. G.

S. Núñez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular–dielectric photonic integration,” ACS Photon. 3, 743–748 (2016).
[Crossref]

Abram, R. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Adawi, A. M.

S. Núñez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular–dielectric photonic integration,” ACS Photon. 3, 743–748 (2016).
[Crossref]

Ajayan, P. M.

F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
[Crossref]

Aloni, S.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref]

Altman, E.

E. Altman, L. M. Sieberer, L. Chen, S. Diehl, and J. Toner, “Two-dimensional superfluidity of exciton polaritons requires strong anisotropy,” Phys. Rev. X 5, 011017 (2015).
[Crossref]

Andreani, L. C.

L. C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: theory,” Phys. Rev. B 60, 13276–13279 (1999).
[Crossref]

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes,” Solid State Commun. 93, 733–739 (1995).
[Crossref]

Anton-Solanas, C.

C. Anton-Solanas, M. Waldherr, M. Klaas, H. Suchomel, T. H. Harder, H. Cai, E. Sedov, S. Klembt, A. V. Kavokin, S. Tongay, K. Watanabe, T. Taniguchi, S. Höfling, and C. Schneider, “Bosonic condensation of exciton–polaritons in an atomically thin crystal,” Nat. Mater. 20, 1233–1239 (2021).
[Crossref]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Arora, A.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulklike 1 ${\rm T}^{\prime}$ReS2-ReSe2,” Nano Lett. 17, 3202–3207 (2017).
[Crossref]

Aslan, O. B.

O. B. Aslan, D. A. Chenet, A. M. van der Zande, J. C. Hone, and T. F. Heinz, “Linearly polarized excitons in single- and few-layer ReS2 crystals,” ACS Photon. 3, 96–101 (2016).
[Crossref]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Averitt, R. D.

A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021).
[Crossref]

Avouris, P.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182–194 (2017).
[Crossref]

Back, P.

M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13, 255–261 (2017).
[Crossref]

Bae, H.

S. Sim, D. Lee, J. Lee, H. Bae, M. Noh, S. Cha, M.-H. Jo, K. Lee, and H. Choi, “Light polarization-controlled conversion of ultrafast coherent–incoherent exciton dynamics in few-layer ReS2,” Nano Lett. 19, 7464–7469 (2019).
[Crossref]

Baldo, M. A.

J. Yuen-Zhou, S. K. Saikin, T. Zhu, M. C. Onbasli, C. A. Ross, V. Bulovic, and M. A. Baldo, “Plexciton Dirac points and topological modes,” Nat. Commun. 7, 11783 (2016).
[Crossref]

Balili, R.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Ballarini, D.

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref]

Bamba, M.

W. Gao, X. Li, M. Bamba, and J. Kono, “Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons,” Nat. Photonics 12, 362–367 (2018).
[Crossref]

Bao, W.

W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019).
[Crossref]

Barachati, F.

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref]

Baranov, D. G.

B. Munkhbat, D. G. Baranov, and M. Stu, “Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption,” ACS Photon. 6, 139–147 (2019).
[Crossref]

Barnes, W. L.

S. Núñez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular–dielectric photonic integration,” ACS Photon. 3, 743–748 (2016).
[Crossref]

Basov, D. N.

A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021).
[Crossref]

D. N. Basov, M. M. Fogler, and F. J. Garcia de Abajo, “Polaritons in van der Waals materials,” Science 354, aag1992 (2016).
[Crossref]

Baumann, V.

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
[Crossref]

Berkelbach, T. C.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Betzold, S.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Bhattacharjee, S.

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

Bhattacharya, A.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulklike 1 ${\rm T}^{\prime}$ReS2-ReSe2,” Nano Lett. 17, 3202–3207 (2017).
[Crossref]

Blaikie, R. J.

B. Ding, Z. Zhang, Y.-H. Chen, Y. Zhang, R. J. Blaikie, and M. Qiu, “Tunable valley polarized plasmon-exciton polaritons in two-dimensional semiconductors,” ACS Nano 13, 1333–1341 (2019).
[Crossref]

Bradley, D. D. C.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton–photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

Brand, S.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Bratschitsch, R.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulklike 1 ${\rm T}^{\prime}$ReS2-ReSe2,” Nano Lett. 17, 3202–3207 (2017).
[Crossref]

Brodbeck, S.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Bryja, L.

J. Jadczak, J. Kutrowska-Girzycka, T. Smoleński, P. Kossacki, Y. S. Huang, and L. Bryja, “Exciton binding energy and hydrogenic Rydberg series in layered ReS2,” Sci. Rep. 9, 1578 (2019).
[Crossref]

Bulovic, V.

J. Yuen-Zhou, S. K. Saikin, T. Zhu, M. C. Onbasli, C. A. Ross, V. Bulovic, and M. A. Baldo, “Plexciton Dirac points and topological modes,” Nat. Commun. 7, 11783 (2016).
[Crossref]

Byrnes, T.

T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton–polariton condensates,” Nat. Phys. 10, 803–813 (2014).
[Crossref]

Cai, H.

C. Anton-Solanas, M. Waldherr, M. Klaas, H. Suchomel, T. H. Harder, H. Cai, E. Sedov, S. Klembt, A. V. Kavokin, S. Tongay, K. Watanabe, T. Taniguchi, S. Höfling, and C. Schneider, “Bosonic condensation of exciton–polaritons in an atomically thin crystal,” Nat. Mater. 20, 1233–1239 (2021).
[Crossref]

Cain, J. D.

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11, 431–435 (2017).
[Crossref]

Caldwell, J. D.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182–194 (2017).
[Crossref]

Cao, Z.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Cha, S.

S. Sim, D. Lee, J. Lee, H. Bae, M. Noh, S. Cha, M.-H. Jo, K. Lee, and H. Choi, “Light polarization-controlled conversion of ultrafast coherent–incoherent exciton dynamics in few-layer ReS2,” Nano Lett. 19, 7464–7469 (2019).
[Crossref]

S. Sim, D. Lee, M. Noh, S. Cha, C. H. Soh, J. H. Sung, M.-H. Jo, and H. Choi, “Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2,” Nat. Commun. 7, 13569 (2016).
[Crossref]

Chae, S. H.

A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021).
[Crossref]

Chakrabarty, D.

A. Dhara, D. Chakrabarty, P. Das, A. K. Pattanayak, S. Paul, S. Mukherjee, and S. Dhara, “Additional excitonic features and momentum-dark states in ReS2,” Phys. Rev. B 102, 161404 (2020).
[Crossref]

Chakraborty, B.

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref]

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11, 491–496 (2017).
[Crossref]

Chakraborty, C.

L. Qiu, C. Chakraborty, S. Dhara, and A. N. Vamivakas, “Room-temperature valley coherence in a polaritonic system,” Nat. Commun. 10, 1513 (2019).
[Crossref]

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

Chamberlain, J. M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Chaturvedi, A.

F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
[Crossref]

Chaves, A.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182–194 (2017).
[Crossref]

Chen, L.

E. Altman, L. M. Sieberer, L. Chen, S. Diehl, and J. Toner, “Two-dimensional superfluidity of exciton polaritons requires strong anisotropy,” Phys. Rev. X 5, 011017 (2015).
[Crossref]

Chen, X.

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58, 2924–2926 (1991).
[Crossref]

Chen, Y.-H.

B. Ding, Z. Zhang, Y.-H. Chen, Y. Zhang, R. J. Blaikie, and M. Qiu, “Tunable valley polarized plasmon-exciton polaritons in two-dimensional semiconductors,” ACS Nano 13, 1333–1341 (2019).
[Crossref]

Chen, Y.-J.

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11, 431–435 (2017).
[Crossref]

Chenet, D. A.

