Abstract

Radially polarized lasers, in contrast to the conventional Gaussian laser mode, possess unique features such as sharp focusing and strong longitudinal fields. Thus far, radially polarized femtosecond pulses have been produced only by low-power devices such as mode-locked resonators and segmented half-wave plates. It is imperative to solve the bottleneck problem in generating higher powers and shorter durations. This paper reports on a polarization-insensitive, high-gain optical parametric amplifier for radially polarized femtosecond pulses, which works at type-II phase-matching and approximately degenerate wavelength. We experimentally demonstrate ${\gt}1000$-fold amplification of radially polarized ${\sim}{400}\;{\rm fs}$ pulses at 1610 nm, via chirped ${\sim}{280}\;{\rm fs}$ pumping at 800 nm, with the axially symmetric intensity profile and radial polarization state both being well-maintained within a 20 nm spectral range. With currently available high-energy picosecond pumping, the demonstrated amplification scheme will be promising to create radially polarized femtosecond pulses with ultrahigh powers and may facilitate future applications such as strong-field physics.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

While linearly polarized Gaussian-mode lasers have been well studied and developed over a number of decades, vector laser beams possessing spatially variant polarization have recently attracted broad research interest [1]. Radially polarized lasers can be sharply focused and exhibit intense longitudinal fields [2,3], which can be used to advantage in high-resolution imaging [4], optical tweezers, and atom trapping [5,6] applications. To facilitate their use in fields such as materials processing [7] and electron acceleration [810], it is highly desirable to push radially polarized lasers into the femtosecond and high-peak-power regimes.

Until now, radially polarized lasers have typically been generated by low-peak-power devices. There are two classes of such devices: those using extra-cavity optics, such as segmented half-wave plates (HWPs) [11] or spatial light modulation (SLM) [12], involving wavefront reconstruction from conventional linearly polarized states, and those using intra-cavity optics such as grating mirrors or conical Brewster prisms to select the desired polarization mode [13,14] or non-homogeneous polarization optics to control intra-cavity geometric phase [15]. Devices based on intra-cavity optics have achieved kW-order average output powers [16,17]. However, such radially polarized laser oscillators have only been demonstrated to operate in continuous wave (CW) mode, and the shortest pulse duration reported, in the sub-ps range, corresponded to the MW range for the highest peak powers [18,19]. Employing additional laser amplifiers allows the average-power increase of a radially polarized laser [20,21], but this approach is ineffective for high-gain ultrashort-pulse amplification. For instance, optical fiber and thin–disk amplifiers operating in the sub-ps regime offer a gain factor of up to five, which limits the achievable peak powers [2224]. The use of extra-cavity optics, transforming the traditionally linear polarizations into radial polarizations, is suitable for femtosecond pulses [25,26]. However, it is difficult to achieve ultrahigh peak powers by employing these external methods without amplification. We note that existing external methods do not meet the all-around high-power requirements of ultrabroadband response, high damage threshold, and large aperture. For example, spatial light modulators have a low damage threshold of ${\sim}{2}\;{{\rm GW/cm}^2}$ [27], $q$-plates have a relatively narrow bandwidth [28], and segmented waveplates in commercial products typically have a limited aperture of ${\sim}{25}\;{\rm mm}$ [29]. So far, the highest power is about 85 GW among the available radially polarized femtosecond lasers [30], which is far below the relativistic intensity regime. There remains a large gap between the powers produced by radially polarized and contemporary conventional lasers. The high-gain amplifier is an alternative promising approach to boosting radially polarized femtosecond pulses toward higher powers, which has been fully demonstrated to their linearly polarized counterparts.

In this paper, we address the issue of high-gain amplification of radially polarized femtosecond lasers. High-peak-power lasers have been generated by chirped-pulse amplification (CPA) for decades, but as far as we know, CPA techniques are entirely limited to linear polarizations [3133]. First, the grating-based stretchers and compressors commonly used in CPA are highly polarization-dependent [34]. Although the picosecond pulse-stretching and compression can be realized with the polarization-insensitive methods such as chirped mirrors, stimulated emission by broadband gain media such as Ti:sapphire is usually limited to purely linear polarization [35], resulting in that conventional CPA technology is unsuitable for radially polarized femtosecond lasers.

Optical parametric amplification (OPA) is an alternative route to obtain wavelength-tunable, broadband, high-gain amplification [36]. To ensure efficient OPA, phase-matching (PM) among the interacting waves is stringently required. Because OPA crystals are birefringent, the required PM condition can only be satisfied for the interacting waves with a fixed linear polarization combination, and any change in signal polarization results in a large phase mismatch that significantly reduces the OPA gain. Nonetheless, OPA has proven to be a flexible platform for high-peak-power femtosecond lasers. By manipulating the PM condition and idler dissipation, two OPA variants, termed adiabatic OPA and quasi-parametric amplification (QPA), have been explored, which, respectively, allow ultrabroadband gain and ultrahigh efficiency [37,38].

In this work, we demonstrate high-gain amplification of radially polarized femtosecond pulses via a specially designed OPA. The proposed OPA scheme is insensitive to polarization. Type-II PM is used, with the signal and idler wavelengths being approximately equal to each other (i.e., near degenerate). Thus, two orthogonally polarized signals—ordinary ($o$) and extraordinary ($e$) waves—simultaneously meet the same type-II PM condition ($e\; \to \;o + e$) and are synchronously amplified. As a result, the OPA gain is independent of polarization, and the arbitrary polarization state of the signal is preserved during amplification. The experimental study, in which a radially polarized, 1610 nm femtosecond seed pulse with a topological charge $m = {1}$ was generated using a vortex retarder, is detailed. With an 800 nm femtosecond pump, the radially polarized femtosecond signal undergoes significant amplification (${\gt}1000$-fold), while the axially symmetric intensity and radial polarization state are well maintained. Moreover, the amplified signal inherits the spectral and temporal properties of the pump, exhibiting conspicuous spectral broadening and pulse shortening. OPA crystals also act as multiple-order wave plates, potentially degrading the vector property of ultrabroadband radially polarized beams. We demonstrate that this wave plate effect can be effectively compensated by placing an identical crystal orthogonally in the seed signal beamline. Our results, in principle, pave the way for creating few-cycle radially polarized pulses with ultrahigh powers.

2. CONCEPT

The basic requirement for an ideal radially polarized laser amplifier is the gain must be polarization-independent. As any polarization state can be represented as a sum of two orthogonal linearly polarized components, it seems logical to adopt an amplifier that consists of two cascaded OPA stages, with each working for one of the two linear polarization components [39]. However, such a two-stage OPA design in reality does not meet the above-mentioned requirement in the saturation amplification regime, as discussed below. Taking the arbitrary linear polarization as an example, such a signal polarization state can be preserved only if the two decomposed orthogonally polarized components are equally amplified, as shown in Fig. 1(a). When both OPA stages are operated in the small-signal amplification regime (i.e., pump nondepletion), the gain, determined by the pump intensity, is the same for both crystals, and hence the required polarization-insensitive amplification can be supported. In contrast, under conditions of saturated amplification, the situation will be very different. Pump depletion will alter the polarization state because the gain is no longer constant but is strongly related to the intensity ratio between the two polarization components. The case of a radially polarized laser is even worse. Each OPA “sees” a polarization component with a different intensity that is transversely nonuniform. Thus, the saturated gains of the OPAs will also vary transversely and with respect to each other. It is not possible to equalize the gain of these two OPAs by optimizing the OPA parameters, and hence the radial polarization state cannot be preserved in the saturation amplification regime.

 

Fig. 1. (a) Cascaded two-stage OPA and (b) degenerate type-II single-stage OPA configurations, for both the $e$- and $o$-polarized components. (c)–(f) Calculated intensity profiles (main plots) for a radially polarized pulse amplified by (c), (d) cascaded two-stage OPA and (e), (f) degenerate type-II single-stage OPA in the (c), (e) small-signal (${L_{\textit{nl}}} = {0.4}$ ${L_0}$) and (d), (f) saturated amplification (${L_{\textit{nl}}} = {0.2}$ ${L_0}$) regimes. The lower part of each panel displays the signal projections in different polarization directions. The solid arrows indicate the polarization directions in the beam cross section. (g) Gain spectra for $e$- and $o$-polarized signals centered at 1600 nm in a type-II single-stage OPA. The OPA crystal is a 1-mm-thick BBO orientated at 28.7° and pumped at 800 nm.

Download Full Size | PPT Slide | PDF

To solve the above-mentioned problem, we propose single-stage OPA, using type-II phase-matching and approximately degenerate wavelength [Fig. 1(b)]. In a type-II OPA configuration with a Ti:sapphire laser at 800 nm as the pump, the radially polarized 1600 nm signal can be regarded as a combination of linearly polarized components along the ordinary ($o$) and extraordinary ($e$) axes of a nonlinear crystal. These components can be separately amplified via two simultaneous processes; that is, an 800 nm pump and a 1600 nm $o$-polarized ($e$-polarized) signal generates a 1600 nm $e$-polarized ($o$-polarized) idler. Obviously, these two parallel OPA processes have identical PM conditions. In addition, they share the same pump intensity, ${I_p}(z)$, which varies along the crystal. Thus, the two components experience a transversely uniform gain, independent of the azimuthal angle, because the total seed energy of the $e$- and $o$-polarized signals is azimuthally uniform. In this way, the amplification of the $e$- and $o$-polarized signal components can be identical, regardless of the initial polarization direction, in either the small-signal or saturated-amplification regimes.

