Abstract

Since its first demonstration, laser induced aerosol formation (LIAF) has been studied in various environmental conditions and laser parameters. LIAF driven by UV and near-IR lasers mainly relies on the nitrogen photo-oxidative chemistry, leading to the production of hygroscopic ${{\rm{HNO}}_3}$, which stabilizes the growth of aerosol nanoparticles. Mid-IR lasers were expected to be drastically less effective for LIAF, due to their much lower multiphoton photodissociation and ionization rates. Here, we report on the observation of surprisingly high yields of nanometric and sub-µm aerosol formation driven by mid-IR laser pulses, which cannot be explained by the ${{\rm{HNO}}_3}$-pathway. We hereby evidence a new mechanism of aerosol stabilization and growth, based on the resonant excitation of volatile organic compounds (VOCs) by mid-IR pulses whose spectrum is broadened during filamentation.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

1. INTRODUCTION

Atmospheric water condensation is a complex process, which requires the presence of nuclei (aerosol nanoparticles), their stabilization [leading to cloud condensation nuclei (CCN)], and their growth in size by water accumulation. Condensation nuclei can be solid particles, such as soil dust or sea salt, or aerosols produced by various photochemical processes occurring in the atmosphere [1,2]. In particular, sulfur dioxide is known to play a major role for stabilizing aerosol nanoparticles; however, nitrogen oxides (${{\rm{NO}}_x}$) and oxidized volatile organic compounds (VOCs) contribute to these processes as well [35]. The formation of aerosols can be triggered artificially either by dispersing highly soluble or hygroscopic solid compounds [6], or by inducing photochemical processes leading to the formation of hygroscopic precursors [7,8].

Photochemical triggering of aerosol formation [hereinafter called laser induced aerosol formation (LIAF)] with intense ultrashort 800-nm laser pulses was demonstrated in 2003 by the Teramobile team [7]. This phenomenon is provoked by the strong ionization and photodissociation of the main air constituents (${{\rm{N}}_2}$, ${{\rm{O}}_2}$, ${{\rm{H}}_2}{\rm{O}}$) taking place during laser filamentation [9]. Filamentation is a nonlinear propagation regime, which starts when the peak power of laser pulses exceeds the critical power of self-focusing, scaling as a square of the laser wavelength and ranging from 5–10 GW at the wavelength of 800 nm [10] to ${\sim}{{1}}\;{\rm{TW}}$ at 10 µm [11]. Filaments bear high intensities (in order of ${\rm{10{ -} 100}}\;{\rm{TW/c}}{{\rm{m}}^2}$) over lengths vastly exceeding the Rayleigh range, up to the 100s of meters or more [12]. Molecular ions and fragments, generated during filamentation, undergo multiple chemical reactions and produce highly oxidative species, such as ${{\rm{O}}_3}$, ${{\rm{NO}}_x}$, and OH–radicals, which in turn result in the formation of hygroscopic nitric acid (${{\rm{HNO}}_3}$) in parts-per-million (ppm) concentrations [13,14]. Nitric acid attracts water molecules from the surrounding moist air through intermolecular dipole-dipole forces, resulting in the formation of clusters and, subsequently, of aerosol particles with diameters of 10s of nanometers. Via coagulation with each other and condensation of other air compounds on their surfaces, laser induced nanometric aerosols can grow to sub-µm sizes and further to macroscopic water droplets, becoming CCN [15].

Even though the above-mentioned ${{\rm{HNO}}_3}$–pathway was identified as the dominant mechanism of LIAF [15], atmospheric trace gases also play a noticeable role. For instance, it was demonstrated that injection of VOCs into the large-scale atmospheric cloud chamber AIDA (aerosol interaction and dynamics in the atmosphere [16]) enhances the aerosol formation rates, facilitates their growth and increases the total mass of condensed water [17]. The observed effect was attributed to the oxidation of VOCs, leading to the production of highly-oxygenated low-volatile organic molecules, which condense inside the chamber. Similar results were achieved in the ambient air, under natural VOC concentrations and analyzed by a real-time mass spectrometry [18]. The observed particle generation reminds the natural aging process of secondary organic aerosols (SOA) in the atmosphere, but in a way that is significantly accelerated due to laser-induced photochemistry. Not every VOC strongly contributes to LIAF either due to a lower natural reactivity, like toluene [17], or because its oxidation products are too volatile, like methane. For example, the contribution of atmospheric methane to the SOA budget was estimated to be maximum 0.13% of the total atmospheric aerosol carbon mass [19].

To date, LIAF has only been studied using UV/near-IR laser systems, where efficient production of nanoparticles was attributed to high photodissociation rates and to a large volume occupied by multiple filaments [8,20,21]. Mid-IR pulses were anticipated to be drastically less efficient drivers for LIAF because of the much lower efficiency of photo-ionization and dissociation at longer wavelengths [22].

Our work consists of three parts: (1) experimental demonstration of the mid-IR driven LIAF, (2) experimental confirmation of the proposed mechanism, and (3) discussion on a new mechanism of LIAF. In the first part, we show that mid-IR filaments generate an amount of nanoparticles similar to those obtained with UV and near-IR pulses. Furthermore, in some focusing configurations, the growth of aerosols up to sub-µm sizes is facilitated. We argue that this is due to an additional channel of aerosol formation, enabled by the resonant excitation of atmospheric VOCs. In the second part, we demonstrate that it is possible to switch on and off the new channel of condensation by spectrally tuning the driver pulses in and out of the 1st overtone of the VOC absorption resonance. Finally, in the third part, we analyze a new mechanism of formation of SOA from a specific VOC, toluene, as the most widespread anthropogenic species, irradiated by intense resonant laser light.

2. EXPERIMENTAL RESULTS

A. LIAF Driven by Mid-IR Filaments

In the experiment, we focused 90-fs 27-mJ 3.9-µm laser pulses into a cloud chamber, in which relative humidity and temperature were kept constant at ${\rm{RH}} \gt {{90}}\%$ and ${\rm{T}}\sim{{9}}^\circ {\rm{C}} {-} {{13}}^\circ {\rm{C}}$, respectively (Supplement 1, Fig. SM1). By varying the focusing strength, we modified the intensity inside the filaments and the volume of the filaments and, as a consequence, controlled the nonlinear spectral broadening [23]. For focal lengths ranging from $f = {0.5}\;{\rm{m}}$ to $f = {{7}}\;{\rm{m}}$, we monitored the concentration of ozone, the average concentration of nanoparticles with the diameters $d$ of 25–300 nm, and the particle size distribution (PSD) of aerosols with $d \gt {{250}}\;{\rm{nm}}$ (sub-µm particles) formed inside the cloud chamber. More details on the experimental setup are given in Supplement 1.

We observe a surprisingly efficient generation of nanoparticles (${N_{\rm{nano}}} \gt {{10}^5}\;{{\rm{cm}}^{- 3}}$) under all focusing conditions, except for the loosest focusing ($f = {{7}}\;{\rm{m}}$) [Fig. 1(a)]. Although a direct quantitative comparison of the results reported here and obtained previously with UV/near-IR pulses [20,21] is difficult due to the different experimental conditions (temperature (T), relative humidity (RH), and laser repetition rates), we can qualitatively estimate that the amount of nanoparticles produced in the cases of mid-IR and UV/near-IR pulses is of the same order of magnitude (more than 100 times the background concentration in each experiment). In the case of similar focusing ($f = {2.5}\;{\rm{m}}$), the volume covered by mid-IR filaments at 3.9 µm is ${\sim}{{60}}$ times larger than the volume covered by near-IR (800 nm) filaments [14], which could potentially contribute to the efficient formation of nanoparticles even with significantly lower photodissociation yields. However, although the volume of the filament grows with the softening of focusing (Supplement 1, Fig. SM4), the concentration of nanoparticles stays nearly the same for focal lengths ranging from 0.5–2.5 m, unlike previous observations with UV/near-IR filaments [20]. Another notable difference between LIAF driven by UV/near-IR and mid-IR pulses is the dependence of concentrations of ozone and of the sub-µm particles on the strength of focusing, as described below.

 figure: Fig. 1.

Fig. 1. Dependence of average concentration of (a) nanoparticles with the diameters $d = {{25 {-} 300}}\;{\rm{nm}}$, (b) ozone and (c) larger particles ($d \gt {0.256}\;{\rm{\unicode{x00B5}{\rm m}}}$) on the strength of focusing. Notice the logarithmic scale in panel (a) and purple line, that shows background nanoparticle level, corresponding to Laser OFF times. These results are obtained when irradiating by 27-mJ 90 fs 3.9 µm mid-IR laser pulses.

Download Full Size | PPT Slide | PDF

At the tightest focusing ($f = {0.5}\;{\rm{m}}$), the concentration of ozone is close to ambient (${\sim}{{2 {-} 3}}\;{\rm{ppb}}$). It grows with the loosening of focusing until it reaches a plateau (${\sim}{{500}}\;{\rm{ppb}}$) at moderate focusing ($f = {{1}.\rm{5 {-} 2}.{5}}\;{\rm{m}}$) and drops again to the ambient level at $f = {{7}}\;{\rm{m}}$ [Fig. 1(b)]. Meanwhile, the concentration of the sub-µm particles ($d \gt {{250}}\;{\rm{nm}}$) has a maximum at $f = {0.5}\;{\rm{m}}$ and decays when focusing is softened [Fig. 1(c)]. The ${{\rm{HNO}}_3}$-mediated pathway implies that concentrations of nanoparticles and ozone depend on the number of highly reactive elements (e.g.,  ${{\rm{N}}^*}$, ${\rm{N}}_2^*$, ${{\rm{O}}^*}$, ${\rm{O}}_2^*$, ${{\rm{N}}^ +}$, ${\rm{N}}_2^ +$, ${{\rm{O}}^ +}$, ${\rm{O}}_2^ -$), generated as a result of photo-dissociation, and therefore are supposed to vary in the same way, when the focusing strength is changed [23,24].

Thus, the different behaviors of the concentrations of nanoparticles, ozone, and sub-µm particles when LIAF is driven by UV/near-IR and mid-IR pulses, cannot be explained by the established nitric acid route model. Consequently, here we witness a radically new pathway in the case of the mid-IR driven LIAF, which is mediated by the resonance-enhanced photo-fragmentation of ambient VOCs. Although the OPCPA output spectrum initially extends from ${\sim}{3.5}$ to ${\sim}{4.2}\;{\rm{\unicode{x00B5}{\rm m}}}$ [gray shaded area in Fig. 2(b)], spectral broadening during filamentation leads to a shift of the spectrum towards the CH-stretch resonance around 3.4 µm [red shaded area in Fig. 2(b)]. When assisted by tight focusing ($f \lt {{1}}\;{\rm{m}}$), the process of filamentation is accompanied by strong ionization. A fast rise of the free-electron plasma density, induced by the central part of a femtosecond pulse, results in temporal variation of the refractive index and, therefore, in a Doppler-like plasma blue shift of a large fraction of energy of the ionizing pulses [23,25,26]. The magnitude of the shift depends on the peak electron plasma density and drops rapidly with the softening of focusing [24] [Figs. 2(b) and 2(c)]. Therefore, the resonant VOC-related channel of condensation is supposed to take place only at tight focusing, as manifested by an up to a 10-fold increase in particle concentration in the 0.25–0.5-µm-diameter range in the case of tight focusing ($f = {0.5}\;{\rm{m}}$) as compared to moderate focusing ($f = {{2}}\;{\rm{m}}$) [Fig. 2(a)].

 figure: Fig. 2.

Fig. 2. (a) Normalized on the bin size particle size distribution (PSD) for $f = {0.5}\;{\rm{m}}$, $f = {{2}}\;{\rm{m}}$, and without laser light in the chamber; (b–c) spectrum of the ambient VOCs absorption (red shaded area, absorption cross section are taken from HITRAN database [30]), emission spectrum after OPCPA (grey shaded area), after the filament assisted by $f = {0.75}\;{\rm{m}}$ (red line) and $f = {1.5}\;{\rm{m}}$ focusing (blue line).

Download Full Size | PPT Slide | PDF

Sub-µm particles are produced by the aggregation of smaller particles and by condensation of other molecules on their surfaces. When the filamenting mid-IR pulse couples to the CH resonance of VOCs, it ionizes and fragments these molecules more efficiently [27,28]. After dissociation, the molecular fragments uptake several oxygen atoms in oxidation reactions with ${{\rm{O}}_3}$, ${^\bullet}{\rm{OH}}$, and ${{\rm{NO}}_x}$, causing these molecules to polarize and thereby increase intermolecular attraction. Oxidized VOCs condense on pre-existing nanoparticles, leading to their growth, which can explain higher concentrations of sub-µm aerosols at tight focusing, for which the magnitude of the blue shift is greater. On the other hand, the amount of nanoparticles detected for tight and moderate focusing remains similar, which possibly indicates an interplay between the VOC and ${{\rm{HNO}}_3}$ pathways. The VOC pathway dominates at tight focusing (Fig. 1), due to the favorable spectral dynamics. The ${{\rm{HNO}}_3}$ pathway is not dominant in this configuration but prevails at moderate focusing, where the blue shift is less pronounced, but the volume occupied by filaments is comparatively larger than in UV/NIR filamentation cases. At the same time, the VOCs-mediated pathway efficiently consumes ozone in the oxidation reactions [29], quickly depleting its concentration, which may explain the lowered concentration of ozone detected under tight focusing.

The absence of LIAF for loosely-focused mid-IR laser pulses supports the above model. Indeed, at $f = {{7}}\;{\rm{m}}$ photo-ionization and dissociation are much less efficient as compared to the moderate and tight focusing due to the lower intensity inside the filament [24,31]. Numerical simulations performed for 20-mJ, 90-fs pulses with a central wavelength of 3.9 µm reveal a $\sim 30\%$ decrease of the intensity, when focusing is changed from $f = {0.45}\;{\rm{m}}$ to $f = {{2}}\;{\rm{m}}$, with a corresponding drop in the peak electron plasma density by more than an order of magnitude [31]. In addition, the ionic (${\rm{O}}_2^ + /{\rm{O}}_2^ -$) plasma density is 5–10 times lower for $f = {{7}}\;{\rm{m}}$ as compared with $f = {{2}}\;{\rm{m}}$ [23]. Moreover, under low-plasma loose focusing condition, the spectral dynamics is mainly driven by stimulated rotational Raman scattering, contributing to a red shift rather than to a blue spectral shift characteristic for plasma. The opposite shift direction toward longer wavelengths promotes ${{\rm{CO}}_2}$ resonant absorption near 4.2 µm [23]. Hence, our loosely focused mid-IR filaments provide neither enough highly reactive nitrogen and oxygen fragments for the generation of ${{\rm{O}}_3}$ and for ${{\rm{HNO}}_3}$-mediated condensation, nor a sufficient blue shift for a VOCs-related channel.

B. Resonance Excitation of Ambient VOC via 1st Absorption Overtone

An influence of CH excitation on the VOCs-mediated LIAF can be confirmed in a controllable way by tuning the wavelength of the laser radiation in and out of the vibrational resonance and monitoring the concentrations of nanoparticles and ozone. Because our mid-IR OPCPA system is not-wavelength-tunable, the experiments were conducted with a near-IR OPA, generating 1.55 mJ, 50-fs pulses tunable between 1.6 and 2.05 µm (TOPAS-HE, Light Conversion). We thus targeted the 1st overtone of CH vibration located in the vicinity of 1.7 µm [Fig. 3(a)] instead of the fundamental vibration mode. The peak power of the pulses exceeded 30 GW, which is higher than the estimated ${P_{\rm{cr}}}$ at all chosen wavelengths [32]. Filamentation was assisted by focusing with a curved silver mirror with $f = {{1}}\;{\rm{m}}$.

 figure: Fig. 3.

