Abstract

Solid-state single-photon emitters (SPEs) such as the bright, stable, room-temperature defects within hexagonal boron nitride (hBN) are of increasing interest for quantum information science. To date, the atomic and electronic origins of SPEs within hBN have not been well understood, and no studies have reported photochromism or explored cross correlations between hBN SPEs. Here, we combine irradiation time-dependent microphotoluminescence spectroscopy with two-color Hanbury Brown–Twiss interferometry in an investigation of the electronic structure of hBN defects. We identify evidence of photochromism in an hBN SPE that exhibits single-photon cross correlations and correlated changes in the intensity of its two zero-phonon lines.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Solid-state single-photon emitters (SPEs) have become of increasing interest as a source of nonclassical light for quantum computation, quantum communication, and quantum sensing applications [13]. Defects in hexagonal boron nitride (hBN) have emerged as notable SPEs due to their bright, stable, room-temperature emission across the visible spectrum [4]. The recent characterization of spin states in an hBN defect ensemble with optically detected magnetic resonance could enable new quantum memories [5,6]. Charge state initialization of hBN defects could enable new approaches to coherent optical control [7,8]. Furthermore, strain localization [9] and strain tuning [10] of hBN SPEs could enable the design of deterministic indistinguishable single-photon sources.

Despite these advances in state preparation, readout, and process control, and despite substantial theoretical [1115] and microscopic [16] analysis, the atomic origins and electronic structure of hBN SPEs are still poorly understood. To date, defects have been categorized phenomenologically. Initial reports identified Group I and Group II hBN SPEs based on the difference in their electron–phonon coupling [17]. More recent research demonstrating the existence of four species of hBN emitters spanning the visible spectrum with correlated microphotoluminescence (µPL), cathodoluminescence, and nanoscale strain mapping suggests that the observed defect species may be complexes of defects [16]. Further research has identified photochemical effects such as bleaching of hBN emitters under 405 nm excitation [18], or activation of emitters with electron-beam irradiation [19]. Polarimetric studies of hBN emitters under (i) 473 and 532 nm excitation and (ii) tunable strain have exhibited a misalignment in absorption and emission dipole moments, supporting the claim of a third excited bright state in hBN [2022]. However, no studies to date have directly reported photochromism in hBN SPEs or explored cross correlations between electronic transitions in hBN µPL spectra.

Here, we use µPL spectroscopy to study the photostability of defects in few-layer hBN flakes in air when optically pumped with greater photon energy than the activation energy for the photochemical decomposition of hBN [23]. Further, we characterize the cross correlations between zero-phonon lines (ZPLs) that exhibit correlated changes in intensity with spectrally resolved two-color Hanbury Brown–Twiss (HBT) interferometry. While we have previously used two-color HBT interferometry with photostable emitters in hBN under vacuum to verify that the broad emission bands redshifted ${166}\;{\pm}\;{0.5}$ and ${326}\;{\pm}\;{0.5}\;{\rm meV}$ from the ZPL are optical one- and two-phonon sidebands (PSBs), respectively [24], the cross-correlated ZPLs studied in this work have separation energies 20 meV below the known optical phonon modes of hBN [25,26], and localized phonon resonances fail to explain the observed spectrum [14]. Combining irradiation time-dependent µPL spectroscopy with two-color HBT interferometry enables this new investigation of the electronic structure of hBN defects.

2. µPL SPECTROSCOPY

We investigate defects in three-to-five layer hBN using the same sample from a previous study [24]. µPL spectroscopic data were collected for each defect using a custom-built room-temperature confocal microscope. Eleven defects with ZPLs ranging from 2.15 to 2.9 eV were observed. The majority of defects measured were identified as Group I emitters with ${\sim}10\,{\rm meV}$ linewidth ZPLs and one-phonon doublets and two-PSBs 166 and 326 meV redshifted from the ZPL [17,24]. Out of these, seven defects photobleached consistent with previous µPL studies of defects in oxygen-rich environments [18]. Among the defects that photobleached, two ZPLs within a diffraction-limited confocal volume demonstrated a correlated enhancement and quenching in their µPL intensity under 405 nm excitation. Figure 1(a) shows the µPL spectra measured for that site. ${{\rm ZPL}_1}$ (2.28 eV) has one-phonon (${{\rm PSB}_{11}}$) and two-phonon (${{\rm PSB}_{12}}$) sidebands ${166}\;{\pm}\;{2}\;{\rm meV}$ and ${326}\;{\pm}\;{2}\;{\rm meV}$ redshifted with respect to ${{\rm ZPL}_1}$, and ${{\rm ZPL}_2}$ (2.14 eV) has one-phonon (${{\rm PSB}_{21}}$) and two-phonon (${{\rm PSB}_{22}}$) sidebands ${166}\;{\pm}\;{2}$ and ${326}\;{\pm}\;{2}\;{\rm meV}$ redshifted from ${{\rm ZPL}_2}$.

 

Fig. 1. Laser irradiation-dependent spectroscopy of a single defect pumped with a 405 nm laser. (a) The µPL spectra of ZPL transitions ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$. ${{\rm ZPL}_1}$ has one-phonon (${{\rm PSB}_{11}}$) and two-phonon (${{\rm PSB}_{12}}$) sidebands, 166 meV and 326 meV, respectively, redshifted from ${{\rm ZPL}_1}$, and ${{\rm ZPL}_2}$ has one-phonon (${{\rm PSB}_{21}}$) and two-phonon (${{\rm PSB}_{22}}$) sidebands, 166 and 326 meV, respectively, redshifted from ${{\rm ZPL}_2}$. (b) The relative µPL intensity of ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ (normalized to the peak ${{\rm ZPL}_1}$ intensity) show enhancement and partial quenching within the first half-hour of irradiation, respectively. For the following hour, they remain stable, after which ${{\rm ZPL}_2}$ undergoes a second partial quenching. ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ remain stable for another hour prior to simultaneously quenching. (c) The energy difference between ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ remains constant until the second partial quenching in ${{\rm ZPL}_2}$ occurs, leading to a 10 meV spectral jump in the energy of ${{\rm ZPL}_2}$. Triangles indicate measurements made using filtered singles counts.

Download Full Size | PPT Slide | PDF

We then evaluate the intensity of ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ as a function of irradiation time [see Fig. 1(b)] using the ZPL peaks (dots) in our spectra and correlated filtered singles counts (triangles). In the first half-hour of irradiation, the intensity of ${{\rm ZPL}_1}$ and ${{\rm PSB}_{11}}$ increases while ${{\rm ZPL}_2}$, ${{\rm PSB}_{21}}$, and ${{\rm PSB}_{22}}$ decrease, as seen in Figs. 1(a) and 1(b). The intensities of ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ and their corresponding PSBs then equilibriate for an hour until ${{\rm ZPL}_2}$ is again partially quenched. Prior to this second quench in ${{\rm ZPL}_2}$, the energy difference between ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ was ${139}\;{\pm}\;{2}\;{\rm meV}$; afterwards, the energy difference decreases to ${129}\;{\pm}\;{2}\;{\rm meV}$ due to a 10 meV blueshift in ${{\rm ZPL}_2}$, as seen in Fig. 1(c). The blueshifted ${{\rm ZPL}_2}$ and the ${{\rm ZPL}_1}$ showed no substantial intensity fluctuations before both simultaneously quenched, as seen in Fig. 1(b) and Fig. S1 in Supplement 1. The ZPLs remained dark after a month, suggesting that they are either bleached or pumped into a very long-lived dark state.

Given the appearance of similar trends in the evolution of the ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ µPL spectra, it may be possible that the two transitions are correlated and are potentially excited-state transitions of the same defect or complex. However, photoluminescence spectroscopy by itself is insufficient to prove such a claim. Clear evidence of photochromism is essential to the understanding of the electronic structure and atomistic origin of hBN SPEs.

3. TWO-COLOR HBT INTERFEROMETRY

To test the hypothesis that ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ are excited-state transitions of the same defect, we employed two-color HBT interferometry after ${{\rm ZPL}_2}$ spectrally jumped 10 meV. Filters F1 and F2 [illustrated in Fig. 2(a)] selected the luminescence of ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ in each arm of the interferometer. Because of the presence of additional defects in the spectrum [shown in Fig. 2(a)], the background counts in each channel could not be attributed solely to a Poissonian background. Instead, the background is modeled as defect emission that is uncorrelated with ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ [27]. To determine the contribution of each emitter to the counts in each channel, fits of the line shapes corresponding to ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ and their respective PSBs were made, as shown in Fig. 2(a). Here the line shapes for ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ were fit using a phenomenological model composed of the sum of a Lorentzian, exponentially modified Gaussian, and Gaussian distributions centered at their observed ZPL, low and high PSB energies, respectively. While this model is agnostic with respect to the origins of the vibrational modes contributing to the PSB emission, it takes into account the observed low- and high-energy phonon modes, as described in Supplement 1. The line shape of the ${{\rm ZPL}_2}$ emission was assumed to be fixed irrespective of spectral jumps, and so only the amplitude and peak energy parameters for the ${{\rm ZPL}_2}$ fit were left free for the 1.8 h irradiation time, presented in Fig. 2(a). Additionally, the fit for ${{\rm ZPL}_2}$ at 0 h presumes negligible background overlapped with the line shape of ${{\rm ZPL}_2}$, so only the Group 1 emitter phenomenological model was used with no additional background terms. All peaks attributed to uncorrelated background emission were fit using the same line shape function or with Gaussian distributions.

 

Fig. 2. Two-color Hanbury Brown–Twiss interferometry after 1.8 h of laser irradiation. (a) Spectral line shapes for ${{\rm ZPL}_j}.$ Fits to the ${{\rm ZPL}_1}$ (red), ${{\rm ZPL}_2}$ (blue) line shapes and uncorrelated emitters (${{\rm ZPL}_j}$, $j = 3,4,5$) are used to estimate the probability (${{\rm z}_{\textit{ij}}}$) that a transition contributes to the µPL (black) collected in each filtered (F1, F2) interferometer arm ($i = 1,2$). The inset shows the best fit for ${{\rm ZPL}_2}$ at 0 h. The autocorrelations for (b) ${{\rm ZPL}_1}$, (c) ${{\rm ZPL}_2}$, and (d) the cross correlations between ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$. The distance of $g_i^{(2)}(0)$ from the limit for single-photon-emission (indicated by the green horizontal line) exceeds 5 standard deviations, $\sigma$. Here the black dashed lines are the $5\sigma$ bounds for $g_i^{(2)}(\tau)$. (e) A proposed energy diagram for the suspected defect with excited states (red) and shelving state(s). The observed shelving in the autocorrelations may be explained by one (solid black) or two (solid and dashed black) energy levels.