O. B. Aslan, D. A. Chenet, A. M. van der Zande, J. C. Hone, and T. F. Heinz, “Linearly polarized excitons in single- and few-layer ReS2 crystals,” ACS Photon. 3, 96–101 (2016).
[Crossref]

Chernikov, A.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Cherotchenko, E.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Choi, H.

S. Sim, D. Lee, J. Lee, H. Bae, M. Noh, S. Cha, M.-H. Jo, K. Lee, and H. Choi, “Light polarization-controlled conversion of ultrafast coherent–incoherent exciton dynamics in few-layer ReS2,” Nano Lett. 19, 7464–7469 (2019).
[Crossref]

S. Sim, D. Lee, M. Noh, S. Cha, C. H. Soh, J. H. Sung, M.-H. Jo, and H. Choi, “Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2,” Nat. Commun. 7, 13569 (2016).
[Crossref]

Chow, W. L.

F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
[Crossref]

Clark, C.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Considine, C. R.

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11, 491–496 (2017).
[Crossref]

Cotlet, O.

M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13, 255–261 (2017).
[Crossref]

Cui, Y.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Das, P.

A. Dhara, D. Chakrabarty, P. Das, A. K. Pattanayak, S. Paul, S. Mukherjee, and S. Dhara, “Additional excitonic features and momentum-dark states in ReS2,” Phys. Rev. B 102, 161404 (2020).
[Crossref]

de Vasconcellos, S. M.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulklike 1 ${\rm T}^{\prime}$ReS2-ReSe2,” Nano Lett. 17, 3202–3207 (2017).
[Crossref]

Deilmann, T.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulklike 1 ${\rm T}^{\prime}$ReS2-ReSe2,” Nano Lett. 17, 3202–3207 (2017).
[Crossref]

Del Pozo-Zamudio, O.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulklike 1 ${\rm T}^{\prime}$ReS2-ReSe2,” Nano Lett. 17, 3202–3207 (2017).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Demler, E.

M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13, 255–261 (2017).
[Crossref]

Deng, H.

R. Gogna, L. Zhang, and H. Deng, “Self-hybridized, polarized polaritons in ReS2 crystals,” ACS Photon. 7, 3328–3332 (2020).
[Crossref]

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Dhara, A.

A. Dhara, D. Chakrabarty, P. Das, A. K. Pattanayak, S. Paul, S. Mukherjee, and S. Dhara, “Additional excitonic features and momentum-dark states in ReS2,” Phys. Rev. B 102, 161404 (2020).
[Crossref]

Dhara, S.

A. Dhara, D. Chakrabarty, P. Das, A. K. Pattanayak, S. Paul, S. Mukherjee, and S. Dhara, “Additional excitonic features and momentum-dark states in ReS2,” Phys. Rev. B 102, 161404 (2020).
[Crossref]

L. Qiu, C. Chakraborty, S. Dhara, and A. N. Vamivakas, “Room-temperature valley coherence in a polaritonic system,” Nat. Commun. 10, 1513 (2019).
[Crossref]

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

Diehl, S.

E. Altman, L. M. Sieberer, L. Chen, S. Diehl, and J. Toner, “Two-dimensional superfluidity of exciton polaritons requires strong anisotropy,” Phys. Rev. X 5, 011017 (2015).
[Crossref]

Dietrich, C. P.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Ding, B.

B. Ding, Z. Zhang, Y.-H. Chen, Y. Zhang, R. J. Blaikie, and M. Qiu, “Tunable valley polarized plasmon-exciton polaritons in two-dimensional semiconductors,” ACS Nano 13, 1333–1341 (2019).
[Crossref]

Dollar, M.

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11, 491–496 (2017).
[Crossref]

Dravid, V. P.

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11, 431–435 (2017).
[Crossref]

Drüppel, M.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulklike 1 ${\rm T}^{\prime}$ReS2-ReSe2,” Nano Lett. 17, 3202–3207 (2017).
[Crossref]

Dufferwiel, S.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Dybala, F.

R. Oliva, M. Laurien, F. Dybala, J. Kopaczek, Y. Qin, S. Tongay, O. Rubel, and R. Kudrawiec, “Pressure dependence of direct optical transitions in ReS2 and ReSe2,” Npj 2D Mater. Appl. 3, 20 (2019).
[Crossref]

Fan, H. J.

F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
[Crossref]

Fan, W.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref]

Fang, N. X.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182–194 (2017).
[Crossref]

Feng, Y.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Fieramosca, A.

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref]

Fink, T.

M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13, 255–261 (2017).
[Crossref]

Fischer, J.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Fogler, M. M.

A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021).
[Crossref]

D. N. Basov, M. M. Fogler, and F. J. Garcia de Abajo, “Polaritons in van der Waals materials,” Science 354, aag1992 (2016).
[Crossref]

Forrest, S. R.

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4, 371–375 (2010).
[Crossref]

Fu, Q.

F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
[Crossref]

Fu, Y.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Galfsky, T.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015).
[Crossref]

Gao, W.

W. Gao, X. Li, M. Bamba, and J. Kono, “Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons,” Nat. Photonics 12, 362–367 (2018).
[Crossref]

Garcia de Abajo, F. J.

D. N. Basov, M. M. Fogler, and F. J. Garcia de Abajo, “Polaritons in van der Waals materials,” Science 354, aag1992 (2016).
[Crossref]

Gérard, J.-M.

L. C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: theory,” Phys. Rev. B 60, 13276–13279 (1999).
[Crossref]

Ghaemi, P.

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11, 491–496 (2017).
[Crossref]

Ghazaryan, A.

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11, 491–496 (2017).
[Crossref]

Glazov, M. M.

C. Schneider, M. M. Glazov, T. Korn, S. Höfling, and B. Urbaszek, “Two-dimensional semiconductors in the regime of strong light-matter coupling,” Nat. Commun. 9, 2695 (2018).
[Crossref]

Gogna, R.

R. Gogna, L. Zhang, and H. Deng, “Self-hybridized, polarized polaritons in ReS2 crystals,” ACS Photon. 7, 3328–3332 (2020).
[Crossref]

Goodfellow, K. M.

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

Gu, J.

J. Gu, V. Walther, L. Waldecker, D. Rhodes, A. Raja, J. C. Hone, T. F. Heinz, S. Kéna-Cohen, T. Pohl, and V. M. Menon, “Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2,” Nat. Commun. 12, 2269 (2021).
[Crossref]

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref]

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11, 491–496 (2017).
[Crossref]

Guinea, F.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182–194 (2017).
[Crossref]

Hafezian, S.

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref]

Hao, J.

J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: generalized 4x4 transfer-matrix method,” Phys. Rev. B 77, 094201 (2008).
[Crossref]

Harder, T. H.

C. Anton-Solanas, M. Waldherr, M. Klaas, H. Suchomel, T. H. Harder, H. Cai, E. Sedov, S. Klembt, A. V. Kavokin, S. Tongay, K. Watanabe, T. Taniguchi, S. Höfling, and C. Schneider, “Bosonic condensation of exciton–polaritons in an atomically thin crystal,” Nat. Mater. 20, 1233–1239 (2021).
[Crossref]

Hartwell, V.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

He, J.

F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
[Crossref]

He, R.-H.

F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
[Crossref]

He, X.

F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
[Crossref]

Heinz, T. F.

J. Gu, V. Walther, L. Waldecker, D. Rhodes, A. Raja, J. C. Hone, T. F. Heinz, S. Kéna-Cohen, T. Pohl, and V. M. Menon, “Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2,” Nat. Commun. 12, 2269 (2021).
[Crossref]

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182–194 (2017).
[Crossref]

O. B. Aslan, D. A. Chenet, A. M. van der Zande, J. C. Hone, and T. F. Heinz, “Linearly polarized excitons in single- and few-layer ReS2 crystals,” ACS Photon. 3, 96–101 (2016).
[Crossref]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Hill, H. M.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Ho, C.-H.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref]

Höfling, S.