Fig. 3. Concentration of nanoparticles (a) and ozone (b) as a function of the central wavelength of the incident pulse. Panel (a): Convolution between the pulse spectrum and 1st overtone of the most common ambient VOCs (red shaded area, absorption cross section are taken from HITRAN database [30]).

Download Full Size | PPT Slide | PDF

According to the results shown in Fig. 3(b), the ozone concentration is lower for longer incident wavelengths than for shorter ones, due to their lower multiphoton ionization/fragmentation rates [33]. Step-like changes of ozone concentration in the vicinity of 1.67, 1.78, and 1.92 µm could be attributed to the change of multiphoton ionization/fragmentation order. The concentration of nanoparticles exhibits a maximum in the vicinity of 1.75 µm [Fig. 3(a)]: its spectral dependence does not correlate with the ozone production but rather with the 1st overtone of the C-H stretch resonance of VOCs convoluted with the broadband spectrum of 50-fs pulses from the OPA [Fig. 3(a), Supplement 1, Fig. SM2], enhancing ${N_{\rm{nano}}}$ by at least a factor of 3 at the resonance.

In the case of near-IR OPA experiments, we also have observed neither depletion of ozone at resonance excitation wavelengths, nor an unusual growth of larger particles. It could be explained by a combination of the following factors: (1) a weaker photon flux and smaller filament volume (see Supplement 1, Fig. SM3), and (2) a several-orders-of-magnitude weaker absorption of overtones as compared with the fundamental resonance around 3.4 µm (Supplement 1, Fig. SM5), resulting in a lower concentration of excited/fragmented VOCs compared to the mid-IR experiments. For example, at 3.4 µm the absorbance of 5 ppb of d-limonene in the cloud chamber with length of ${\sim}{{1}}\;{\rm{m}}$ is ${\sim}{{5}} \times {{10}^{- 7}}$, as at 1.7 µm only ${{\sim} 7} \times {10^{-9}}$ [30]. To compensate for the low absorption and photon flux, we added a small amount of saturated vapor of toluene, $d$-limonene, or $\alpha$-pinene into the cloud chamber (${\sim}{{10}}\;{\rm{ml}}$ of saturated vapor for the 120 l of the chamber volume). It led to a saturation of the nanoparticle detector (${\gt}\;{{{10}}^7}\;{{\rm{cm}}^{- 3}}$) and to a more than three times drop in ozone concentration, without affecting the plasma luminescence or energy loss. It thus confirms that ozone is rather depleted by the oxidation of VOCs such as $d$-limonene, similarly to what has been observed in the case of tightly focused mid-IR pulses.

3. DISCUSSION

Because toluene is the most abundant anthropogenic VOC in the atmosphere [34], and because its photo-ionization and photo-fragmentation processes have been extensively studied (e.g.,  [35]), we hereafter focus on toluene to explain the potential mechanisms of resonant VOC-mediated LIAF in the natural atmosphere.

In our experiments, the peak intensity within the mid-IR filaments is in the order of tens of ${\rm{TW}}/{\rm{cm}}^2$ [23,36], which corresponds to the Keldysh parameter $\gamma \sim{{1}}$. Ionization thus takes place via both multiphoton absorption and tunneling pathways. However, as soon as one step of the multiphoton process is resonant, as seen in our experiments, multiphoton absorption is likely to dominate the tunneling process. Associated with ionization, fragmentation occurs, as observed when near-IR femtosecond pulses are used. The main fragmentation channel is hydrogen loss, leading to the formation of ${{\rm{C}}_7}{\rm{H}}_7^ +$ [28,37], as in the case of electron impact ionization [38]. Breaking of the C-C bond, yielding to an ionic or neutral benzene, is much less probable (typically 10% of the hydrogen loss channel), which is also consistent with the related C-C and C-H bond strengths in toluene (148 kcal/mol (1.534 eV) versus 88.6 kcal/mol (0.92 eV), [35,39], respectively). In addition, Müller et al. [37] observed that H loss in toluene was also triggered by stimulated Raman transitions on excited vibrational levels. This was achieved by spectrally broadening 800 nm femtosecond pulses to allow stimulated Raman transitions. Interestingly, photofragmentation of toluene, or more precisely of protonated toluene in ion traps, without further photoionization was also recently reported for mid-IR intense lasers [27]. The latter study confirmed resonant effects (enhanced hydrogen losses), when the mid-IR laser was tuned onto a vibrational resonance of the protonated toluene. The above-reported studies strongly suggest that the dominant fragmentation channel, when resonant conditions are met for C-H stretch transitions, is hydrogen loss and production of the ${{\rm{C}}_7}{{\rm{H}}_7}$ radical or ${{\rm{C}}_7}{\rm{H}}_7^ +$ radical ion.

The photochemical reactivity of these radicals has been widely studied in the context of pyrolysis and combustion, especially for nucleating aerosol particles [35]. In particular, the benzyl radical ${{\rm{C}}_7}{{\rm{H}}_7}$ (as ${{\rm{C}}_6}{{\rm{H}}_5}{{\rm{CH}}_2}$) exhibits a barrierless oxidation by ${{\rm{O}}_2}$ that leads to the benzyl-peroxy radical, ${{\rm{C}}_6}{{\rm{H}}_5}{{\rm{CH}}_2}{\rm{OO}}$, which is a highly oxidized VOC (HOM, highly oxygenated organic molecule). This peroxy radical eventually relaxes in ${{\rm{C}}_6}{{\rm{H}}_5}{\rm{C}}{{\rm{H}}_2}{\rm{OO}}\; = \;{{\rm{C}}_6}{{\rm{H}}_5}{\rm{CHO}}\; + {^\bullet}{\rm{OH}}$ , producing both benzaldehyde and the most efficient oxidizing agent, ${^\bullet}{\rm{OH}}$. This is of particular relevance in our case, because the efficiency of the aerosol nucleation process is determined by two parameters: the O:C ratio and the volatility of the organics [2,18,35,40,41]. Both peroxy radicals and aldehydes are then much more prone to form aerosol particles than the original neat toluene, as reviewed, for instance, by Donahue et al. [41]. In addition, the resonant C-H bond breaking in toluene also releases an H atom, which can react with ${{\rm{O}}_2}$ and ${{\rm{H}}_2}{\rm{O}}$ and form further efficient VOC oxidants like ${{\rm{HO}}_2}$ and OH [42,43].

Although the above-mentioned examples of pathways for SOA nucleation only concern toluene, they clearly support our identification of a resonant C-H bond breaking in VOCs by the mid-IR filament to form radicals as a possible mechanism for explaining the over-served enhanced nucleation rate of aerosol particles in our cloud chamber. It constitutes then the first demonstration of a resonant aerosol nucleation process.

4. CONCLUSIONS AND OUTLOOK

In conclusion, we experimentally observed and explained a new channel of laser-induced aerosol formation, based on the resonance excitation of the ambient VOCs. We showed that it is possible to switch on the resonant aerosol nucleation process either by spectrally tuning filamenting pulses into the resonance directly during the filamentation, employing the asymmetric self-induced spectral broadening, or by using the pulses from OPA with the spectrum matching the 1st absorption overtone. Our findings are of interest for the real atmosphere applications, since multiple broadband windows of atmospheric transparency and robustness towards air turbulences allow virtually lossless delivery of mid-IR pulses to remote targets, such as a reaction chamber or a cloud [44]. Moreover, the mid-IR filaments cover a larger volume and are able to transfer more energy in the single filament regime, without chaotic interruption and abortion of the filamentation. Meanwhile, the supercontinuum generated during filamentation of the mid-IR pulses can span over octaves, covering multiple absorption resonances of ambient trace gases.

Besides, because the observed here resonant aerosol nucleation process is similar to natural aging of VOC and formation of SOA and brown carbon, our results pave the way for further investigations on atmospheric photochemistry. Note that optimization of the method would be possible once tunable multi-mJ fs mid-IR optical parametric amplifiers are available. Recently, major steps toward developments of such sources were done by advancing high peak power femtosecond 1-µm pump lasers [45].

Funding

Austrian Science Fund (I-4566, T-1216N); Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (200021-178926).

Disclosures

The authors declare no conflict of interest.

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Supplemental document

See Supplement 1 for supporting content.

REFERENCES

1. P. J. Ziemann and R. Atkinson, “Kinetics, products, and mechanisms of secondary organic aerosol formation,” Chem. Soc. Rev. 41, 6582–6605 (2012). [CrossRef]  

2. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed. (Wiley, 2016).

3. D. Stolzenburg, D. Stolzenburg, and M. Simon, et al., “Enhanced growth rate of atmospheric particles from sulfuric acid,” Atmos. Chem. Phys. 20, 7359–7372 (2020). [CrossRef]  

4. J. L. Jimenez, M. R. Canagaratna, and N. M. Donahue, et al., “Evolution of organic aerosols in the atmosphere,” Science 326, 1525–1529 (2009). [CrossRef]  

5. J. Almeida, S. Schobesberger, and A. Kürten, et al., “Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere,” Nature 502, 359–363 (2013). [CrossRef]  

6. J. Malkus and R. H. Simpson, “Modification experiments on tropical cumulus clouds,” Science 145, 541–549 (1964). [CrossRef]  

7. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003). [CrossRef]  

8. J. P. Wolf, “Short-pulse lasers for weather control,” Rep. Prog. Phys. 81, 026001 (2018). [CrossRef]  

9. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007). [CrossRef]  

10. W. Liu and S.-L. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express 13, 5750–5755 (2005). [CrossRef]  

11. S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13, 41–46 (2019). [CrossRef]  

12. M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21, 26836–26845 (2013). [CrossRef]  

13. J. Kasparian, P. Rohwetter, L. Wöste, and J. P. Wolf, “Laser-assisted water condensation in the atmosphere: a step towards modulating precipitation?” J. Phys. D 45, 293001 (2012). [CrossRef]  

14. Y. Petit, S. Henin, J. Kasparian, and J. P. Wolf, “Production of ozone and nitrogen oxides by laser filamentation,” Appl. Phys. Lett. 97, 021108 (2010). [CrossRef]  

15. S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011). [CrossRef]  

16. R. Wagner, C. Linke, K. H. Naumann, M. Schnaiter, M. Vragel, M. Gangl, and H. Horvath, “A review of optical measurements at the aerosol and cloud chamber AIDA,” J. Quant. Spectrosc. Radiat. Transfer 110, 930–949 (2009). [CrossRef]  

17. H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J. P. Wolf, and L. Wöste, “Laser filament-induced aerosol formation,” Atmos. Chem. Phys. 13, 4593–4604 (2013). [CrossRef]  

18. D. Mongin, J. G. Slowik, E. Schubert, J.-G. Brisset, N. Berti, M. Moret, A. S. H. Prévôt, U. Baltensperger, J. Kasparian, and J.-P. Wolf, “Non-linear photochemical pathways in laser-induced atmospheric aerosol formation,” Sci. Rep. 5, 14978 (2015). [CrossRef]  

19. F. Bianchi, P. Barmet, L. Stirnweis, I. El Haddad, S. M. Platt, M. Saurer, C. Lötscher, R. Siegwolf, A. Bigi, C. R. Hoyle, P. F. DeCarlo, J. G. Slowik, A. S. H. Prévôt, U. Baltensperger, and J. Dommen, “Contribution of methane to aerosol carbon mass,” Atmos. Environ. 141, 41–47 (2016). [CrossRef]  

20. M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wste, and J. P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99, 141103 (2011). [CrossRef]  

21. P. Joly, M. Petrarca, A. Vogel, T. Pohl, T. Nagy, Q. Jusforgues, and P. Simon, “Laser-induced condensation by ultrashort laser pulses at 248nm,” Appl. Phys. Lett. 102, 091112 (2013). [CrossRef]  

22. D. Mongin, V. Shumakova, S. Ališauskas, E. Schubert, A. Pugžlys, J. Kasparian, J. P. Wolf, and A. Baltuška, “Conductivity and discharge guiding properties of mid-IR laser filaments,” Appl. Phys. B 122, 267 (2016). [CrossRef]  

23. V. Shumakova, S. Ališauskas, P. Malevich, C. Gollner, A. Baltuška, D. Kartashov, A. M. Zheltikov, A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, D. A. Sidorov-Biryukov, and A. Pugžlys, “Filamentation of mid-IR pulses in ambient air in the vicinity of molecular resonances,” Opt. Lett. 43, 2185–2188 (2018). [CrossRef]  

24. F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006). [CrossRef]  

25. A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015). [CrossRef]  

26. W. M. Wood, G. Focht, and M. C. Downer, “Tight focusing and blue shifting of millijoule femtosecond pulses from a conical axicon amplifier,” Opt. Lett. 13, 984–986 (1988). [CrossRef]  

27. I. E. Gordon, L. S. Rothman, and C. Hill, et al., “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017). [CrossRef]  

28. D. Schröder, H. Schwarz, P. Milko, and J. Roithová, “Dissociation routes of protonated toluene probed by infrared spectroscopy in the gas phase,” J. Phys. Chem. A 110, 8346–8353 (2006). [CrossRef]  

29. A. M. Müller, C. J. G. J. Uiterwaal, B. Witzel, J. Wanner, and K. L. Kompa, “Photoionization and photofragmentation of gaseous toluene using 80-fs, 800-nm laser pulses,” J. Chem. Phys. 112, 9289–9300 (2000). [CrossRef]  

30. K. L. Pereira, K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, M. W. Ward, K. P. Wyche, A. Muñoz, T. Vera, M. Vázquez, E. Borrás, and M. Ródenas, “Insights into the formation and evolution of individual compounds in the particulate phase during aromatic photo-oxidation,” Environ. Sci. Technol. 49, 13168–13178 (2015). [CrossRef]  

31. A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, A. Pugžlys, G. Andriukaitis, E. A. Stepanov, S. Ališauskas, T. Flöri, A. B. Fedotov, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields,” Phys. Usp. 58, 89–94 (2015). [CrossRef]  

32. R. Xu, Y. Bai, L. Song, N. Li, P. Peng, J. Tang, T. Miao, P. Liu, Z. Wang, and R. Li, “Self-focusing of few-cycle laser pulses at 1800 nm in air,” J. Phys. B 48, 94015 (2015). [CrossRef]  

33. V. Y. Fedorov and V. P. Kandidov, “Interaction/laser radiation with matter filamentation of laser pulses with different wavelengths in air,” Laser Phys. 18, 1530–1538 (2008). [CrossRef]  

34. “Toluene,” in Air Quality Guidelines, 2nd ed. (WHO Regional Office for Europe, 2000), Vol. 3, pp. 1–20.

35. M. Pelucchi, C. Cavallotti, T. Faravelli, and S. J. Klippenstein, “H-abstraction reactions by OH, HO2, O, O2 and benzyl radical addition to O2 and their implications for kinetic modelling of toluene oxidation,” Phys. Chem. Chem. Phys. 20, 10607–10627 (2018). [CrossRef]  

36. V. Shumakova, S. Ališauskas, P. Malevich, A. A. Voronin, A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. M. Zheltikov, D. Kartashov, A. Baltuška, and A. Pugžlys, “Chirp-controlled filamentation and formation of light bullets in the mid-IR,” Opt. Lett. 44, 2173–2176 (2019). [CrossRef]  

37. A. M. Müller, C. J. G. J. Uiterwaal, J. Wanner, K. L. Kompa, and B. Witzel, “White-light-induced fragmentation of toluene,” Phys. Rev. Lett. 88, 023001 (2002). [CrossRef]  

38. P. J. Linstrom and W. G. Mallard, eds. NIST Chemistry Webbook,NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, 2021).