Download Full Size | PPT Slide | PDF

The probability ${z_{\textit{ij}}}$ that the ${j^{{\rm th}}}$ line shape will contribute to the intensity in the ${i^{{\rm th}}}$ filtered arm of the HBT interferometer is the overlap integral of the filter transfer function with the total emission of the ${i^{{\rm th}}}$ line shape divided by the total emission in the filter band [27]. The autocorrelations for ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$, as well as the cross correlation between ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$, were calculated with this assumption in mind, and using the spectrum taken at 1.8 h of laser irradiation to calculate the probabilities, ${z_{\textit{ij}}}$. The bunching observed in the coincidence counts for $|\tau | \gt 0$ for both transitions indicates a shelving state is present in each ZPL, and we interpret these data assuming a three-level model. The autocorrelations for ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ and the cross correlations between each are given by

$$\begin{split}g_1^{(2)}(\tau) & = (z_{11}^2 + z_{13}^2 + z_{14}^2 + z_{15}^2)g_{\rho 1}^{(2)}(\tau) +2({z_{11}}{z_{13}} + {z_{11}}{z_{15}} \\& \quad+ {z_{11}}{z_{14}} + {z_{13}}{z_{15}} + {z_{13}}{z_{14}} + {z_{15}}{z_{14}}),\end{split}$$
$$g_2^{(2)}(\tau) = (z_{21}^2 + z_{22}^2)g_{\rho 2}^{(2)}(\tau) + {z_{21}}{z_{22}}(g_{21}^{(2)}(\tau) + g_{12}^{(2)}(\tau)),$$
$$\!\!\!g_{21}^{(2)}(\tau) = {z_{11}}{z_{22}}g_{\rho 21}^{(2)}(\tau) + {z_{11}}{z_{21}}g_1^{(2)}(\tau) + {z_{13}} + {z_{14}} + {z_{15}},\!$$
$$\!\!\!g_{12}^{(2)}(\tau) = {z_{11}}{z_{22}}g_{\rho 12}^{(2)}(\tau) + {z_{11}}{z_{21}}g_1^{(2)}(\tau) + {z_{13}} + {z_{14}} + {z_{15}},\!$$
$$g_{\rho i}^{(2)}(\tau) = 1 - \rho _i^2[(1 + {a_i}){e^{- |x - {x_{\textit{oi}}}|\tau /{\tau _{1i}}}} - {a_i}{e^{- |x - {x_{\textit{oi}}}|\tau /{\tau _{2i}}}}],$$
where $g_1^{(2)}(\tau)$ and $g_2^{(2)}(\tau)$ are the autocorrelation functions for ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$, $g_{21}^{(2)}(\tau)$ and $g_{12}^{(2)}(\tau)$ are the cross correlations between the ZPLs, and $g_{\rho i}^{(2)}(\tau)$ is the three-level model for each correlation function with Poisson background contribution ${\rho _i}$, shelving parameter ${a_i}$, excited state lifetime ${\tau _{1i}}$, and shelving state lifetime ${\tau _{2i}}$. The fitted parameters for the auto- and cross correlations are provided in Table 1, along with the probabilities ${z_{\textit{ij}}}$ in Table 2. A full derivation of the auto- and cross correlations can be found in Supplement 1. The threshold for single-photon emission for auto- and cross correlations is given by $g_{{\rm limit},i}^{(2)} = \frac{1}{2}(1 + \rho _i^2{a_i})$ [28].
Tables Icon

Table 1. Parameter Values for the Auto- and Cross-Correlation Functions

Tables Icon

Table 2. Probabilities ${z_{\textit{ij}}}$ That the ${j^{{\rm th}}}$ Line Shape Will Contribute to the Counts in the ${{\rm i}^{{\rm th}}}$ Filtered Interferometer Arm

Due to emission from background emitters, the cross terms for $g_1^{(2)}(\tau)$, $g_2^{(2)}(\tau)$, $g_{21}^{(2)}(\tau)$, and $g_{12}^{(2)}(\tau)$ degrade the single-photon purity of the emitter while the like terms dampen the expected shelving amplitude. The most significant background terms come from the overlap of ${{\rm ZPL}_1}$’s one-phonon PSB and ${{\rm ZPL}_2}$, where ${z_{21}} = 30\%$ of the ${{\rm ZPL}_1}$ PSB contributes to the background. But as we will see, the corresponding cross terms are insufficient to degrade the purity of ${{\rm ZPL}_2}$ beyond the limit for single-photon emission. Figures 2(b)–2(d) show the auto- and cross correlations as well as best-fit and corresponding 5 standard deviation ($\sigma$) confidence intervals for $g_1^{(2)}(\tau)$, $g_2^{(2)}(\tau)$ and $g_{21}^{(2)}(\tau)$, respectively. It is clear that the auto- and cross correlations confirm single-photon emission and provide evidence of photochromism between ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$, as the fit for $g_i^{(2)}(0)$ is at least 5 standard deviations from the limit for single-photon emission. The overlap of ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ leads to additional time-dependent cross terms in (i) the autocorrelation for ${{\rm ZPL}_2}$ ($g_{12}^{(2)}(\tau)$, $g_{21}^{(2)}(\tau)$), and (ii) the cross correlation between ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ ($g_1^{(2)}(\tau)$), but their contribution to the antibunching and anticorrelations are found to be ${\sim}10\%$. Furthermore, all fits for $g_1^{(2)}(\tau)$, $g_2^{(2)}(\tau)$, and $g_{21}^{(2)}(\tau)$ include cross terms, and thus the background-free cross correlation between ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ and the respective antibunching for each ZPL would increase the distance $[g_{{\rm limit},i}^{(2)} - g_i^{(2)}(0)]$.

While the defect photobleached prior to collecting $g_{12}^{(2)}(\tau)$, the large cross correlation of $g_{21}^{(2)}(\tau)$ and single-photon purity of $g_2^{(2)}(\tau)$ remained consistent with $[g_{{\rm limit},i}^{(2)} - g_i^{(2)}(0)] \gt 5\sigma$ under the assumptions that $g_{\rho 12}^{(2)}(\tau) \approx g_{\rho 2}^{(2)}(\tau)$, while leaving all parameters for $g_{\rho 12}^{(2)}(\tau)$ free in the fits for $g_2^{(2)}(\tau)$. Generally, the auto- and cross correlations maintain the single-photon purity, whether we assume that the spectral shape of ${{\rm ZPL}_2}$ is the same after its spectral jump or whether we allow it to be modified. In this case, we left all spectral parameters free to estimate the line shape for ${{\rm ZPL}_2}$. Under these different cases, the coefficient of determination varied by 1% or less, supporting the claim that these assumptions have negligible effect on the single-photon purity of each ZPL or the magnitude of anticorrelations between ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$.

Furthermore, we repeated the two-color HBT interferometry on different sets of additional pairs of ZPLs where each filter only passes light from a single ZPL (i.e., no background emission from other spectrally distinct defects overlaps with the filter linewidth). While these additional emitters do not meet the threshold for single-photon emission, there is still a clear cross correlation between the ZPLs, as shown in Supplement 1. However, we only observed a minority of emitters exhibiting cross-correlated ZPLs, which is a plausible consequence of a broad family of different defects being generated during the hBN annealing process. This is supported by the observation that the emitters described in Supplement 1 do not exhibit any PSBs, in contrast with the emitter discussed in this article. We would expect all emitters to have similar line shapes if they are from the same defect.

4. ANALYSIS AND CONCLUSIONS

The auto- and cross-correlation functions and spectra for each emitter presented in Figs. 1 and 2 provide experimental evidence for multiple excited states within a single hBN defect or complex of defects as proposed in Fig. 2(e). This model is consistent with previous polarimetric studies that described two excited states [21,22]. The cross correlations observed here would be expected, for example, from a two-excited state model when optically addressable charge states are present. The shelving observed may be explained most generally by two shelving states, and previous reports have suggested the existence of two shelving states determined through photophysics studies [17,29]. However, the power dependence of shelving-state dynamics may indicate that there is only one shelving state [30]. The results shown in Fig. 2 do not conclusively address whether there is more than one shelving state present, but they provide clear evidence of anticorrelations between the two ZPLs.

Based on the cross correlations between distinct ZPLs reported in Fig. 2(d) and Supplement 1, it appears that ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ are associated with a single defect or a complex of defects so that an excited state can emit light into either ${{\rm ZPL}_1}$ or ${{\rm ZPL}_2}$. Alternatively, cross correlations like those reported here could plausibly result from dipole–dipole interactions between two closely spaced, near-resonant emitters. We suggest that this alternative hypothesis is less plausible but provide a simple classical model of such a coupled defect system in Supplement 1. While we cannot reject the case of strongly interacting emitters, the preponderance of the evidence leads us to conclude that the observed cross -correlations are generated by the electronic structure of either a single-point defect or a defect complex.

In summary, we have observed correlated laser irradiation-dependent changes in the µPL intensity for two ZPLs that reach equilibrium before simultaneously quenching in ambient laboratory conditions. These ZPLs were confirmed to be antibunched and anticorrelated with one another. The cross correlation between these two emitters indicates photochromism between the ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ transitions, consistent with a similar study of the charged and neutral nitrogen vacancy centers in diamond [30]. These results are therefore evidence that ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ are excited-state transitions for the same defect or complex. This evidence of photochromism in hBN defects is an essential step toward improved understanding of the atomic origins of these defects.

5. METHODS

The sample studied in this work was a multilayer hBN flake (3–5 layers in thickness) from Graphene Supermarket. The flake was subsequently annealed in a First Nano rapid thermal processor at a temperature of 850°C in 1 Torr ${{N}_2}$ with a temperature increase and decrease of 5°C/min. For all experiments, a room-temperature confocal microscope with a continuous-wave 405 nm diode-laser excitation with $2\,\,\unicode{x00B5}\rm W$ incident on the sample and a 0.9 NA objective was used to collect µPL from defects in our sample. Laser-edge filters and dichroic mirrors were used to pass only µPL to our spectrometer or interferometer. For laser irradiation-dependent spectroscopy, the µPL was passed to a diffraction grating spectrometer with 2 meV resolution. For singles counts and two-color HBT interferometry, the µPL was passed to a beam splitter with filters F1 (Newport 10LWF-500-B and 10SWF-550-B) and F2 (Semrock FF01-575/5-25) prior to the detectors corresponding to arm one and two of the HBT interferometer. The detectors were fiber-coupled using multimode fiber, and spatial mode filtering was adjusted using varying fiber core diameters (50–100 µm). Coincidence counts were collected using a HydraHarp 400, and the single-photon detectors used were Perkin Elmer SPCM-AQRs.