C. Anton-Solanas, M. Waldherr, M. Klaas, H. Suchomel, T. H. Harder, H. Cai, E. Sedov, S. Klembt, A. V. Kavokin, S. Tongay, K. Watanabe, T. Taniguchi, S. Höfling, and C. Schneider, “Bosonic condensation of exciton–polaritons in an atomically thin crystal,” Nat. Mater. 20, 1233–1239 (2021).
[Crossref]

C. Schneider, M. M. Glazov, T. Korn, S. Höfling, and B. Urbaszek, “Two-dimensional semiconductors in the regime of strong light-matter coupling,” Nat. Commun. 9, 2695 (2018).
[Crossref]

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
[Crossref]

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Hone, J.

A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021).
[Crossref]

Hone, J. C.

J. Gu, V. Walther, L. Waldecker, D. Rhodes, A. Raja, J. C. Hone, T. F. Heinz, S. Kéna-Cohen, T. Pohl, and V. M. Menon, “Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2,” Nat. Commun. 12, 2269 (2021).
[Crossref]

O. B. Aslan, D. A. Chenet, A. M. van der Zande, J. C. Hone, and T. F. Heinz, “Linearly polarized excitons in single- and few-layer ReS2 crystals,” ACS Photon. 3, 96–101 (2016).
[Crossref]

Huang, Y. S.

J. Jadczak, J. Kutrowska-Girzycka, T. Smoleński, P. Kossacki, Y. S. Huang, and L. Bryja, “Exciton binding energy and hydrogenic Rydberg series in layered ReS2,” Sci. Rep. 9, 1578 (2019).
[Crossref]

Huang, Y.-S.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref]

Hwang, H. Y.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Hybertsen, M. S.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Iff, O.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Imamoglu, A.

M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13, 255–261 (2017).
[Crossref]

Iorsh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Iorsh, I. V.

A. A. Shubnic, R. G. Polozkov, I. A. Shelykh, and I. V. Iorsh, “High refractive index and extreme biaxial optical anisotropy of rhenium diselenide for applications in all-dielectric nanophotonics,” Nanophotonics 9, 4737–4742 (2020).
[Crossref]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Jadczak, J.

J. Jadczak, J. Kutrowska-Girzycka, T. Smoleński, P. Kossacki, Y. S. Huang, and L. Bryja, “Exciton binding energy and hydrogenic Rydberg series in layered ReS2,” Sci. Rep. 9, 1578 (2019).
[Crossref]

Jariwala, B.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulklike 1 ${\rm T}^{\prime}$ReS2-ReSe2,” Nano Lett. 17, 3202–3207 (2017).
[Crossref]

Ji, J.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref]

Jo, M.-H.

S. Sim, D. Lee, J. Lee, H. Bae, M. Noh, S. Cha, M.-H. Jo, K. Lee, and H. Choi, “Light polarization-controlled conversion of ultrafast coherent–incoherent exciton dynamics in few-layer ReS2,” Nano Lett. 19, 7464–7469 (2019).
[Crossref]

S. Sim, D. Lee, M. Noh, S. Cha, C. H. Soh, J. H. Sung, M.-H. Jo, and H. Choi, “Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2,” Nat. Commun. 7, 13569 (2016).
[Crossref]

Johne, R.

V. Walther, R. Johne, and T. Pohl, “Giant optical nonlinearities from Rydberg excitons in semiconductor microcavities,” Nat. Commun. 9, 1309 (2018).
[Crossref]

Kaliteevski, M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Kamp, M.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Kavokin, A. V.

C. Anton-Solanas, M. Waldherr, M. Klaas, H. Suchomel, T. H. Harder, H. Cai, E. Sedov, S. Klembt, A. V. Kavokin, S. Tongay, K. Watanabe, T. Taniguchi, S. Höfling, and C. Schneider, “Bosonic condensation of exciton–polaritons in an atomically thin crystal,” Nat. Mater. 20, 1233–1239 (2021).
[Crossref]

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
[Crossref]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Kéna-Cohen, S.

J. Gu, V. Walther, L. Waldecker, D. Rhodes, A. Raja, J. C. Hone, T. F. Heinz, S. Kéna-Cohen, T. Pohl, and V. M. Menon, “Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2,” Nat. Commun. 12, 2269 (2021).
[Crossref]

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref]

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11, 491–496 (2017).
[Crossref]

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015).
[Crossref]

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4, 371–375 (2010).
[Crossref]

Kim, B.

A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021).
[Crossref]

Kim, J.

W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019).
[Crossref]

Kim, N. Y.

T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton–polariton condensates,” Nat. Phys. 10, 803–813 (2014).
[Crossref]

Kim, S.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Klaas, M.

C. Anton-Solanas, M. Waldherr, M. Klaas, H. Suchomel, T. H. Harder, H. Cai, E. Sedov, S. Klembt, A. V. Kavokin, S. Tongay, K. Watanabe, T. Taniguchi, S. Höfling, and C. Schneider, “Bosonic condensation of exciton–polaritons in an atomically thin crystal,” Nat. Mater. 20, 1233–1239 (2021).
[Crossref]

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
[Crossref]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Klembt, S.

C. Anton-Solanas, M. Waldherr, M. Klaas, H. Suchomel, T. H. Harder, H. Cai, E. Sedov, S. Klembt, A. V. Kavokin, S. Tongay, K. Watanabe, T. Taniguchi, S. Höfling, and C. Schneider, “Bosonic condensation of exciton–polaritons in an atomically thin crystal,” Nat. Mater. 20, 1233–1239 (2021).
[Crossref]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Kloc, C.

F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
[Crossref]

Ko, C.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref]

Kono, J.

W. Gao, X. Li, M. Bamba, and J. Kono, “Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons,” Nat. Photonics 12, 362–367 (2018).
[Crossref]

Kopaczek, J.

R. Oliva, M. Laurien, F. Dybala, J. Kopaczek, Y. Qin, S. Tongay, O. Rubel, and R. Kudrawiec, “Pressure dependence of direct optical transitions in ReS2 and ReSe2,” Npj 2D Mater. Appl. 3, 20 (2019).
[Crossref]

Koppens, F.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182–194 (2017).
[Crossref]

Korn, T.

C. Schneider, M. M. Glazov, T. Korn, S. Höfling, and B. Urbaszek, “Two-dimensional semiconductors in the regime of strong light-matter coupling,” Nat. Commun. 9, 2695 (2018).
[Crossref]

Kossacki, P.

J. Jadczak, J. Kutrowska-Girzycka, T. Smoleński, P. Kossacki, Y. S. Huang, and L. Bryja, “Exciton binding energy and hydrogenic Rydberg series in layered ReS2,” Sci. Rep. 9, 1578 (2019).
[Crossref]

Krizhanovskii, D. N.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Kroner, M.

M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13, 255–261 (2017).
[Crossref]

Krüger, P.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulklike 1 ${\rm T}^{\prime}$ReS2-ReSe2,” Nano Lett. 17, 3202–3207 (2017).
[Crossref]

Kudrawiec, R.

R. Oliva, M. Laurien, F. Dybala, J. Kopaczek, Y. Qin, S. Tongay, O. Rubel, and R. Kudrawiec, “Pressure dependence of direct optical transitions in ReS2 and ReSe2,” Npj 2D Mater. Appl. 3, 20 (2019).
[Crossref]

Kumar, A.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182–194 (2017).
[Crossref]

Kutrowska-Girzycka, J.

J. Jadczak, J. Kutrowska-Girzycka, T. Smoleński, P. Kossacki, Y. S. Huang, and L. Bryja, “Exciton binding energy and hydrogenic Rydberg series in layered ReS2,” Sci. Rep. 9, 1578 (2019).
[Crossref]

Latini, S.

A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021).
[Crossref]

Laurien, M.