We verified the above hypothesis using simplified CW numerical simulations. In the simulations, we neglect all the linear effects (i.e., diffraction, dispersion, temporal, and spatial walk-off), and the 1600 nm signal seed is a hollow Gaussian beam with first-order spatially varying polarization, ${E_s}(\rho) = {E_s}{\cdot}{(\rho /{\omega _s})^4}{\cdot \exp}[- {(\rho /{\omega _s})^2}]$. In this expression, ${E_s}$ is the peak electric field, and ${\omega _s}$ is the beam waist [40]. A singularity results in a dark spot at the signal beam center. The 800 nm pump was a Gaussian beam that was linearly polarized, i.e., ${E_p}(\rho) = {E_p}{\cdot \exp}[- {(\rho /{\omega _p})^2}]$, with ${\omega _p} = {3}{\omega _s}$ and ${E_p} = {10}\;{E_s}$. A nonlinear length $L_{nl}$ was introduced to represent the pump intensity and amplification regime [41]. For the cascaded two-stage OPA configuration in Fig. 1(a), the two orthogonally oriented nonlinear crystals have the same thickness ($L = {L_0}$) and nonlinear length ${L_{\textit{nl}}}$. Figures 1(c)–1(f) depict the amplified signal intensity profiles and polarization distributions. Polarization-insensitive amplification by the cascaded two-stage OPA can only be achieved in the small-signal regime. As the pump intensity increases, non-negligible pump depletion plays a role in changing the polarization state: the two orthogonal polarization components no longer experience the same gain or efficiency. With only a single pump laser, the second OPA stage will experience a weakened pump beam and reduced gain, resulting in continual polarization rotation in the horizontal direction. Thus, the vector property is destroyed and may even disappear under high-gain conditions. Furthermore, the amplified output is inhomogeneous in the beam cross section for various polarization states, resulting in a distorted intensity profile. In contrast, the signal intensity profile and polarization distribution are both well preserved in the degenerate type-II OPA process, regardless of the amplification regime. The ideal doughnut-shaped intensity profile also indicates that the amplified signal is independent of the polarization state, being determined solely by the seed energy.

Although the above discussion assumes perfect wavelength degeneracy, the major conclusion is still valid if the signal wavelength is slightly detuned, to 1610 nm, for example. In this case, it becomes clear that this type-II OPA involves two parallel parametric processes: an 800 nm pump and a 1610 nm $o$-polarized ($e$-polarized) signal generate a 1590 nm $e$-polarized ($o$-polarized) idler. It is, however, impossible to simultaneously realize perfect PM for these two nonlinear processes, and this results in a pair of correlated phase mismatches $\Delta {k_o}$ and $\Delta {k_e}$. By optimizing the crystal orientation, we can balance $\Delta {k_o}$ and $\Delta {k_e}$ such that $|\Delta {k_o}|\; \approx \;|\Delta {k_e}|$, and thus the same gain can be still achieved for these two parallel parametric processes. Notably, this balanced crystal orientation is exactly the same as the PM angle for the 1600 nm degenerate wavelength, and is basically invariant with the signal wavelength. In the case of a $\beta$-barium borate (BBO) crystal, the balanced crystal orientation angle is ${\sim}{28.7}^\circ$. Figure 1(g) presents the calculated gain spectra of this type-II OPA configuration for both the $e$- and $o$-polarized signals, based on the small-signal gain condition [36]. It is apparent that the orthogonally polarized signals always experience equal gain under the condition of balanced crystal orientation, which holds true for various signal wavelengths around 1600 nm.

There is one additional requirement on polarization preservation. The orthogonally polarized components of the signal must be kept in phase during the amplification. In principle, OPA preserves the signal phase under the ideal PM condition. In a degenerate OPA, however, a broadband signal may experience the optical parametric phase (OPP) induced by the wavelength-dependent phase mismatch. Such a phase mismatch induced OPP significantly increases with the crystal length and will distort the signal pulse typically in the few-cycle regime [42]. Nevertheless, the effect of OPP is negligible in our OPA situation with a thin crystal and a moderate signal duration. On the other hand, the birefringent OPA crystal may also impose an additional phase, acting as a wave plate [23]. Such a wave plate effect depends on the crystal orientation and thickness. Therefore, it is necessary to design an OPA crystal such that it acts as a full-wave plate at the signal wavelength.

3. EXPERIMENTAL STUDY

In this section, we report an experimental study of the high-gain amplification of radially polarized pulses in type-II near-degenerate OPA (Fig. 2). Besides serving as a power booster, femtosecond OPA is also a viable option for extending the range of available wavelengths for femtosecond lasers [43]. In our experiment, we seeded the OPA with a narrowband radially polarized signal in an attempt to obtain a broadband amplified signal using a broadband pump.

 

Fig. 2. Experimental OPA setup for radially polarized femtosecond pulses at 1610 nm. BS, beam splitter; HWP, half-wave plate; PBS, polarizing BS; ${{\rm M}_1} - {{\rm M}_5}$, mirrors; ${{\rm F}_1}$, 12 nm bandpass 1610 nm filter; ${{\rm F}_2}$, neutral density filter; ${{\rm F}_3}$, 1100 nm longpass filter; L, $f = {1000}\;{\rm mm}$ lens; VR, vortex retarder; BBO, 1-mm-thick type-II BBO crystal. The BBO adjacent to the VR is orthogonally oriented to compensate for the phase retardation that occurs in the OPA crystal.

Download Full Size | PPT Slide | PDF

The experimental setup (Fig. 2) relies on a 1 kHz repetition rate Ti:sapphire regenerative amplifier system (Astrella, Coherent) producing ${\sim}{80}\;{\rm fs}$ pulses at 800 nm with a pulse energy of ${\sim}{7}\;{\rm mJ}$, some of which serve as the pump for radial polarization OPA. The femtosecond signal at 1610 nm is obtained from a white-light seeded optical parametric amplifier (OPerA Solo, Coherent). In the pump beamline, the polarization and intensity are controlled by a HWP and polarizing beam splitter (PBS). A 1-mm-thick BBO crystal cut at $\theta = {28.7}^\circ$ for type-II PM is used for the OPA. In the signal beamline, the 1610 nm femtosecond pulses are stretched to ${\sim}{400}\;{\rm fs}$ upon passing through a 12 nm bandpass filter (FB1610-12, Thorlabs). A vortex retarder ($m = {1}$) at 1610 nm (Lbtek) converts the initially linearly polarized light to radially polarized. In order to diminish the group-velocity mismatch in the BBO crystal and realize high-gain amplification, the femtosecond pump pulses are slightly chirped to ${\sim}{280}\;{\rm fs}$ by the compressor of the regenerative amplifier system and via dispersion in the 25-mm-thick PBS. In the near-degenerate type-II OPA setup, a noncollinear angle of ${\sim}{1.4}^\circ$ between the signal and pump allows separation of the idler beam. The diameter of the pump beam is approximately 1.5 mm (FWHM) inside the crystal. The seed signal is slightly focused by a lens placed close to the vortex retarder, leading to a beam diameter of ${\sim}{0.5}\;{\rm mm}$ inside the crystal. In the experiment, the pump had a pulse energy of ${\sim}{2.0}\;{\rm mJ}$, measured in front of the BBO crystal, a pulse duration of ${\sim}{280}\;{\rm fs}$, and a beam diameter of ${\sim}{1.5}\;{\rm mm}$, corresponding to a peak intensity of ${\sim}{400}\;{{\rm GW/cm}^2}$.

The signal pulse energy, beam profile, and spatial polarization distribution were characterized at a position ${\sim}{40}\;{\rm cm}$ away from the crystal. Figure 3(a) presents the output signal energy and saturated amplification gain for the radial polarization OPA as a function of seed energy for a constant pump energy of ${\sim}{2.0}\;{\rm mJ}$. When the seed energy was below ${\sim}{40}\;{\rm nJ}$, the OPA fell into the small-signal amplification regime, showing a small-signal gain of ${\sim}{1100}$. In the experiment, the maximum amplified signal energy of ${\sim}{136}\;\unicode{x00B5} {\rm J}$ was achieved when the seed energy was set at ${\sim}{3}\;\unicode{x00B5} {\rm J}$. The beam profiles of the amplified signal were recorded by a near-IR CCD camera (BeamOn U3-VIS-NIR, Duma Optronics) with appropriate attenuation, as shown in Fig. 3(b). Notably, a well-defined annular signal beam is always observed. To illustrate the vector property of the radially polarized beams, we used the standard method. The signal beam was passed through a linear polarizer, and the output beam profile is recorded as a function of polarization direction. In each of the annular beam profiles, we observe a two-lobe pattern, parallel to the transmission axis of the polarizer (indicated by the overlaid double-ended arrows), which is the signature of radially polarized states. By comparing the amplified signal profiles and polarization projections with those of the seed signal at ${\sim}{3}\;\unicode{x00B5} {\rm J}$, we can see that both the axially symmetric intensity and radial polarization state are well-maintained during OPA. The slight reduction in the size of the dark spot for the amplified signal beam indicates the occurrence of saturation amplification. To confirm the beam coherence, we focused the amplified signal with a plano–convex lens ($f = {150}\;{\rm mm}$), and a ring-like beam profile in the far-field was observed, similar to its near-field counterpart, as shown in the inset of Fig. 3(a). It should be noted that a 1100 nm longpass filter (FEL1100, Thorlabs) must be placed before the CCD camera to block parasitic second harmonics (${\sim}{800}\;{\rm nm}$) of the OPA signal. Although their power is too weak to be measured in this setup, the parasitic second harmonics can disrupt beam profile measurements because CCD cameras typically exhibit significantly higher sensitivity (${\gt}10^5$) at 800 nm than at 1610 nm.

 

Fig. 3. (a) Measured output signal energy and gain factor for the radial polarization OPA. (b) Measured beam profiles and polarization projections for the seed signal at 3 µJ and amplified signals generated using various seed energies. The inset in (a) presents the focused beam profile of the amplified radially polarized pulses at 136 µJ.

Download Full Size | PPT Slide | PDF

 

Fig. 4. Measured pulse spectra and autocorrelation traces (solid lines) with Gaussian fitting (dashed lines) for the (a), (b) pump, (c), (d) seed signal, and (e), (f) amplified signal. The amplified signal plots correspond to a seed energy of ${\sim}{40}\;{\rm nJ}$ and a gain factor of ${\sim}{1100}$.

Download Full Size | PPT Slide | PDF

 

Fig. 5. (a), (b) Measured beam profiles and polarization projections for (a) seed and (b) amplified signals under various filtering conditions. The filter specifications (transmission wavelength and bandwidth) are listed at the top of the figure, and the first one indicates the amplified signal (centered at 1610 nm) of the entire spectrum (30 nm bandwidth). In the experiment, the radial polarization OPA had a small-signal gain of ${\sim}{1100}$ and generated the maximum amplified signal energy of ${\sim}{136}\;\unicode{x00B5}{\rm J}$. (c) Femtosecond OPA simulation results with the wave plate effect. The simulation parameters were same as the experimental conditions in (b). The 1-mm-thick BBO crystal was set at the balanced orientation angle of 28.7°, which allows it to act precisely as a full-wave plate at 1610 nm. (d) OPCPA simulation results without the wave plate effect. Radially polarized seed signal: wavelength, 1610 nm; transform-limited pulse duration, 80 fs; chirped-pulse duration, 1.5 ps. Linearly polarized pump: wavelength, 800 nm; pulse duration, 2 ps.