Funding

U.S. Department of Energy, Office of Basic Energy Sciences (DE-AC05-00OR22725); National Science Foundation (DMR-1747426).

Acknowledgment

This research was sponsored by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Initial experimental planning and design was supported by the Laboratory-Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the U.S. Department of Energy. M.A.F. gratefully acknowledges student support by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) and NSF award DMR-1747426. C.E.M gratefully acknowledges postdoctoral research support from the Intelligence Community Postdoctoral Research Fellowship Program at the Oak Ridge National Laboratory, administered by Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the Office of the Director of National Intelligence. Rapid thermal processing and spectroscopy experiments were carried out at the Center for Nanophase Materials Sciences (CNMS), which is sponsored at ORNL by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The authors thank Harrison Prosper for discussions regarding uncertainty estimation for the auto- and cross-correlation fits.

Disclosures

The authors declare no conflicts of interest.

 

See Supplement 1 for supporting content.

REFERENCES

1. I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016). [CrossRef]  

2. D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R. Petta, “Quantum spintronics: engineering and manipulating atom-like spins in semiconductors,” Science 339, 1174–1179 (2013). [CrossRef]  

3. D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12, 516–527 (2018). [CrossRef]  

4. T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016). [CrossRef]  

5. A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin, C. Bradac, C. Kasper, K. Krambrock, A. Sperlich, M. Toth, I. Aharonovich, and V. Dyakonov, “Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature,” Nat. Mater. 19, 540–545 (2020). [CrossRef]  

6. M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, “Material platforms for spin-based photonic quantum technologies,” Nat. Rev. Mater. 3, 38–51 (2018). [CrossRef]  

7. P. Khatri, A. J. Ramsay, R. N. E. Malein, H. M. Chong, and I. J. Luxmoore, “Optical gating of photoluminescence from color centers in hexagonal boron nitride,” Nano Lett. 20, 4256–4263 (2020). [CrossRef]  

8. K. Konthasinghe, C. Chakraborty, N. Mathur, L. Qiu, A. Mukherjee, G. D. Fuchs, and A. N. Vamivakas, “Rabi oscillations and resonance fluorescence from a single hexagonal boron nitride quantum emitter,” Optica 6, 542–548 (2019). [CrossRef]  

9. N. V. Proscia, Z. Shotan, H. Jayakumar, P. Reddy, C. Cohen, M. Dollar, A. Alkauskas, M. Doherty, C. A. Meriles, and V. M. Menon, “Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride,” Optica 5, 1128–1134 (2018). [CrossRef]  

10. G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 1–8 (2017). [CrossRef]  

11. S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First-principles investigation of quantum emission from HBN defects,” Nanoscale 9, 13575–13582 (2017). [CrossRef]  

12. M. Abdi, J.-P. Chou, A. Gali, and M. B. Plenio, “Color centers in hexagonal boron nitride monolayers: a group theory and ab initio analysis,” ACS Photon. 5, 1967–1976 (2018). [CrossRef]  

13. A. Sajid, J. R. Reimers, and M. J. Ford, “Defect states in hexagonal boron nitride: assignments of observed properties and prediction of properties relevant to quantum computation,” Phys. Rev. B 97, 064101 (2018). [CrossRef]  

14. G. Grosso, H. Moon, C. J. Ciccarino, J. Flick, N. Mendelson, L. Mennel, M. Toth, I. Aharonovich, P. Narang, and D. R. Englund, “Low-temperature electron-phonon interaction of quantum emitters in hexagonal boron nitride,” ACS Photon. 7, 1410–1417 (2020). [CrossRef]  

15. V. Ivády, G. Barcza, G. Thiering, S. Li, H. Hamdi, J.-P. Chou, Ö. Legeza, and A. Gali, “Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride,” npj Comput. Mater. 6, 41 (2020). [CrossRef]  

16. F. Hayee, L. Yu, J. L. Zhang, C. J. Ciccarino, M. Nguyen, A. F. Marshall, I. Aharonovich, J. Vučković, P. Narang, T. F. Heinz, and J. A. Dionne, “Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy,” Nat. Mater. 19, 534–539 (2020). [CrossRef]  

17. T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016). [CrossRef]  

18. Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016). [CrossRef]  

19. H. Ngoc My Duong, M. A. P. Nguyen, M. Kianinia, T. Ohshima, H. Abe, K. Watanabe, T. Taniguchi, J. H. Edgar, I. Aharonovich, and M. Toth, “Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride,” ACS Appl. Mater. Interfaces 10, 24886–24891 (2018). [CrossRef]  

20. N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatte, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016). [CrossRef]  

21. N. R. Jungwirth and G. D. Fuchs, “Optical absorption and emission mechanisms of single defects in hexagonal boron nitride,” Phys. Rev. Lett. 119, 057401 (2017). [CrossRef]  

22. N. Mendelson, M. Doherty, M. Toth, I. Aharonovich, and T. T. Tran, “Strain-induced modification of the optical characteristics of quantum emitters in hexagonal boron nitride,” Adv. Mater. 32, 1908316 (2020). [CrossRef]  

23. A. V. Kanaev, J.-P. Petitet, L. Museur, V. Marine, V. L. Solozhenko, and V. Zafiropulos, “Femtosecond and ultraviolet laser irradiation of graphitelike hexagonal boron nitride,” J. Appl. Phys. 96, 4483 (2004). [CrossRef]  

24. M. A. Feldman, A. Puretzky, L. Lindsay, E. Tucker, D. P. Briggs, P. G. Evans, R. F. Haglund, and B. J. Lawrie, “Phonon-induced multicolor correlations in hbn single-photon emitters,” Phys. Rev. B 99, 020101 (2019). [CrossRef]  

25. T. Vuong, G. Cassabois, P. Valvin, A. Ouerghi, Y. Chassagneux, C. Voisin, and B. Gil, “Phonon-photon mapping in a color center in hexagonal boron nitride,” Phys. Rev. Lett. 117, 097402 (2016). [CrossRef]  

26. P. Khatri, I. Luxmoore, and A. Ramsay, “Phonon sidebands of color centers in hexagonal boron nitride,” Phys. Rev. B 100, 125305 (2019). [CrossRef]  

27. A. Bommer and C. Becher, “New insights into nonclassical light emission from defects in multi-layer hexagonal boron nitride,” Nanophotonics 8, 2041–2048 (2019). [CrossRef]  

28. A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, and L. C. Bassett, “Optical signatures of quantum emitters in suspended hexagonal boron nitride,” ACS Nano 11, 3328–3336 (2017). [CrossRef]  

29. M. K. Boll, I. P. Radko, A. Huck, and U. L. Andersen, “Photophysics of quantum emitters in hexagonal boron-nitride nano-flakes,” Opt. Express 28, 7475–7487 (2020). [CrossRef]  

30. M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
    [Crossref]
  2. D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R. Petta, “Quantum spintronics: engineering and manipulating atom-like spins in semiconductors,” Science 339, 1174–1179 (2013).
    [Crossref]
  3. D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12, 516–527 (2018).
    [Crossref]
  4. T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
    [Crossref]
  5. A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin, C. Bradac, C. Kasper, K. Krambrock, A. Sperlich, M. Toth, I. Aharonovich, and V. Dyakonov, “Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature,” Nat. Mater. 19, 540–545 (2020).
    [Crossref]
  6. M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, “Material platforms for spin-based photonic quantum technologies,” Nat. Rev. Mater. 3, 38–51 (2018).
    [Crossref]
  7. P. Khatri, A. J. Ramsay, R. N. E. Malein, H. M. Chong, and I. J. Luxmoore, “Optical gating of photoluminescence from color centers in hexagonal boron nitride,” Nano Lett. 20, 4256–4263 (2020).
    [Crossref]
  8. K. Konthasinghe, C. Chakraborty, N. Mathur, L. Qiu, A. Mukherjee, G. D. Fuchs, and A. N. Vamivakas, “Rabi oscillations and resonance fluorescence from a single hexagonal boron nitride quantum emitter,” Optica 6, 542–548 (2019).
    [Crossref]
  9. N. V. Proscia, Z. Shotan, H. Jayakumar, P. Reddy, C. Cohen, M. Dollar, A. Alkauskas, M. Doherty, C. A. Meriles, and V. M. Menon, “Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride,” Optica 5, 1128–1134 (2018).
    [Crossref]
  10. G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 1–8 (2017).
    [Crossref]
  11. S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First-principles investigation of quantum emission from HBN defects,” Nanoscale 9, 13575–13582 (2017).
    [Crossref]
  12. M. Abdi, J.-P. Chou, A. Gali, and M. B. Plenio, “Color centers in hexagonal boron nitride monolayers: a group theory and ab initio analysis,” ACS Photon. 5, 1967–1976 (2018).
    [Crossref]
  13. A. Sajid, J. R. Reimers, and M. J. Ford, “Defect states in hexagonal boron nitride: assignments of observed properties and prediction of properties relevant to quantum computation,” Phys. Rev. B 97, 064101 (2018).
    [Crossref]
  14. G. Grosso, H. Moon, C. J. Ciccarino, J. Flick, N. Mendelson, L. Mennel, M. Toth, I. Aharonovich, P. Narang, and D. R. Englund, “Low-temperature electron-phonon interaction of quantum emitters in hexagonal boron nitride,” ACS Photon. 7, 1410–1417 (2020).
    [Crossref]
  15. V. Ivády, G. Barcza, G. Thiering, S. Li, H. Hamdi, J.-P. Chou, Ö. Legeza, and A. Gali, “Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride,” npj Comput. Mater. 6, 41 (2020).
    [Crossref]
  16. F. Hayee, L. Yu, J. L. Zhang, C. J. Ciccarino, M. Nguyen, A. F. Marshall, I. Aharonovich, J. Vučković, P. Narang, T. F. Heinz, and J. A. Dionne, “Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy,” Nat. Mater. 19, 534–539 (2020).
    [Crossref]
  17. T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
    [Crossref]
  18. Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
    [Crossref]
  19. H. Ngoc My Duong, M. A. P. Nguyen, M. Kianinia, T. Ohshima, H. Abe, K. Watanabe, T. Taniguchi, J. H. Edgar, I. Aharonovich, and M. Toth, “Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride,” ACS Appl. Mater. Interfaces 10, 24886–24891 (2018).
    [Crossref]
  20. N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatte, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016).
    [Crossref]
  21. N. R. Jungwirth and G. D. Fuchs, “Optical absorption and emission mechanisms of single defects in hexagonal boron nitride,” Phys. Rev. Lett. 119, 057401 (2017).
    [Crossref]
  22. N. Mendelson, M. Doherty, M. Toth, I. Aharonovich, and T. T. Tran, “Strain-induced modification of the optical characteristics of quantum emitters in hexagonal boron nitride,” Adv. Mater. 32, 1908316 (2020).
    [Crossref]
  23. A. V. Kanaev, J.-P. Petitet, L. Museur, V. Marine, V. L. Solozhenko, and V. Zafiropulos, “Femtosecond and ultraviolet laser irradiation of graphitelike hexagonal boron nitride,” J. Appl. Phys. 96, 4483 (2004).
    [Crossref]
  24. M. A. Feldman, A. Puretzky, L. Lindsay, E. Tucker, D. P. Briggs, P. G. Evans, R. F. Haglund, and B. J. Lawrie, “Phonon-induced multicolor correlations in hbn single-photon emitters,” Phys. Rev. B 99, 020101 (2019).
    [Crossref]
  25. T. Vuong, G. Cassabois, P. Valvin, A. Ouerghi, Y. Chassagneux, C. Voisin, and B. Gil, “Phonon-photon mapping in a color center in hexagonal boron nitride,” Phys. Rev. Lett. 117, 097402 (2016).
    [Crossref]
  26. P. Khatri, I. Luxmoore, and A. Ramsay, “Phonon sidebands of color centers in hexagonal boron nitride,” Phys. Rev. B 100, 125305 (2019).
    [Crossref]
  27. A. Bommer and C. Becher, “New insights into nonclassical light emission from defects in multi-layer hexagonal boron nitride,” Nanophotonics 8, 2041–2048 (2019).
    [Crossref]
  28. A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, and L. C. Bassett, “Optical signatures of quantum emitters in suspended hexagonal boron nitride,” ACS Nano 11, 3328–3336 (2017).
    [Crossref]
  29. M. K. Boll, I. P. Radko, A. Huck, and U. L. Andersen, “Photophysics of quantum emitters in hexagonal boron-nitride nano-flakes,” Opt. Express 28, 7475–7487 (2020).
    [Crossref]
  30. M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015).
    [Crossref]