R. Oliva, M. Laurien, F. Dybala, J. Kopaczek, Y. Qin, S. Tongay, O. Rubel, and R. Kudrawiec, “Pressure dependence of direct optical transitions in ReS2 and ReSe2,” Npj 2D Mater. Appl. 3, 20 (2019).
[Crossref]

Lee, D.

S. Sim, D. Lee, J. Lee, H. Bae, M. Noh, S. Cha, M.-H. Jo, K. Lee, and H. Choi, “Light polarization-controlled conversion of ultrafast coherent–incoherent exciton dynamics in few-layer ReS2,” Nano Lett. 19, 7464–7469 (2019).
[Crossref]

S. Sim, D. Lee, M. Noh, S. Cha, C. H. Soh, J. H. Sung, M.-H. Jo, and H. Choi, “Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2,” Nat. Commun. 7, 13569 (2016).
[Crossref]

Lee, J.

S. Sim, D. Lee, J. Lee, H. Bae, M. Noh, S. Cha, M.-H. Jo, K. Lee, and H. Choi, “Light polarization-controlled conversion of ultrafast coherent–incoherent exciton dynamics in few-layer ReS2,” Nano Lett. 19, 7464–7469 (2019).
[Crossref]

Lee, K.

S. Sim, D. Lee, J. Lee, H. Bae, M. Noh, S. Cha, M.-H. Jo, K. Lee, and H. Choi, “Light polarization-controlled conversion of ultrafast coherent–incoherent exciton dynamics in few-layer ReS2,” Nano Lett. 19, 7464–7469 (2019).
[Crossref]

Lee, Y.-H.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015).
[Crossref]

Li, A.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Li, B.

A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021).
[Crossref]

Li, F.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Li, J.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref]

Li, Q.

W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019).
[Crossref]

Li, S.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref]

Li, X.

W. Gao, X. Li, M. Bamba, and J. Kono, “Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons,” Nat. Photonics 12, 362–367 (2018).
[Crossref]

Li, Y.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Lidzey, D. G.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton–photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

Lin, E.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015).
[Crossref]

Liu, E.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Liu, F.

F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
[Crossref]

Liu, H.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Liu, K.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref]

Liu, X.

W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019).
[Crossref]

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11, 491–496 (2017).
[Crossref]

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015).
[Crossref]

Liu, Z.

F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
[Crossref]

Lopez-Garcia, M.

S. Núñez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular–dielectric photonic integration,” ACS Photon. 3, 743–748 (2016).
[Crossref]

Low, T.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182–194 (2017).
[Crossref]

Luce, A.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref]

Lundt, N.

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
[Crossref]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Lyons, T. P.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

MacDonald, A. H.

W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019).
[Crossref]

Malpuech, G.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Martin-Moreno, L.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182–194 (2017).
[Crossref]

Martinu, L.

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref]

Menon, V.

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref]

Menon, V. M.

J. Gu, V. Walther, L. Waldecker, D. Rhodes, A. Raja, J. C. Hone, T. F. Heinz, S. Kéna-Cohen, T. Pohl, and V. M. Menon, “Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2,” Nat. Commun. 12, 2269 (2021).
[Crossref]

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11, 491–496 (2017).
[Crossref]

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015).
[Crossref]

Miao, F.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Mion, T. R.

F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
[Crossref]

Mukherjee, S.

A. Dhara, D. Chakrabarty, P. Das, A. K. Pattanayak, S. Paul, S. Mukherjee, and S. Dhara, “Additional excitonic features and momentum-dark states in ReS2,” Phys. Rev. B 102, 161404 (2020).
[Crossref]

Munkhbat, B.

B. Munkhbat, D. G. Baranov, and M. Stu, “Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption,” ACS Photon. 6, 139–147 (2019).
[Crossref]

Murshidy, M. M.

S. Núñez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular–dielectric photonic integration,” ACS Photon. 3, 743–748 (2016).
[Crossref]

Nalitov, A.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Nalitov, A. V.

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Noh, M.

S. Sim, D. Lee, J. Lee, H. Bae, M. Noh, S. Cha, M.-H. Jo, K. Lee, and H. Choi, “Light polarization-controlled conversion of ultrafast coherent–incoherent exciton dynamics in few-layer ReS2,” Nano Lett. 19, 7464–7469 (2019).
[Crossref]

S. Sim, D. Lee, M. Noh, S. Cha, C. H. Soh, J. H. Sung, M.-H. Jo, and H. Choi, “Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2,” Nat. Commun. 7, 13569 (2016).
[Crossref]

Noky, J.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulklike 1 ${\rm T}^{\prime}$ReS2-ReSe2,” Nano Lett. 17, 3202–3207 (2017).
[Crossref]

Novoselov, K. S.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Núñez-Sánchez, S.

S. Núñez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular–dielectric photonic integration,” ACS Photon. 3, 743–748 (2016).
[Crossref]

O’Donnell, K. P.

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58, 2924–2926 (1991).
[Crossref]

O’Loughlin, T. A.

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

Ogletree, D. F.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref]

Oliva, R.

R. Oliva, M. Laurien, F. Dybala, J. Kopaczek, Y. Qin, S. Tongay, O. Rubel, and R. Kudrawiec, “Pressure dependence of direct optical transitions in ReS2 and ReSe2,” Npj 2D Mater. Appl. 3, 20 (2019).
[Crossref]

Onbasli, M. C.

J. Yuen-Zhou, S. K. Saikin, T. Zhu, M. C. Onbasli, C. A. Ross, V. Bulovic, and M. A. Baldo, “Plexciton Dirac points and topological modes,” Nat. Commun. 7, 11783 (2016).
[Crossref]

Oulton, R.

S. Núñez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular–dielectric photonic integration,” ACS Photon. 3, 743–748 (2016).
[Crossref]

Panzarini, G.

L. C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: theory,” Phys. Rev. B 60, 13276–13279 (1999).
[Crossref]

Pattanayak, A. K.

A. Dhara, D. Chakrabarty, P. Das, A. K. Pattanayak, S. Paul, S. Mukherjee, and S. Dhara, “Additional excitonic features and momentum-dark states in ReS2,” Phys. Rev. B 102, 161404 (2020).
[Crossref]

Paul, S.

A. Dhara, D. Chakrabarty, P. Das, A. K. Pattanayak, S. Paul, S. Mukherjee, and S. Dhara, “Additional excitonic features and momentum-dark states in ReS2,” Phys. Rev. B 102, 161404 (2020).
[Crossref]

Peeters, F. M.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref]

Pfeiffer, L.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Pohl, T.

J. Gu, V. Walther, L. Waldecker, D. Rhodes, A. Raja, J. C. Hone, T. F. Heinz, S. Kéna-Cohen, T. Pohl, and V. M. Menon, “Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2,” Nat. Commun. 12, 2269 (2021).
[Crossref]

V. Walther, R. Johne, and T. Pohl, “Giant optical nonlinearities from Rydberg excitons in semiconductor microcavities,” Nat. Commun. 9, 1309 (2018).
[Crossref]

Polozkov, R. G.

A. A. Shubnic, R. G. Polozkov, I. A. Shelykh, and I. V. Iorsh, “High refractive index and extreme biaxial optical anisotropy of rhenium diselenide for applications in all-dielectric nanophotonics,” Nanophotonics 9, 4737–4742 (2020).
[Crossref]

Qin, Y.

R. Oliva, M. Laurien, F. Dybala, J. Kopaczek, Y. Qin, S. Tongay, O. Rubel, and R. Kudrawiec, “Pressure dependence of direct optical transitions in ReS2 and ReSe2,” Npj 2D Mater. Appl. 3, 20 (2019).
[Crossref]

Qiu, L.

L. Qiu, C. Chakraborty, S. Dhara, and A. N. Vamivakas, “Room-temperature valley coherence in a polaritonic system,” Nat. Commun. 10, 1513 (2019).
[Crossref]

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

Qiu, M.