Download Full Size | PPT Slide | PDF

The temporal profile of the signal pulse and its spectrum were measured by an autocorrelator (pulseCheck USB 150, APE) and a spectrometer (USB 2000$ + $, Ocean Optics), respectively. As shown in Fig. 4, the signal pulse duration is reduced from ${\sim}{400}\;{\rm fs}$ (seed pulse) to ${\sim}{175}\;{\rm fs}$ after amplification. Likewise, the spectral bandwidth increases from ${\sim}{12}\;{\rm nm}$ to ${\sim}{31}\;{\rm nm}$ (FWHM). Spectral measurements and temporal profiles corresponding to the polarization projections (i.e., the two-lobe patterns) also show similar results. The accompanied signal spectral broadening and pulse shortening can be attributed to adequate frequency mixing in the femtosecond OPA. Owing to the nonlinear interaction characteristics, the amplified signal pulse is somewhat shorter than the pump pulse.

4. WAVE PLATE EFFECT OF THE OPA CRYSTAL

The signal phase retardation, induced by the birefringence of the OPA crystal, sensitively depends on wavelength in the femtosecond regime. Thus, the crystal acts as a multiple-order wave plate. This wave plate effect degrades the polarization state of radially polarized femtosecond lasers, being more severe for off-center spectral components. To observe the polarization state in a spectrally resolved manner, we sampled the signal using a series of ${\sim}{12}\;{\rm nm}$ bandpass filters with centers at 1600, 1610, and 1620 nm (FB1600-12, FB1610-12, FB1620-12, respectively, Thorlabs). Both the beam profiles and polarization states of these spectral subsets of the signal were recorded before and after parametric amplification, as shown in Figs. 5(a) and 5(b), respectively. In this section, the radial polarization OPA with a small-signal gain of ${\sim}{1100}$ was studied in the saturated amplification regime, which generated the maximum amplified signal energy of ${\sim}{136}\;\unicode{x00B5} {\rm J}$.

In addition, 3D numerical simulations were performed, and the results are presented in Figs. 5(c) and 5(d). In the simulations, the pump and signal were, respectively, expressed by ${E_p}(\rho ,\theta ,t) = {E_p}{\cdot\exp}[- {(\rho /{\omega _p})^2}]{\cdot\exp}[- {(t/{t_p})^2}]$ and ${E_s}(\rho ,\theta ,t) = {E_s}{\cdot}{(\rho /{\omega _s})^4}{\cdot\exp}[- {(\rho /{\omega _s})^2}]{\cdot\exp}[- {(t/{t_s})^2}]$. At each transverse point ($\rho ,\;\theta$), the signal was further decomposed into two orthogonal polarizations of ${E_{o\:}} = \;{ \cos}\theta {\cdot}{E_s}(\rho ,\theta ,t)$ and ${E_{e\:}} = \;{\sin}\theta {\cdot}{E_s}(\rho ,\theta ,t)$. Numerical simulations were performed based on the standard nonlinear coupled-wave equations [44], which took into account the dispersion terms of group-velocity mismatch and group-velocity dispersion, but neglected the transverse effects of diffraction and walk-off. To evaluate the wave plate effect, the wavelength-dependent phase retardance caused by the BBO crystal birefringence was imposed onto the amplified signal in the frequency domain. In such a way, the signal beam profiles and polarization projections can be obtained for the full spectrum and also the narrow spectral components.

At the central wavelength of 1610 nm, the amplified signal of the entire spectrum (30 nm bandwidth) retains the full ring-like beam shape of the seed beam, suggesting polarization-insensitive amplification. After sampling using a 12 nm bandpass filter (centered at 1610 nm), the amplified narrowband signal beam still retains the full ring-shape. In contrast, the beam profiles of the off-center spectral components at 1600 and 1620 nm (same bandwidth) are asymmetric with respect to the azimuthal angle. As shown in Fig. 5(b), at shorter wavelengths (1600 nm), the $e$-polarized narrowband spectral component experiences higher gain, and at longer wavelengths (1620 nm), the $o$-polarized narrowband spectral component experiences higher gain. Nevertheless, the beam profiles at 1600 and 1620 nm are complementary, which is in accordance with the observation of the uniform ring-shaped beams at the central wavelength (1610 nm). To explain the above experimental observations, we recall the simulation results shown in Fig. 1(e). With a narrowband pump, the orthogonally $e$- and $o$-polarized signals at various wavelengths can always be equally amplified under the condition of balanced crystal orientation. Therefore, the observed asymmetrical beam profiles of the off-center spectral components can be simply attributed to the chirp condition of the broadband femtosecond pump. This conclusion is further confirmed by the optical parametric chirped-pulse amplification (OPCPA) simulation with a radially polarized signal, as shown in Fig. 5(d).

The off-center spectral components may also suffer from wavelength-dependent phase retardance. At 1600 and 1620 nm, the phase retardance between the $o$- and $e$-polarized components is only small ($\pm {0.2}\;\pi$). Therefore, the corresponding output signals from the OPA are still approximately linearly polarized at each spatial point, but no longer perfectly radially polarized because the weakly polarization-dependent gain at these off-center wavelengths somewhat alters the initial polarization direction. This is confirmed by the measured and calculated images of the polarization projections [Figs. 5(b) and 5(c)]. From these frequency-resolved beam measurements, the spectral components at ${\lt}{1600}\;{\rm nm}$ and ${\gt}1620\;{\rm nm}$ show poor radial polarization, and the radial polarization state maintains unchanged across the spectral range from ${\sim}{1600}\;{\rm nm}$ to ${\sim}{1620}\;{\rm nm}$. The measurement suggests an effective amplification bandwidth of 20 nm (FWHM), which corresponds to transform-limited pulses of about 190 fs. Nevertheless, the off-center spectral components beyond the signal bandwidth are sufficiently weak, and the amplified signal of the entire spectrum actually preserves the radial polarization state.

As discussed above, the wave plate effect is negligible when the signal bandwidth is moderate (${\sim}{30}\;{\rm nm}$). However, the experienced phase retardance gets more severe as the wavelength further deviates from the central wavelength (1610 nm). This effect can be extreme for ultrabroadband signals. For instance, the phase retardance between the $o$- and $e$-polarized components in a 1-mm-thick BBO crystal is as large as ${1/2}\;\pi$ at 1635 nm. If the signal bandwidth is much greater than 50 nm, the off-center spectral components (e.g., 1635 nm) are reasonably strong within the signal bandwidth, and hence the wave plate effect could degrade the signal polarization state across the entire spectrum. This necessitates compensation for the wave plate effect.

In general, radial polarization OPA demands the adopted nonlinear crystal is aligned at the balanced orientation angle ${\alpha _{{\rm BO}}}$. However, to minimize the wave plate effect, the nonlinear crystal must also function as a full-wave plate at the central wavelength of the signal, which requires another specific orientation angle ${\alpha _{{\rm WP}}}$. Consequently, the signal wavelength should be designed such that ${\alpha _{{\rm BO}}} = {\alpha _{{\rm WP}}}$. Moreover, the multiple-order wave plate effect is strongly related to crystal length, and may get severe in a longer OPA crystal. When using a moderate 1-mm-thick BBO as the OPA crystal, selecting 1610 nm as the signal wavelength fulfills the requirement ${\alpha _{{\rm BO}}} = {\alpha _{\rm WP}}{\approx}\;{28.7}^\circ$. We adopted such a design criterion, which guarantees high-gain amplification of radially polarized signals with a moderate bandwidth of 30 nm, in the above experiments (Figs. 3 and 5).

Finally, we discuss how to compensate for the wave plate effect in the case of an ultrabroadband signal. To this end, we introduced another BBO crystal, identical to the OPA crystal, that was placed orthogonally in the seed signal beamline before the OPA crystal. In this way, the wavelength-dependent phase retardance between the $o$- and $e$-polarized components can cancel each other out at the OPA output. We experimentally verified the effectiveness of the proposed compensation approach [Fig. 6]. In Fig. 6(a), the results of slightly detuning the OPA crystal, from ${\alpha _{\rm WP}} = {28.7}^\circ$ to $\alpha = {28.9}^\circ$, such that it acts as a quarter-wave plate instead of a full-wave plate, are shown. In terms of the wave plate effect, the 1610 nm signal passing through the OPA crystal at $\alpha = {28.9}^\circ$ in the experiment behaves in the same way as the 1635 nm signal passing through it at ${\alpha _{\rm WP}} = {28.7}^\circ$. This mimics the situation of an ultrabroad signal bandwidth of 50 nm or larger. As shown in Fig. 6(a), although the signal beam profile was little influenced by the angle detuning, the radial polarization state was severely degraded; the beam profiles at $\pm {45}^\circ$ polarizations are nearly annular. However, with compensation using an identical BBO crystal, both the seed and amplified signal were primarily resumed to be well radially polarized [Fig. 6(b)]. This result clearly suggests that severe wave plate effects occurring under ultrabroadband conditions can be well-compensated in the proposed polarization-insensitive OPA scheme.

 

Fig. 6. (a) Measured signal beam profiles and polarization projections at the OPA output. By slightly detuning the orientation angle from ${\alpha _{\rm WP}} = {28.7}^\circ$ to $\alpha = {28.9}^\circ$, the OPA crystal is made to function as a quarter-wave plate. (b) The same measurements as in (a), but with compensation for the wave plate effect. Another BBO crystal, identical to the OPA crystal, is placed orthogonally in the seed signal beamline.

Download Full Size | PPT Slide | PDF

5. DISCUSSION AND CONCLUSION

In summary, a polarization-insensitive single-stage OPA configuration was demonstrated and applied to the high-gain amplification of radially polarized femtosecond pulses. It is a type-II PM configuration, and its signal and idler wavelengths are approximately equal to each other (i.e., near degenerate). In addition to providing a ${\gt}1000$-fold pulse energy increase, the signal pulse was significantly shortened with respect to the pump duration. With the help of ultrabroadband PM methods (e.g., using the so-called “magic” PM angle) [45], it is highly possible that methods to amplify few-cycle pulses with radially and azimuthally polarized states will be developed.

The availability of radially polarized few-cycle seed pulses is another key issue. Notably, the demonstrated technique also provides an alternative to generate radially polarized few-cycle seed pulses. With a linearly polarized few-cycle pump pulse, the radial polarization femtosecond OPA can convert a radially polarized long seed pulse into the few-cycle pulse regime, as suggested by the pulse shortening observed in the experiment.