2020 (7)

P. Khatri, A. J. Ramsay, R. N. E. Malein, H. M. Chong, and I. J. Luxmoore, “Optical gating of photoluminescence from color centers in hexagonal boron nitride,” Nano Lett. 20, 4256–4263 (2020).
[Crossref]

A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin, C. Bradac, C. Kasper, K. Krambrock, A. Sperlich, M. Toth, I. Aharonovich, and V. Dyakonov, “Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature,” Nat. Mater. 19, 540–545 (2020).
[Crossref]

G. Grosso, H. Moon, C. J. Ciccarino, J. Flick, N. Mendelson, L. Mennel, M. Toth, I. Aharonovich, P. Narang, and D. R. Englund, “Low-temperature electron-phonon interaction of quantum emitters in hexagonal boron nitride,” ACS Photon. 7, 1410–1417 (2020).
[Crossref]

V. Ivády, G. Barcza, G. Thiering, S. Li, H. Hamdi, J.-P. Chou, Ö. Legeza, and A. Gali, “Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride,” npj Comput. Mater. 6, 41 (2020).
[Crossref]

F. Hayee, L. Yu, J. L. Zhang, C. J. Ciccarino, M. Nguyen, A. F. Marshall, I. Aharonovich, J. Vučković, P. Narang, T. F. Heinz, and J. A. Dionne, “Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy,” Nat. Mater. 19, 534–539 (2020).
[Crossref]

N. Mendelson, M. Doherty, M. Toth, I. Aharonovich, and T. T. Tran, “Strain-induced modification of the optical characteristics of quantum emitters in hexagonal boron nitride,” Adv. Mater. 32, 1908316 (2020).
[Crossref]

M. K. Boll, I. P. Radko, A. Huck, and U. L. Andersen, “Photophysics of quantum emitters in hexagonal boron-nitride nano-flakes,” Opt. Express 28, 7475–7487 (2020).
[Crossref]

2019 (4)

M. A. Feldman, A. Puretzky, L. Lindsay, E. Tucker, D. P. Briggs, P. G. Evans, R. F. Haglund, and B. J. Lawrie, “Phonon-induced multicolor correlations in hbn single-photon emitters,” Phys. Rev. B 99, 020101 (2019).
[Crossref]

P. Khatri, I. Luxmoore, and A. Ramsay, “Phonon sidebands of color centers in hexagonal boron nitride,” Phys. Rev. B 100, 125305 (2019).
[Crossref]

A. Bommer and C. Becher, “New insights into nonclassical light emission from defects in multi-layer hexagonal boron nitride,” Nanophotonics 8, 2041–2048 (2019).
[Crossref]

K. Konthasinghe, C. Chakraborty, N. Mathur, L. Qiu, A. Mukherjee, G. D. Fuchs, and A. N. Vamivakas, “Rabi oscillations and resonance fluorescence from a single hexagonal boron nitride quantum emitter,” Optica 6, 542–548 (2019).
[Crossref]

2018 (6)

N. V. Proscia, Z. Shotan, H. Jayakumar, P. Reddy, C. Cohen, M. Dollar, A. Alkauskas, M. Doherty, C. A. Meriles, and V. M. Menon, “Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride,” Optica 5, 1128–1134 (2018).
[Crossref]

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12, 516–527 (2018).
[Crossref]

M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, “Material platforms for spin-based photonic quantum technologies,” Nat. Rev. Mater. 3, 38–51 (2018).
[Crossref]

M. Abdi, J.-P. Chou, A. Gali, and M. B. Plenio, “Color centers in hexagonal boron nitride monolayers: a group theory and ab initio analysis,” ACS Photon. 5, 1967–1976 (2018).
[Crossref]

A. Sajid, J. R. Reimers, and M. J. Ford, “Defect states in hexagonal boron nitride: assignments of observed properties and prediction of properties relevant to quantum computation,” Phys. Rev. B 97, 064101 (2018).
[Crossref]

H. Ngoc My Duong, M. A. P. Nguyen, M. Kianinia, T. Ohshima, H. Abe, K. Watanabe, T. Taniguchi, J. H. Edgar, I. Aharonovich, and M. Toth, “Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride,” ACS Appl. Mater. Interfaces 10, 24886–24891 (2018).
[Crossref]

2017 (4)

A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, and L. C. Bassett, “Optical signatures of quantum emitters in suspended hexagonal boron nitride,” ACS Nano 11, 3328–3336 (2017).
[Crossref]

N. R. Jungwirth and G. D. Fuchs, “Optical absorption and emission mechanisms of single defects in hexagonal boron nitride,” Phys. Rev. Lett. 119, 057401 (2017).
[Crossref]

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First-principles investigation of quantum emission from HBN defects,” Nanoscale 9, 13575–13582 (2017).
[Crossref]

2016 (6)

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

T. Vuong, G. Cassabois, P. Valvin, A. Ouerghi, Y. Chassagneux, C. Voisin, and B. Gil, “Phonon-photon mapping in a color center in hexagonal boron nitride,” Phys. Rev. Lett. 117, 097402 (2016).
[Crossref]

N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatte, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016).
[Crossref]

2015 (1)

M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015).
[Crossref]

2013 (1)

D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R. Petta, “Quantum spintronics: engineering and manipulating atom-like spins in semiconductors,” Science 339, 1174–1179 (2013).
[Crossref]

2004 (1)

A. V. Kanaev, J.-P. Petitet, L. Museur, V. Marine, V. L. Solozhenko, and V. Zafiropulos, “Femtosecond and ultraviolet laser irradiation of graphitelike hexagonal boron nitride,” J. Appl. Phys. 96, 4483 (2004).
[Crossref]

Abdi, M.

M. Abdi, J.-P. Chou, A. Gali, and M. B. Plenio, “Color centers in hexagonal boron nitride monolayers: a group theory and ab initio analysis,” ACS Photon. 5, 1967–1976 (2018).
[Crossref]

Abe, H.

H. Ngoc My Duong, M. A. P. Nguyen, M. Kianinia, T. Ohshima, H. Abe, K. Watanabe, T. Taniguchi, J. H. Edgar, I. Aharonovich, and M. Toth, “Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride,” ACS Appl. Mater. Interfaces 10, 24886–24891 (2018).
[Crossref]

Aharonovich, I.

G. Grosso, H. Moon, C. J. Ciccarino, J. Flick, N. Mendelson, L. Mennel, M. Toth, I. Aharonovich, P. Narang, and D. R. Englund, “Low-temperature electron-phonon interaction of quantum emitters in hexagonal boron nitride,” ACS Photon. 7, 1410–1417 (2020).
[Crossref]

F. Hayee, L. Yu, J. L. Zhang, C. J. Ciccarino, M. Nguyen, A. F. Marshall, I. Aharonovich, J. Vučković, P. Narang, T. F. Heinz, and J. A. Dionne, “Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy,” Nat. Mater. 19, 534–539 (2020).
[Crossref]

A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin, C. Bradac, C. Kasper, K. Krambrock, A. Sperlich, M. Toth, I. Aharonovich, and V. Dyakonov, “Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature,” Nat. Mater. 19, 540–545 (2020).
[Crossref]

N. Mendelson, M. Doherty, M. Toth, I. Aharonovich, and T. T. Tran, “Strain-induced modification of the optical characteristics of quantum emitters in hexagonal boron nitride,” Adv. Mater. 32, 1908316 (2020).
[Crossref]

H. Ngoc My Duong, M. A. P. Nguyen, M. Kianinia, T. Ohshima, H. Abe, K. Watanabe, T. Taniguchi, J. H. Edgar, I. Aharonovich, and M. Toth, “Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride,” ACS Appl. Mater. Interfaces 10, 24886–24891 (2018).
[Crossref]

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First-principles investigation of quantum emission from HBN defects,” Nanoscale 9, 13575–13582 (2017).
[Crossref]

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

Ali, S.

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First-principles investigation of quantum emission from HBN defects,” Nanoscale 9, 13575–13582 (2017).
[Crossref]

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

Alkauskas, A.

N. V. Proscia, Z. Shotan, H. Jayakumar, P. Reddy, C. Cohen, M. Dollar, A. Alkauskas, M. Doherty, C. A. Meriles, and V. M. Menon, “Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride,” Optica 5, 1128–1134 (2018).
[Crossref]

A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, and L. C. Bassett, “Optical signatures of quantum emitters in suspended hexagonal boron nitride,” ACS Nano 11, 3328–3336 (2017).
[Crossref]

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

Andersen, U. L.