B. Ding, Z. Zhang, Y.-H. Chen, Y. Zhang, R. J. Blaikie, and M. Qiu, “Tunable valley polarized plasmon-exciton polaritons in two-dimensional semiconductors,” ACS Nano 13, 1333–1341 (2019).
[Crossref]

Quattropani, A.

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes,” Solid State Commun. 93, 733–739 (1995).
[Crossref]

Raja, A.

J. Gu, V. Walther, L. Waldecker, D. Rhodes, A. Raja, J. C. Hone, T. F. Heinz, S. Kéna-Cohen, T. Pohl, and V. M. Menon, “Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2,” Nat. Commun. 12, 2269 (2021).
[Crossref]

Rarity, J. G.

S. Núñez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular–dielectric photonic integration,” ACS Photon. 3, 743–748 (2016).
[Crossref]

Reichman, D. R.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Rhodes, D.

J. Gu, V. Walther, L. Waldecker, D. Rhodes, A. Raja, J. C. Hone, T. F. Heinz, S. Kéna-Cohen, T. Pohl, and V. M. Menon, “Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2,” Nat. Commun. 12, 2269 (2021).
[Crossref]

A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021).
[Crossref]

Rigosi, A.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Rikhter, A. A.

A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021).
[Crossref]

Rohlfing, M.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulklike 1 ${\rm T}^{\prime}$ReS2-ReSe2,” Nano Lett. 17, 3202–3207 (2017).
[Crossref]

Ross, C. A.

J. Yuen-Zhou, S. K. Saikin, T. Zhu, M. C. Onbasli, C. A. Ross, V. Bulovic, and M. A. Baldo, “Plexciton Dirac points and topological modes,” Nat. Commun. 7, 11783 (2016).
[Crossref]

Rubel, O.

R. Oliva, M. Laurien, F. Dybala, J. Kopaczek, Y. Qin, S. Tongay, O. Rubel, and R. Kudrawiec, “Pressure dependence of direct optical transitions in ReS2 and ReSe2,” Npj 2D Mater. Appl. 3, 20 (2019).
[Crossref]

Rubio, A.

A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021).
[Crossref]

Sahin, H.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref]

Saikin, S. K.

J. Yuen-Zhou, S. K. Saikin, T. Zhu, M. C. Onbasli, C. A. Ross, V. Bulovic, and M. A. Baldo, “Plexciton Dirac points and topological modes,” Nat. Commun. 7, 11783 (2016).
[Crossref]

Sanvitto, D.

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref]

Savona, V.

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes,” Solid State Commun. 93, 733–739 (1995).
[Crossref]

Schmidt, R.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulklike 1 ${\rm T}^{\prime}$ReS2-ReSe2,” Nano Lett. 17, 3202–3207 (2017).
[Crossref]

Schneider, C.

C. Anton-Solanas, M. Waldherr, M. Klaas, H. Suchomel, T. H. Harder, H. Cai, E. Sedov, S. Klembt, A. V. Kavokin, S. Tongay, K. Watanabe, T. Taniguchi, S. Höfling, and C. Schneider, “Bosonic condensation of exciton–polaritons in an atomically thin crystal,” Nat. Mater. 20, 1233–1239 (2021).
[Crossref]

C. Schneider, M. M. Glazov, T. Korn, S. Höfling, and B. Urbaszek, “Two-dimensional semiconductors in the regime of strong light-matter coupling,” Nat. Commun. 9, 2695 (2018).
[Crossref]

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
[Crossref]

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

Schneider, R.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulklike 1 ${\rm T}^{\prime}$ReS2-ReSe2,” Nano Lett. 17, 3202–3207 (2017).
[Crossref]

Schuck, P. J.

A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021).
[Crossref]

Schwarz, S.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Schwendimann, P.

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes,” Solid State Commun. 93, 733–739 (1995).
[Crossref]

Sedov, E.

C. Anton-Solanas, M. Waldherr, M. Klaas, H. Suchomel, T. H. Harder, H. Cai, E. Sedov, S. Klembt, A. V. Kavokin, S. Tongay, K. Watanabe, T. Taniguchi, S. Höfling, and C. Schneider, “Bosonic condensation of exciton–polaritons in an atomically thin crystal,” Nat. Mater. 20, 1233–1239 (2021).
[Crossref]

Serry, M.

S. Núñez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular–dielectric photonic integration,” ACS Photon. 3, 743–748 (2016).
[Crossref]

Shao, L.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Shao, Y.

A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021).
[Crossref]

Shelykh, I. A.

A. A. Shubnic, R. G. Polozkov, I. A. Shelykh, and I. V. Iorsh, “High refractive index and extreme biaxial optical anisotropy of rhenium diselenide for applications in all-dielectric nanophotonics,” Nanophotonics 9, 4737–4742 (2020).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Shi, Y.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Shotan, Z.

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11, 491–496 (2017).
[Crossref]

Shubnic, A. A.

A. A. Shubnic, R. G. Polozkov, I. A. Shelykh, and I. V. Iorsh, “High refractive index and extreme biaxial optical anisotropy of rhenium diselenide for applications in all-dielectric nanophotonics,” Nanophotonics 9, 4737–4742 (2020).
[Crossref]

Sich, M.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Sidler, M.

M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13, 255–261 (2017).
[Crossref]

Sieberer, L. M.

E. Altman, L. M. Sieberer, L. Chen, S. Diehl, and J. Toner, “Two-dimensional superfluidity of exciton polaritons requires strong anisotropy,” Phys. Rev. X 5, 011017 (2015).
[Crossref]

Sim, S.

S. Sim, D. Lee, J. Lee, H. Bae, M. Noh, S. Cha, M.-H. Jo, K. Lee, and H. Choi, “Light polarization-controlled conversion of ultrafast coherent–incoherent exciton dynamics in few-layer ReS2,” Nano Lett. 19, 7464–7469 (2019).
[Crossref]

S. Sim, D. Lee, M. Noh, S. Cha, C. H. Soh, J. H. Sung, M.-H. Jo, and H. Choi, “Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2,” Nat. Commun. 7, 13569 (2016).
[Crossref]

Skolnick, M. S.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton–photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

Smith, J. M.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Smolenski, T.

J. Jadczak, J. Kutrowska-Girzycka, T. Smoleński, P. Kossacki, Y. S. Huang, and L. Bryja, “Exciton binding energy and hydrogenic Rydberg series in layered ReS2,” Sci. Rep. 9, 1578 (2019).
[Crossref]

Snoke, D.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Soh, C. H.

S. Sim, D. Lee, M. Noh, S. Cha, C. H. Soh, J. H. Sung, M.-H. Jo, and H. Choi, “Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2,” Nat. Commun. 7, 13569 (2016).
[Crossref]

Solnyshkov, D. D.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Song, F.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Song, L.

F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
[Crossref]

Srivastava, A.

M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13, 255–261 (2017).
[Crossref]

Stanev, T. K.

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11, 431–435 (2017).
[Crossref]

Stern, N. P.

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11, 431–435 (2017).
[Crossref]

Sternbach, A. J.

A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021).
[Crossref]

Stiehm, T.

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulklike 1 ${\rm T}^{\prime}$ReS2-ReSe2,” Nano Lett. 17, 3202–3207 (2017).
[Crossref]

Stu, M.

B. Munkhbat, D. G. Baranov, and M. Stu, “Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption,” ACS Photon. 6, 139–147 (2019).
[Crossref]

Suchomel, H.

C. Anton-Solanas, M. Waldherr, M. Klaas, H. Suchomel, T. H. Harder, H. Cai, E. Sedov, S. Klembt, A. V. Kavokin, S. Tongay, K. Watanabe, T. Taniguchi, S. Höfling, and C. Schneider, “Bosonic condensation of exciton–polaritons in an atomically thin crystal,” Nat. Mater. 20, 1233–1239 (2021).
[Crossref]

Sun, Z.