This current experimental demonstration was focused on femtosecond pumping. We note that the energy scaling of polarization-insensitive OPA is straightforward. In our experimental study, BBO was chosen as the crystal material. Comparatively, LBO crystal can be grown with a larger aperture of 100 mm, which is sufficient for supporting a petawatt OPCPA [46,47]. With high-energy picosecond pumping, where polarization-dependent optics such as gratings is not necessary, it is feasible in LBO-based OPCPA that the energies of radially polarized pulses will be boosted into the relativistic intensity regime [47,48]. We anticipate that such radially polarized high-peak-power pulses will find a wide range of applications, such as laser acceleration and high-harmonic generation.

Funding

National Natural Science Foundation of China (61490713); Natural Science Foundation of Guangdong Province (2020A1515010541); Science and Technology Planning Project of Shenzhen Municipality (GJHZ20180928160407303, JCYJ20180305124930169, JCYJ20190808143419622, ZDSYS201707271014468).

Disclosures

The authors declare no conflicts of interest.

REFERENCES

1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009). [CrossRef]  

2. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef]  

3. A. Woldegeorgis, T. Kurihara, M. Almassarani, B. Beleites, R. Grosse, F. Ronneberger, and A. Gopal, “Multi-MV/cm longitudinally polarized terahertz pulses from laser–thin foil interaction,” Optica 5, 1474–1477 (2018). [CrossRef]  

4. R. Chen, K. Agarwal, C. J. R. Sheppard, and X. Chen, “Imaging using cylindrical vector beams in a high-numerical-aperture microscopy system,” Opt. Lett. 38, 3111–3114 (2013). [CrossRef]  

5. V. Salakhutdinov, M. Sondermann, L. Carbone, E. Giacobino, A. Bramati, and G. Leuchs, “Optical trapping of nanoparticles by full solid-angle focusing,” Optica 3, 1181–1186 (2016). [CrossRef]  

6. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18, 10828–10833 (2010). [CrossRef]  

7. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999). [CrossRef]  

8. C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013). [CrossRef]  

9. V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013). [CrossRef]  

10. N. Zaïm, M. Thévenet, A. Lifschitz, and J. Faure, “Relativistic acceleration of electrons injected by a plasma mirror into a radially polarized laser beam,” Phys. Rev. Lett. 119, 094801 (2017). [CrossRef]  

11. W. J. Lai, B. C. Lim, P. B. Phua, K. S. Tiaw, H. H. Teo, and M. H. Hong, “Generation of radially polarized beam with a segmented spiral varying retarder,” Opt. Express 16, 15694–15699 (2008). [CrossRef]  

12. X.-L. Wang, J. Ding, W.-J. Ni, C.-S. Guo, and H.-T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3551 (2007). [CrossRef]  

13. T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005). [CrossRef]  

14. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005). [CrossRef]  

15. D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016). [CrossRef]  

16. I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2  kW, M2< 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32, 47–49 (2007). [CrossRef]  

17. M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J.-C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32, 1824–1826 (2007). [CrossRef]  

18. D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017). [CrossRef]  

19. M. Eckerle, T. Dietrich, F. Schaal, C. Pruss, W. Osten, M. A. Ahmed, and T. Graf, “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” Opt. Lett. 41, 1680–1683 (2016). [CrossRef]  

20. S. Kanazawa, Y. Kozawa, and S. Sato, “High-power and highly efficient amplification of a radially polarized beam using an Yb-doped double-clad fiber,” Opt. Lett. 39, 2857–2859 (2014). [CrossRef]  

21. M. Fridman, M. Nixon, M. Dubinskii, A. A. Friesem, and N. Davidson, “Fiber amplification of radially and azimuthally polarized laser light,” Opt. Lett. 35, 1332–1334 (2010). [CrossRef]  

22. J.-P. Negel, A. Loescher, B. Dannecker, P. Oldorf, S. Reichel, R. Peters, M. A. Ahmed, and T. Graf, “Thin-disk multipass amplifier for fs pulses delivering 400  W of average and 2.0  GW of peak power for linear polarization as well as 235  W and 1.2  GW for radial polarization,” Appl. Phys. B 123, 156 (2017). [CrossRef]  

23. M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen, F. Balembois, P. Georges, M. A. Ahmed, and T. Graf, “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Appl. Phys. B 123, 139 (2017). [CrossRef]  

24. F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, M. Eckerle, T. Graf, M. A. Ahmed, F. Druon, F. Balembois, and P. Georges, “High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization,” Opt. Lett. 40, 2517–2520 (2015). [CrossRef]  

25. S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012). [CrossRef]  

26. C. Hernández-García, A. Turpin, J. S. Román, A. Picón, R. Drevinskas, A. Cerkauskaite, P. G. Kazansky, C. G. Durfee, and Í. J. Sola, “Extreme ultraviolet vector beams driven by infrared lasers,” Optica 4, 520–526 (2017). [CrossRef]  

27. N. Savage, “Digital spatial light modulators,” Nat. Photonics 3, 170–172 (2009). [CrossRef]  

28. F. Kong, H. Larocque, E. Karimi, P. B. Corkum, and C. Zhang, “Generating few-cycle radially polarized pulses,” Optica 6, 160–164 (2019). [CrossRef]  

29. M. del Mar Sánchez-López, I. Moreno, J. A. Davis, D. Puerto-Garcia, I. Abella, and S. Delaney, “Extending the use of commercial Q-plates for the generation of high-order and hybrid vector beams,” Proc. SPIE 10744, 1074407 (2018). [CrossRef]  

30. S. Carbajo, E. Granados, D. Schimpf, A. Sell, K.-H. Hong, J. Moses, and F. X. Kärtner, “Efficient generation of ultra-intense few-cycle radially polarized laser pulses,” Opt. Lett. 39, 2487–2490 (2014). [CrossRef]  

31. W. Li, Z. Gan, L. Yu, C. Wang, Y. Liu, Z. Guo, L. Xu, M. Xu, Y. Hang, Y. Xu, J. Wang, P. Huang, H. Cao, B. Yao, X. Zhang, L. Chen, Y. Tang, S. Li, X. Liu, S. Li, M. He, D. Yin, X. Liang, Y. Leng, R. Li, and Z. Xu, “339  J high-energy Ti:sapphire chirped-pulse amplifier for 10  PW laser facility,” Opt. Lett. 43, 5681–5684 (2018). [CrossRef]  

32. J. H. Sung, H. W. Lee, J. Y. Yoo, J. W. Yoon, C. W. Lee, J. M. Yang, Y. J. Son, Y. H. Jang, S. K. Lee, and C. H. Nam, “4.2  PW, 20  fs Ti:sapphire laser at 0.1  Hz,” Opt. Lett. 42, 2058–2061 (2017). [CrossRef]  

33. X. Zeng, K. Zhou, Y. Zuo, Q. Zhu, J. Su, X. Wang, X. Wang, X. Huang, X. Jiang, X. Jiang, D. Jiang, Y. Guo, N. Xie, S. Zhou, Z. Wu, J. Mu, H. Peng, and F. Jing, “Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification,” Opt. Lett. 42, 2014–2017 (2017). [CrossRef]  

34. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, and E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20, 940–942 (1995). [CrossRef]  

35. M. Kalashnikov, H. Cao, K. Osvay, and V. Chvykov, “Polarization-encoded chirped pulse amplification in Ti:sapphire: a way toward few-cycle petawatt lasers,” Opt. Lett. 41, 25–28 (2016). [CrossRef]  

36. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003). [CrossRef]  

37. J. Ma, J. Wang, P. Yuan, G. Xie, K. Xiong, Y. Tu, X. Tu, E. Shi, Y. Zheng, and L. Qian, “Quasi-parametric amplification of chirped pulses based on a Sm3+-doped yttrium calcium oxyborate crystal,” Optica 2, 1006–1009 (2015). [CrossRef]  

38. H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photon. Rev. 8, 333–367 (2014). [CrossRef]  

39. G.-H. Shao, X.-S. Song, F. Xu, and Y.-Q. Lu, “Optical parametric amplification of arbitrarily polarized light in periodically poled LiNbO3,” Opt. Express 20, 19343–19348 (2012). [CrossRef]  

40. Y. Yang, Y. Dong, C. Zhao, and Y. Cai, “Generation and propagation of an anomalous vortex beam,” Opt. Lett. 38, 5418–5421 (2013). [CrossRef]  

41. V. Petrov and F. Noack, “Tunable femtosecond optical parametric amplifier in the mid-infrared with narrow-band seeding,” J. Opt. Soc. Am. B 12, 2214–2221 (1995). [CrossRef]  

42. S. Demmler, J. Rothhardt, S. Hädrich, J. Bromage, J. Limpert, and A. Tünnermann, “Control of nonlinear spectral phase induced by ultrabroadband optical parametric amplification,” Opt. Lett. 37, 3933–3935 (2012). [CrossRef]  

43. G. M. Gale, G. Gallot, F. Hache, and R. Sander, “Generation of intense highly coherent femtosecond pulses in the mid infrared,” Opt. Lett. 22, 1253–1255 (1997). [CrossRef]  

44. Y. Li, H. Zhong, J. Yang, S. Wang, and D. Fan, “Versatile backconversion-inhibited broadband optical parametric amplification based on an idler-separated QPM configuration,” Opt. Lett. 42, 2806–2809 (2017). [CrossRef]  

45. A. Zaukevičius, V. Jukna, R. Antipenkov, V. Martinėnaitė, A. Varanavičius, A. P. Piskarskas, and G. Valiulis, “Manifestation of spatial chirp in femtosecond noncollinear optical parametric chirped-pulse amplifier,” J. Opt. Soc. Am. B 28, 2902–2908 (2011). [CrossRef]  

46. L. Yu, X. Liang, L. Xu, W. Li, C. Peng, Z. Hu, C. Wang, X. Lu, Y. Chu, Z. Gan, X. Liu, Y. Liu, X. Wang, H. Lu, D. Yin, Y. Leng, R. Li, and Z. Xu, “Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification in LBO near 800 nm,” Opt. Lett. 40, 3412–3415 (2015). [CrossRef]  

47. A. Kessel, V. E. Leshchenko, O. Jahn, M. Krüger, A. Münzer, A. Schwarz, V. Pervak, M. Trubetskov, S. A. Trushin, F. Krausz, Z. Major, and S. Karsch, “Relativistic few-cycle pulses with high contrast from picosecond-pumped OPCPA,” Optica 5, 434–442 (2018). [CrossRef]  