Atatüre, M.

M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, “Material platforms for spin-based photonic quantum technologies,” Nat. Rev. Mater. 3, 38–51 (2018).
[Crossref]

Awschalom, D. D.

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12, 516–527 (2018).
[Crossref]

D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R. Petta, “Quantum spintronics: engineering and manipulating atom-like spins in semiconductors,” Science 339, 1174–1179 (2013).
[Crossref]

Barcza, G.

V. Ivády, G. Barcza, G. Thiering, S. Li, H. Hamdi, J.-P. Chou, Ö. Legeza, and A. Gali, “Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride,” npj Comput. Mater. 6, 41 (2020).
[Crossref]

Bassett, L. C.

A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, and L. C. Bassett, “Optical signatures of quantum emitters in suspended hexagonal boron nitride,” ACS Nano 11, 3328–3336 (2017).
[Crossref]

D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R. Petta, “Quantum spintronics: engineering and manipulating atom-like spins in semiconductors,” Science 339, 1174–1179 (2013).
[Crossref]

Becher, C.

A. Bommer and C. Becher, “New insights into nonclassical light emission from defects in multi-layer hexagonal boron nitride,” Nanophotonics 8, 2041–2048 (2019).
[Crossref]

Berthel, M.

M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015).
[Crossref]

Boll, M. K.

Bommer, A.

A. Bommer and C. Becher, “New insights into nonclassical light emission from defects in multi-layer hexagonal boron nitride,” Nanophotonics 8, 2041–2048 (2019).
[Crossref]

Bradac, C.

A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin, C. Bradac, C. Kasper, K. Krambrock, A. Sperlich, M. Toth, I. Aharonovich, and V. Dyakonov, “Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature,” Nat. Mater. 19, 540–545 (2020).
[Crossref]

Bray, K.

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

Briggs, D. P.

M. A. Feldman, A. Puretzky, L. Lindsay, E. Tucker, D. P. Briggs, P. G. Evans, R. F. Haglund, and B. J. Lawrie, “Phonon-induced multicolor correlations in hbn single-photon emitters,” Phys. Rev. B 99, 020101 (2019).
[Crossref]

Calderon, B.

N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatte, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016).
[Crossref]

Cassabois, G.

T. Vuong, G. Cassabois, P. Valvin, A. Ouerghi, Y. Chassagneux, C. Voisin, and B. Gil, “Phonon-photon mapping in a color center in hexagonal boron nitride,” Phys. Rev. Lett. 117, 097402 (2016).
[Crossref]

Chakraborty, C.

Chassagneux, Y.

T. Vuong, G. Cassabois, P. Valvin, A. Ouerghi, Y. Chassagneux, C. Voisin, and B. Gil, “Phonon-photon mapping in a color center in hexagonal boron nitride,” Phys. Rev. Lett. 117, 097402 (2016).
[Crossref]

Chong, H. M.

P. Khatri, A. J. Ramsay, R. N. E. Malein, H. M. Chong, and I. J. Luxmoore, “Optical gating of photoluminescence from color centers in hexagonal boron nitride,” Nano Lett. 20, 4256–4263 (2020).
[Crossref]

Chou, J.-P.

V. Ivády, G. Barcza, G. Thiering, S. Li, H. Hamdi, J.-P. Chou, Ö. Legeza, and A. Gali, “Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride,” npj Comput. Mater. 6, 41 (2020).
[Crossref]

M. Abdi, J.-P. Chou, A. Gali, and M. B. Plenio, “Color centers in hexagonal boron nitride monolayers: a group theory and ab initio analysis,” ACS Photon. 5, 1967–1976 (2018).
[Crossref]

Ciccarino, C. J.

G. Grosso, H. Moon, C. J. Ciccarino, J. Flick, N. Mendelson, L. Mennel, M. Toth, I. Aharonovich, P. Narang, and D. R. Englund, “Low-temperature electron-phonon interaction of quantum emitters in hexagonal boron nitride,” ACS Photon. 7, 1410–1417 (2020).
[Crossref]

F. Hayee, L. Yu, J. L. Zhang, C. J. Ciccarino, M. Nguyen, A. F. Marshall, I. Aharonovich, J. Vučković, P. Narang, T. F. Heinz, and J. A. Dionne, “Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy,” Nat. Mater. 19, 534–539 (2020).
[Crossref]

Cohen, C.

Considine, C. R.

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

Dantelle, G.

M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015).
[Crossref]

Dionne, J. A.

F. Hayee, L. Yu, J. L. Zhang, C. J. Ciccarino, M. Nguyen, A. F. Marshall, I. Aharonovich, J. Vučković, P. Narang, T. F. Heinz, and J. A. Dionne, “Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy,” Nat. Mater. 19, 534–539 (2020).
[Crossref]

Doherty, M.

N. Mendelson, M. Doherty, M. Toth, I. Aharonovich, and T. T. Tran, “Strain-induced modification of the optical characteristics of quantum emitters in hexagonal boron nitride,” Adv. Mater. 32, 1908316 (2020).
[Crossref]

N. V. Proscia, Z. Shotan, H. Jayakumar, P. Reddy, C. Cohen, M. Dollar, A. Alkauskas, M. Doherty, C. A. Meriles, and V. M. Menon, “Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride,” Optica 5, 1128–1134 (2018).
[Crossref]

Doherty, M. W.

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

Dollar, M.

Drezet, A.

M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015).
[Crossref]

Dyakonov, V.

A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin, C. Bradac, C. Kasper, K. Krambrock, A. Sperlich, M. Toth, I. Aharonovich, and V. Dyakonov, “Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature,” Nat. Mater. 19, 540–545 (2020).
[Crossref]

Dzurak, A. S.

D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R. Petta, “Quantum spintronics: engineering and manipulating atom-like spins in semiconductors,” Science 339, 1174–1179 (2013).
[Crossref]

Edgar, J. H.

H. Ngoc My Duong, M. A. P. Nguyen, M. Kianinia, T. Ohshima, H. Abe, K. Watanabe, T. Taniguchi, J. H. Edgar, I. Aharonovich, and M. Toth, “Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride,” ACS Appl. Mater. Interfaces 10, 24886–24891 (2018).
[Crossref]

Efetov, D. K.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

Elbadawi, C.

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

Englund, D.

M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, “Material platforms for spin-based photonic quantum technologies,” Nat. Rev. Mater. 3, 38–51 (2018).
[Crossref]

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

Englund, D. R.

G. Grosso, H. Moon, C. J. Ciccarino, J. Flick, N. Mendelson, L. Mennel, M. Toth, I. Aharonovich, P. Narang, and D. R. Englund, “Low-temperature electron-phonon interaction of quantum emitters in hexagonal boron nitride,” ACS Photon. 7, 1410–1417 (2020).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

Evans, P. G.

M. A. Feldman, A. Puretzky, L. Lindsay, E. Tucker, D. P. Briggs, P. G. Evans, R. F. Haglund, and B. J. Lawrie, “Phonon-induced multicolor correlations in hbn single-photon emitters,” Phys. Rev. B 99, 020101 (2019).
[Crossref]

Exarhos, A. L.

A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, and L. C. Bassett, “Optical signatures of quantum emitters in suspended hexagonal boron nitride,” ACS Nano 11, 3328–3336 (2017).
[Crossref]

Fedder, H.

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

Feldman, M. A.

M. A. Feldman, A. Puretzky, L. Lindsay, E. Tucker, D. P. Briggs, P. G. Evans, R. F. Haglund, and B. J. Lawrie, “Phonon-induced multicolor correlations in hbn single-photon emitters,” Phys. Rev. B 99, 020101 (2019).
[Crossref]

Flatte, M. E.

N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatte, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016).
[Crossref]

Flick, J.

G. Grosso, H. Moon, C. J. Ciccarino, J. Flick, N. Mendelson, L. Mennel, M. Toth, I. Aharonovich, P. Narang, and D. R. Englund, “Low-temperature electron-phonon interaction of quantum emitters in hexagonal boron nitride,” ACS Photon. 7, 1410–1417 (2020).
[Crossref]

Ford, M. J.

A. Sajid, J. R. Reimers, and M. J. Ford, “Defect states in hexagonal boron nitride: assignments of observed properties and prediction of properties relevant to quantum computation,” Phys. Rev. B 97, 064101 (2018).
[Crossref]

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First-principles investigation of quantum emission from HBN defects,” Nanoscale 9, 13575–13582 (2017).
[Crossref]

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

Fronzi, M.

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First-principles investigation of quantum emission from HBN defects,” Nanoscale 9, 13575–13582 (2017).
[Crossref]

Fuchs, G. D.

K. Konthasinghe, C. Chakraborty, N. Mathur, L. Qiu, A. Mukherjee, G. D. Fuchs, and A. N. Vamivakas, “Rabi oscillations and resonance fluorescence from a single hexagonal boron nitride quantum emitter,” Optica 6, 542–548 (2019).
[Crossref]

N. R. Jungwirth and G. D. Fuchs, “Optical absorption and emission mechanisms of single defects in hexagonal boron nitride,” Phys. Rev. Lett. 119, 057401 (2017).
[Crossref]

N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatte, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016).
[Crossref]

Furchi, M. M.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

Gacoin, T.

M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015).
[Crossref]

Gali, A.

V. Ivády, G. Barcza, G. Thiering, S. Li, H. Hamdi, J.-P. Chou, Ö. Legeza, and A. Gali, “Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride,” npj Comput. Mater. 6, 41 (2020).
[Crossref]

M. Abdi, J.-P. Chou, A. Gali, and M. B. Plenio, “Color centers in hexagonal boron nitride monolayers: a group theory and ab initio analysis,” ACS Photon. 5, 1967–1976 (2018).
[Crossref]

Gil, B.

T. Vuong, G. Cassabois, P. Valvin, A. Ouerghi, Y. Chassagneux, C. Voisin, and B. Gil, “Phonon-photon mapping in a color center in hexagonal boron nitride,” Phys. Rev. Lett. 117, 097402 (2016).
[Crossref]

Gottscholl, A.

A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin, C. Bradac, C. Kasper, K. Krambrock, A. Sperlich, M. Toth, I. Aharonovich, and V. Dyakonov, “Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature,” Nat. Mater. 19, 540–545 (2020).
[Crossref]

Grosso, G.

G. Grosso, H. Moon, C. J. Ciccarino, J. Flick, N. Mendelson, L. Mennel, M. Toth, I. Aharonovich, P. Narang, and D. R. Englund, “Low-temperature electron-phonon interaction of quantum emitters in hexagonal boron nitride,” ACS Photon. 7, 1410–1417 (2020).
[Crossref]

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

Grote, R. R.