39. M. A. Shanshal and Q. A. Yusuf, “C-C and C-H bond cleavage reactions in the chrysene and perylene aromatic molecules: an ab-initio density functional theory study,” Eur. J. Chem. 8, 288–292 (2017). [CrossRef]  

40. N. M. Donahue, W. Chuang, S. A. Epstein, J. H. Kroll, D. R. Worsnop, A. L. Robinson, P. J. Adams, and S. N. Pandis, “Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set,” Environ. Chem. 10, 151–157 (2013). [CrossRef]  

41. N. M. Donahue, S. A. Epstein, S. N. Pandis, and A. L. Robinson, “A two-dimensional volatility basis set: 1. Organic-aerosol mixing thermodynamics,” Atmos. Chem. Phys. 11, 3303–3318 (2011). [CrossRef]  

42. Z. Sun, D. H. Zhang, C. Xu, S. Zhou, D. Xie, G. Lendvay, S. Y. Lee, S. Y. Lin, and H. Guo, “State-to-state dynamics of H + O2 reaction, evidence for nonstatistical behavior,” J. Am. Chem. Soc. 130, 14962–14963 (2008). [CrossRef]  

43. Y. Muroya, S. Yamashita, P. Lertnaisat, S. Sanguanmith, J. Meesungnoen, J. P. Jay-Gerin, and Y. Katsumura, “Rate constant for the H• + H2O → •OH + H2 reaction at elevated temperatures measured by pulse radiolysis,” Phys. Chem. Chem. Phys. 19, 30834–30841 (2017). [CrossRef]  

44. P. Panagiotopoulos, M. Kolesik, and J. V. Moloney, “Exploring the limits to energy scaling and distant-target delivery of high-intensity midinfrared pulses,” Phys. Rev. A 94, 2–5 (2016). [CrossRef]  

45. E. Kaksis, G. Almási, J. A. Fülöp, A. Pugžlys, A. Baltuška, and G. Andriukaitis, “110-mJ 225-fs cryogenically cooled Yb:CaF2 multipass amplifier,” Opt. Express 24, 28915–28922 (2016). [CrossRef]  

References

  • View by:

  1. P. J. Ziemann and R. Atkinson, “Kinetics, products, and mechanisms of secondary organic aerosol formation,” Chem. Soc. Rev. 41, 6582–6605 (2012).
    [Crossref]
  2. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed. (Wiley, 2016).
  3. D. Stolzenburg, D. Stolzenburg, and M. Simon, et al., “Enhanced growth rate of atmospheric particles from sulfuric acid,” Atmos. Chem. Phys. 20, 7359–7372 (2020).
    [Crossref]
  4. J. L. Jimenez, M. R. Canagaratna, and N. M. Donahue, et al., “Evolution of organic aerosols in the atmosphere,” Science 326, 1525–1529 (2009).
    [Crossref]
  5. J. Almeida, S. Schobesberger, and A. Kürten, et al., “Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere,” Nature 502, 359–363 (2013).
    [Crossref]
  6. J. Malkus and R. H. Simpson, “Modification experiments on tropical cumulus clouds,” Science 145, 541–549 (1964).
    [Crossref]
  7. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
    [Crossref]
  8. J. P. Wolf, “Short-pulse lasers for weather control,” Rep. Prog. Phys. 81, 026001 (2018).
    [Crossref]
  9. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
    [Crossref]
  10. W. Liu and S.-L. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express 13, 5750–5755 (2005).
    [Crossref]
  11. S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13, 41–46 (2019).
    [Crossref]
  12. M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21, 26836–26845 (2013).
    [Crossref]
  13. J. Kasparian, P. Rohwetter, L. Wöste, and J. P. Wolf, “Laser-assisted water condensation in the atmosphere: a step towards modulating precipitation?” J. Phys. D 45, 293001 (2012).
    [Crossref]
  14. Y. Petit, S. Henin, J. Kasparian, and J. P. Wolf, “Production of ozone and nitrogen oxides by laser filamentation,” Appl. Phys. Lett. 97, 021108 (2010).
    [Crossref]
  15. S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
    [Crossref]
  16. R. Wagner, C. Linke, K. H. Naumann, M. Schnaiter, M. Vragel, M. Gangl, and H. Horvath, “A review of optical measurements at the aerosol and cloud chamber AIDA,” J. Quant. Spectrosc. Radiat. Transfer 110, 930–949 (2009).
    [Crossref]
  17. H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J. P. Wolf, and L. Wöste, “Laser filament-induced aerosol formation,” Atmos. Chem. Phys. 13, 4593–4604 (2013).
    [Crossref]
  18. D. Mongin, J. G. Slowik, E. Schubert, J.-G. Brisset, N. Berti, M. Moret, A. S. H. Prévôt, U. Baltensperger, J. Kasparian, and J.-P. Wolf, “Non-linear photochemical pathways in laser-induced atmospheric aerosol formation,” Sci. Rep. 5, 14978 (2015).
    [Crossref]
  19. F. Bianchi, P. Barmet, L. Stirnweis, I. El Haddad, S. M. Platt, M. Saurer, C. Lötscher, R. Siegwolf, A. Bigi, C. R. Hoyle, P. F. DeCarlo, J. G. Slowik, A. S. H. Prévôt, U. Baltensperger, and J. Dommen, “Contribution of methane to aerosol carbon mass,” Atmos. Environ. 141, 41–47 (2016).
    [Crossref]
  20. M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wste, and J. P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99, 141103 (2011).
    [Crossref]
  21. P. Joly, M. Petrarca, A. Vogel, T. Pohl, T. Nagy, Q. Jusforgues, and P. Simon, “Laser-induced condensation by ultrashort laser pulses at 248nm,” Appl. Phys. Lett. 102, 091112 (2013).
    [Crossref]
  22. D. Mongin, V. Shumakova, S. Ališauskas, E. Schubert, A. Pugžlys, J. Kasparian, J. P. Wolf, and A. Baltuška, “Conductivity and discharge guiding properties of mid-IR laser filaments,” Appl. Phys. B 122, 267 (2016).
    [Crossref]
  23. V. Shumakova, S. Ališauskas, P. Malevich, C. Gollner, A. Baltuška, D. Kartashov, A. M. Zheltikov, A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, D. A. Sidorov-Biryukov, and A. Pugžlys, “Filamentation of mid-IR pulses in ambient air in the vicinity of molecular resonances,” Opt. Lett. 43, 2185–2188 (2018).
    [Crossref]
  24. F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
    [Crossref]
  25. A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
    [Crossref]
  26. W. M. Wood, G. Focht, and M. C. Downer, “Tight focusing and blue shifting of millijoule femtosecond pulses from a conical axicon amplifier,” Opt. Lett. 13, 984–986 (1988).
    [Crossref]
  27. I. E. Gordon, L. S. Rothman, and C. Hill, et al., “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
    [Crossref]
  28. D. Schröder, H. Schwarz, P. Milko, and J. Roithová, “Dissociation routes of protonated toluene probed by infrared spectroscopy in the gas phase,” J. Phys. Chem. A 110, 8346–8353 (2006).
    [Crossref]
  29. A. M. Müller, C. J. G. J. Uiterwaal, B. Witzel, J. Wanner, and K. L. Kompa, “Photoionization and photofragmentation of gaseous toluene using 80-fs, 800-nm laser pulses,” J. Chem. Phys. 112, 9289–9300 (2000).
    [Crossref]
  30. K. L. Pereira, K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, M. W. Ward, K. P. Wyche, A. Muñoz, T. Vera, M. Vázquez, E. Borrás, and M. Ródenas, “Insights into the formation and evolution of individual compounds in the particulate phase during aromatic photo-oxidation,” Environ. Sci. Technol. 49, 13168–13178 (2015).
    [Crossref]
  31. A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, A. Pugžlys, G. Andriukaitis, E. A. Stepanov, S. Ališauskas, T. Flöri, A. B. Fedotov, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields,” Phys. Usp. 58, 89–94 (2015).
    [Crossref]
  32. R. Xu, Y. Bai, L. Song, N. Li, P. Peng, J. Tang, T. Miao, P. Liu, Z. Wang, and R. Li, “Self-focusing of few-cycle laser pulses at 1800 nm in air,” J. Phys. B 48, 94015 (2015).
    [Crossref]
  33. V. Y. Fedorov and V. P. Kandidov, “Interaction/laser radiation with matter filamentation of laser pulses with different wavelengths in air,” Laser Phys. 18, 1530–1538 (2008).
    [Crossref]
  34. “Toluene,” in Air Quality Guidelines, 2nd ed. (WHO Regional Office for Europe, 2000), Vol. 3, pp. 1–20.
  35. M. Pelucchi, C. Cavallotti, T. Faravelli, and S. J. Klippenstein, “H-abstraction reactions by OH, HO2, O, O2 and benzyl radical addition to O2 and their implications for kinetic modelling of toluene oxidation,” Phys. Chem. Chem. Phys. 20, 10607–10627 (2018).
    [Crossref]
  36. V. Shumakova, S. Ališauskas, P. Malevich, A. A. Voronin, A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. M. Zheltikov, D. Kartashov, A. Baltuška, and A. Pugžlys, “Chirp-controlled filamentation and formation of light bullets in the mid-IR,” Opt. Lett. 44, 2173–2176 (2019).
    [Crossref]
  37. A. M. Müller, C. J. G. J. Uiterwaal, J. Wanner, K. L. Kompa, and B. Witzel, “White-light-induced fragmentation of toluene,” Phys. Rev. Lett. 88, 023001 (2002).
    [Crossref]
  38. P. J. Linstrom and W. G. Mallard, eds. NIST Chemistry Webbook,NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, 2021).
  39. M. A. Shanshal and Q. A. Yusuf, “C-C and C-H bond cleavage reactions in the chrysene and perylene aromatic molecules: an ab-initio density functional theory study,” Eur. J. Chem. 8, 288–292 (2017).
    [Crossref]
  40. N. M. Donahue, W. Chuang, S. A. Epstein, J. H. Kroll, D. R. Worsnop, A. L. Robinson, P. J. Adams, and S. N. Pandis, “Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set,” Environ. Chem. 10, 151–157 (2013).
    [Crossref]
  41. N. M. Donahue, S. A. Epstein, S. N. Pandis, and A. L. Robinson, “A two-dimensional volatility basis set: 1. Organic-aerosol mixing thermodynamics,” Atmos. Chem. Phys. 11, 3303–3318 (2011).
    [Crossref]
  42. Z. Sun, D. H. Zhang, C. Xu, S. Zhou, D. Xie, G. Lendvay, S. Y. Lee, S. Y. Lin, and H. Guo, “State-to-state dynamics of H + O2 reaction, evidence for nonstatistical behavior,” J. Am. Chem. Soc. 130, 14962–14963 (2008).
    [Crossref]
  43. Y. Muroya, S. Yamashita, P. Lertnaisat, S. Sanguanmith, J. Meesungnoen, J. P. Jay-Gerin, and Y. Katsumura, “Rate constant for the H• + H2O → •OH + H2 reaction at elevated temperatures measured by pulse radiolysis,” Phys. Chem. Chem. Phys. 19, 30834–30841 (2017).
    [Crossref]
  44. P. Panagiotopoulos, M. Kolesik, and J. V. Moloney, “Exploring the limits to energy scaling and distant-target delivery of high-intensity midinfrared pulses,” Phys. Rev. A 94, 2–5 (2016).
    [Crossref]
  45. E. Kaksis, G. Almási, J. A. Fülöp, A. Pugžlys, A. Baltuška, and G. Andriukaitis, “110-mJ 225-fs cryogenically cooled Yb:CaF2 multipass amplifier,” Opt. Express 24, 28915–28922 (2016).
    [Crossref]

2020 (1)

D. Stolzenburg, D. Stolzenburg, and M. Simon, et al., “Enhanced growth rate of atmospheric particles from sulfuric acid,” Atmos. Chem. Phys. 20, 7359–7372 (2020).
[Crossref]

2019 (2)

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13, 41–46 (2019).
[Crossref]

V. Shumakova, S. Ališauskas, P. Malevich, A. A. Voronin, A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. M. Zheltikov, D. Kartashov, A. Baltuška, and A. Pugžlys, “Chirp-controlled filamentation and formation of light bullets in the mid-IR,” Opt. Lett. 44, 2173–2176 (2019).
[Crossref]

2018 (3)

V. Shumakova, S. Ališauskas, P. Malevich, C. Gollner, A. Baltuška, D. Kartashov, A. M. Zheltikov, A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, D. A. Sidorov-Biryukov, and A. Pugžlys, “Filamentation of mid-IR pulses in ambient air in the vicinity of molecular resonances,” Opt. Lett. 43, 2185–2188 (2018).
[Crossref]

J. P. Wolf, “Short-pulse lasers for weather control,” Rep. Prog. Phys. 81, 026001 (2018).
[Crossref]

M. Pelucchi, C. Cavallotti, T. Faravelli, and S. J. Klippenstein, “H-abstraction reactions by OH, HO2, O, O2 and benzyl radical addition to O2 and their implications for kinetic modelling of toluene oxidation,” Phys. Chem. Chem. Phys. 20, 10607–10627 (2018).
[Crossref]

2017 (3)

Y. Muroya, S. Yamashita, P. Lertnaisat, S. Sanguanmith, J. Meesungnoen, J. P. Jay-Gerin, and Y. Katsumura, “Rate constant for the H• + H2O → •OH + H2 reaction at elevated temperatures measured by pulse radiolysis,” Phys. Chem. Chem. Phys. 19, 30834–30841 (2017).
[Crossref]

M. A. Shanshal and Q. A. Yusuf, “C-C and C-H bond cleavage reactions in the chrysene and perylene aromatic molecules: an ab-initio density functional theory study,” Eur. J. Chem. 8, 288–292 (2017).
[Crossref]

I. E. Gordon, L. S. Rothman, and C. Hill, et al., “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

2016 (4)

F. Bianchi, P. Barmet, L. Stirnweis, I. El Haddad, S. M. Platt, M. Saurer, C. Lötscher, R. Siegwolf, A. Bigi, C. R. Hoyle, P. F. DeCarlo, J. G. Slowik, A. S. H. Prévôt, U. Baltensperger, and J. Dommen, “Contribution of methane to aerosol carbon mass,” Atmos. Environ. 141, 41–47 (2016).
[Crossref]

D. Mongin, V. Shumakova, S. Ališauskas, E. Schubert, A. Pugžlys, J. Kasparian, J. P. Wolf, and A. Baltuška, “Conductivity and discharge guiding properties of mid-IR laser filaments,” Appl. Phys. B 122, 267 (2016).
[Crossref]

P. Panagiotopoulos, M. Kolesik, and J. V. Moloney, “Exploring the limits to energy scaling and distant-target delivery of high-intensity midinfrared pulses,” Phys. Rev. A 94, 2–5 (2016).
[Crossref]

E. Kaksis, G. Almási, J. A. Fülöp, A. Pugžlys, A. Baltuška, and G. Andriukaitis, “110-mJ 225-fs cryogenically cooled Yb:CaF2 multipass amplifier,” Opt. Express 24, 28915–28922 (2016).
[Crossref]

2015 (5)