48. A. Thai, C. Skrobol, P. K. Bates, G. Arisholm, Z. Major, F. Krausz, S. Karsch, and J. Biegert, “Simulations of petawatt-class few-cycle optical-parametric chirped-pulse amplification, including nonlinear refractive index effects,” Opt. Lett. 35, 3471–3473 (2010). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
    [Crossref]
  2. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [Crossref]
  3. A. Woldegeorgis, T. Kurihara, M. Almassarani, B. Beleites, R. Grosse, F. Ronneberger, and A. Gopal, “Multi-MV/cm longitudinally polarized terahertz pulses from laser–thin foil interaction,” Optica 5, 1474–1477 (2018).
    [Crossref]
  4. R. Chen, K. Agarwal, C. J. R. Sheppard, and X. Chen, “Imaging using cylindrical vector beams in a high-numerical-aperture microscopy system,” Opt. Lett. 38, 3111–3114 (2013).
    [Crossref]
  5. V. Salakhutdinov, M. Sondermann, L. Carbone, E. Giacobino, A. Bramati, and G. Leuchs, “Optical trapping of nanoparticles by full solid-angle focusing,” Optica 3, 1181–1186 (2016).
    [Crossref]
  6. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18, 10828–10833 (2010).
    [Crossref]
  7. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
    [Crossref]
  8. C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
    [Crossref]
  9. V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
    [Crossref]
  10. N. Zaïm, M. Thévenet, A. Lifschitz, and J. Faure, “Relativistic acceleration of electrons injected by a plasma mirror into a radially polarized laser beam,” Phys. Rev. Lett. 119, 094801 (2017).
    [Crossref]
  11. W. J. Lai, B. C. Lim, P. B. Phua, K. S. Tiaw, H. H. Teo, and M. H. Hong, “Generation of radially polarized beam with a segmented spiral varying retarder,” Opt. Express 16, 15694–15699 (2008).
    [Crossref]
  12. X.-L. Wang, J. Ding, W.-J. Ni, C.-S. Guo, and H.-T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3551 (2007).
    [Crossref]
  13. T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005).
    [Crossref]
  14. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005).
    [Crossref]
  15. D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016).
    [Crossref]
  16. I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2  kW, M2< 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32, 47–49 (2007).
    [Crossref]
  17. M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J.-C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32, 1824–1826 (2007).
    [Crossref]
  18. D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
    [Crossref]
  19. M. Eckerle, T. Dietrich, F. Schaal, C. Pruss, W. Osten, M. A. Ahmed, and T. Graf, “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” Opt. Lett. 41, 1680–1683 (2016).
    [Crossref]
  20. S. Kanazawa, Y. Kozawa, and S. Sato, “High-power and highly efficient amplification of a radially polarized beam using an Yb-doped double-clad fiber,” Opt. Lett. 39, 2857–2859 (2014).
    [Crossref]
  21. M. Fridman, M. Nixon, M. Dubinskii, A. A. Friesem, and N. Davidson, “Fiber amplification of radially and azimuthally polarized laser light,” Opt. Lett. 35, 1332–1334 (2010).
    [Crossref]
  22. J.-P. Negel, A. Loescher, B. Dannecker, P. Oldorf, S. Reichel, R. Peters, M. A. Ahmed, and T. Graf, “Thin-disk multipass amplifier for fs pulses delivering 400  W of average and 2.0  GW of peak power for linear polarization as well as 235  W and 1.2  GW for radial polarization,” Appl. Phys. B 123, 156 (2017).
    [Crossref]
  23. M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen, F. Balembois, P. Georges, M. A. Ahmed, and T. Graf, “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Appl. Phys. B 123, 139 (2017).
    [Crossref]
  24. F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, M. Eckerle, T. Graf, M. A. Ahmed, F. Druon, F. Balembois, and P. Georges, “High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization,” Opt. Lett. 40, 2517–2520 (2015).
    [Crossref]
  25. S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
    [Crossref]
  26. C. Hernández-García, A. Turpin, J. S. Román, A. Picón, R. Drevinskas, A. Cerkauskaite, P. G. Kazansky, C. G. Durfee, and Í. J. Sola, “Extreme ultraviolet vector beams driven by infrared lasers,” Optica 4, 520–526 (2017).
    [Crossref]
  27. N. Savage, “Digital spatial light modulators,” Nat. Photonics 3, 170–172 (2009).
    [Crossref]
  28. F. Kong, H. Larocque, E. Karimi, P. B. Corkum, and C. Zhang, “Generating few-cycle radially polarized pulses,” Optica 6, 160–164 (2019).
    [Crossref]
  29. M. del Mar Sánchez-López, I. Moreno, J. A. Davis, D. Puerto-Garcia, I. Abella, and S. Delaney, “Extending the use of commercial Q-plates for the generation of high-order and hybrid vector beams,” Proc. SPIE 10744, 1074407 (2018).
    [Crossref]
  30. S. Carbajo, E. Granados, D. Schimpf, A. Sell, K.-H. Hong, J. Moses, and F. X. Kärtner, “Efficient generation of ultra-intense few-cycle radially polarized laser pulses,” Opt. Lett. 39, 2487–2490 (2014).
    [Crossref]
  31. W. Li, Z. Gan, L. Yu, C. Wang, Y. Liu, Z. Guo, L. Xu, M. Xu, Y. Hang, Y. Xu, J. Wang, P. Huang, H. Cao, B. Yao, X. Zhang, L. Chen, Y. Tang, S. Li, X. Liu, S. Li, M. He, D. Yin, X. Liang, Y. Leng, R. Li, and Z. Xu, “339  J high-energy Ti:sapphire chirped-pulse amplifier for 10  PW laser facility,” Opt. Lett. 43, 5681–5684 (2018).
    [Crossref]
  32. J. H. Sung, H. W. Lee, J. Y. Yoo, J. W. Yoon, C. W. Lee, J. M. Yang, Y. J. Son, Y. H. Jang, S. K. Lee, and C. H. Nam, “4.2  PW, 20  fs Ti:sapphire laser at 0.1  Hz,” Opt. Lett. 42, 2058–2061 (2017).
    [Crossref]
  33. X. Zeng, K. Zhou, Y. Zuo, Q. Zhu, J. Su, X. Wang, X. Wang, X. Huang, X. Jiang, X. Jiang, D. Jiang, Y. Guo, N. Xie, S. Zhou, Z. Wu, J. Mu, H. Peng, and F. Jing, “Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification,” Opt. Lett. 42, 2014–2017 (2017).
    [Crossref]
  34. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, and E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20, 940–942 (1995).
    [Crossref]
  35. M. Kalashnikov, H. Cao, K. Osvay, and V. Chvykov, “Polarization-encoded chirped pulse amplification in Ti:sapphire: a way toward few-cycle petawatt lasers,” Opt. Lett. 41, 25–28 (2016).
    [Crossref]
  36. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003).
    [Crossref]
  37. J. Ma, J. Wang, P. Yuan, G. Xie, K. Xiong, Y. Tu, X. Tu, E. Shi, Y. Zheng, and L. Qian, “Quasi-parametric amplification of chirped pulses based on a Sm3+-doped yttrium calcium oxyborate crystal,” Optica 2, 1006–1009 (2015).
    [Crossref]
  38. H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photon. Rev. 8, 333–367 (2014).
    [Crossref]
  39. G.-H. Shao, X.-S. Song, F. Xu, and Y.-Q. Lu, “Optical parametric amplification of arbitrarily polarized light in periodically poled LiNbO3,” Opt. Express 20, 19343–19348 (2012).
    [Crossref]
  40. Y. Yang, Y. Dong, C. Zhao, and Y. Cai, “Generation and propagation of an anomalous vortex beam,” Opt. Lett. 38, 5418–5421 (2013).
    [Crossref]
  41. V. Petrov and F. Noack, “Tunable femtosecond optical parametric amplifier in the mid-infrared with narrow-band seeding,” J. Opt. Soc. Am. B 12, 2214–2221 (1995).
    [Crossref]
  42. S. Demmler, J. Rothhardt, S. Hädrich, J. Bromage, J. Limpert, and A. Tünnermann, “Control of nonlinear spectral phase induced by ultrabroadband optical parametric amplification,” Opt. Lett. 37, 3933–3935 (2012).
    [Crossref]
  43. G. M. Gale, G. Gallot, F. Hache, and R. Sander, “Generation of intense highly coherent femtosecond pulses in the mid infrared,” Opt. Lett. 22, 1253–1255 (1997).
    [Crossref]
  44. Y. Li, H. Zhong, J. Yang, S. Wang, and D. Fan, “Versatile backconversion-inhibited broadband optical parametric amplification based on an idler-separated QPM configuration,” Opt. Lett. 42, 2806–2809 (2017).
    [Crossref]
  45. A. Zaukevičius, V. Jukna, R. Antipenkov, V. Martinėnaitė, A. Varanavičius, A. P. Piskarskas, and G. Valiulis, “Manifestation of spatial chirp in femtosecond noncollinear optical parametric chirped-pulse amplifier,” J. Opt. Soc. Am. B 28, 2902–2908 (2011).
    [Crossref]
  46. L. Yu, X. Liang, L. Xu, W. Li, C. Peng, Z. Hu, C. Wang, X. Lu, Y. Chu, Z. Gan, X. Liu, Y. Liu, X. Wang, H. Lu, D. Yin, Y. Leng, R. Li, and Z. Xu, “Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification in LBO near 800 nm,” Opt. Lett. 40, 3412–3415 (2015).
    [Crossref]
  47. A. Kessel, V. E. Leshchenko, O. Jahn, M. Krüger, A. Münzer, A. Schwarz, V. Pervak, M. Trubetskov, S. A. Trushin, F. Krausz, Z. Major, and S. Karsch, “Relativistic few-cycle pulses with high contrast from picosecond-pumped OPCPA,” Optica 5, 434–442 (2018).
    [Crossref]
  48. A. Thai, C. Skrobol, P. K. Bates, G. Arisholm, Z. Major, F. Krausz, S. Karsch, and J. Biegert, “Simulations of petawatt-class few-cycle optical-parametric chirped-pulse amplification, including nonlinear refractive index effects,” Opt. Lett. 35, 3471–3473 (2010).
    [Crossref]

2019 (1)

2018 (4)

2017 (8)

Y. Li, H. Zhong, J. Yang, S. Wang, and D. Fan, “Versatile backconversion-inhibited broadband optical parametric amplification based on an idler-separated QPM configuration,” Opt. Lett. 42, 2806–2809 (2017).
[Crossref]