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11, 491–496 (2017).
[Crossref]

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015).
[Crossref]

Sung, J. H.

S. Sim, D. Lee, M. Noh, S. Cha, C. H. Soh, J. H. Sung, M.-H. Jo, and H. Choi, “Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2,” Nat. Commun. 7, 13569 (2016).
[Crossref]

Taniguchi, T.

C. Anton-Solanas, M. Waldherr, M. Klaas, H. Suchomel, T. H. Harder, H. Cai, E. Sedov, S. Klembt, A. V. Kavokin, S. Tongay, K. Watanabe, T. Taniguchi, S. Höfling, and C. Schneider, “Bosonic condensation of exciton–polaritons in an atomically thin crystal,” Nat. Mater. 20, 1233–1239 (2021).
[Crossref]

Tao, R.

W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019).
[Crossref]

Tartakovskii, A. I.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Tay, B. K.

F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
[Crossref]

Toner, J.

E. Altman, L. M. Sieberer, L. Chen, S. Diehl, and J. Toner, “Two-dimensional superfluidity of exciton polaritons requires strong anisotropy,” Phys. Rev. X 5, 011017 (2015).
[Crossref]

Tongay, S.

C. Anton-Solanas, M. Waldherr, M. Klaas, H. Suchomel, T. H. Harder, H. Cai, E. Sedov, S. Klembt, A. V. Kavokin, S. Tongay, K. Watanabe, T. Taniguchi, S. Höfling, and C. Schneider, “Bosonic condensation of exciton–polaritons in an atomically thin crystal,” Nat. Mater. 20, 1233–1239 (2021).
[Crossref]

R. Oliva, M. Laurien, F. Dybala, J. Kopaczek, Y. Qin, S. Tongay, O. Rubel, and R. Kudrawiec, “Pressure dependence of direct optical transitions in ReS2 and ReSe2,” Npj 2D Mater. Appl. 3, 20 (2019).
[Crossref]

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref]

Trichet, A. A. P.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Urbaszek, B.

C. Schneider, M. M. Glazov, T. Korn, S. Höfling, and B. Urbaszek, “Two-dimensional semiconductors in the regime of strong light-matter coupling,” Nat. Commun. 9, 2695 (2018).
[Crossref]

Vamivakas, A. N.

L. Qiu, C. Chakraborty, S. Dhara, and A. N. Vamivakas, “Room-temperature valley coherence in a polaritonic system,” Nat. Commun. 10, 1513 (2019).
[Crossref]

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

van der Zande, A. M.

O. B. Aslan, D. A. Chenet, A. M. van der Zande, J. C. Hone, and T. F. Heinz, “Linearly polarized excitons in single- and few-layer ReS2 crystals,” ACS Photon. 3, 96–101 (2016).
[Crossref]

Virgili, T.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton–photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

Waldecker, L.

J. Gu, V. Walther, L. Waldecker, D. Rhodes, A. Raja, J. C. Hone, T. F. Heinz, S. Kéna-Cohen, T. Pohl, and V. M. Menon, “Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2,” Nat. Commun. 12, 2269 (2021).
[Crossref]

Waldherr, M.

C. Anton-Solanas, M. Waldherr, M. Klaas, H. Suchomel, T. H. Harder, H. Cai, E. Sedov, S. Klembt, A. V. Kavokin, S. Tongay, K. Watanabe, T. Taniguchi, S. Höfling, and C. Schneider, “Bosonic condensation of exciton–polaritons in an atomically thin crystal,” Nat. Mater. 20, 1233–1239 (2021).
[Crossref]

Walker, S.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton–photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

Walther, V.

J. Gu, V. Walther, L. Waldecker, D. Rhodes, A. Raja, J. C. Hone, T. F. Heinz, S. Kéna-Cohen, T. Pohl, and V. M. Menon, “Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2,” Nat. Commun. 12, 2269 (2021).
[Crossref]

V. Walther, R. Johne, and T. Pohl, “Giant optical nonlinearities from Rydberg excitons in semiconductor microcavities,” Nat. Commun. 9, 1309 (2018).
[Crossref]

Wan, X.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Wang, B.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Wang, L.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Wang, L.-W.

W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019).
[Crossref]

Wang, S.

W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019).
[Crossref]

Wang, X.

F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
[Crossref]

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Wang, Y.

W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019).
[Crossref]

W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019).
[Crossref]

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Wang, Z.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Watanabe, K.

C. Anton-Solanas, M. Waldherr, M. Klaas, H. Suchomel, T. H. Harder, H. Cai, E. Sedov, S. Klembt, A. V. Kavokin, S. Tongay, K. Watanabe, T. Taniguchi, S. Höfling, and C. Schneider, “Bosonic condensation of exciton–polaritons in an atomically thin crystal,” Nat. Mater. 20, 1233–1239 (2021).
[Crossref]

Weisbuch, C.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

West, K.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Whittaker, D. M.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton–photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

Wicks, G. W.

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

Withers, F.

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

Wu, J.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref]

Wurdack, M.

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
[Crossref]

Xia, F.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015).
[Crossref]

Xia, Y.

W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019).
[Crossref]

Xing, D.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Xu, X.

A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021).
[Crossref]

Xue, F.

W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019).
[Crossref]

Yamamoto, Y.

T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton–polariton condensates,” Nat. Phys. 10, 803–813 (2014).
[Crossref]

Yan, J.

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref]

Yang, S.

W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019).
[Crossref]

Yuan, H.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Yuen-Zhou, J.

J. Yuen-Zhou, S. K. Saikin, T. Zhu, M. C. Onbasli, C. A. Ross, V. Bulovic, and M. A. Baldo, “Plexciton Dirac points and topological modes,” Nat. Commun. 7, 11783 (2016).
[Crossref]

Zeng, J.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Zhang, B.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

Zhang, L.

R. Gogna, L. Zhang, and H. Deng, “Self-hybridized, polarized polaritons in ReS2 crystals,” ACS Photon. 7, 3328–3332 (2020).
[Crossref]

Zhang, X.

W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019).
[Crossref]

Zhang, Y.

B. Ding, Z. Zhang, Y.-H. Chen, Y. Zhang, R. J. Blaikie, and M. Qiu, “Tunable valley polarized plasmon-exciton polaritons in two-dimensional semiconductors,” ACS Nano 13, 1333–1341 (2019).
[Crossref]

Zhang, Z.

B. Ding, Z. Zhang, Y.-H. Chen, Y. Zhang, R. J. Blaikie, and M. Qiu, “Tunable valley polarized plasmon-exciton polaritons in two-dimensional semiconductors,” ACS Nano 13, 1333–1341 (2019).
[Crossref]

Zhao, M.

W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019).
[Crossref]

Zheng, F.

W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019).
[Crossref]

Zheng, S.

F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
[Crossref]

Zhou, J.

F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
[Crossref]

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref]

Zhou, L.

J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: generalized 4x4 transfer-matrix method,” Phys. Rev. B 77, 094201 (2008).
[Crossref]

Zhou, W.

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

Zhu, T.

J. Yuen-Zhou, S. K. Saikin, T. Zhu, M. C. Onbasli, C. A. Ross, V. Bulovic, and M. A. Baldo, “Plexciton Dirac points and topological modes,” Nat. Commun. 7, 11783 (2016).
[Crossref]

Zhu, X.-Y.