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

K. L. Pereira, K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, M. W. Ward, K. P. Wyche, A. Muñoz, T. Vera, M. Vázquez, E. Borrás, and M. Ródenas, “Insights into the formation and evolution of individual compounds in the particulate phase during aromatic photo-oxidation,” Environ. Sci. Technol. 49, 13168–13178 (2015).
[Crossref]

A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, A. Pugžlys, G. Andriukaitis, E. A. Stepanov, S. Ališauskas, T. Flöri, A. B. Fedotov, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields,” Phys. Usp. 58, 89–94 (2015).
[Crossref]

R. Xu, Y. Bai, L. Song, N. Li, P. Peng, J. Tang, T. Miao, P. Liu, Z. Wang, and R. Li, “Self-focusing of few-cycle laser pulses at 1800 nm in air,” J. Phys. B 48, 94015 (2015).
[Crossref]

D. Mongin, J. G. Slowik, E. Schubert, J.-G. Brisset, N. Berti, M. Moret, A. S. H. Prévôt, U. Baltensperger, J. Kasparian, and J.-P. Wolf, “Non-linear photochemical pathways in laser-induced atmospheric aerosol formation,” Sci. Rep. 5, 14978 (2015).
[Crossref]

2013 (5)

H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J. P. Wolf, and L. Wöste, “Laser filament-induced aerosol formation,” Atmos. Chem. Phys. 13, 4593–4604 (2013).
[Crossref]

M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21, 26836–26845 (2013).
[Crossref]

J. Almeida, S. Schobesberger, and A. Kürten, et al., “Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere,” Nature 502, 359–363 (2013).
[Crossref]

P. Joly, M. Petrarca, A. Vogel, T. Pohl, T. Nagy, Q. Jusforgues, and P. Simon, “Laser-induced condensation by ultrashort laser pulses at 248nm,” Appl. Phys. Lett. 102, 091112 (2013).
[Crossref]

N. M. Donahue, W. Chuang, S. A. Epstein, J. H. Kroll, D. R. Worsnop, A. L. Robinson, P. J. Adams, and S. N. Pandis, “Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set,” Environ. Chem. 10, 151–157 (2013).
[Crossref]

2012 (2)

P. J. Ziemann and R. Atkinson, “Kinetics, products, and mechanisms of secondary organic aerosol formation,” Chem. Soc. Rev. 41, 6582–6605 (2012).
[Crossref]

J. Kasparian, P. Rohwetter, L. Wöste, and J. P. Wolf, “Laser-assisted water condensation in the atmosphere: a step towards modulating precipitation?” J. Phys. D 45, 293001 (2012).
[Crossref]

2011 (3)

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref]

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wste, and J. P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99, 141103 (2011).
[Crossref]

N. M. Donahue, S. A. Epstein, S. N. Pandis, and A. L. Robinson, “A two-dimensional volatility basis set: 1. Organic-aerosol mixing thermodynamics,” Atmos. Chem. Phys. 11, 3303–3318 (2011).
[Crossref]

2010 (1)

Y. Petit, S. Henin, J. Kasparian, and J. P. Wolf, “Production of ozone and nitrogen oxides by laser filamentation,” Appl. Phys. Lett. 97, 021108 (2010).
[Crossref]

2009 (2)

R. Wagner, C. Linke, K. H. Naumann, M. Schnaiter, M. Vragel, M. Gangl, and H. Horvath, “A review of optical measurements at the aerosol and cloud chamber AIDA,” J. Quant. Spectrosc. Radiat. Transfer 110, 930–949 (2009).
[Crossref]

J. L. Jimenez, M. R. Canagaratna, and N. M. Donahue, et al., “Evolution of organic aerosols in the atmosphere,” Science 326, 1525–1529 (2009).
[Crossref]

2008 (2)

V. Y. Fedorov and V. P. Kandidov, “Interaction/laser radiation with matter filamentation of laser pulses with different wavelengths in air,” Laser Phys. 18, 1530–1538 (2008).
[Crossref]

Z. Sun, D. H. Zhang, C. Xu, S. Zhou, D. Xie, G. Lendvay, S. Y. Lee, S. Y. Lin, and H. Guo, “State-to-state dynamics of H + O2 reaction, evidence for nonstatistical behavior,” J. Am. Chem. Soc. 130, 14962–14963 (2008).
[Crossref]

2007 (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

2006 (2)

D. Schröder, H. Schwarz, P. Milko, and J. Roithová, “Dissociation routes of protonated toluene probed by infrared spectroscopy in the gas phase,” J. Phys. Chem. A 110, 8346–8353 (2006).
[Crossref]

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

2005 (1)

2003 (1)

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

2002 (1)

A. M. Müller, C. J. G. J. Uiterwaal, J. Wanner, K. L. Kompa, and B. Witzel, “White-light-induced fragmentation of toluene,” Phys. Rev. Lett. 88, 023001 (2002).
[Crossref]

2000 (1)

A. M. Müller, C. J. G. J. Uiterwaal, B. Witzel, J. Wanner, and K. L. Kompa, “Photoionization and photofragmentation of gaseous toluene using 80-fs, 800-nm laser pulses,” J. Chem. Phys. 112, 9289–9300 (2000).
[Crossref]

1988 (1)

1964 (1)

J. Malkus and R. H. Simpson, “Modification experiments on tropical cumulus clouds,” Science 145, 541–549 (1964).
[Crossref]

Adams, P. J.

N. M. Donahue, W. Chuang, S. A. Epstein, J. H. Kroll, D. R. Worsnop, A. L. Robinson, P. J. Adams, and S. N. Pandis, “Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set,” Environ. Chem. 10, 151–157 (2013).
[Crossref]

Alam, M. S.

K. L. Pereira, K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, M. W. Ward, K. P. Wyche, A. Muñoz, T. Vera, M. Vázquez, E. Borrás, and M. Ródenas, “Insights into the formation and evolution of individual compounds in the particulate phase during aromatic photo-oxidation,” Environ. Sci. Technol. 49, 13168–13178 (2015).
[Crossref]

Ališauskas, S.

V. Shumakova, S. Ališauskas, P. Malevich, A. A. Voronin, A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. M. Zheltikov, D. Kartashov, A. Baltuška, and A. Pugžlys, “Chirp-controlled filamentation and formation of light bullets in the mid-IR,” Opt. Lett. 44, 2173–2176 (2019).
[Crossref]

V. Shumakova, S. Ališauskas, P. Malevich, C. Gollner, A. Baltuška, D. Kartashov, A. M. Zheltikov, A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, D. A. Sidorov-Biryukov, and A. Pugžlys, “Filamentation of mid-IR pulses in ambient air in the vicinity of molecular resonances,” Opt. Lett. 43, 2185–2188 (2018).
[Crossref]

D. Mongin, V. Shumakova, S. Ališauskas, E. Schubert, A. Pugžlys, J. Kasparian, J. P. Wolf, and A. Baltuška, “Conductivity and discharge guiding properties of mid-IR laser filaments,” Appl. Phys. B 122, 267 (2016).
[Crossref]

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, A. Pugžlys, G. Andriukaitis, E. A. Stepanov, S. Ališauskas, T. Flöri, A. B. Fedotov, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields,” Phys. Usp. 58, 89–94 (2015).
[Crossref]

Almási, G.

Almeida, J.

J. Almeida, S. Schobesberger, and A. Kürten, et al., “Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere,” Nature 502, 359–363 (2013).
[Crossref]

André, Y. B.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Andriukaitis, G.

E. Kaksis, G. Almási, J. A. Fülöp, A. Pugžlys, A. Baltuška, and G. Andriukaitis, “110-mJ 225-fs cryogenically cooled Yb:CaF2 multipass amplifier,” Opt. Express 24, 28915–28922 (2016).
[Crossref]

A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, A. Pugžlys, G. Andriukaitis, E. A. Stepanov, S. Ališauskas, T. Flöri, A. B. Fedotov, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields,” Phys. Usp. 58, 89–94 (2015).
[Crossref]

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

Atkinson, R.

P. J. Ziemann and R. Atkinson, “Kinetics, products, and mechanisms of secondary organic aerosol formation,” Chem. Soc. Rev. 41, 6582–6605 (2012).
[Crossref]

Bai, Y.

R. Xu, Y. Bai, L. Song, N. Li, P. Peng, J. Tang, T. Miao, P. Liu, Z. Wang, and R. Li, “Self-focusing of few-cycle laser pulses at 1800 nm in air,” J. Phys. B 48, 94015 (2015).
[Crossref]

Baltensperger, U.

F. Bianchi, P. Barmet, L. Stirnweis, I. El Haddad, S. M. Platt, M. Saurer, C. Lötscher, R. Siegwolf, A. Bigi, C. R. Hoyle, P. F. DeCarlo, J. G. Slowik, A. S. H. Prévôt, U. Baltensperger, and J. Dommen, “Contribution of methane to aerosol carbon mass,” Atmos. Environ. 141, 41–47 (2016).
[Crossref]

D. Mongin, J. G. Slowik, E. Schubert, J.-G. Brisset, N. Berti, M. Moret, A. S. H. Prévôt, U. Baltensperger, J. Kasparian, and J.-P. Wolf, “Non-linear photochemical pathways in laser-induced atmospheric aerosol formation,” Sci. Rep. 5, 14978 (2015).
[Crossref]

Baltuška, A.

V. Shumakova, S. Ališauskas, P. Malevich, A. A. Voronin, A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. M. Zheltikov, D. Kartashov, A. Baltuška, and A. Pugžlys, “Chirp-controlled filamentation and formation of light bullets in the mid-IR,” Opt. Lett. 44, 2173–2176 (2019).
[Crossref]

V. Shumakova, S. Ališauskas, P. Malevich, C. Gollner, A. Baltuška, D. Kartashov, A. M. Zheltikov, A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, D. A. Sidorov-Biryukov, and A. Pugžlys, “Filamentation of mid-IR pulses in ambient air in the vicinity of molecular resonances,” Opt. Lett. 43, 2185–2188 (2018).
[Crossref]

D. Mongin, V. Shumakova, S. Ališauskas, E. Schubert, A. Pugžlys, J. Kasparian, J. P. Wolf, and A. Baltuška, “Conductivity and discharge guiding properties of mid-IR laser filaments,” Appl. Phys. B 122, 267 (2016).
[Crossref]

E. Kaksis, G. Almási, J. A. Fülöp, A. Pugžlys, A. Baltuška, and G. Andriukaitis, “110-mJ 225-fs cryogenically cooled Yb:CaF2 multipass amplifier,” Opt. Express 24, 28915–28922 (2016).
[Crossref]

A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, A. Pugžlys, G. Andriukaitis, E. A. Stepanov, S. Ališauskas, T. Flöri, A. B. Fedotov, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields,” Phys. Usp. 58, 89–94 (2015).
[Crossref]

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

Barmet, P.

F. Bianchi, P. Barmet, L. Stirnweis, I. El Haddad, S. M. Platt, M. Saurer, C. Lötscher, R. Siegwolf, A. Bigi, C. R. Hoyle, P. F. DeCarlo, J. G. Slowik, A. S. H. Prévôt, U. Baltensperger, and J. Dommen, “Contribution of methane to aerosol carbon mass,” Atmos. Environ. 141, 41–47 (2016).
[Crossref]

Becker, A.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

Berti, N.

D. Mongin, J. G. Slowik, E. Schubert, J.-G. Brisset, N. Berti, M. Moret, A. S. H. Prévôt, U. Baltensperger, J. Kasparian, and J.-P. Wolf, “Non-linear photochemical pathways in laser-induced atmospheric aerosol formation,” Sci. Rep. 5, 14978 (2015).
[Crossref]

Bianchi, F.

F. Bianchi, P. Barmet, L. Stirnweis, I. El Haddad, S. M. Platt, M. Saurer, C. Lötscher, R. Siegwolf, A. Bigi, C. R. Hoyle, P. F. DeCarlo, J. G. Slowik, A. S. H. Prévôt, U. Baltensperger, and J. Dommen, “Contribution of methane to aerosol carbon mass,” Atmos. Environ. 141, 41–47 (2016).
[Crossref]

Bigi, A.

F. Bianchi, P. Barmet, L. Stirnweis, I. El Haddad, S. M. Platt, M. Saurer, C. Lötscher, R. Siegwolf, A. Bigi, C. R. Hoyle, P. F. DeCarlo, J. G. Slowik, A. S. H. Prévôt, U. Baltensperger, and J. Dommen, “Contribution of methane to aerosol carbon mass,” Atmos. Environ. 141, 41–47 (2016).
[Crossref]

Bloss, W. J.

K. L. Pereira, K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, M. W. Ward, K. P. Wyche, A. Muñoz, T. Vera, M. Vázquez, E. Borrás, and M. Ródenas, “Insights into the formation and evolution of individual compounds in the particulate phase during aromatic photo-oxidation,” Environ. Sci. Technol. 49, 13168–13178 (2015).
[Crossref]

Bock, S.

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wste, and J. P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99, 141103 (2011).
[Crossref]

Borchert, H.

Borrás, E.

K. L. Pereira, K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, M. W. Ward, K. P. Wyche, A. Muñoz, T. Vera, M. Vázquez, E. Borrás, and M. Ródenas, “Insights into the formation and evolution of individual compounds in the particulate phase during aromatic photo-oxidation,” Environ. Sci. Technol. 49, 13168–13178 (2015).
[Crossref]

Bourayou, R.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Brisset, J.-G.

D. Mongin, J. G. Slowik, E. Schubert, J.-G. Brisset, N. Berti, M. Moret, A. S. H. Prévôt, U. Baltensperger, J. Kasparian, and J.-P. Wolf, “Non-linear photochemical pathways in laser-induced atmospheric aerosol formation,” Sci. Rep. 5, 14978 (2015).
[Crossref]

Camredon, M.

K. L. Pereira, K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, M. W. Ward, K. P. Wyche, A. Muñoz, T. Vera, M. Vázquez, E. Borrás, and M. Ródenas, “Insights into the formation and evolution of individual compounds in the particulate phase during aromatic photo-oxidation,” Environ. Sci. Technol. 49, 13168–13178 (2015).
[Crossref]

Canagaratna, M. R.

J. L. Jimenez, M. R. Canagaratna, and N. M. Donahue, et al., “Evolution of organic aerosols in the atmosphere,” Science 326, 1525–1529 (2009).
[Crossref]

Cavallotti, C.

M. Pelucchi, C. Cavallotti, T. Faravelli, and S. J. Klippenstein, “H-abstraction reactions by OH, HO2, O, O2 and benzyl radical addition to O2 and their implications for kinetic modelling of toluene oxidation,” Phys. Chem. Chem. Phys. 20, 10607–10627 (2018).
[Crossref]

Chateauneuf, M.

Chin, S. L.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

Chin, S.-L.

Chuang, W.

N. M. Donahue, W. Chuang, S. A. Epstein, J. H. Kroll, D. R. Worsnop, A. L. Robinson, P. J. Adams, and S. N. Pandis, “Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set,” Environ. Chem. 10, 151–157 (2013).
[Crossref]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Daigle, J.-F.

DeCarlo, P. F.

F. Bianchi, P. Barmet, L. Stirnweis, I. El Haddad, S. M. Platt, M. Saurer, C. Lötscher, R. Siegwolf, A. Bigi, C. R. Hoyle, P. F. DeCarlo, J. G. Slowik, A. S. H. Prévôt, U. Baltensperger, and J. Dommen, “Contribution of methane to aerosol carbon mass,” Atmos. Environ. 141, 41–47 (2016).
[Crossref]

Delagrange, R.