N. Zaïm, M. Thévenet, A. Lifschitz, and J. Faure, “Relativistic acceleration of electrons injected by a plasma mirror into a radially polarized laser beam,” Phys. Rev. Lett. 119, 094801 (2017).
[Crossref]

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

J. H. Sung, H. W. Lee, J. Y. Yoo, J. W. Yoon, C. W. Lee, J. M. Yang, Y. J. Son, Y. H. Jang, S. K. Lee, and C. H. Nam, “4.2  PW, 20  fs Ti:sapphire laser at 0.1  Hz,” Opt. Lett. 42, 2058–2061 (2017).
[Crossref]

X. Zeng, K. Zhou, Y. Zuo, Q. Zhu, J. Su, X. Wang, X. Wang, X. Huang, X. Jiang, X. Jiang, D. Jiang, Y. Guo, N. Xie, S. Zhou, Z. Wu, J. Mu, H. Peng, and F. Jing, “Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification,” Opt. Lett. 42, 2014–2017 (2017).
[Crossref]

J.-P. Negel, A. Loescher, B. Dannecker, P. Oldorf, S. Reichel, R. Peters, M. A. Ahmed, and T. Graf, “Thin-disk multipass amplifier for fs pulses delivering 400  W of average and 2.0  GW of peak power for linear polarization as well as 235  W and 1.2  GW for radial polarization,” Appl. Phys. B 123, 156 (2017).
[Crossref]

M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen, F. Balembois, P. Georges, M. A. Ahmed, and T. Graf, “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Appl. Phys. B 123, 139 (2017).
[Crossref]

C. Hernández-García, A. Turpin, J. S. Román, A. Picón, R. Drevinskas, A. Cerkauskaite, P. G. Kazansky, C. G. Durfee, and Í. J. Sola, “Extreme ultraviolet vector beams driven by infrared lasers,” Optica 4, 520–526 (2017).
[Crossref]

2016 (4)

2015 (3)

2014 (3)

2013 (4)

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
[Crossref]

R. Chen, K. Agarwal, C. J. R. Sheppard, and X. Chen, “Imaging using cylindrical vector beams in a high-numerical-aperture microscopy system,” Opt. Lett. 38, 3111–3114 (2013).
[Crossref]

Y. Yang, Y. Dong, C. Zhao, and Y. Cai, “Generation and propagation of an anomalous vortex beam,” Opt. Lett. 38, 5418–5421 (2013).
[Crossref]

2012 (3)

2011 (1)

2010 (3)

2009 (2)

2008 (1)

2007 (3)

2005 (2)

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005).
[Crossref]

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005).
[Crossref]

2003 (2)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003).
[Crossref]

1999 (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[Crossref]

1997 (1)

1995 (2)

Abella, I.

M. del Mar Sánchez-López, I. Moreno, J. A. Davis, D. Puerto-Garcia, I. Abella, and S. Delaney, “Extending the use of commercial Q-plates for the generation of high-order and hybrid vector beams,” Proc. SPIE 10744, 1074407 (2018).
[Crossref]

Agarwal, K.

Ahmed, M. A.

J.-P. Negel, A. Loescher, B. Dannecker, P. Oldorf, S. Reichel, R. Peters, M. A. Ahmed, and T. Graf, “Thin-disk multipass amplifier for fs pulses delivering 400  W of average and 2.0  GW of peak power for linear polarization as well as 235  W and 1.2  GW for radial polarization,” Appl. Phys. B 123, 156 (2017).
[Crossref]

M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen, F. Balembois, P. Georges, M. A. Ahmed, and T. Graf, “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Appl. Phys. B 123, 139 (2017).
[Crossref]

M. Eckerle, T. Dietrich, F. Schaal, C. Pruss, W. Osten, M. A. Ahmed, and T. Graf, “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” Opt. Lett. 41, 1680–1683 (2016).
[Crossref]

F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, M. Eckerle, T. Graf, M. A. Ahmed, F. Druon, F. Balembois, and P. Georges, “High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization,” Opt. Lett. 40, 2517–2520 (2015).
[Crossref]

M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J.-C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32, 1824–1826 (2007).
[Crossref]

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005).
[Crossref]

Almassarani, M.

Antipenkov, R.

April, A.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

Arie, A.

H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photon. Rev. 8, 333–367 (2014).
[Crossref]

Arisholm, G.

Aubry, N.

M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen, F. Balembois, P. Georges, M. A. Ahmed, and T. Graf, “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Appl. Phys. B 123, 139 (2017).
[Crossref]

Balembois, F.

M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen, F. Balembois, P. Georges, M. A. Ahmed, and T. Graf, “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Appl. Phys. B 123, 139 (2017).
[Crossref]

F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, M. Eckerle, T. Graf, M. A. Ahmed, F. Druon, F. Balembois, and P. Georges, “High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization,” Opt. Lett. 40, 2517–2520 (2015).
[Crossref]

Bates, P. K.

Beirow, F.

M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen, F. Balembois, P. Georges, M. A. Ahmed, and T. Graf, “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Appl. Phys. B 123, 139 (2017).
[Crossref]

Beleites, B.

Biegert, J.

Boyd, R. D.

Brabec, T.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
[Crossref]

Bramati, A.

Britten, J. A.

Bromage, J.

Cai, Y.

Cao, H.

Carbajo, S.

Carbone, L.

Cerkauskaite, A.

Cerullo, G.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003).
[Crossref]

Chen, L.

Chen, R.

Chen, X.

Chu, Y.

Chvykov, V.

Corkum, P. B.

Dannecker, B.

J.-P. Negel, A. Loescher, B. Dannecker, P. Oldorf, S. Reichel, R. Peters, M. A. Ahmed, and T. Graf, “Thin-disk multipass amplifier for fs pulses delivering 400  W of average and 2.0  GW of peak power for linear polarization as well as 235  W and 1.2  GW for radial polarization,” Appl. Phys. B 123, 156 (2017).
[Crossref]

Davidson, N.

Davis, J. A.

M. del Mar Sánchez-López, I. Moreno, J. A. Davis, D. Puerto-Garcia, I. Abella, and S. Delaney, “Extending the use of commercial Q-plates for the generation of high-order and hybrid vector beams,” Proc. SPIE 10744, 1074407 (2018).
[Crossref]

De Silvestri, S.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003).
[Crossref]

Decker, D.

del Mar Sánchez-López, M.

M. del Mar Sánchez-López, I. Moreno, J. A. Davis, D. Puerto-Garcia, I. Abella, and S. Delaney, “Extending the use of commercial Q-plates for the generation of high-order and hybrid vector beams,” Proc. SPIE 10744, 1074407 (2018).
[Crossref]

Delaney, S.

M. del Mar Sánchez-López, I. Moreno, J. A. Davis, D. Puerto-Garcia, I. Abella, and S. Delaney, “Extending the use of commercial Q-plates for the generation of high-order and hybrid vector beams,” Proc. SPIE 10744, 1074407 (2018).
[Crossref]

Délen, X.

M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen, F. Balembois, P. Georges, M. A. Ahmed, and T. Graf, “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Appl. Phys. B 123, 139 (2017).
[Crossref]

F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, M. Eckerle, T. Graf, M. A. Ahmed, F. Druon, F. Balembois, and P. Georges, “High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization,” Opt. Lett. 40, 2517–2520 (2015).
[Crossref]

Demmler, S.

Didierjean, J.

M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen, F. Balembois, P. Georges, M. A. Ahmed, and T. Graf, “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Appl. Phys. B 123, 139 (2017).
[Crossref]

F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, M. Eckerle, T. Graf, M. A. Ahmed, F. Druon, F. Balembois, and P. Georges, “High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization,” Opt. Lett. 40, 2517–2520 (2015).
[Crossref]

Dietrich, T.

M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen, F. Balembois, P. Georges, M. A. Ahmed, and T. Graf, “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Appl. Phys. B 123, 139 (2017).
[Crossref]

M. Eckerle, T. Dietrich, F. Schaal, C. Pruss, W. Osten, M. A. Ahmed, and T. Graf, “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” Opt. Lett. 41, 1680–1683 (2016).
[Crossref]

Ding, J.

Dong, Y.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

Drevinskas, R.

Druon, F.

Dubinskii, M.

Dudley, A.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016).
[Crossref]

Durfee, C. G.

Eckerle, M.

Fan, D.

Faure, J.

N. Zaïm, M. Thévenet, A. Lifschitz, and J. Faure, “Relativistic acceleration of electrons injected by a plasma mirror into a radially polarized laser beam,” Phys. Rev. Lett. 119, 094801 (2017).
[Crossref]

Feng, T.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

Forbes, A.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016).
[Crossref]

Fortin, P.-L.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

Fourmaux, S.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
[Crossref]

Fridman, M.

Friesem, A. A.

Gale, G. M.

Gallot, G.

Gan, Z.

Georges, P.

M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen, F. Balembois, P. Georges, M. A. Ahmed, and T. Graf, “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Appl. Phys. B 123, 139 (2017).
[Crossref]

F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, M. Eckerle, T. Graf, M. A. Ahmed, F. Druon, F. Balembois, and P. Georges, “High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization,” Opt. Lett. 40, 2517–2520 (2015).
[Crossref]

Giacobino, E.

Glur, H.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005).
[Crossref]

Gomes, J. T.

Gopal, A.

Graf, T.

M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen, F. Balembois, P. Georges, M. A. Ahmed, and T. Graf, “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Appl. Phys. B 123, 139 (2017).
[Crossref]

J.-P. Negel, A. Loescher, B. Dannecker, P. Oldorf, S. Reichel, R. Peters, M. A. Ahmed, and T. Graf, “Thin-disk multipass amplifier for fs pulses delivering 400  W of average and 2.0  GW of peak power for linear polarization as well as 235  W and 1.2  GW for radial polarization,” Appl. Phys. B 123, 156 (2017).
[Crossref]

M. Eckerle, T. Dietrich, F. Schaal, C. Pruss, W. Osten, M. A. Ahmed, and T. Graf, “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” Opt. Lett. 41, 1680–1683 (2016).
[Crossref]

F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, M. Eckerle, T. Graf, M. A. Ahmed, F. Druon, F. Balembois, and P. Georges, “High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization,” Opt. Lett. 40, 2517–2520 (2015).
[Crossref]

M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J.-C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32, 1824–1826 (2007).
[Crossref]

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005).
[Crossref]

Granados, E.

Grosse, R.

Guo, C.-S.

Guo, Y.

Guo, Z.