A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021).
[Crossref]

ACS Nano (1)

B. Ding, Z. Zhang, Y.-H. Chen, Y. Zhang, R. J. Blaikie, and M. Qiu, “Tunable valley polarized plasmon-exciton polaritons in two-dimensional semiconductors,” ACS Nano 13, 1333–1341 (2019).
[Crossref]

ACS Photon. (4)

R. Gogna, L. Zhang, and H. Deng, “Self-hybridized, polarized polaritons in ReS2 crystals,” ACS Photon. 7, 3328–3332 (2020).
[Crossref]

O. B. Aslan, D. A. Chenet, A. M. van der Zande, J. C. Hone, and T. F. Heinz, “Linearly polarized excitons in single- and few-layer ReS2 crystals,” ACS Photon. 3, 96–101 (2016).
[Crossref]

B. Munkhbat, D. G. Baranov, and M. Stu, “Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption,” ACS Photon. 6, 139–147 (2019).
[Crossref]

S. Núñez-Sánchez, M. Lopez-Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular–dielectric photonic integration,” ACS Photon. 3, 743–748 (2016).
[Crossref]

Adv. Funct. Mater. (1)

F. Liu, S. Zheng, X. He, A. Chaturvedi, J. He, W. L. Chow, T. R. Mion, X. Wang, J. Zhou, Q. Fu, H. J. Fan, B. K. Tay, L. Song, R.-H. He, C. Kloc, P. M. Ajayan, and Z. Liu, “Highly sensitive detection of polarized light using anisotropic 2D ReS2,” Adv. Funct. Mater. 26, 1169–1177 (2016).
[Crossref]

Appl. Phys. Lett. (1)

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58, 2924–2926 (1991).
[Crossref]

Nano Lett. (2)

A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S. M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, “Highly anisotropic in-plane excitons in atomically thin and bulklike 1 ${\rm T}^{\prime}$ReS2-ReSe2,” Nano Lett. 17, 3202–3207 (2017).
[Crossref]

S. Sim, D. Lee, J. Lee, H. Bae, M. Noh, S. Cha, M.-H. Jo, K. Lee, and H. Choi, “Light polarization-controlled conversion of ultrafast coherent–incoherent exciton dynamics in few-layer ReS2,” Nano Lett. 19, 7464–7469 (2019).
[Crossref]

Nanophotonics (1)

A. A. Shubnic, R. G. Polozkov, I. A. Shelykh, and I. V. Iorsh, “High refractive index and extreme biaxial optical anisotropy of rhenium diselenide for applications in all-dielectric nanophotonics,” Nanophotonics 9, 4737–4742 (2020).
[Crossref]

Nat. Commun. (11)

S. Sim, D. Lee, M. Noh, S. Cha, C. H. Soh, J. H. Sung, M.-H. Jo, and H. Choi, “Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2,” Nat. Commun. 7, 13569 (2016).
[Crossref]

S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.-S. Huang, C.-H. Ho, J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F. M. Peeters, and J. Wu, “Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling,” Nat. Commun. 5, 3252 (2014).
[Crossref]

M. Wurdack, N. Lundt, M. Klaas, V. Baumann, A. V. Kavokin, S. Höfling, and C. Schneider, “Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer,” Nat. Commun. 8, 259 (2017).
[Crossref]

E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, C.-H. Ho, Y.-S. Huang, Z. Cao, L. Wang, A. Li, J. Zeng, F. Song, X. Wang, Y. Shi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, “Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors,” Nat. Commun. 6, 6991 (2015).
[Crossref]

J. Yuen-Zhou, S. K. Saikin, T. Zhu, M. C. Onbasli, C. A. Ross, V. Bulovic, and M. A. Baldo, “Plexciton Dirac points and topological modes,” Nat. Commun. 7, 11783 (2016).
[Crossref]

L. Qiu, C. Chakraborty, S. Dhara, and A. N. Vamivakas, “Room-temperature valley coherence in a polaritonic system,” Nat. Commun. 10, 1513 (2019).
[Crossref]

V. Walther, R. Johne, and T. Pohl, “Giant optical nonlinearities from Rydberg excitons in semiconductor microcavities,” Nat. Commun. 9, 1309 (2018).
[Crossref]

J. Gu, V. Walther, L. Waldecker, D. Rhodes, A. Raja, J. C. Hone, T. F. Heinz, S. Kéna-Cohen, T. Pohl, and V. M. Menon, “Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2,” Nat. Commun. 12, 2269 (2021).
[Crossref]

N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7, 13328 (2016).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6, 8579 (2015).
[Crossref]

C. Schneider, M. M. Glazov, T. Korn, S. Höfling, and B. Urbaszek, “Two-dimensional semiconductors in the regime of strong light-matter coupling,” Nat. Commun. 9, 2695 (2018).
[Crossref]

Nat. Mater. (2)

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16, 182–194 (2017).
[Crossref]

C. Anton-Solanas, M. Waldherr, M. Klaas, H. Suchomel, T. H. Harder, H. Cai, E. Sedov, S. Klembt, A. V. Kavokin, S. Tongay, K. Watanabe, T. Taniguchi, S. Höfling, and C. Schneider, “Bosonic condensation of exciton–polaritons in an atomically thin crystal,” Nat. Mater. 20, 1233–1239 (2021).
[Crossref]

Nat. Nanotechnol. (1)

F. Barachati, A. Fieramosca, S. Hafezian, J. Gu, B. Chakraborty, D. Ballarini, L. Martinu, V. Menon, D. Sanvitto, and S. Kéna-Cohen, “Interacting polariton fluids in a monolayer of tungsten disulfide,” Nat. Nanotechnol. 13, 906–909 (2018).
[Crossref]

Nat. Photonics (6)

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9, 30–34 (2015).
[Crossref]

S. Dufferwiel, T. P. Lyons, D. D. Solnyshkov, A. A. P. Trichet, F. Withers, S. Schwarz, G. Malpuech, J. M. Smith, K. S. Novoselov, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Valley-addressable polaritons in atomically thin semiconductors,” Nat. Photonics 11, 497–501 (2017).
[Crossref]

Z. Sun, J. Gu, A. Ghazaryan, Z. Shotan, C. R. Considine, M. Dollar, B. Chakraborty, X. Liu, P. Ghaemi, S. Kéna-Cohen, and V. M. Menon, “Optical control of room-temperature valley polaritons,” Nat. Photonics 11, 491–496 (2017).
[Crossref]

Y.-J. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, “Valley-polarized exciton–polaritons in a monolayer semiconductor,” Nat. Photonics 11, 431–435 (2017).
[Crossref]

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics 4, 371–375 (2010).
[Crossref]

W. Gao, X. Li, M. Bamba, and J. Kono, “Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons,” Nat. Photonics 12, 362–367 (2018).
[Crossref]

Nat. Phys. (3)

M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E. Demler, and A. Imamoglu, “Fermi polaron-polaritons in charge-tunable atomically thin semiconductors,” Nat. Phys. 13, 255–261 (2017).
[Crossref]

S. Dhara, C. Chakraborty, K. M. Goodfellow, L. Qiu, T. A. O’Loughlin, G. W. Wicks, S. Bhattacharjee, and A. N. Vamivakas, “Anomalous dispersion of microcavity trion-polaritons,” Nat. Phys. 14, 130–133 (2018).
[Crossref]

T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton–polariton condensates,” Nat. Phys. 10, 803–813 (2014).
[Crossref]

Nature (1)

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton–photon coupling in an organic semiconductor microcavity,” Nature 395, 53–55 (1998).
[Crossref]

Npj 2D Mater. Appl. (1)

R. Oliva, M. Laurien, F. Dybala, J. Kopaczek, Y. Qin, S. Tongay, O. Rubel, and R. Kudrawiec, “Pressure dependence of direct optical transitions in ReS2 and ReSe2,” Npj 2D Mater. Appl. 3, 20 (2019).
[Crossref]

Phys. Rev. B (4)

A. Dhara, D. Chakrabarty, P. Das, A. K. Pattanayak, S. Paul, S. Mukherjee, and S. Dhara, “Additional excitonic features and momentum-dark states in ReS2,” Phys. Rev. B 102, 161404 (2020).
[Crossref]

L. C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: theory,” Phys. Rev. B 60, 13276–13279 (1999).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: generalized 4x4 transfer-matrix method,” Phys. Rev. B 77, 094201 (2008).
[Crossref]