H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J. P. Wolf, and L. Wöste, “Laser filament-induced aerosol formation,” Atmos. Chem. Phys. 13, 4593–4604 (2013).
[Crossref]

Diener, K.

Dommen, J.

F. Bianchi, P. Barmet, L. Stirnweis, I. El Haddad, S. M. Platt, M. Saurer, C. Lötscher, R. Siegwolf, A. Bigi, C. R. Hoyle, P. F. DeCarlo, J. G. Slowik, A. S. H. Prévôt, U. Baltensperger, and J. Dommen, “Contribution of methane to aerosol carbon mass,” Atmos. Environ. 141, 41–47 (2016).
[Crossref]

Donahue, N. M.

N. M. Donahue, W. Chuang, S. A. Epstein, J. H. Kroll, D. R. Worsnop, A. L. Robinson, P. J. Adams, and S. N. Pandis, “Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set,” Environ. Chem. 10, 151–157 (2013).
[Crossref]

N. M. Donahue, S. A. Epstein, S. N. Pandis, and A. L. Robinson, “A two-dimensional volatility basis set: 1. Organic-aerosol mixing thermodynamics,” Atmos. Chem. Phys. 11, 3303–3318 (2011).
[Crossref]

J. L. Jimenez, M. R. Canagaratna, and N. M. Donahue, et al., “Evolution of organic aerosols in the atmosphere,” Science 326, 1525–1529 (2009).
[Crossref]

Downer, M. C.

Dubois, J.

Durand, M.

Durécu, A.

El Haddad, I.

F. Bianchi, P. Barmet, L. Stirnweis, I. El Haddad, S. M. Platt, M. Saurer, C. Lötscher, R. Siegwolf, A. Bigi, C. R. Hoyle, P. F. DeCarlo, J. G. Slowik, A. S. H. Prévôt, U. Baltensperger, and J. Dommen, “Contribution of methane to aerosol carbon mass,” Atmos. Environ. 141, 41–47 (2016).
[Crossref]

Epstein, S. A.

N. M. Donahue, W. Chuang, S. A. Epstein, J. H. Kroll, D. R. Worsnop, A. L. Robinson, P. J. Adams, and S. N. Pandis, “Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set,” Environ. Chem. 10, 151–157 (2013).
[Crossref]

N. M. Donahue, S. A. Epstein, S. N. Pandis, and A. L. Robinson, “A two-dimensional volatility basis set: 1. Organic-aerosol mixing thermodynamics,” Atmos. Chem. Phys. 11, 3303–3318 (2011).
[Crossref]

Faravelli, T.

M. Pelucchi, C. Cavallotti, T. Faravelli, and S. J. Klippenstein, “H-abstraction reactions by OH, HO2, O, O2 and benzyl radical addition to O2 and their implications for kinetic modelling of toluene oxidation,” Phys. Chem. Chem. Phys. 20, 10607–10627 (2018).
[Crossref]

Fedorov, V. Y.

V. Y. Fedorov and V. P. Kandidov, “Interaction/laser radiation with matter filamentation of laser pulses with different wavelengths in air,” Laser Phys. 18, 1530–1538 (2008).
[Crossref]

Fedotov, A. B.

A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, A. Pugžlys, G. Andriukaitis, E. A. Stepanov, S. Ališauskas, T. Flöri, A. B. Fedotov, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields,” Phys. Usp. 58, 89–94 (2015).
[Crossref]

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

Fleury, D.

Flöri, T.

A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, A. Pugžlys, G. Andriukaitis, E. A. Stepanov, S. Ališauskas, T. Flöri, A. B. Fedotov, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields,” Phys. Usp. 58, 89–94 (2015).
[Crossref]

Flöry, T.

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

Focht, G.

Frey, S.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Fülöp, J. A.

Gangl, M.

R. Wagner, C. Linke, K. H. Naumann, M. Schnaiter, M. Vragel, M. Gangl, and H. Horvath, “A review of optical measurements at the aerosol and cloud chamber AIDA,” J. Quant. Spectrosc. Radiat. Transfer 110, 930–949 (2009).
[Crossref]

Gollner, C.

Gordon, I. E.

I. E. Gordon, L. S. Rothman, and C. Hill, et al., “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Guo, H.

Z. Sun, D. H. Zhang, C. Xu, S. Zhou, D. Xie, G. Lendvay, S. Y. Lee, S. Y. Lin, and H. Guo, “State-to-state dynamics of H + O2 reaction, evidence for nonstatistical behavior,” J. Am. Chem. Soc. 130, 14962–14963 (2008).
[Crossref]

Hamilton, J. F.

K. L. Pereira, K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, M. W. Ward, K. P. Wyche, A. Muñoz, T. Vera, M. Vázquez, E. Borrás, and M. Ródenas, “Insights into the formation and evolution of individual compounds in the particulate phase during aromatic photo-oxidation,” Environ. Sci. Technol. 49, 13168–13178 (2015).
[Crossref]

Hao, Z.

H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J. P. Wolf, and L. Wöste, “Laser filament-induced aerosol formation,” Atmos. Chem. Phys. 13, 4593–4604 (2013).
[Crossref]

Hao, Z. Q.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref]

Henin, S.

H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J. P. Wolf, and L. Wöste, “Laser filament-induced aerosol formation,” Atmos. Chem. Phys. 13, 4593–4604 (2013).
[Crossref]

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wste, and J. P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99, 141103 (2011).
[Crossref]

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref]

Y. Petit, S. Henin, J. Kasparian, and J. P. Wolf, “Production of ozone and nitrogen oxides by laser filamentation,” Appl. Phys. Lett. 97, 021108 (2010).
[Crossref]

Hill, C.

I. E. Gordon, L. S. Rothman, and C. Hill, et al., “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Horvath, H.

R. Wagner, C. Linke, K. H. Naumann, M. Schnaiter, M. Vragel, M. Gangl, and H. Horvath, “A review of optical measurements at the aerosol and cloud chamber AIDA,” J. Quant. Spectrosc. Radiat. Transfer 110, 930–949 (2009).
[Crossref]

Houard, A.

Hoyle, C. R.

F. Bianchi, P. Barmet, L. Stirnweis, I. El Haddad, S. M. Platt, M. Saurer, C. Lötscher, R. Siegwolf, A. Bigi, C. R. Hoyle, P. F. DeCarlo, J. G. Slowik, A. S. H. Prévôt, U. Baltensperger, and J. Dommen, “Contribution of methane to aerosol carbon mass,” Atmos. Environ. 141, 41–47 (2016).
[Crossref]

Jay-Gerin, J. P.

Y. Muroya, S. Yamashita, P. Lertnaisat, S. Sanguanmith, J. Meesungnoen, J. P. Jay-Gerin, and Y. Katsumura, “Rate constant for the H• + H2O → •OH + H2 reaction at elevated temperatures measured by pulse radiolysis,” Phys. Chem. Chem. Phys. 19, 30834–30841 (2017).
[Crossref]

Jimenez, J. L.

J. L. Jimenez, M. R. Canagaratna, and N. M. Donahue, et al., “Evolution of organic aerosols in the atmosphere,” Science 326, 1525–1529 (2009).
[Crossref]

Joly, P.

P. Joly, M. Petrarca, A. Vogel, T. Pohl, T. Nagy, Q. Jusforgues, and P. Simon, “Laser-induced condensation by ultrashort laser pulses at 248nm,” Appl. Phys. Lett. 102, 091112 (2013).
[Crossref]

Joshi, C.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13, 41–46 (2019).
[Crossref]

Jusforgues, Q.

P. Joly, M. Petrarca, A. Vogel, T. Pohl, T. Nagy, Q. Jusforgues, and P. Simon, “Laser-induced condensation by ultrashort laser pulses at 248nm,” Appl. Phys. Lett. 102, 091112 (2013).
[Crossref]

Kaksis, E.

Kandidov, V. P.

V. Y. Fedorov and V. P. Kandidov, “Interaction/laser radiation with matter filamentation of laser pulses with different wavelengths in air,” Laser Phys. 18, 1530–1538 (2008).
[Crossref]

Kartashov, D.

Kasparian, J.

D. Mongin, V. Shumakova, S. Ališauskas, E. Schubert, A. Pugžlys, J. Kasparian, J. P. Wolf, and A. Baltuška, “Conductivity and discharge guiding properties of mid-IR laser filaments,” Appl. Phys. B 122, 267 (2016).
[Crossref]

D. Mongin, J. G. Slowik, E. Schubert, J.-G. Brisset, N. Berti, M. Moret, A. S. H. Prévôt, U. Baltensperger, J. Kasparian, and J.-P. Wolf, “Non-linear photochemical pathways in laser-induced atmospheric aerosol formation,” Sci. Rep. 5, 14978 (2015).
[Crossref]

H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J. P. Wolf, and L. Wöste, “Laser filament-induced aerosol formation,” Atmos. Chem. Phys. 13, 4593–4604 (2013).
[Crossref]

J. Kasparian, P. Rohwetter, L. Wöste, and J. P. Wolf, “Laser-assisted water condensation in the atmosphere: a step towards modulating precipitation?” J. Phys. D 45, 293001 (2012).
[Crossref]

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref]

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wste, and J. P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99, 141103 (2011).
[Crossref]

Y. Petit, S. Henin, J. Kasparian, and J. P. Wolf, “Production of ozone and nitrogen oxides by laser filamentation,” Appl. Phys. Lett. 97, 021108 (2010).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Katsumura, Y.

Y. Muroya, S. Yamashita, P. Lertnaisat, S. Sanguanmith, J. Meesungnoen, J. P. Jay-Gerin, and Y. Katsumura, “Rate constant for the H• + H2O → •OH + H2 reaction at elevated temperatures measured by pulse radiolysis,” Phys. Chem. Chem. Phys. 19, 30834–30841 (2017).
[Crossref]

Klippenstein, S. J.

M. Pelucchi, C. Cavallotti, T. Faravelli, and S. J. Klippenstein, “H-abstraction reactions by OH, HO2, O, O2 and benzyl radical addition to O2 and their implications for kinetic modelling of toluene oxidation,” Phys. Chem. Chem. Phys. 20, 10607–10627 (2018).
[Crossref]

Koch, S. W.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13, 41–46 (2019).
[Crossref]

Kolesik, M.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13, 41–46 (2019).
[Crossref]

P. Panagiotopoulos, M. Kolesik, and J. V. Moloney, “Exploring the limits to energy scaling and distant-target delivery of high-intensity midinfrared pulses,” Phys. Rev. A 94, 2–5 (2016).
[Crossref]

Kompa, K. L.

A. M. Müller, C. J. G. J. Uiterwaal, J. Wanner, K. L. Kompa, and B. Witzel, “White-light-induced fragmentation of toluene,” Phys. Rev. Lett. 88, 023001 (2002).
[Crossref]

A. M. Müller, C. J. G. J. Uiterwaal, B. Witzel, J. Wanner, and K. L. Kompa, “Photoionization and photofragmentation of gaseous toluene using 80-fs, 800-nm laser pulses,” J. Chem. Phys. 112, 9289–9300 (2000).
[Crossref]

Kraft, S.

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wste, and J. P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99, 141103 (2011).
[Crossref]

Kroll, J. H.

N. M. Donahue, W. Chuang, S. A. Epstein, J. H. Kroll, D. R. Worsnop, A. L. Robinson, P. J. Adams, and S. N. Pandis, “Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set,” Environ. Chem. 10, 151–157 (2013).
[Crossref]

Kürten, A.

J. Almeida, S. Schobesberger, and A. Kürten, et al., “Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere,” Nature 502, 359–363 (2013).
[Crossref]

Lee, S. Y.

Z. Sun, D. H. Zhang, C. Xu, S. Zhou, D. Xie, G. Lendvay, S. Y. Lee, S. Y. Lin, and H. Guo, “State-to-state dynamics of H + O2 reaction, evidence for nonstatistical behavior,” J. Am. Chem. Soc. 130, 14962–14963 (2008).
[Crossref]

Leisner, T.

H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J. P. Wolf, and L. Wöste, “Laser filament-induced aerosol formation,” Atmos. Chem. Phys. 13, 4593–4604 (2013).
[Crossref]

Lendvay, G.

Z. Sun, D. H. Zhang, C. Xu, S. Zhou, D. Xie, G. Lendvay, S. Y. Lee, S. Y. Lin, and H. Guo, “State-to-state dynamics of H + O2 reaction, evidence for nonstatistical behavior,” J. Am. Chem. Soc. 130, 14962–14963 (2008).
[Crossref]

Lertnaisat, P.

Y. Muroya, S. Yamashita, P. Lertnaisat, S. Sanguanmith, J. Meesungnoen, J. P. Jay-Gerin, and Y. Katsumura, “Rate constant for the H• + H2O → •OH + H2 reaction at elevated temperatures measured by pulse radiolysis,” Phys. Chem. Chem. Phys. 19, 30834–30841 (2017).
[Crossref]

Li, N.

R. Xu, Y. Bai, L. Song, N. Li, P. Peng, J. Tang, T. Miao, P. Liu, Z. Wang, and R. Li, “Self-focusing of few-cycle laser pulses at 1800 nm in air,” J. Phys. B 48, 94015 (2015).
[Crossref]

Li, R.

R. Xu, Y. Bai, L. Song, N. Li, P. Peng, J. Tang, T. Miao, P. Liu, Z. Wang, and R. Li, “Self-focusing of few-cycle laser pulses at 1800 nm in air,” J. Phys. B 48, 94015 (2015).
[Crossref]

Lin, S. Y.

Z. Sun, D. H. Zhang, C. Xu, S. Zhou, D. Xie, G. Lendvay, S. Y. Lee, S. Y. Lin, and H. Guo, “State-to-state dynamics of H + O2 reaction, evidence for nonstatistical behavior,” J. Am. Chem. Soc. 130, 14962–14963 (2008).
[Crossref]

Linke, C.

R. Wagner, C. Linke, K. H. Naumann, M. Schnaiter, M. Vragel, M. Gangl, and H. Horvath, “A review of optical measurements at the aerosol and cloud chamber AIDA,” J. Quant. Spectrosc. Radiat. Transfer 110, 930–949 (2009).
[Crossref]

Liu, P.

R. Xu, Y. Bai, L. Song, N. Li, P. Peng, J. Tang, T. Miao, P. Liu, Z. Wang, and R. Li, “Self-focusing of few-cycle laser pulses at 1800 nm in air,” J. Phys. B 48, 94015 (2015).
[Crossref]

Liu, W.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

W. Liu and S.-L. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express 13, 5750–5755 (2005).
[Crossref]

Lötscher, C.

F. Bianchi, P. Barmet, L. Stirnweis, I. El Haddad, S. M. Platt, M. Saurer, C. Lötscher, R. Siegwolf, A. Bigi, C. R. Hoyle, P. F. DeCarlo, J. G. Slowik, A. S. H. Prévôt, U. Baltensperger, and J. Dommen, “Contribution of methane to aerosol carbon mass,” Atmos. Environ. 141, 41–47 (2016).
[Crossref]

Lüder, J.

H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J. P. Wolf, and L. Wöste, “Laser filament-induced aerosol formation,” Atmos. Chem. Phys. 13, 4593–4604 (2013).
[Crossref]

Malevich, P.

Malkus, J.

J. Malkus and R. H. Simpson, “Modification experiments on tropical cumulus clouds,” Science 145, 541–549 (1964).
[Crossref]

Meesungnoen, J.