Hache, F.

Hädrich, S.

Hang, Y.

He, M.

Hernández-García, C.

Hong, K.-H.

Hong, M. H.

Hu, Z.

Huang, P.

Huang, X.

Jackel, S.

Jahn, O.

Jang, Y. H.

Jiang, B.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

Jiang, D.

Jiang, X.

Jiang, Y.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

Jing, F.

Jukna, V.

Kalashnikov, M.

Kanazawa, S.

Karimi, E.

Karsch, S.

Kärtner, F. X.

Kazansky, P. G.

Kessel, A.

Kieffer, J. C.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
[Crossref]

Kieffer, J.-C.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

Kong, F.

Kozawa, Y.

Krausz, F.

Krüger, M.

Kurihara, T.

Lai, W. J.

Larocque, H.

Lee, C. W.

Lee, H. W.

Lee, S. K.

Légaré, F.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
[Crossref]

Leibush, E.

Leng, Y.

Leshchenko, V. E.

Lesparre, F.

Leuchs, G.

Li, P.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

Li, R.

Li, S.

Li, W.

Li, Y.

Liang, X.

Lifschitz, A.

N. Zaïm, M. Thévenet, A. Lifschitz, and J. Faure, “Relativistic acceleration of electrons injected by a plasma mirror into a radially polarized laser beam,” Phys. Rev. Lett. 119, 094801 (2017).
[Crossref]

Lim, B. C.

Limpert, J.

Litvin, I.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016).
[Crossref]

Liu, X.

Liu, Y.

Loescher, A.

J.-P. Negel, A. Loescher, B. Dannecker, P. Oldorf, S. Reichel, R. Peters, M. A. Ahmed, and T. Graf, “Thin-disk multipass amplifier for fs pulses delivering 400  W of average and 2.0  GW of peak power for linear polarization as well as 235  W and 1.2  GW for radial polarization,” Appl. Phys. B 123, 156 (2017).
[Crossref]

Lu, H.

Lu, X.

Lu, Y.-Q.

Lumer, Y.

Ma, J.

MacLean, J. P.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
[Crossref]

Major, Z.

Mao, D.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

Marceau, V.

V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
[Crossref]

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

Marrucci, L.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016).
[Crossref]

Martial, I.

Martinenaite, V.

Meir, A.

Moreno, I.

M. del Mar Sánchez-López, I. Moreno, J. A. Davis, D. Puerto-Garcia, I. Abella, and S. Delaney, “Extending the use of commercial Q-plates for the generation of high-order and hybrid vector beams,” Proc. SPIE 10744, 1074407 (2018).
[Crossref]

Moser, T.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005).
[Crossref]

Moses, J.

Moshe, I.

Mu, J.

Münzer, A.

Naidoo, D.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016).
[Crossref]

Nam, C. H.

Negel, J.-P.

J.-P. Negel, A. Loescher, B. Dannecker, P. Oldorf, S. Reichel, R. Peters, M. A. Ahmed, and T. Graf, “Thin-disk multipass amplifier for fs pulses delivering 400  W of average and 2.0  GW of peak power for linear polarization as well as 235  W and 1.2  GW for radial polarization,” Appl. Phys. B 123, 156 (2017).
[Crossref]

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[Crossref]

Ni, W.-J.

Nixon, M.

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[Crossref]

Noack, F.

Oldorf, P.

J.-P. Negel, A. Loescher, B. Dannecker, P. Oldorf, S. Reichel, R. Peters, M. A. Ahmed, and T. Graf, “Thin-disk multipass amplifier for fs pulses delivering 400  W of average and 2.0  GW of peak power for linear polarization as well as 235  W and 1.2  GW for radial polarization,” Appl. Phys. B 123, 156 (2017).
[Crossref]

Osten, W.

M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen, F. Balembois, P. Georges, M. A. Ahmed, and T. Graf, “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Appl. Phys. B 123, 139 (2017).
[Crossref]

M. Eckerle, T. Dietrich, F. Schaal, C. Pruss, W. Osten, M. A. Ahmed, and T. Graf, “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” Opt. Lett. 41, 1680–1683 (2016).
[Crossref]

Osvay, K.

Pallmann, W.

Parriaux, O.

M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J.-C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32, 1824–1826 (2007).
[Crossref]

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005).
[Crossref]

Payeur, S.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
[Crossref]

Peng, C.

Peng, H.

Perrier, M.

M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen, F. Balembois, P. Georges, M. A. Ahmed, and T. Graf, “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Appl. Phys. B 123, 139 (2017).
[Crossref]

Perry, M. D.

Pervak, V.

Peters, R.

J.-P. Negel, A. Loescher, B. Dannecker, P. Oldorf, S. Reichel, R. Peters, M. A. Ahmed, and T. Graf, “Thin-disk multipass amplifier for fs pulses delivering 400  W of average and 2.0  GW of peak power for linear polarization as well as 235  W and 1.2  GW for radial polarization,” Appl. Phys. B 123, 156 (2017).
[Crossref]

Petrov, V.

Phua, P. B.

Piccirillo, B.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016).
[Crossref]

Piché, M.

V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
[Crossref]

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
[Crossref]

Picón, A.

Pigeon, F.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005).
[Crossref]

Piskarskas, A. P.

Pommier, J.-C.

Porat, G.

H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photon. Rev. 8, 333–367 (2014).
[Crossref]

Pruss, C.

M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen, F. Balembois, P. Georges, M. A. Ahmed, and T. Graf, “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Appl. Phys. B 123, 139 (2017).
[Crossref]

M. Eckerle, T. Dietrich, F. Schaal, C. Pruss, W. Osten, M. A. Ahmed, and T. Graf, “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” Opt. Lett. 41, 1680–1683 (2016).
[Crossref]

Puerto-Garcia, D.

M. del Mar Sánchez-López, I. Moreno, J. A. Davis, D. Puerto-Garcia, I. Abella, and S. Delaney, “Extending the use of commercial Q-plates for the generation of high-order and hybrid vector beams,” Proc. SPIE 10744, 1074407 (2018).
[Crossref]

Qian, L.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

Reichel, S.

J.-P. Negel, A. Loescher, B. Dannecker, P. Oldorf, S. Reichel, R. Peters, M. A. Ahmed, and T. Graf, “Thin-disk multipass amplifier for fs pulses delivering 400  W of average and 2.0  GW of peak power for linear polarization as well as 235  W and 1.2  GW for radial polarization,” Appl. Phys. B 123, 156 (2017).
[Crossref]

Resan, B.

Román, J. S.

Romano, V.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005).
[Crossref]

Ronneberger, F.

Rothhardt, J.

Roux, F. S.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016).
[Crossref]

Salakhutdinov, V.

Sander, R.

Sato, S.

Savage, N.

N. Savage, “Digital spatial light modulators,” Nat. Photonics 3, 170–172 (2009).
[Crossref]

Schaal, F.

M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen, F. Balembois, P. Georges, M. A. Ahmed, and T. Graf, “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Appl. Phys. B 123, 139 (2017).
[Crossref]

M. Eckerle, T. Dietrich, F. Schaal, C. Pruss, W. Osten, M. A. Ahmed, and T. Graf, “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” Opt. Lett. 41, 1680–1683 (2016).
[Crossref]

Schimpf, D.

Schmidt, B.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

Schmidt, B. E.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
[Crossref]

Schulz, J.

Schwarz, A.

Sell, A.

Shannon, C.

Shao, G.-H.

Sheppard, C. J. R.

Shi, E.

Shore, B. W.

Shults, E.

Skrobol, C.

Sola, Í. J.

Son, Y. J.

Sondermann, M.

Song, X.-S.

Su, J.

Suchowski, H.

H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photon. Rev. 8, 333–367 (2014).
[Crossref]

Sun, Z.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

Sung, J. H.

Tang, Y.

Tchervenkov, C.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
[Crossref]

Teo, H. H.

Thai, A.

Thévenet, M.

N. Zaïm, M. Thévenet, A. Lifschitz, and J. Faure, “Relativistic acceleration of electrons injected by a plasma mirror into a radially polarized laser beam,” Phys. Rev. Lett. 119, 094801 (2017).
[Crossref]

Thiré, N.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

Tiaw, K. S.

Trubetskov, M.

Trushin, S. A.

Tu, X.

Tu, Y.

Tünnermann, A.

Turpin, A.

Valiulis, G.

Varanavicius, A.

Varin, C.

V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
[Crossref]

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

Voss, A.

Wang, C.

Wang, H.-T.

Wang, J.

Wang, S.

Wang, X.

Wang, X.-L.

Woldegeorgis, A.

Wu, Z.

Xie, G.

Xie, N.

Xiong, K.

Xu, F.

Xu, L.

Xu, M.

Xu, Y.

Xu, Z.

Yang, J.

Yang, J. M.

Yang, Y.

Yao, B.

Yin, D.

Yoo, J. Y.

Yoon, J. W.

Yu, L.

Yuan, P.

Zaïm, N.

N. Zaïm, M. Thévenet, A. Lifschitz, and J. Faure, “Relativistic acceleration of electrons injected by a plasma mirror into a radially polarized laser beam,” Phys. Rev. Lett. 119, 094801 (2017).
[Crossref]

Zaukevicius, A.

Zeng, X.

Zhan, Q.

Zhang, C.

Zhang, W.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

Zhang, X.

Zhao, C.

Zhao, J.

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

Zheng, Y.

Zhong, H.

Zhou, K.

Zhou, S.

Zhu, Q.

Zuo, Y.