A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, and L. C. Bassett, “Optical signatures of quantum emitters in suspended hexagonal boron nitride,” ACS Nano 11, 3328–3336 (2017).
[Crossref]

Haglund, R. F.

M. A. Feldman, A. Puretzky, L. Lindsay, E. Tucker, D. P. Briggs, P. G. Evans, R. F. Haglund, and B. J. Lawrie, “Phonon-induced multicolor correlations in hbn single-photon emitters,” Phys. Rev. B 99, 020101 (2019).
[Crossref]

Hamdi, H.

V. Ivády, G. Barcza, G. Thiering, S. Li, H. Hamdi, J.-P. Chou, Ö. Legeza, and A. Gali, “Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride,” npj Comput. Mater. 6, 41 (2020).
[Crossref]

Hanson, R.

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12, 516–527 (2018).
[Crossref]

Hayee, F.

F. Hayee, L. Yu, J. L. Zhang, C. J. Ciccarino, M. Nguyen, A. F. Marshall, I. Aharonovich, J. Vučković, P. Narang, T. F. Heinz, and J. A. Dionne, “Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy,” Nat. Mater. 19, 534–539 (2020).
[Crossref]

Heinz, T. F.

F. Hayee, L. Yu, J. L. Zhang, C. J. Ciccarino, M. Nguyen, A. F. Marshall, I. Aharonovich, J. Vučković, P. Narang, T. F. Heinz, and J. A. Dionne, “Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy,” Nat. Mater. 19, 534–539 (2020).
[Crossref]

Hopper, D. A.

A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, and L. C. Bassett, “Optical signatures of quantum emitters in suspended hexagonal boron nitride,” ACS Nano 11, 3328–3336 (2017).
[Crossref]

Hu, E. L.

D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R. Petta, “Quantum spintronics: engineering and manipulating atom-like spins in semiconductors,” Science 339, 1174–1179 (2013).
[Crossref]

Huant, S.

M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015).
[Crossref]

Huck, A.

Ivády, V.

V. Ivády, G. Barcza, G. Thiering, S. Li, H. Hamdi, J.-P. Chou, Ö. Legeza, and A. Gali, “Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride,” npj Comput. Mater. 6, 41 (2020).
[Crossref]

Jarillo-Herrero, P.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

Jayakumar, H.

N. V. Proscia, Z. Shotan, H. Jayakumar, P. Reddy, C. Cohen, M. Dollar, A. Alkauskas, M. Doherty, C. A. Meriles, and V. M. Menon, “Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride,” Optica 5, 1128–1134 (2018).
[Crossref]

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

Ji, Y.

N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatte, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016).
[Crossref]

Jungwirth, N. R.

N. R. Jungwirth and G. D. Fuchs, “Optical absorption and emission mechanisms of single defects in hexagonal boron nitride,” Phys. Rev. Lett. 119, 057401 (2017).
[Crossref]

N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatte, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016).
[Crossref]

Kanaev, A. V.

A. V. Kanaev, J.-P. Petitet, L. Museur, V. Marine, V. L. Solozhenko, and V. Zafiropulos, “Femtosecond and ultraviolet laser irradiation of graphitelike hexagonal boron nitride,” J. Appl. Phys. 96, 4483 (2004).
[Crossref]

Kasper, C.

A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin, C. Bradac, C. Kasper, K. Krambrock, A. Sperlich, M. Toth, I. Aharonovich, and V. Dyakonov, “Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature,” Nat. Mater. 19, 540–545 (2020).
[Crossref]

Khatri, P.

P. Khatri, A. J. Ramsay, R. N. E. Malein, H. M. Chong, and I. J. Luxmoore, “Optical gating of photoluminescence from color centers in hexagonal boron nitride,” Nano Lett. 20, 4256–4263 (2020).
[Crossref]

P. Khatri, I. Luxmoore, and A. Ramsay, “Phonon sidebands of color centers in hexagonal boron nitride,” Phys. Rev. B 100, 125305 (2019).
[Crossref]

Kianinia, M.

A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin, C. Bradac, C. Kasper, K. Krambrock, A. Sperlich, M. Toth, I. Aharonovich, and V. Dyakonov, “Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature,” Nat. Mater. 19, 540–545 (2020).
[Crossref]

H. Ngoc My Duong, M. A. P. Nguyen, M. Kianinia, T. Ohshima, H. Abe, K. Watanabe, T. Taniguchi, J. H. Edgar, I. Aharonovich, and M. Toth, “Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride,” ACS Appl. Mater. Interfaces 10, 24886–24891 (2018).
[Crossref]

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First-principles investigation of quantum emission from HBN defects,” Nanoscale 9, 13575–13582 (2017).
[Crossref]

Konthasinghe, K.

Krambrock, K.

A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin, C. Bradac, C. Kasper, K. Krambrock, A. Sperlich, M. Toth, I. Aharonovich, and V. Dyakonov, “Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature,” Nat. Mater. 19, 540–545 (2020).
[Crossref]

Lawrie, B. J.

M. A. Feldman, A. Puretzky, L. Lindsay, E. Tucker, D. P. Briggs, P. G. Evans, R. F. Haglund, and B. J. Lawrie, “Phonon-induced multicolor correlations in hbn single-photon emitters,” Phys. Rev. B 99, 020101 (2019).
[Crossref]

Lee, S.-Y.

M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, “Material platforms for spin-based photonic quantum technologies,” Nat. Rev. Mater. 3, 38–51 (2018).
[Crossref]

Legeza, Ö.

V. Ivády, G. Barcza, G. Thiering, S. Li, H. Hamdi, J.-P. Chou, Ö. Legeza, and A. Gali, “Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride,” npj Comput. Mater. 6, 41 (2020).
[Crossref]

Li, S.

V. Ivády, G. Barcza, G. Thiering, S. Li, H. Hamdi, J.-P. Chou, Ö. Legeza, and A. Gali, “Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride,” npj Comput. Mater. 6, 41 (2020).
[Crossref]

Lienhard, B.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

Lindsay, L.

M. A. Feldman, A. Puretzky, L. Lindsay, E. Tucker, D. P. Briggs, P. G. Evans, R. F. Haglund, and B. J. Lawrie, “Phonon-induced multicolor correlations in hbn single-photon emitters,” Phys. Rev. B 99, 020101 (2019).
[Crossref]

Lobo, C. J.

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

Luxmoore, I.

P. Khatri, I. Luxmoore, and A. Ramsay, “Phonon sidebands of color centers in hexagonal boron nitride,” Phys. Rev. B 100, 125305 (2019).
[Crossref]

Luxmoore, I. J.

P. Khatri, A. J. Ramsay, R. N. E. Malein, H. M. Chong, and I. J. Luxmoore, “Optical gating of photoluminescence from color centers in hexagonal boron nitride,” Nano Lett. 20, 4256–4263 (2020).
[Crossref]

Mackoit, M.

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

Malein, R. N. E.

P. Khatri, A. J. Ramsay, R. N. E. Malein, H. M. Chong, and I. J. Luxmoore, “Optical gating of photoluminescence from color centers in hexagonal boron nitride,” Nano Lett. 20, 4256–4263 (2020).
[Crossref]

Mamin, G.

A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin, C. Bradac, C. Kasper, K. Krambrock, A. Sperlich, M. Toth, I. Aharonovich, and V. Dyakonov, “Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature,” Nat. Mater. 19, 540–545 (2020).
[Crossref]

Marine, V.

A. V. Kanaev, J.-P. Petitet, L. Museur, V. Marine, V. L. Solozhenko, and V. Zafiropulos, “Femtosecond and ultraviolet laser irradiation of graphitelike hexagonal boron nitride,” J. Appl. Phys. 96, 4483 (2004).
[Crossref]

Marshall, A. F.

F. Hayee, L. Yu, J. L. Zhang, C. J. Ciccarino, M. Nguyen, A. F. Marshall, I. Aharonovich, J. Vučković, P. Narang, T. F. Heinz, and J. A. Dionne, “Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy,” Nat. Mater. 19, 534–539 (2020).
[Crossref]

Mathur, N.

Mendelson, N.

G. Grosso, H. Moon, C. J. Ciccarino, J. Flick, N. Mendelson, L. Mennel, M. Toth, I. Aharonovich, P. Narang, and D. R. Englund, “Low-temperature electron-phonon interaction of quantum emitters in hexagonal boron nitride,” ACS Photon. 7, 1410–1417 (2020).
[Crossref]

N. Mendelson, M. Doherty, M. Toth, I. Aharonovich, and T. T. Tran, “Strain-induced modification of the optical characteristics of quantum emitters in hexagonal boron nitride,” Adv. Mater. 32, 1908316 (2020).
[Crossref]

Mennel, L.

G. Grosso, H. Moon, C. J. Ciccarino, J. Flick, N. Mendelson, L. Mennel, M. Toth, I. Aharonovich, P. Narang, and D. R. Englund, “Low-temperature electron-phonon interaction of quantum emitters in hexagonal boron nitride,” ACS Photon. 7, 1410–1417 (2020).
[Crossref]

Menon, V. M.

N. V. Proscia, Z. Shotan, H. Jayakumar, P. Reddy, C. Cohen, M. Dollar, A. Alkauskas, M. Doherty, C. A. Meriles, and V. M. Menon, “Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride,” Optica 5, 1128–1134 (2018).
[Crossref]

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

Meriles, C. A.

N. V. Proscia, Z. Shotan, H. Jayakumar, P. Reddy, C. Cohen, M. Dollar, A. Alkauskas, M. Doherty, C. A. Meriles, and V. M. Menon, “Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride,” Optica 5, 1128–1134 (2018).
[Crossref]

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

Mollet, O.

M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015).
[Crossref]

Moon, H.

G. Grosso, H. Moon, C. J. Ciccarino, J. Flick, N. Mendelson, L. Mennel, M. Toth, I. Aharonovich, P. Narang, and D. R. Englund, “Low-temperature electron-phonon interaction of quantum emitters in hexagonal boron nitride,” ACS Photon. 7, 1410–1417 (2020).
[Crossref]

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

Mukherjee, A.

Museur, L.

A. V. Kanaev, J.-P. Petitet, L. Museur, V. Marine, V. L. Solozhenko, and V. Zafiropulos, “Femtosecond and ultraviolet laser irradiation of graphitelike hexagonal boron nitride,” J. Appl. Phys. 96, 4483 (2004).
[Crossref]

Narang, P.