Y. Muroya, S. Yamashita, P. Lertnaisat, S. Sanguanmith, J. Meesungnoen, J. P. Jay-Gerin, and Y. Katsumura, “Rate constant for the H• + H2O → •OH + H2 reaction at elevated temperatures measured by pulse radiolysis,” Phys. Chem. Chem. Phys. 19, 30834–30841 (2017).
[Crossref]

Méjean, G.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Miao, T.

R. Xu, Y. Bai, L. Song, N. Li, P. Peng, J. Tang, T. Miao, P. Liu, Z. Wang, and R. Li, “Self-focusing of few-cycle laser pulses at 1800 nm in air,” J. Phys. B 48, 94015 (2015).
[Crossref]

Milko, P.

D. Schröder, H. Schwarz, P. Milko, and J. Roithová, “Dissociation routes of protonated toluene probed by infrared spectroscopy in the gas phase,” J. Phys. Chem. A 110, 8346–8353 (2006).
[Crossref]

Mitrofanov, A. V.

V. Shumakova, S. Ališauskas, P. Malevich, A. A. Voronin, A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. M. Zheltikov, D. Kartashov, A. Baltuška, and A. Pugžlys, “Chirp-controlled filamentation and formation of light bullets in the mid-IR,” Opt. Lett. 44, 2173–2176 (2019).
[Crossref]

V. Shumakova, S. Ališauskas, P. Malevich, C. Gollner, A. Baltuška, D. Kartashov, A. M. Zheltikov, A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, D. A. Sidorov-Biryukov, and A. Pugžlys, “Filamentation of mid-IR pulses in ambient air in the vicinity of molecular resonances,” Opt. Lett. 43, 2185–2188 (2018).
[Crossref]

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, A. Pugžlys, G. Andriukaitis, E. A. Stepanov, S. Ališauskas, T. Flöri, A. B. Fedotov, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields,” Phys. Usp. 58, 89–94 (2015).
[Crossref]

Möhler, O.

H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J. P. Wolf, and L. Wöste, “Laser filament-induced aerosol formation,” Atmos. Chem. Phys. 13, 4593–4604 (2013).
[Crossref]

Moloney, J. V.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13, 41–46 (2019).
[Crossref]

P. Panagiotopoulos, M. Kolesik, and J. V. Moloney, “Exploring the limits to energy scaling and distant-target delivery of high-intensity midinfrared pulses,” Phys. Rev. A 94, 2–5 (2016).
[Crossref]

Mongin, D.

D. Mongin, V. Shumakova, S. Ališauskas, E. Schubert, A. Pugžlys, J. Kasparian, J. P. Wolf, and A. Baltuška, “Conductivity and discharge guiding properties of mid-IR laser filaments,” Appl. Phys. B 122, 267 (2016).
[Crossref]

D. Mongin, J. G. Slowik, E. Schubert, J.-G. Brisset, N. Berti, M. Moret, A. S. H. Prévôt, U. Baltensperger, J. Kasparian, and J.-P. Wolf, “Non-linear photochemical pathways in laser-induced atmospheric aerosol formation,” Sci. Rep. 5, 14978 (2015).
[Crossref]

Moreau, B.

Moret, M.

D. Mongin, J. G. Slowik, E. Schubert, J.-G. Brisset, N. Berti, M. Moret, A. S. H. Prévôt, U. Baltensperger, J. Kasparian, and J.-P. Wolf, “Non-linear photochemical pathways in laser-induced atmospheric aerosol formation,” Sci. Rep. 5, 14978 (2015).
[Crossref]

Müller, A. M.

A. M. Müller, C. J. G. J. Uiterwaal, J. Wanner, K. L. Kompa, and B. Witzel, “White-light-induced fragmentation of toluene,” Phys. Rev. Lett. 88, 023001 (2002).
[Crossref]

A. M. Müller, C. J. G. J. Uiterwaal, B. Witzel, J. Wanner, and K. L. Kompa, “Photoionization and photofragmentation of gaseous toluene using 80-fs, 800-nm laser pulses,” J. Chem. Phys. 112, 9289–9300 (2000).
[Crossref]

Muñoz, A.

K. L. Pereira, K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, M. W. Ward, K. P. Wyche, A. Muñoz, T. Vera, M. Vázquez, E. Borrás, and M. Ródenas, “Insights into the formation and evolution of individual compounds in the particulate phase during aromatic photo-oxidation,” Environ. Sci. Technol. 49, 13168–13178 (2015).
[Crossref]

Muroya, Y.

Y. Muroya, S. Yamashita, P. Lertnaisat, S. Sanguanmith, J. Meesungnoen, J. P. Jay-Gerin, and Y. Katsumura, “Rate constant for the H• + H2O → •OH + H2 reaction at elevated temperatures measured by pulse radiolysis,” Phys. Chem. Chem. Phys. 19, 30834–30841 (2017).
[Crossref]

Mysyrowicz, A.

M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21, 26836–26845 (2013).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Nagy, T.

P. Joly, M. Petrarca, A. Vogel, T. Pohl, T. Nagy, Q. Jusforgues, and P. Simon, “Laser-induced condensation by ultrashort laser pulses at 248nm,” Appl. Phys. Lett. 102, 091112 (2013).
[Crossref]

Nakaema, W. M.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref]

Naumann, K. H.

R. Wagner, C. Linke, K. H. Naumann, M. Schnaiter, M. Vragel, M. Gangl, and H. Horvath, “A review of optical measurements at the aerosol and cloud chamber AIDA,” J. Quant. Spectrosc. Radiat. Transfer 110, 930–949 (2009).
[Crossref]

Panagiotopoulos, P.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13, 41–46 (2019).
[Crossref]

P. Panagiotopoulos, M. Kolesik, and J. V. Moloney, “Exploring the limits to energy scaling and distant-target delivery of high-intensity midinfrared pulses,” Phys. Rev. A 94, 2–5 (2016).
[Crossref]

Panchenko, V. Y.

A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, A. Pugžlys, G. Andriukaitis, E. A. Stepanov, S. Ališauskas, T. Flöri, A. B. Fedotov, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields,” Phys. Usp. 58, 89–94 (2015).
[Crossref]

Pandis, S. N.

N. M. Donahue, W. Chuang, S. A. Epstein, J. H. Kroll, D. R. Worsnop, A. L. Robinson, P. J. Adams, and S. N. Pandis, “Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set,” Environ. Chem. 10, 151–157 (2013).
[Crossref]

N. M. Donahue, S. A. Epstein, S. N. Pandis, and A. L. Robinson, “A two-dimensional volatility basis set: 1. Organic-aerosol mixing thermodynamics,” Atmos. Chem. Phys. 11, 3303–3318 (2011).
[Crossref]

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed. (Wiley, 2016).

Pelucchi, M.

M. Pelucchi, C. Cavallotti, T. Faravelli, and S. J. Klippenstein, “H-abstraction reactions by OH, HO2, O, O2 and benzyl radical addition to O2 and their implications for kinetic modelling of toluene oxidation,” Phys. Chem. Chem. Phys. 20, 10607–10627 (2018).
[Crossref]

Peng, P.

R. Xu, Y. Bai, L. Song, N. Li, P. Peng, J. Tang, T. Miao, P. Liu, Z. Wang, and R. Li, “Self-focusing of few-cycle laser pulses at 1800 nm in air,” J. Phys. B 48, 94015 (2015).
[Crossref]

Pereira, K. L.

K. L. Pereira, K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, M. W. Ward, K. P. Wyche, A. Muñoz, T. Vera, M. Vázquez, E. Borrás, and M. Ródenas, “Insights into the formation and evolution of individual compounds in the particulate phase during aromatic photo-oxidation,” Environ. Sci. Technol. 49, 13168–13178 (2015).
[Crossref]

K. L. Pereira, K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, M. W. Ward, K. P. Wyche, A. Muñoz, T. Vera, M. Vázquez, E. Borrás, and M. Ródenas, “Insights into the formation and evolution of individual compounds in the particulate phase during aromatic photo-oxidation,” Environ. Sci. Technol. 49, 13168–13178 (2015).
[Crossref]

Petit, Y.

H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J. P. Wolf, and L. Wöste, “Laser filament-induced aerosol formation,” Atmos. Chem. Phys. 13, 4593–4604 (2013).
[Crossref]

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref]

Y. Petit, S. Henin, J. Kasparian, and J. P. Wolf, “Production of ozone and nitrogen oxides by laser filamentation,” Appl. Phys. Lett. 97, 021108 (2010).
[Crossref]

Petrarca, M.

H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J. P. Wolf, and L. Wöste, “Laser filament-induced aerosol formation,” Atmos. Chem. Phys. 13, 4593–4604 (2013).
[Crossref]

P. Joly, M. Petrarca, A. Vogel, T. Pohl, T. Nagy, Q. Jusforgues, and P. Simon, “Laser-induced condensation by ultrashort laser pulses at 248nm,” Appl. Phys. Lett. 102, 091112 (2013).
[Crossref]

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wste, and J. P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99, 141103 (2011).
[Crossref]

Pigeon, J.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13, 41–46 (2019).
[Crossref]

Platt, S. M.

F. Bianchi, P. Barmet, L. Stirnweis, I. El Haddad, S. M. Platt, M. Saurer, C. Lötscher, R. Siegwolf, A. Bigi, C. R. Hoyle, P. F. DeCarlo, J. G. Slowik, A. S. H. Prévôt, U. Baltensperger, and J. Dommen, “Contribution of methane to aerosol carbon mass,” Atmos. Environ. 141, 41–47 (2016).
[Crossref]

Pogorelsky, I.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13, 41–46 (2019).
[Crossref]

Pohl, T.

P. Joly, M. Petrarca, A. Vogel, T. Pohl, T. Nagy, Q. Jusforgues, and P. Simon, “Laser-induced condensation by ultrashort laser pulses at 248nm,” Appl. Phys. Lett. 102, 091112 (2013).
[Crossref]

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref]

Polyanskiy, M.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13, 41–46 (2019).
[Crossref]

Prade, B.

Prévôt, A. S. H.

F. Bianchi, P. Barmet, L. Stirnweis, I. El Haddad, S. M. Platt, M. Saurer, C. Lötscher, R. Siegwolf, A. Bigi, C. R. Hoyle, P. F. DeCarlo, J. G. Slowik, A. S. H. Prévôt, U. Baltensperger, and J. Dommen, “Contribution of methane to aerosol carbon mass,” Atmos. Environ. 141, 41–47 (2016).
[Crossref]

D. Mongin, J. G. Slowik, E. Schubert, J.-G. Brisset, N. Berti, M. Moret, A. S. H. Prévôt, U. Baltensperger, J. Kasparian, and J.-P. Wolf, “Non-linear photochemical pathways in laser-induced atmospheric aerosol formation,” Sci. Rep. 5, 14978 (2015).
[Crossref]

Pugžlys, A.

V. Shumakova, S. Ališauskas, P. Malevich, A. A. Voronin, A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. M. Zheltikov, D. Kartashov, A. Baltuška, and A. Pugžlys, “Chirp-controlled filamentation and formation of light bullets in the mid-IR,” Opt. Lett. 44, 2173–2176 (2019).
[Crossref]

V. Shumakova, S. Ališauskas, P. Malevich, C. Gollner, A. Baltuška, D. Kartashov, A. M. Zheltikov, A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, D. A. Sidorov-Biryukov, and A. Pugžlys, “Filamentation of mid-IR pulses in ambient air in the vicinity of molecular resonances,” Opt. Lett. 43, 2185–2188 (2018).
[Crossref]

D. Mongin, V. Shumakova, S. Ališauskas, E. Schubert, A. Pugžlys, J. Kasparian, J. P. Wolf, and A. Baltuška, “Conductivity and discharge guiding properties of mid-IR laser filaments,” Appl. Phys. B 122, 267 (2016).
[Crossref]

E. Kaksis, G. Almási, J. A. Fülöp, A. Pugžlys, A. Baltuška, and G. Andriukaitis, “110-mJ 225-fs cryogenically cooled Yb:CaF2 multipass amplifier,” Opt. Express 24, 28915–28922 (2016).
[Crossref]

A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, A. Pugžlys, G. Andriukaitis, E. A. Stepanov, S. Ališauskas, T. Flöri, A. B. Fedotov, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields,” Phys. Usp. 58, 89–94 (2015).
[Crossref]

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

Rickard, A. R.

K. L. Pereira, K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, M. W. Ward, K. P. Wyche, A. Muñoz, T. Vera, M. Vázquez, E. Borrás, and M. Ródenas, “Insights into the formation and evolution of individual compounds in the particulate phase during aromatic photo-oxidation,” Environ. Sci. Technol. 49, 13168–13178 (2015).
[Crossref]

Robinson, A. L.

N. M. Donahue, W. Chuang, S. A. Epstein, J. H. Kroll, D. R. Worsnop, A. L. Robinson, P. J. Adams, and S. N. Pandis, “Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set,” Environ. Chem. 10, 151–157 (2013).
[Crossref]

N. M. Donahue, S. A. Epstein, S. N. Pandis, and A. L. Robinson, “A two-dimensional volatility basis set: 1. Organic-aerosol mixing thermodynamics,” Atmos. Chem. Phys. 11, 3303–3318 (2011).
[Crossref]

Ródenas, M.

K. L. Pereira, K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, M. W. Ward, K. P. Wyche, A. Muñoz, T. Vera, M. Vázquez, E. Borrás, and M. Ródenas, “Insights into the formation and evolution of individual compounds in the particulate phase during aromatic photo-oxidation,” Environ. Sci. Technol. 49, 13168–13178 (2015).
[Crossref]

Rodriguez, M.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Rohwetter, P.

H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J. P. Wolf, and L. Wöste, “Laser filament-induced aerosol formation,” Atmos. Chem. Phys. 13, 4593–4604 (2013).
[Crossref]

J. Kasparian, P. Rohwetter, L. Wöste, and J. P. Wolf, “Laser-assisted water condensation in the atmosphere: a step towards modulating precipitation?” J. Phys. D 45, 293001 (2012).
[Crossref]

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref]

Roithová, J.

D. Schröder, H. Schwarz, P. Milko, and J. Roithová, “Dissociation routes of protonated toluene probed by infrared spectroscopy in the gas phase,” J. Phys. Chem. A 110, 8346–8353 (2006).
[Crossref]

Rothman, L. S.

I. E. Gordon, L. S. Rothman, and C. Hill, et al., “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Saathoff, H.

H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J. P. Wolf, and L. Wöste, “Laser filament-induced aerosol formation,” Atmos. Chem. Phys. 13, 4593–4604 (2013).
[Crossref]

Salmon, E.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Sanguanmith, S.

Y. Muroya, S. Yamashita, P. Lertnaisat, S. Sanguanmith, J. Meesungnoen, J. P. Jay-Gerin, and Y. Katsumura, “Rate constant for the H• + H2O → •OH + H2 reaction at elevated temperatures measured by pulse radiolysis,” Phys. Chem. Chem. Phys. 19, 30834–30841 (2017).
[Crossref]

Sauerbrey, R.

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wste, and J. P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99, 141103 (2011).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Saurer, M.

F. Bianchi, P. Barmet, L. Stirnweis, I. El Haddad, S. M. Platt, M. Saurer, C. Lötscher, R. Siegwolf, A. Bigi, C. R. Hoyle, P. F. DeCarlo, J. G. Slowik, A. S. H. Prévôt, U. Baltensperger, and J. Dommen, “Contribution of methane to aerosol carbon mass,” Atmos. Environ. 141, 41–47 (2016).
[Crossref]

Schmitt, R.