Adv. Opt. Photon. (1)

Appl. Phys. B (3)

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80, 707–713 (2005).
[Crossref]

J.-P. Negel, A. Loescher, B. Dannecker, P. Oldorf, S. Reichel, R. Peters, M. A. Ahmed, and T. Graf, “Thin-disk multipass amplifier for fs pulses delivering 400  W of average and 2.0  GW of peak power for linear polarization as well as 235  W and 1.2  GW for radial polarization,” Appl. Phys. B 123, 156 (2017).
[Crossref]

M. Eckerle, F. Beirow, T. Dietrich, F. Schaal, C. Pruss, W. Osten, N. Aubry, M. Perrier, J. Didierjean, X. Délen, F. Balembois, P. Georges, M. A. Ahmed, and T. Graf, “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Appl. Phys. B 123, 139 (2017).
[Crossref]

Appl. Phys. Lett. (2)

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Légaré, M. Piché, and J. C. Kieffer, “Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse,” Appl. Phys. Lett. 101, 041105 (2012).
[Crossref]

D. Mao, T. Feng, W. Zhang, H. Lu, Y. Jiang, P. Li, B. Jiang, Z. Sun, and J. Zhao, “Ultrafast all-fiber based cylindrical-vector beam laser,” Appl. Phys. Lett. 110, 021107 (2017).
[Crossref]

Appl. Sci. (1)

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T. Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, “Direct electron acceleration with radially polarized laser beams,” Appl. Sci. 3, 70–93 (2013).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32, 1455–1461 (1999).
[Crossref]

Laser Photon. Rev. (1)

H. Suchowski, G. Porat, and A. Arie, “Adiabatic processes in frequency conversion,” Laser Photon. Rev. 8, 333–367 (2014).
[Crossref]

Nat. Photonics (2)

N. Savage, “Digital spatial light modulators,” Nat. Photonics 3, 170–172 (2009).
[Crossref]

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10, 327–332 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (21)

X.-L. Wang, J. Ding, W.-J. Ni, C.-S. Guo, and H.-T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3551 (2007).
[Crossref]

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005).
[Crossref]

M. Eckerle, T. Dietrich, F. Schaal, C. Pruss, W. Osten, M. A. Ahmed, and T. Graf, “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” Opt. Lett. 41, 1680–1683 (2016).
[Crossref]

S. Kanazawa, Y. Kozawa, and S. Sato, “High-power and highly efficient amplification of a radially polarized beam using an Yb-doped double-clad fiber,” Opt. Lett. 39, 2857–2859 (2014).
[Crossref]

M. Fridman, M. Nixon, M. Dubinskii, A. A. Friesem, and N. Davidson, “Fiber amplification of radially and azimuthally polarized laser light,” Opt. Lett. 35, 1332–1334 (2010).
[Crossref]

R. Chen, K. Agarwal, C. J. R. Sheppard, and X. Chen, “Imaging using cylindrical vector beams in a high-numerical-aperture microscopy system,” Opt. Lett. 38, 3111–3114 (2013).
[Crossref]

Y. Yang, Y. Dong, C. Zhao, and Y. Cai, “Generation and propagation of an anomalous vortex beam,” Opt. Lett. 38, 5418–5421 (2013).
[Crossref]

S. Carbajo, E. Granados, D. Schimpf, A. Sell, K.-H. Hong, J. Moses, and F. X. Kärtner, “Efficient generation of ultra-intense few-cycle radially polarized laser pulses,” Opt. Lett. 39, 2487–2490 (2014).
[Crossref]

W. Li, Z. Gan, L. Yu, C. Wang, Y. Liu, Z. Guo, L. Xu, M. Xu, Y. Hang, Y. Xu, J. Wang, P. Huang, H. Cao, B. Yao, X. Zhang, L. Chen, Y. Tang, S. Li, X. Liu, S. Li, M. He, D. Yin, X. Liang, Y. Leng, R. Li, and Z. Xu, “339  J high-energy Ti:sapphire chirped-pulse amplifier for 10  PW laser facility,” Opt. Lett. 43, 5681–5684 (2018).
[Crossref]

J. H. Sung, H. W. Lee, J. Y. Yoo, J. W. Yoon, C. W. Lee, J. M. Yang, Y. J. Son, Y. H. Jang, S. K. Lee, and C. H. Nam, “4.2  PW, 20  fs Ti:sapphire laser at 0.1  Hz,” Opt. Lett. 42, 2058–2061 (2017).
[Crossref]

X. Zeng, K. Zhou, Y. Zuo, Q. Zhu, J. Su, X. Wang, X. Wang, X. Huang, X. Jiang, X. Jiang, D. Jiang, Y. Guo, N. Xie, S. Zhou, Z. Wu, J. Mu, H. Peng, and F. Jing, “Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification,” Opt. Lett. 42, 2014–2017 (2017).
[Crossref]

M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, and E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20, 940–942 (1995).
[Crossref]

M. Kalashnikov, H. Cao, K. Osvay, and V. Chvykov, “Polarization-encoded chirped pulse amplification in Ti:sapphire: a way toward few-cycle petawatt lasers,” Opt. Lett. 41, 25–28 (2016).
[Crossref]

I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2  kW, M2< 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32, 47–49 (2007).
[Crossref]

M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J.-C. Pommier, and T. Graf, “Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32, 1824–1826 (2007).
[Crossref]

F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, M. Eckerle, T. Graf, M. A. Ahmed, F. Druon, F. Balembois, and P. Georges, “High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization,” Opt. Lett. 40, 2517–2520 (2015).
[Crossref]

L. Yu, X. Liang, L. Xu, W. Li, C. Peng, Z. Hu, C. Wang, X. Lu, Y. Chu, Z. Gan, X. Liu, Y. Liu, X. Wang, H. Lu, D. Yin, Y. Leng, R. Li, and Z. Xu, “Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification in LBO near 800 nm,” Opt. Lett. 40, 3412–3415 (2015).
[Crossref]

A. Thai, C. Skrobol, P. K. Bates, G. Arisholm, Z. Major, F. Krausz, S. Karsch, and J. Biegert, “Simulations of petawatt-class few-cycle optical-parametric chirped-pulse amplification, including nonlinear refractive index effects,” Opt. Lett. 35, 3471–3473 (2010).
[Crossref]

S. Demmler, J. Rothhardt, S. Hädrich, J. Bromage, J. Limpert, and A. Tünnermann, “Control of nonlinear spectral phase induced by ultrabroadband optical parametric amplification,” Opt. Lett. 37, 3933–3935 (2012).
[Crossref]

G. M. Gale, G. Gallot, F. Hache, and R. Sander, “Generation of intense highly coherent femtosecond pulses in the mid infrared,” Opt. Lett. 22, 1253–1255 (1997).
[Crossref]

Y. Li, H. Zhong, J. Yang, S. Wang, and D. Fan, “Versatile backconversion-inhibited broadband optical parametric amplification based on an idler-separated QPM configuration,” Opt. Lett. 42, 2806–2809 (2017).
[Crossref]

Optica (6)

Phys. Rev. Lett. (3)

V. Marceau, C. Varin, T. Brabec, and M. Piché, “Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas,” Phys. Rev. Lett. 111, 224801 (2013).
[Crossref]

N. Zaïm, M. Thévenet, A. Lifschitz, and J. Faure, “Relativistic acceleration of electrons injected by a plasma mirror into a radially polarized laser beam,” Phys. Rev. Lett. 119, 094801 (2017).
[Crossref]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref]

Proc. SPIE (1)

M. del Mar Sánchez-López, I. Moreno, J. A. Davis, D. Puerto-Garcia, I. Abella, and S. Delaney, “Extending the use of commercial Q-plates for the generation of high-order and hybrid vector beams,” Proc. SPIE 10744, 1074407 (2018).
[Crossref]

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Cascaded two-stage OPA and (b) degenerate type-II single-stage OPA configurations, for both the $e$- and $o$-polarized components. (c)–(f) Calculated intensity profiles (main plots) for a radially polarized pulse amplified by (c), (d) cascaded two-stage OPA and (e), (f) degenerate type-II single-stage OPA in the (c), (e) small-signal (${L_{\textit{nl}}} = {0.4}$ ${L_0}$) and (d), (f) saturated amplification (${L_{\textit{nl}}} = {0.2}$ ${L_0}$) regimes. The lower part of each panel displays the signal projections in different polarization directions. The solid arrows indicate the polarization directions in the beam cross section. (g) Gain spectra for $e$- and $o$-polarized signals centered at 1600 nm in a type-II single-stage OPA. The OPA crystal is a 1-mm-thick BBO orientated at 28.7° and pumped at 800 nm.
Fig. 2.
Fig. 2. Experimental OPA setup for radially polarized femtosecond pulses at 1610 nm. BS, beam splitter; HWP, half-wave plate; PBS, polarizing BS; ${{\rm M}_1} - {{\rm M}_5}$, mirrors; ${{\rm F}_1}$, 12 nm bandpass 1610 nm filter; ${{\rm F}_2}$, neutral density filter; ${{\rm F}_3}$, 1100 nm longpass filter; L, $f = {1000}\;{\rm mm}$ lens; VR, vortex retarder; BBO, 1-mm-thick type-II BBO crystal. The BBO adjacent to the VR is orthogonally oriented to compensate for the phase retardation that occurs in the OPA crystal.
Fig. 3.
Fig. 3. (a) Measured output signal energy and gain factor for the radial polarization OPA. (b) Measured beam profiles and polarization projections for the seed signal at 3 µJ and amplified signals generated using various seed energies. The inset in (a) presents the focused beam profile of the amplified radially polarized pulses at 136 µJ.
Fig. 4.
Fig. 4. Measured pulse spectra and autocorrelation traces (solid lines) with Gaussian fitting (dashed lines) for the (a), (b) pump, (c), (d) seed signal, and (e), (f) amplified signal. The amplified signal plots correspond to a seed energy of ${\sim}{40}\;{\rm nJ}$ and a gain factor of ${\sim}{1100}$.
Fig. 5.
Fig. 5. (a), (b) Measured beam profiles and polarization projections for (a) seed and (b) amplified signals under various filtering conditions. The filter specifications (transmission wavelength and bandwidth) are listed at the top of the figure, and the first one indicates the amplified signal (centered at 1610 nm) of the entire spectrum (30 nm bandwidth). In the experiment, the radial polarization OPA had a small-signal gain of ${\sim}{1100}$ and generated the maximum amplified signal energy of ${\sim}{136}\;\unicode{x00B5}{\rm J}$. (c) Femtosecond OPA simulation results with the wave plate effect. The simulation parameters were same as the experimental conditions in (b). The 1-mm-thick BBO crystal was set at the balanced orientation angle of 28.7°, which allows it to act precisely as a full-wave plate at 1610 nm. (d) OPCPA simulation results without the wave plate effect. Radially polarized seed signal: wavelength, 1610 nm; transform-limited pulse duration, 80 fs; chirped-pulse duration, 1.5 ps. Linearly polarized pump: wavelength, 800 nm; pulse duration, 2 ps.
Fig. 6.
Fig. 6. (a) Measured signal beam profiles and polarization projections at the OPA output. By slightly detuning the orientation angle from ${\alpha _{\rm WP}} = {28.7}^\circ$ to $\alpha = {28.9}^\circ$, the OPA crystal is made to function as a quarter-wave plate. (b) The same measurements as in (a), but with compensation for the wave plate effect. Another BBO crystal, identical to the OPA crystal, is placed orthogonally in the seed signal beamline.