F. Hayee, L. Yu, J. L. Zhang, C. J. Ciccarino, M. Nguyen, A. F. Marshall, I. Aharonovich, J. Vučković, P. Narang, T. F. Heinz, and J. A. Dionne, “Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy,” Nat. Mater. 19, 534–539 (2020).
[Crossref]

G. Grosso, H. Moon, C. J. Ciccarino, J. Flick, N. Mendelson, L. Mennel, M. Toth, I. Aharonovich, P. Narang, and D. R. Englund, “Low-temperature electron-phonon interaction of quantum emitters in hexagonal boron nitride,” ACS Photon. 7, 1410–1417 (2020).
[Crossref]

Ngoc My Duong, H.

H. Ngoc My Duong, M. A. P. Nguyen, M. Kianinia, T. Ohshima, H. Abe, K. Watanabe, T. Taniguchi, J. H. Edgar, I. Aharonovich, and M. Toth, “Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride,” ACS Appl. Mater. Interfaces 10, 24886–24891 (2018).
[Crossref]

Nguyen, M.

F. Hayee, L. Yu, J. L. Zhang, C. J. Ciccarino, M. Nguyen, A. F. Marshall, I. Aharonovich, J. Vučković, P. Narang, T. F. Heinz, and J. A. Dionne, “Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy,” Nat. Mater. 19, 534–539 (2020).
[Crossref]

Nguyen, M. A. P.

H. Ngoc My Duong, M. A. P. Nguyen, M. Kianinia, T. Ohshima, H. Abe, K. Watanabe, T. Taniguchi, J. H. Edgar, I. Aharonovich, and M. Toth, “Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride,” ACS Appl. Mater. Interfaces 10, 24886–24891 (2018).
[Crossref]

Ohshima, T.

H. Ngoc My Duong, M. A. P. Nguyen, M. Kianinia, T. Ohshima, H. Abe, K. Watanabe, T. Taniguchi, J. H. Edgar, I. Aharonovich, and M. Toth, “Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride,” ACS Appl. Mater. Interfaces 10, 24886–24891 (2018).
[Crossref]

Orlinskii, S.

A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin, C. Bradac, C. Kasper, K. Krambrock, A. Sperlich, M. Toth, I. Aharonovich, and V. Dyakonov, “Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature,” Nat. Mater. 19, 540–545 (2020).
[Crossref]

Ouerghi, A.

T. Vuong, G. Cassabois, P. Valvin, A. Ouerghi, Y. Chassagneux, C. Voisin, and B. Gil, “Phonon-photon mapping in a color center in hexagonal boron nitride,” Phys. Rev. Lett. 117, 097402 (2016).
[Crossref]

Petitet, J.-P.

A. V. Kanaev, J.-P. Petitet, L. Museur, V. Marine, V. L. Solozhenko, and V. Zafiropulos, “Femtosecond and ultraviolet laser irradiation of graphitelike hexagonal boron nitride,” J. Appl. Phys. 96, 4483 (2004).
[Crossref]

Petta, J. R.

D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R. Petta, “Quantum spintronics: engineering and manipulating atom-like spins in semiconductors,” Science 339, 1174–1179 (2013).
[Crossref]

Plenio, M. B.

M. Abdi, J.-P. Chou, A. Gali, and M. B. Plenio, “Color centers in hexagonal boron nitride monolayers: a group theory and ab initio analysis,” ACS Photon. 5, 1967–1976 (2018).
[Crossref]

Proscia, N. V.

Puretzky, A.

M. A. Feldman, A. Puretzky, L. Lindsay, E. Tucker, D. P. Briggs, P. G. Evans, R. F. Haglund, and B. J. Lawrie, “Phonon-induced multicolor correlations in hbn single-photon emitters,” Phys. Rev. B 99, 020101 (2019).
[Crossref]

Qiu, L.

Radko, I. P.

Ramsay, A.

P. Khatri, I. Luxmoore, and A. Ramsay, “Phonon sidebands of color centers in hexagonal boron nitride,” Phys. Rev. B 100, 125305 (2019).
[Crossref]

Ramsay, A. J.

P. Khatri, A. J. Ramsay, R. N. E. Malein, H. M. Chong, and I. J. Luxmoore, “Optical gating of photoluminescence from color centers in hexagonal boron nitride,” Nano Lett. 20, 4256–4263 (2020).
[Crossref]

Reddy, P.

Reimers, J. R.

A. Sajid, J. R. Reimers, and M. J. Ford, “Defect states in hexagonal boron nitride: assignments of observed properties and prediction of properties relevant to quantum computation,” Phys. Rev. B 97, 064101 (2018).
[Crossref]

Sajid, A.

A. Sajid, J. R. Reimers, and M. J. Ford, “Defect states in hexagonal boron nitride: assignments of observed properties and prediction of properties relevant to quantum computation,” Phys. Rev. B 97, 064101 (2018).
[Crossref]

Shotan, Z.

N. V. Proscia, Z. Shotan, H. Jayakumar, P. Reddy, C. Cohen, M. Dollar, A. Alkauskas, M. Doherty, C. A. Meriles, and V. M. Menon, “Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride,” Optica 5, 1128–1134 (2018).
[Crossref]

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

Solozhenko, V. L.

A. V. Kanaev, J.-P. Petitet, L. Museur, V. Marine, V. L. Solozhenko, and V. Zafiropulos, “Femtosecond and ultraviolet laser irradiation of graphitelike hexagonal boron nitride,” J. Appl. Phys. 96, 4483 (2004).
[Crossref]

Soltamov, V.

A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin, C. Bradac, C. Kasper, K. Krambrock, A. Sperlich, M. Toth, I. Aharonovich, and V. Dyakonov, “Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature,” Nat. Mater. 19, 540–545 (2020).
[Crossref]

Spencer, M. G.

N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatte, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016).
[Crossref]

Sperlich, A.

A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin, C. Bradac, C. Kasper, K. Krambrock, A. Sperlich, M. Toth, I. Aharonovich, and V. Dyakonov, “Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature,” Nat. Mater. 19, 540–545 (2020).
[Crossref]

Stampfl, C.

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First-principles investigation of quantum emission from HBN defects,” Nanoscale 9, 13575–13582 (2017).
[Crossref]

Taniguchi, T.

H. Ngoc My Duong, M. A. P. Nguyen, M. Kianinia, T. Ohshima, H. Abe, K. Watanabe, T. Taniguchi, J. H. Edgar, I. Aharonovich, and M. Toth, “Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride,” ACS Appl. Mater. Interfaces 10, 24886–24891 (2018).
[Crossref]

Tawfik, S. A.

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First-principles investigation of quantum emission from HBN defects,” Nanoscale 9, 13575–13582 (2017).
[Crossref]

Thiering, G.

V. Ivády, G. Barcza, G. Thiering, S. Li, H. Hamdi, J.-P. Chou, Ö. Legeza, and A. Gali, “Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride,” npj Comput. Mater. 6, 41 (2020).
[Crossref]

Toth, M.

G. Grosso, H. Moon, C. J. Ciccarino, J. Flick, N. Mendelson, L. Mennel, M. Toth, I. Aharonovich, P. Narang, and D. R. Englund, “Low-temperature electron-phonon interaction of quantum emitters in hexagonal boron nitride,” ACS Photon. 7, 1410–1417 (2020).
[Crossref]

A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin, C. Bradac, C. Kasper, K. Krambrock, A. Sperlich, M. Toth, I. Aharonovich, and V. Dyakonov, “Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature,” Nat. Mater. 19, 540–545 (2020).
[Crossref]

N. Mendelson, M. Doherty, M. Toth, I. Aharonovich, and T. T. Tran, “Strain-induced modification of the optical characteristics of quantum emitters in hexagonal boron nitride,” Adv. Mater. 32, 1908316 (2020).
[Crossref]

H. Ngoc My Duong, M. A. P. Nguyen, M. Kianinia, T. Ohshima, H. Abe, K. Watanabe, T. Taniguchi, J. H. Edgar, I. Aharonovich, and M. Toth, “Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride,” ACS Appl. Mater. Interfaces 10, 24886–24891 (2018).
[Crossref]

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First-principles investigation of quantum emission from HBN defects,” Nanoscale 9, 13575–13582 (2017).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

Totonjian, D.

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

Tran, T. T.

N. Mendelson, M. Doherty, M. Toth, I. Aharonovich, and T. T. Tran, “Strain-induced modification of the optical characteristics of quantum emitters in hexagonal boron nitride,” Adv. Mater. 32, 1908316 (2020).
[Crossref]

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First-principles investigation of quantum emission from HBN defects,” Nanoscale 9, 13575–13582 (2017).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

Tucker, E.

M. A. Feldman, A. Puretzky, L. Lindsay, E. Tucker, D. P. Briggs, P. G. Evans, R. F. Haglund, and B. J. Lawrie, “Phonon-induced multicolor correlations in hbn single-photon emitters,” Phys. Rev. B 99, 020101 (2019).
[Crossref]

Valvin, P.

T. Vuong, G. Cassabois, P. Valvin, A. Ouerghi, Y. Chassagneux, C. Voisin, and B. Gil, “Phonon-photon mapping in a color center in hexagonal boron nitride,” Phys. Rev. Lett. 117, 097402 (2016).
[Crossref]

Vamivakas, A. N.

Vamivakas, N.

M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, “Material platforms for spin-based photonic quantum technologies,” Nat. Rev. Mater. 3, 38–51 (2018).
[Crossref]

Voisin, C.

T. Vuong, G. Cassabois, P. Valvin, A. Ouerghi, Y. Chassagneux, C. Voisin, and B. Gil, “Phonon-photon mapping in a color center in hexagonal boron nitride,” Phys. Rev. Lett. 117, 097402 (2016).
[Crossref]

Vuckovic, J.

F. Hayee, L. Yu, J. L. Zhang, C. J. Ciccarino, M. Nguyen, A. F. Marshall, I. Aharonovich, J. Vučković, P. Narang, T. F. Heinz, and J. A. Dionne, “Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy,” Nat. Mater. 19, 534–539 (2020).
[Crossref]

Vuong, T.

T. Vuong, G. Cassabois, P. Valvin, A. Ouerghi, Y. Chassagneux, C. Voisin, and B. Gil, “Phonon-photon mapping in a color center in hexagonal boron nitride,” Phys. Rev. Lett. 117, 097402 (2016).
[Crossref]

Watanabe, K.

H. Ngoc My Duong, M. A. P. Nguyen, M. Kianinia, T. Ohshima, H. Abe, K. Watanabe, T. Taniguchi, J. H. Edgar, I. Aharonovich, and M. Toth, “Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride,” ACS Appl. Mater. Interfaces 10, 24886–24891 (2018).
[Crossref]

Wrachtrup, J.