Schnaiter, M.

H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J. P. Wolf, and L. Wöste, “Laser filament-induced aerosol formation,” Atmos. Chem. Phys. 13, 4593–4604 (2013).
[Crossref]

R. Wagner, C. Linke, K. H. Naumann, M. Schnaiter, M. Vragel, M. Gangl, and H. Horvath, “A review of optical measurements at the aerosol and cloud chamber AIDA,” J. Quant. Spectrosc. Radiat. Transfer 110, 930–949 (2009).
[Crossref]

Schneider, F.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref]

Schobesberger, S.

J. Almeida, S. Schobesberger, and A. Kürten, et al., “Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere,” Nature 502, 359–363 (2013).
[Crossref]

Schramm, U.

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wste, and J. P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99, 141103 (2011).
[Crossref]

Schröder, D.

D. Schröder, H. Schwarz, P. Milko, and J. Roithová, “Dissociation routes of protonated toluene probed by infrared spectroscopy in the gas phase,” J. Phys. Chem. A 110, 8346–8353 (2006).
[Crossref]

Schubert, E.

D. Mongin, V. Shumakova, S. Ališauskas, E. Schubert, A. Pugžlys, J. Kasparian, J. P. Wolf, and A. Baltuška, “Conductivity and discharge guiding properties of mid-IR laser filaments,” Appl. Phys. B 122, 267 (2016).
[Crossref]

D. Mongin, J. G. Slowik, E. Schubert, J.-G. Brisset, N. Berti, M. Moret, A. S. H. Prévôt, U. Baltensperger, J. Kasparian, and J.-P. Wolf, “Non-linear photochemical pathways in laser-induced atmospheric aerosol formation,” Sci. Rep. 5, 14978 (2015).
[Crossref]

Schwarz, H.

D. Schröder, H. Schwarz, P. Milko, and J. Roithová, “Dissociation routes of protonated toluene probed by infrared spectroscopy in the gas phase,” J. Phys. Chem. A 110, 8346–8353 (2006).
[Crossref]

Seinfeld, J. H.

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed. (Wiley, 2016).

Shanshal, M. A.

M. A. Shanshal and Q. A. Yusuf, “C-C and C-H bond cleavage reactions in the chrysene and perylene aromatic molecules: an ab-initio density functional theory study,” Eur. J. Chem. 8, 288–292 (2017).
[Crossref]

Shumakova, V.

Sidorov-Biryukov, D. A.

V. Shumakova, S. Ališauskas, P. Malevich, A. A. Voronin, A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. M. Zheltikov, D. Kartashov, A. Baltuška, and A. Pugžlys, “Chirp-controlled filamentation and formation of light bullets in the mid-IR,” Opt. Lett. 44, 2173–2176 (2019).
[Crossref]

V. Shumakova, S. Ališauskas, P. Malevich, C. Gollner, A. Baltuška, D. Kartashov, A. M. Zheltikov, A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, D. A. Sidorov-Biryukov, and A. Pugžlys, “Filamentation of mid-IR pulses in ambient air in the vicinity of molecular resonances,” Opt. Lett. 43, 2185–2188 (2018).
[Crossref]

V. Shumakova, S. Ališauskas, P. Malevich, C. Gollner, A. Baltuška, D. Kartashov, A. M. Zheltikov, A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, D. A. Sidorov-Biryukov, and A. Pugžlys, “Filamentation of mid-IR pulses in ambient air in the vicinity of molecular resonances,” Opt. Lett. 43, 2185–2188 (2018).
[Crossref]

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, A. Pugžlys, G. Andriukaitis, E. A. Stepanov, S. Ališauskas, T. Flöri, A. B. Fedotov, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields,” Phys. Usp. 58, 89–94 (2015).
[Crossref]

Siegwolf, R.

F. Bianchi, P. Barmet, L. Stirnweis, I. El Haddad, S. M. Platt, M. Saurer, C. Lötscher, R. Siegwolf, A. Bigi, C. R. Hoyle, P. F. DeCarlo, J. G. Slowik, A. S. H. Prévôt, U. Baltensperger, and J. Dommen, “Contribution of methane to aerosol carbon mass,” Atmos. Environ. 141, 41–47 (2016).
[Crossref]

Simard, P. T.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

Simon, M.

D. Stolzenburg, D. Stolzenburg, and M. Simon, et al., “Enhanced growth rate of atmospheric particles from sulfuric acid,” Atmos. Chem. Phys. 20, 7359–7372 (2020).
[Crossref]

Simon, P.

P. Joly, M. Petrarca, A. Vogel, T. Pohl, T. Nagy, Q. Jusforgues, and P. Simon, “Laser-induced condensation by ultrashort laser pulses at 248nm,” Appl. Phys. Lett. 102, 091112 (2013).
[Crossref]

Simpson, R. H.

J. Malkus and R. H. Simpson, “Modification experiments on tropical cumulus clouds,” Science 145, 541–549 (1964).
[Crossref]

Slowik, J. G.

F. Bianchi, P. Barmet, L. Stirnweis, I. El Haddad, S. M. Platt, M. Saurer, C. Lötscher, R. Siegwolf, A. Bigi, C. R. Hoyle, P. F. DeCarlo, J. G. Slowik, A. S. H. Prévôt, U. Baltensperger, and J. Dommen, “Contribution of methane to aerosol carbon mass,” Atmos. Environ. 141, 41–47 (2016).
[Crossref]

D. Mongin, J. G. Slowik, E. Schubert, J.-G. Brisset, N. Berti, M. Moret, A. S. H. Prévôt, U. Baltensperger, J. Kasparian, and J.-P. Wolf, “Non-linear photochemical pathways in laser-induced atmospheric aerosol formation,” Sci. Rep. 5, 14978 (2015).
[Crossref]

Song, L.

R. Xu, Y. Bai, L. Song, N. Li, P. Peng, J. Tang, T. Miao, P. Liu, Z. Wang, and R. Li, “Self-focusing of few-cycle laser pulses at 1800 nm in air,” J. Phys. B 48, 94015 (2015).
[Crossref]

Stelmaszczyk, K.

H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J. P. Wolf, and L. Wöste, “Laser filament-induced aerosol formation,” Atmos. Chem. Phys. 13, 4593–4604 (2013).
[Crossref]

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wste, and J. P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99, 141103 (2011).
[Crossref]

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref]

Stepanov, E. A.

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, A. Pugžlys, G. Andriukaitis, E. A. Stepanov, S. Ališauskas, T. Flöri, A. B. Fedotov, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields,” Phys. Usp. 58, 89–94 (2015).
[Crossref]

Stirnweis, L.

F. Bianchi, P. Barmet, L. Stirnweis, I. El Haddad, S. M. Platt, M. Saurer, C. Lötscher, R. Siegwolf, A. Bigi, C. R. Hoyle, P. F. DeCarlo, J. G. Slowik, A. S. H. Prévôt, U. Baltensperger, and J. Dommen, “Contribution of methane to aerosol carbon mass,” Atmos. Environ. 141, 41–47 (2016).
[Crossref]

Stolzenburg, D.

D. Stolzenburg, D. Stolzenburg, and M. Simon, et al., “Enhanced growth rate of atmospheric particles from sulfuric acid,” Atmos. Chem. Phys. 20, 7359–7372 (2020).
[Crossref]

D. Stolzenburg, D. Stolzenburg, and M. Simon, et al., “Enhanced growth rate of atmospheric particles from sulfuric acid,” Atmos. Chem. Phys. 20, 7359–7372 (2020).
[Crossref]

Sun, Z.

Z. Sun, D. H. Zhang, C. Xu, S. Zhou, D. Xie, G. Lendvay, S. Y. Lee, S. Y. Lin, and H. Guo, “State-to-state dynamics of H + O2 reaction, evidence for nonstatistical behavior,” J. Am. Chem. Soc. 130, 14962–14963 (2008).
[Crossref]

Tang, J.

R. Xu, Y. Bai, L. Song, N. Li, P. Peng, J. Tang, T. Miao, P. Liu, Z. Wang, and R. Li, “Self-focusing of few-cycle laser pulses at 1800 nm in air,” J. Phys. B 48, 94015 (2015).
[Crossref]

Théberge, F.

M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21, 26836–26845 (2013).
[Crossref]

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

Tochitsky, S.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13, 41–46 (2019).
[Crossref]

Uiterwaal, C. J. G. J.

A. M. Müller, C. J. G. J. Uiterwaal, J. Wanner, K. L. Kompa, and B. Witzel, “White-light-induced fragmentation of toluene,” Phys. Rev. Lett. 88, 023001 (2002).
[Crossref]

A. M. Müller, C. J. G. J. Uiterwaal, B. Witzel, J. Wanner, and K. L. Kompa, “Photoionization and photofragmentation of gaseous toluene using 80-fs, 800-nm laser pulses,” J. Chem. Phys. 112, 9289–9300 (2000).
[Crossref]

Vaneph, C.

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wste, and J. P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99, 141103 (2011).
[Crossref]

Vasseur, O.

Vázquez, M.

K. L. Pereira, K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, M. W. Ward, K. P. Wyche, A. Muñoz, T. Vera, M. Vázquez, E. Borrás, and M. Ródenas, “Insights into the formation and evolution of individual compounds in the particulate phase during aromatic photo-oxidation,” Environ. Sci. Technol. 49, 13168–13178 (2015).
[Crossref]

Vera, T.

K. L. Pereira, K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, M. W. Ward, K. P. Wyche, A. Muñoz, T. Vera, M. Vázquez, E. Borrás, and M. Ródenas, “Insights into the formation and evolution of individual compounds in the particulate phase during aromatic photo-oxidation,” Environ. Sci. Technol. 49, 13168–13178 (2015).
[Crossref]

Vogel, A.

P. Joly, M. Petrarca, A. Vogel, T. Pohl, T. Nagy, Q. Jusforgues, and P. Simon, “Laser-induced condensation by ultrashort laser pulses at 248nm,” Appl. Phys. Lett. 102, 091112 (2013).
[Crossref]

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wste, and J. P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99, 141103 (2011).
[Crossref]

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref]

Voronin, A. A.

V. Shumakova, S. Ališauskas, P. Malevich, A. A. Voronin, A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. M. Zheltikov, D. Kartashov, A. Baltuška, and A. Pugžlys, “Chirp-controlled filamentation and formation of light bullets in the mid-IR,” Opt. Lett. 44, 2173–2176 (2019).
[Crossref]

V. Shumakova, S. Ališauskas, P. Malevich, C. Gollner, A. Baltuška, D. Kartashov, A. M. Zheltikov, A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, D. A. Sidorov-Biryukov, and A. Pugžlys, “Filamentation of mid-IR pulses in ambient air in the vicinity of molecular resonances,” Opt. Lett. 43, 2185–2188 (2018).
[Crossref]

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, A. Pugžlys, G. Andriukaitis, E. A. Stepanov, S. Ališauskas, T. Flöri, A. B. Fedotov, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields,” Phys. Usp. 58, 89–94 (2015).
[Crossref]

Vragel, M.

R. Wagner, C. Linke, K. H. Naumann, M. Schnaiter, M. Vragel, M. Gangl, and H. Horvath, “A review of optical measurements at the aerosol and cloud chamber AIDA,” J. Quant. Spectrosc. Radiat. Transfer 110, 930–949 (2009).
[Crossref]

Wagner, R.

R. Wagner, C. Linke, K. H. Naumann, M. Schnaiter, M. Vragel, M. Gangl, and H. Horvath, “A review of optical measurements at the aerosol and cloud chamber AIDA,” J. Quant. Spectrosc. Radiat. Transfer 110, 930–949 (2009).
[Crossref]

Wang, Z.

R. Xu, Y. Bai, L. Song, N. Li, P. Peng, J. Tang, T. Miao, P. Liu, Z. Wang, and R. Li, “Self-focusing of few-cycle laser pulses at 1800 nm in air,” J. Phys. B 48, 94015 (2015).
[Crossref]

Wanner, J.

A. M. Müller, C. J. G. J. Uiterwaal, J. Wanner, K. L. Kompa, and B. Witzel, “White-light-induced fragmentation of toluene,” Phys. Rev. Lett. 88, 023001 (2002).
[Crossref]

A. M. Müller, C. J. G. J. Uiterwaal, B. Witzel, J. Wanner, and K. L. Kompa, “Photoionization and photofragmentation of gaseous toluene using 80-fs, 800-nm laser pulses,” J. Chem. Phys. 112, 9289–9300 (2000).
[Crossref]

Ward, M. W.

K. L. Pereira, K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, M. W. Ward, K. P. Wyche, A. Muñoz, T. Vera, M. Vázquez, E. Borrás, and M. Ródenas, “Insights into the formation and evolution of individual compounds in the particulate phase during aromatic photo-oxidation,” Environ. Sci. Technol. 49, 13168–13178 (2015).
[Crossref]

Weber, K.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref]

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wste, and J. P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99, 141103 (2011).
[Crossref]

Welch, E.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13, 41–46 (2019).
[Crossref]

Wille, H.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Witzel, B.

A. M. Müller, C. J. G. J. Uiterwaal, J. Wanner, K. L. Kompa, and B. Witzel, “White-light-induced fragmentation of toluene,” Phys. Rev. Lett. 88, 023001 (2002).
[Crossref]

A. M. Müller, C. J. G. J. Uiterwaal, B. Witzel, J. Wanner, and K. L. Kompa, “Photoionization and photofragmentation of gaseous toluene using 80-fs, 800-nm laser pulses,” J. Chem. Phys. 112, 9289–9300 (2000).
[Crossref]

Wolf, J. P.

J. P. Wolf, “Short-pulse lasers for weather control,” Rep. Prog. Phys. 81, 026001 (2018).
[Crossref]

D. Mongin, V. Shumakova, S. Ališauskas, E. Schubert, A. Pugžlys, J. Kasparian, J. P. Wolf, and A. Baltuška, “Conductivity and discharge guiding properties of mid-IR laser filaments,” Appl. Phys. B 122, 267 (2016).
[Crossref]

H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J. P. Wolf, and L. Wöste, “Laser filament-induced aerosol formation,” Atmos. Chem. Phys. 13, 4593–4604 (2013).
[Crossref]

J. Kasparian, P. Rohwetter, L. Wöste, and J. P. Wolf, “Laser-assisted water condensation in the atmosphere: a step towards modulating precipitation?” J. Phys. D 45, 293001 (2012).
[Crossref]

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wste, and J. P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99, 141103 (2011).
[Crossref]

Y. Petit, S. Henin, J. Kasparian, and J. P. Wolf, “Production of ozone and nitrogen oxides by laser filamentation,” Appl. Phys. Lett. 97, 021108 (2010).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Wolf, J.-P.

D. Mongin, J. G. Slowik, E. Schubert, J.-G. Brisset, N. Berti, M. Moret, A. S. H. Prévôt, U. Baltensperger, J. Kasparian, and J.-P. Wolf, “Non-linear photochemical pathways in laser-induced atmospheric aerosol formation,” Sci. Rep. 5, 14978 (2015).
[Crossref]

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref]

Wood, W. M.

Worsnop, D. R.

N. M. Donahue, W. Chuang, S. A. Epstein, J. H. Kroll, D. R. Worsnop, A. L. Robinson, P. J. Adams, and S. N. Pandis, “Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set,” Environ. Chem. 10, 151–157 (2013).
[Crossref]

Wöste, L.