Phys. Rev. Lett. (2)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Phys. Rev. X (2)

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
[Crossref]

E. Altman, L. M. Sieberer, L. Chen, S. Diehl, and J. Toner, “Two-dimensional superfluidity of exciton polaritons requires strong anisotropy,” Phys. Rev. X 5, 011017 (2015).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L.-W. Wang, A. H. MacDonald, and X. Zhang, “Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity,” Proc. Natl. Acad. Sci. USA 116, 20274–20279 (2019).
[Crossref]

Sci. Rep. (1)

J. Jadczak, J. Kutrowska-Girzycka, T. Smoleński, P. Kossacki, Y. S. Huang, and L. Bryja, “Exciton binding energy and hydrogenic Rydberg series in layered ReS2,” Sci. Rep. 9, 1578 (2019).
[Crossref]

Science (3)

A. J. Sternbach, S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X.-Y. Zhu, R. D. Averitt, J. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, “Programmable hyperbolic polaritons in van der Waals semiconductors,” Science 371, 617–620 (2021).
[Crossref]

D. N. Basov, M. M. Fogler, and F. J. Garcia de Abajo, “Polaritons in van der Waals materials,” Science 354, aag1992 (2016).
[Crossref]

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Solid State Commun. (1)

V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes,” Solid State Commun. 93, 733–739 (1995).
[Crossref]

Supplementary Material (2)

NameDescription
Supplement 1       Supplementarymaterial containing additional information, data, and figures, which are mentioned accordingly in the main text.
Visualization 1       Transfer matrix simulation of the reflectivity of ReS2/DBR device, showing how changing the thickness of the top ReS2 layer can control the extent of light-matter coupling and the energy detuning.

Data availability

Data underlying the results presented in this paper are available on request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Polarization-resolved optical measurements revealing exciton-polaritons in ReS2. (a) Schematic of the ${\rm{Re}}{{\rm{S}}_2}/{\rm{DBR}}$ structure. Top right, optical microscope image of a 120 nm thick ${\rm{Re}}{{\rm{S}}_2}$ flake transferred on the DBR, showing preferential cleavage along the crystal’s $b$ axis. Linearly polarized white light is used for reflectivity measurements, with polarization angle ${\theta _P}$ with the $b$ axis. The field profile for TE mode is overlaid on the structure, representing a photonic mode within the DBR stopband, which can couple with excitons. (b) Color plot representing the differential reflectance spectrum as a function of ${\theta _P}$ for the 120 nm ${\rm{Re}}{{\rm{S}}_2}/{\rm{DBR}}$ device. Line profile in the lower panel shows reflectance at ${\theta _P} = {{130}}^\circ$, where absorption dips from all four exciton species and the two prominent lower exciton-polariton branches can be observed. ${{\rm{X}}_R}$ denotes the Rydberg excitations. (c) Color plot showing the PL spectrum as a function of angle of the analyzer ${\theta _A}$ with respect to the $b$ axis. PL spectrum at ${\theta _A} = {{130}}^\circ$ is shown in the lower panel. The subscript 1 or 2 added to the polariton branch labels indicates association with ${{\rm{X}}_1}$ or ${{\rm{X}}_2}$ excitons. (d), (e) Experimental angle-resolved reflectance for two different incident polarization angles (${\theta _P} = {{170}}^\circ$ and 90°), corresponding to two different polariton manifolds associated with ${{\rm{X}}_1}$ and ${{\rm{X}}_2}$, respectively. Dashed white line used as a guide to the eye to show the polariton branches. $X_1^{(2)}$ and $X_2^{(3)}$ denote the first and second excited Rydberg states of ${{\rm{X}}_1}$ and ${{\rm{X}}_2}$, respectively. (f) Dispersion relations of the uncoupled excitons and photonic mode (dashed lines), and coupled polariton modes (solid lines). Black and blue colors are used to identify two different three-body coupled polariton manifolds corresponding to angle ${\theta _P} = {{170}}^\circ$ and 90°, respectively.
Fig. 2.
Fig. 2. Polarization-controlled light–matter coupling. (a) Angle-resolved reflectance of 120 nm ${\rm{Re}}{{\rm{S}}_2}$ on DBR for 3.2 K (left) compared with transfer matrix simulation (right) when the incident linear polarized light is aligned at ${\theta _P} = {{170}}^\circ$, so that only the ${{\rm{X}}_1}$ exciton-polariton manifold is excited. Dispersions of the uncoupled photon mode and excitons (white dashed lines) and the exciton-polariton modes (gray solid lines) are indicated. The spring and mass diagram below represents the corresponding three-body coupled oscillator system involving the photon mode (Ph), ${{\rm{X}}_1}$ and the first Rydberg excitation $X_1^{(2)}$. ${g_1}$ and $g_1^\prime$ are the coupling constants. (b) Angle-resolved reflectance of the system when ${\theta _P} = {{90}}^\circ$, such that incident polarized light excites only ${{\rm{X}}_2}$. The coupled oscillator system here consists of the photon mode for this polarization (Ph), ${{\rm{X}}_2}$, and the second Rydberg excitation $X_2^{(3)}$. ${g_2}$ and $g_2^\prime$ are the corresponding coupling constants. Springs drawn using dashed lines indicate weak coupling. Exciton-polariton modes for this polarization are indicated with blue solid lines. (c) Angle-resolved reflectance for ${\theta _P} = {{130}}^\circ$, where both the coupled oscillator systems shown in (a) and (b) are present, but with changed coupling strength. (d) ${{\rm and}}$ (e) show the Rabi splitting between $X_1^{(2)}$-UPB and MPB ranging from 6 meV to 17 meV as the polarization angle is changed from 130° to 170°. (f) Rabi splitting from (d) and (e) as a function of polarization angle ${\theta _P}$. Solid red line indicates a sinusoidal dependence of coupling with ${\theta _P}$.
Fig. 3.
Fig. 3. Thickness-tuned light–matter coupling. (a) Angle-resolved reflectance (left) and transfer matrix simulation (right) for 145 nm ${\rm{Re}}{{\rm{S}}_2}$ flake on the DBR, with linearly polarized incident light along ${{\rm{X}}_1}$. Dispersions of the uncoupled photon mode and excitons (white dashed lines) and the four exciton-polariton modes (gray solid lines) are indicated. The uncoupled photonic mode has zero detuning with ${{\rm{X}}_1}$, and the Rabi splitting between the upper and LPBs is found to be 68 meV. (b) Spring and mass diagram representing the four-body coupled oscillator system used as a model. Incident light polarization can be used to switch between two different coupled oscillator systems. The corresponding coupling strengths (${g_1}$, ${g_2}$, etc.) are indicated. (c) Angle-resolved reflectance for the system with linearly polarized incident light along ${{\rm{X}}_2}$. The uncoupled photonic mode has zero detuning with ${{\rm{X}}_2}$ (white dashed lines). Blue solid lines indicate the polariton mode dispersions. Rabi splitting of 68 meV is observed.
Fig. 4.
Fig. 4. Temperature-dependent detuning and coupling strength. Angle-resolved reflectance spectra for different temperatures, with linearly polarized electric field aligned to excite only ${{\rm{X}}_2}$ and ${{\rm{X}}_4}$. The photon-like UPB dispersion is marked with a dashed white line. Exciton-like LPB ${{\rm{X}}_2}$-LBP and ${{\rm{X}}_4}$ are indicated with blue and black dashed lines, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( E P h i ( ω ) + i Γ P h i g i g i g i E X i + i Γ X i 0 g i 0 E X i ( n ) + i Γ X i ( n ) ) .
g n f / V m ,
( E P h i ( ω ) + i Γ P h i g i g j g i g i E X i + i Γ X i 0 0 g j 0 E X j + i Γ X j 0 g i 0 0 E X i ( n ) + i Γ X i ( n ) ) .