M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, “Material platforms for spin-based photonic quantum technologies,” Nat. Rev. Mater. 3, 38–51 (2018).
[Crossref]

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12, 516–527 (2018).
[Crossref]

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

Yu, L.

F. Hayee, L. Yu, J. L. Zhang, C. J. Ciccarino, M. Nguyen, A. F. Marshall, I. Aharonovich, J. Vučković, P. Narang, T. F. Heinz, and J. A. Dionne, “Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy,” Nat. Mater. 19, 534–539 (2020).
[Crossref]

Zafiropulos, V.

A. V. Kanaev, J.-P. Petitet, L. Museur, V. Marine, V. L. Solozhenko, and V. Zafiropulos, “Femtosecond and ultraviolet laser irradiation of graphitelike hexagonal boron nitride,” J. Appl. Phys. 96, 4483 (2004).
[Crossref]

Zhang, J. L.

F. Hayee, L. Yu, J. L. Zhang, C. J. Ciccarino, M. Nguyen, A. F. Marshall, I. Aharonovich, J. Vučković, P. Narang, T. F. Heinz, and J. A. Dionne, “Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy,” Nat. Mater. 19, 534–539 (2020).
[Crossref]

Zhou, B. B.

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12, 516–527 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (1)

H. Ngoc My Duong, M. A. P. Nguyen, M. Kianinia, T. Ohshima, H. Abe, K. Watanabe, T. Taniguchi, J. H. Edgar, I. Aharonovich, and M. Toth, “Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride,” ACS Appl. Mater. Interfaces 10, 24886–24891 (2018).
[Crossref]

ACS Nano (2)

A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, and L. C. Bassett, “Optical signatures of quantum emitters in suspended hexagonal boron nitride,” ACS Nano 11, 3328–3336 (2017).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

ACS Photon. (3)

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

G. Grosso, H. Moon, C. J. Ciccarino, J. Flick, N. Mendelson, L. Mennel, M. Toth, I. Aharonovich, P. Narang, and D. R. Englund, “Low-temperature electron-phonon interaction of quantum emitters in hexagonal boron nitride,” ACS Photon. 7, 1410–1417 (2020).
[Crossref]

M. Abdi, J.-P. Chou, A. Gali, and M. B. Plenio, “Color centers in hexagonal boron nitride monolayers: a group theory and ab initio analysis,” ACS Photon. 5, 1967–1976 (2018).
[Crossref]

Adv. Mater. (1)

N. Mendelson, M. Doherty, M. Toth, I. Aharonovich, and T. T. Tran, “Strain-induced modification of the optical characteristics of quantum emitters in hexagonal boron nitride,” Adv. Mater. 32, 1908316 (2020).
[Crossref]

J. Appl. Phys. (1)

A. V. Kanaev, J.-P. Petitet, L. Museur, V. Marine, V. L. Solozhenko, and V. Zafiropulos, “Femtosecond and ultraviolet laser irradiation of graphitelike hexagonal boron nitride,” J. Appl. Phys. 96, 4483 (2004).
[Crossref]

Nano Lett. (2)

N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatte, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016).
[Crossref]

P. Khatri, A. J. Ramsay, R. N. E. Malein, H. M. Chong, and I. J. Luxmoore, “Optical gating of photoluminescence from color centers in hexagonal boron nitride,” Nano Lett. 20, 4256–4263 (2020).
[Crossref]

Nanophotonics (1)

A. Bommer and C. Becher, “New insights into nonclassical light emission from defects in multi-layer hexagonal boron nitride,” Nanophotonics 8, 2041–2048 (2019).
[Crossref]

Nanoscale (1)

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First-principles investigation of quantum emission from HBN defects,” Nanoscale 9, 13575–13582 (2017).
[Crossref]

Nat. Commun. (1)

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

Nat. Mater. (2)

A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin, C. Bradac, C. Kasper, K. Krambrock, A. Sperlich, M. Toth, I. Aharonovich, and V. Dyakonov, “Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature,” Nat. Mater. 19, 540–545 (2020).
[Crossref]

F. Hayee, L. Yu, J. L. Zhang, C. J. Ciccarino, M. Nguyen, A. F. Marshall, I. Aharonovich, J. Vučković, P. Narang, T. F. Heinz, and J. A. Dionne, “Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy,” Nat. Mater. 19, 534–539 (2020).
[Crossref]

Nat. Nanotechnol. (1)

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2016).
[Crossref]

Nat. Photonics (2)

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12, 516–527 (2018).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

Nat. Rev. Mater. (1)

M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, “Material platforms for spin-based photonic quantum technologies,” Nat. Rev. Mater. 3, 38–51 (2018).
[Crossref]

npj Comput. Mater. (1)

V. Ivády, G. Barcza, G. Thiering, S. Li, H. Hamdi, J.-P. Chou, Ö. Legeza, and A. Gali, “Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride,” npj Comput. Mater. 6, 41 (2020).
[Crossref]

Opt. Express (1)

Optica (2)

Phys. Rev. B (4)

A. Sajid, J. R. Reimers, and M. J. Ford, “Defect states in hexagonal boron nitride: assignments of observed properties and prediction of properties relevant to quantum computation,” Phys. Rev. B 97, 064101 (2018).
[Crossref]

M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015).
[Crossref]

P. Khatri, I. Luxmoore, and A. Ramsay, “Phonon sidebands of color centers in hexagonal boron nitride,” Phys. Rev. B 100, 125305 (2019).
[Crossref]

M. A. Feldman, A. Puretzky, L. Lindsay, E. Tucker, D. P. Briggs, P. G. Evans, R. F. Haglund, and B. J. Lawrie, “Phonon-induced multicolor correlations in hbn single-photon emitters,” Phys. Rev. B 99, 020101 (2019).
[Crossref]

Phys. Rev. Lett. (2)

T. Vuong, G. Cassabois, P. Valvin, A. Ouerghi, Y. Chassagneux, C. Voisin, and B. Gil, “Phonon-photon mapping in a color center in hexagonal boron nitride,” Phys. Rev. Lett. 117, 097402 (2016).
[Crossref]

N. R. Jungwirth and G. D. Fuchs, “Optical absorption and emission mechanisms of single defects in hexagonal boron nitride,” Phys. Rev. Lett. 119, 057401 (2017).
[Crossref]

Science (1)

D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R. Petta, “Quantum spintronics: engineering and manipulating atom-like spins in semiconductors,” Science 339, 1174–1179 (2013).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1. Laser irradiation-dependent spectroscopy of a single defect pumped with a 405 nm laser. (a) The µPL spectra of ZPL transitions ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$. ${{\rm ZPL}_1}$ has one-phonon (${{\rm PSB}_{11}}$) and two-phonon (${{\rm PSB}_{12}}$) sidebands, 166 meV and 326 meV, respectively, redshifted from ${{\rm ZPL}_1}$, and ${{\rm ZPL}_2}$ has one-phonon (${{\rm PSB}_{21}}$) and two-phonon (${{\rm PSB}_{22}}$) sidebands, 166 and 326 meV, respectively, redshifted from ${{\rm ZPL}_2}$. (b) The relative µPL intensity of ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ (normalized to the peak ${{\rm ZPL}_1}$ intensity) show enhancement and partial quenching within the first half-hour of irradiation, respectively. For the following hour, they remain stable, after which ${{\rm ZPL}_2}$ undergoes a second partial quenching. ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ remain stable for another hour prior to simultaneously quenching. (c) The energy difference between ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$ remains constant until the second partial quenching in ${{\rm ZPL}_2}$ occurs, leading to a 10 meV spectral jump in the energy of ${{\rm ZPL}_2}$. Triangles indicate measurements made using filtered singles counts.
Fig. 2.
Fig. 2. Two-color Hanbury Brown–Twiss interferometry after 1.8 h of laser irradiation. (a) Spectral line shapes for ${{\rm ZPL}_j}.$ Fits to the ${{\rm ZPL}_1}$ (red), ${{\rm ZPL}_2}$ (blue) line shapes and uncorrelated emitters (${{\rm ZPL}_j}$, $j = 3,4,5$) are used to estimate the probability (${{\rm z}_{\textit{ij}}}$) that a transition contributes to the µPL (black) collected in each filtered (F1, F2) interferometer arm ($i = 1,2$). The inset shows the best fit for ${{\rm ZPL}_2}$ at 0 h. The autocorrelations for (b) ${{\rm ZPL}_1}$, (c) ${{\rm ZPL}_2}$, and (d) the cross correlations between ${{\rm ZPL}_1}$ and ${{\rm ZPL}_2}$. The distance of $g_i^{(2)}(0)$ from the limit for single-photon-emission (indicated by the green horizontal line) exceeds 5 standard deviations, $\sigma$. Here the black dashed lines are the $5\sigma$ bounds for $g_i^{(2)}(\tau)$. (e) A proposed energy diagram for the suspected defect with excited states (red) and shelving state(s). The observed shelving in the autocorrelations may be explained by one (solid black) or two (solid and dashed black) energy levels.

Tables (2)

Tables Icon

Table 1. Parameter Values for the Auto- and Cross-Correlation Functions

Tables Icon

Table 2. Probabilities z ij That the j t h Line Shape Will Contribute to the Counts in the i t h Filtered Interferometer Arm

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

g 1 ( 2 ) ( τ ) = ( z 11 2 + z 13 2 + z 14 2 + z 15 2 ) g ρ 1 ( 2 ) ( τ ) + 2 ( z 11 z 13 + z 11 z 15 + z 11 z 14 + z 13 z 15 + z 13 z 14 + z 15 z 14 ) ,
g 2 ( 2 ) ( τ ) = ( z 21 2 + z 22 2 ) g ρ 2 ( 2 ) ( τ ) + z 21 z 22 ( g 21 ( 2 ) ( τ ) + g 12 ( 2 ) ( τ ) ) ,
g 21 ( 2 ) ( τ ) = z 11 z 22 g ρ 21 ( 2 ) ( τ ) + z 11 z 21 g 1 ( 2 ) ( τ ) + z 13 + z 14 + z 15 ,
g 12 ( 2 ) ( τ ) = z 11 z 22 g ρ 12 ( 2 ) ( τ ) + z 11 z 21 g 1 ( 2 ) ( τ ) + z 13 + z 14 + z 15 ,
g ρ i ( 2 ) ( τ ) = 1 ρ i 2 [ ( 1 + a i ) e | x x oi | τ / τ 1 i a i e | x x oi | τ / τ 2 i ] ,