H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J. P. Wolf, and L. Wöste, “Laser filament-induced aerosol formation,” Atmos. Chem. Phys. 13, 4593–4604 (2013).
[Crossref]

J. Kasparian, P. Rohwetter, L. Wöste, and J. P. Wolf, “Laser-assisted water condensation in the atmosphere: a step towards modulating precipitation?” J. Phys. D 45, 293001 (2012).
[Crossref]

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Wright, E. M.

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13, 41–46 (2019).
[Crossref]

Wste, L.

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wste, and J. P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99, 141103 (2011).
[Crossref]

Wyche, K. P.

K. L. Pereira, K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, M. W. Ward, K. P. Wyche, A. Muñoz, T. Vera, M. Vázquez, E. Borrás, and M. Ródenas, “Insights into the formation and evolution of individual compounds in the particulate phase during aromatic photo-oxidation,” Environ. Sci. Technol. 49, 13168–13178 (2015).
[Crossref]

Xie, D.

Z. Sun, D. H. Zhang, C. Xu, S. Zhou, D. Xie, G. Lendvay, S. Y. Lee, S. Y. Lin, and H. Guo, “State-to-state dynamics of H + O2 reaction, evidence for nonstatistical behavior,” J. Am. Chem. Soc. 130, 14962–14963 (2008).
[Crossref]

Xu, C.

Z. Sun, D. H. Zhang, C. Xu, S. Zhou, D. Xie, G. Lendvay, S. Y. Lee, S. Y. Lin, and H. Guo, “State-to-state dynamics of H + O2 reaction, evidence for nonstatistical behavior,” J. Am. Chem. Soc. 130, 14962–14963 (2008).
[Crossref]

Xu, R.

R. Xu, Y. Bai, L. Song, N. Li, P. Peng, J. Tang, T. Miao, P. Liu, Z. Wang, and R. Li, “Self-focusing of few-cycle laser pulses at 1800 nm in air,” J. Phys. B 48, 94015 (2015).
[Crossref]

Yamashita, S.

Y. Muroya, S. Yamashita, P. Lertnaisat, S. Sanguanmith, J. Meesungnoen, J. P. Jay-Gerin, and Y. Katsumura, “Rate constant for the H• + H2O → •OH + H2 reaction at elevated temperatures measured by pulse radiolysis,” Phys. Chem. Chem. Phys. 19, 30834–30841 (2017).
[Crossref]

Yu, J.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Yusuf, Q. A.

M. A. Shanshal and Q. A. Yusuf, “C-C and C-H bond cleavage reactions in the chrysene and perylene aromatic molecules: an ab-initio density functional theory study,” Eur. J. Chem. 8, 288–292 (2017).
[Crossref]

Zhang, D. H.

Z. Sun, D. H. Zhang, C. Xu, S. Zhou, D. Xie, G. Lendvay, S. Y. Lee, S. Y. Lin, and H. Guo, “State-to-state dynamics of H + O2 reaction, evidence for nonstatistical behavior,” J. Am. Chem. Soc. 130, 14962–14963 (2008).
[Crossref]

Zheltikov, A. M.

V. Shumakova, S. Ališauskas, P. Malevich, A. A. Voronin, A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. M. Zheltikov, D. Kartashov, A. Baltuška, and A. Pugžlys, “Chirp-controlled filamentation and formation of light bullets in the mid-IR,” Opt. Lett. 44, 2173–2176 (2019).
[Crossref]

V. Shumakova, S. Ališauskas, P. Malevich, C. Gollner, A. Baltuška, D. Kartashov, A. M. Zheltikov, A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, D. A. Sidorov-Biryukov, and A. Pugžlys, “Filamentation of mid-IR pulses in ambient air in the vicinity of molecular resonances,” Opt. Lett. 43, 2185–2188 (2018).
[Crossref]

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, A. Pugžlys, G. Andriukaitis, E. A. Stepanov, S. Ališauskas, T. Flöri, A. B. Fedotov, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields,” Phys. Usp. 58, 89–94 (2015).
[Crossref]

Zhou, S.

Z. Sun, D. H. Zhang, C. Xu, S. Zhou, D. Xie, G. Lendvay, S. Y. Lee, S. Y. Lin, and H. Guo, “State-to-state dynamics of H + O2 reaction, evidence for nonstatistical behavior,” J. Am. Chem. Soc. 130, 14962–14963 (2008).
[Crossref]

Ziemann, P. J.

P. J. Ziemann and R. Atkinson, “Kinetics, products, and mechanisms of secondary organic aerosol formation,” Chem. Soc. Rev. 41, 6582–6605 (2012).
[Crossref]

Appl. Phys. B (1)

D. Mongin, V. Shumakova, S. Ališauskas, E. Schubert, A. Pugžlys, J. Kasparian, J. P. Wolf, and A. Baltuška, “Conductivity and discharge guiding properties of mid-IR laser filaments,” Appl. Phys. B 122, 267 (2016).
[Crossref]

Appl. Phys. Lett. (3)

M. Petrarca, S. Henin, K. Stelmaszczyk, S. Bock, S. Kraft, U. Schramm, C. Vaneph, A. Vogel, J. Kasparian, R. Sauerbrey, K. Weber, L. Wste, and J. P. Wolf, “Multijoule scaling of laser-induced condensation in air,” Appl. Phys. Lett. 99, 141103 (2011).
[Crossref]

P. Joly, M. Petrarca, A. Vogel, T. Pohl, T. Nagy, Q. Jusforgues, and P. Simon, “Laser-induced condensation by ultrashort laser pulses at 248nm,” Appl. Phys. Lett. 102, 091112 (2013).
[Crossref]

Y. Petit, S. Henin, J. Kasparian, and J. P. Wolf, “Production of ozone and nitrogen oxides by laser filamentation,” Appl. Phys. Lett. 97, 021108 (2010).
[Crossref]

Atmos. Chem. Phys. (3)

H. Saathoff, S. Henin, K. Stelmaszczyk, M. Petrarca, R. Delagrange, Z. Hao, J. Lüder, O. Möhler, Y. Petit, P. Rohwetter, M. Schnaiter, J. Kasparian, T. Leisner, J. P. Wolf, and L. Wöste, “Laser filament-induced aerosol formation,” Atmos. Chem. Phys. 13, 4593–4604 (2013).
[Crossref]

D. Stolzenburg, D. Stolzenburg, and M. Simon, et al., “Enhanced growth rate of atmospheric particles from sulfuric acid,” Atmos. Chem. Phys. 20, 7359–7372 (2020).
[Crossref]

N. M. Donahue, S. A. Epstein, S. N. Pandis, and A. L. Robinson, “A two-dimensional volatility basis set: 1. Organic-aerosol mixing thermodynamics,” Atmos. Chem. Phys. 11, 3303–3318 (2011).
[Crossref]

Atmos. Environ. (1)

F. Bianchi, P. Barmet, L. Stirnweis, I. El Haddad, S. M. Platt, M. Saurer, C. Lötscher, R. Siegwolf, A. Bigi, C. R. Hoyle, P. F. DeCarlo, J. G. Slowik, A. S. H. Prévôt, U. Baltensperger, and J. Dommen, “Contribution of methane to aerosol carbon mass,” Atmos. Environ. 141, 41–47 (2016).
[Crossref]

Chem. Soc. Rev. (1)

P. J. Ziemann and R. Atkinson, “Kinetics, products, and mechanisms of secondary organic aerosol formation,” Chem. Soc. Rev. 41, 6582–6605 (2012).
[Crossref]

Environ. Chem. (1)

N. M. Donahue, W. Chuang, S. A. Epstein, J. H. Kroll, D. R. Worsnop, A. L. Robinson, P. J. Adams, and S. N. Pandis, “Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set,” Environ. Chem. 10, 151–157 (2013).
[Crossref]

Environ. Sci. Technol. (1)

K. L. Pereira, K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, M. W. Ward, K. P. Wyche, A. Muñoz, T. Vera, M. Vázquez, E. Borrás, and M. Ródenas, “Insights into the formation and evolution of individual compounds in the particulate phase during aromatic photo-oxidation,” Environ. Sci. Technol. 49, 13168–13178 (2015).
[Crossref]

Eur. J. Chem. (1)

M. A. Shanshal and Q. A. Yusuf, “C-C and C-H bond cleavage reactions in the chrysene and perylene aromatic molecules: an ab-initio density functional theory study,” Eur. J. Chem. 8, 288–292 (2017).
[Crossref]

J. Am. Chem. Soc. (1)

Z. Sun, D. H. Zhang, C. Xu, S. Zhou, D. Xie, G. Lendvay, S. Y. Lee, S. Y. Lin, and H. Guo, “State-to-state dynamics of H + O2 reaction, evidence for nonstatistical behavior,” J. Am. Chem. Soc. 130, 14962–14963 (2008).
[Crossref]

J. Chem. Phys. (1)

A. M. Müller, C. J. G. J. Uiterwaal, B. Witzel, J. Wanner, and K. L. Kompa, “Photoionization and photofragmentation of gaseous toluene using 80-fs, 800-nm laser pulses,” J. Chem. Phys. 112, 9289–9300 (2000).
[Crossref]

J. Phys. B (1)

R. Xu, Y. Bai, L. Song, N. Li, P. Peng, J. Tang, T. Miao, P. Liu, Z. Wang, and R. Li, “Self-focusing of few-cycle laser pulses at 1800 nm in air,” J. Phys. B 48, 94015 (2015).
[Crossref]

J. Phys. Chem. A (1)

D. Schröder, H. Schwarz, P. Milko, and J. Roithová, “Dissociation routes of protonated toluene probed by infrared spectroscopy in the gas phase,” J. Phys. Chem. A 110, 8346–8353 (2006).
[Crossref]

J. Phys. D (1)

J. Kasparian, P. Rohwetter, L. Wöste, and J. P. Wolf, “Laser-assisted water condensation in the atmosphere: a step towards modulating precipitation?” J. Phys. D 45, 293001 (2012).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (2)

I. E. Gordon, L. S. Rothman, and C. Hill, et al., “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

R. Wagner, C. Linke, K. H. Naumann, M. Schnaiter, M. Vragel, M. Gangl, and H. Horvath, “A review of optical measurements at the aerosol and cloud chamber AIDA,” J. Quant. Spectrosc. Radiat. Transfer 110, 930–949 (2009).
[Crossref]

Laser Phys. (1)

V. Y. Fedorov and V. P. Kandidov, “Interaction/laser radiation with matter filamentation of laser pulses with different wavelengths in air,” Laser Phys. 18, 1530–1538 (2008).
[Crossref]

Nat. Commun. (1)

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, J. Kasparian, K. Weber, L. Wöste, and J.-P. Wolf, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2, 456 (2011).
[Crossref]

Nat. Photonics (1)

S. Tochitsky, E. Welch, M. Polyanskiy, I. Pogorelsky, P. Panagiotopoulos, M. Kolesik, E. M. Wright, S. W. Koch, J. V. Moloney, J. Pigeon, and C. Joshi, “Megafilament in air formed by self-guided terawatt long-wavelength infrared laser,” Nat. Photonics 13, 41–46 (2019).
[Crossref]

Nature (1)

J. Almeida, S. Schobesberger, and A. Kürten, et al., “Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere,” Nature 502, 359–363 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (2)

M. Pelucchi, C. Cavallotti, T. Faravelli, and S. J. Klippenstein, “H-abstraction reactions by OH, HO2, O, O2 and benzyl radical addition to O2 and their implications for kinetic modelling of toluene oxidation,” Phys. Chem. Chem. Phys. 20, 10607–10627 (2018).
[Crossref]

Y. Muroya, S. Yamashita, P. Lertnaisat, S. Sanguanmith, J. Meesungnoen, J. P. Jay-Gerin, and Y. Katsumura, “Rate constant for the H• + H2O → •OH + H2 reaction at elevated temperatures measured by pulse radiolysis,” Phys. Chem. Chem. Phys. 19, 30834–30841 (2017).
[Crossref]

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Phys. Rev. A (1)

P. Panagiotopoulos, M. Kolesik, and J. V. Moloney, “Exploring the limits to energy scaling and distant-target delivery of high-intensity midinfrared pulses,” Phys. Rev. A 94, 2–5 (2016).
[Crossref]

Phys. Rev. E (1)

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

Phys. Rev. Lett. (1)

A. M. Müller, C. J. G. J. Uiterwaal, J. Wanner, K. L. Kompa, and B. Witzel, “White-light-induced fragmentation of toluene,” Phys. Rev. Lett. 88, 023001 (2002).
[Crossref]

Phys. Usp. (1)

A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, A. Pugžlys, G. Andriukaitis, E. A. Stepanov, S. Ališauskas, T. Flöri, A. B. Fedotov, V. Y. Panchenko, A. Baltuška, and A. M. Zheltikov, “Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields,” Phys. Usp. 58, 89–94 (2015).
[Crossref]

Rep. Prog. Phys. (1)

J. P. Wolf, “Short-pulse lasers for weather control,” Rep. Prog. Phys. 81, 026001 (2018).
[Crossref]

Sci. Rep. (2)

D. Mongin, J. G. Slowik, E. Schubert, J.-G. Brisset, N. Berti, M. Moret, A. S. H. Prévôt, U. Baltensperger, J. Kasparian, and J.-P. Wolf, “Non-linear photochemical pathways in laser-induced atmospheric aerosol formation,” Sci. Rep. 5, 14978 (2015).
[Crossref]

A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugžlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Ališauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, “Mid-infrared laser filaments in the atmosphere,” Sci. Rep. 5, 8368 (2015).
[Crossref]

Science (3)

J. Malkus and R. H. Simpson, “Modification experiments on tropical cumulus clouds,” Science 145, 541–549 (1964).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. André, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

J. L. Jimenez, M. R. Canagaratna, and N. M. Donahue, et al., “Evolution of organic aerosols in the atmosphere,” Science 326, 1525–1529 (2009).
[Crossref]

Other (3)

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed. (Wiley, 2016).

“Toluene,” in Air Quality Guidelines, 2nd ed. (WHO Regional Office for Europe, 2000), Vol. 3, pp. 1–20.

P. J. Linstrom and W. G. Mallard, eds. NIST Chemistry Webbook,NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, 2021).

Supplementary Material (1)

NameDescription
Supplement 1       Supplementaldocument

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Dependence of average concentration of (a) nanoparticles with the diameters $d = {{25 {-} 300}}\;{\rm{nm}}$, (b) ozone and (c) larger particles ($d \gt {0.256}\;{\rm{\unicode{x00B5}{\rm m}}}$) on the strength of focusing. Notice the logarithmic scale in panel (a) and purple line, that shows background nanoparticle level, corresponding to Laser OFF times. These results are obtained when irradiating by 27-mJ 90 fs 3.9 µm mid-IR laser pulses.
Fig. 2.
Fig. 2. (a) Normalized on the bin size particle size distribution (PSD) for $f = {0.5}\;{\rm{m}}$, $f = {{2}}\;{\rm{m}}$, and without laser light in the chamber; (b–c) spectrum of the ambient VOCs absorption (red shaded area, absorption cross section are taken from HITRAN database [30]), emission spectrum after OPCPA (grey shaded area), after the filament assisted by $f = {0.75}\;{\rm{m}}$ (red line) and $f = {1.5}\;{\rm{m}}$ focusing (blue line).
Fig. 3.
Fig. 3. Concentration of nanoparticles (a) and ozone (b) as a function of the central wavelength of the incident pulse. Panel (a): Convolution between the pulse spectrum and 1st overtone of the most common ambient VOCs (red shaded area, absorption cross section are taken from HITRAN database [30]).