Abstract

The huge amount of data traffic behind the rapid growth of cloud computing is putting pressure on the operation of mobile fronthauls and data center networks so there is a need to improve their power consumption and latency. We developed an electro-optically tunable laser diode employing a tunable filter that is practically tuned even with small refractive index change of the electro-optic effect. The laser shows a small tuning power dissipation of less than 10 mW for a practical tuning range of over 35 nm with a linewidth of about 350 kHz. We also achieved high-speed optical switching of less than 50 ns for 100 Gb/s coherent signals. In addition to its application in optical communications, the electro-optically tunable laser diode is also beneficial to laser sensing applications because its higher tuning speed increases the time resolution of the sensing system. Furthermore, a narrow linewidth, conventionally difficult to reconcile with high-speed tuning, can also enable a longer sensing distance and/or a higher signal-to-noise ratio when using coherent detection. Our result shows that we can use the electro-optic effect to overcome the limitations of conventional tunable laser diodes and drastically change optical communications and laser sensing systems.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Tunable laser diodes (TLDs) [1,2] with low-power dissipation, narrow-linewidth, and nanosecond-order tuning are key to next generation optical networks based on coherent technology that includes mobile fronthauls [35] and data center interconnections (DCIs) [6,7], which must be ecofriendly, low latency, and large capacity. Namely, implementing wavelength division multiplexing (WDM) using TLDs into mobile fronthauls will eliminate time-consuming procedures for dynamic bandwidth allocation. For DCI networks, high-radix optical switches using TLDs with nanosecond-order wavelength switching are expected to reduce the required number of power-hungry and large-latency electrical switches. Since a lot of network terminals are implemented in such short-reach networks, the power dissipation of TLDs is an important factor. Furthermore, a narrow linewidth is also required for TLDs to introduce digital coherent technology to increase network capacity. In addition to optical communications, a high-speed TLD with a narrow linewidth also contributes to laser sensing systems, such as tunable diode laser absorption spectroscopy (TDLAS) [811] and light detection and ranging (LiDAR) [1214] with higher time resolution and signal-to-noise ratio (SNR).

However, the tuning mechanisms of conventional TLDs face a limit of further reducing the tuning power dissipation (${P_\lambda}$) and the tuning time (${\tau _\lambda}$).The recent minimum ${P_\lambda}$ seems to lie within the range of 100–300 mW, which has been achieved by using the thermo-optic (TO) effect [15,16] with a microheater placed on a laser cavity: 100 mW of heat generated from a microheater increases the power dissipation of the thermoelectric controller in the laser module by almost 200 mW (double the heat generated from a microheater). Furthermore, ${\tau _\lambda}$ of the TO effect with microheaters is limited to about 100 µs, which is much longer than the nanosecond-order wavelength switching required in DCIs. TLDs using carrier injection/depletion tuning [1720] can provide a nanosecond-order ${\tau _\lambda}$, but they cannot be used in coherent systems because of linewidth broadening caused by the carrier effect. Moreover, Joule heating with current injection results in a microsecond-order wavelength drift, which complicates the electrical control system [19].

The electro-optic (EO) effect is a clearly superior tuning mechanism for a low ${P_\lambda}$ and short ${\tau _\lambda\!}$. Furthermore, a carrier-depletion cavity waveguide under bias voltage is suitable for narrow-linewidth lasing. However, an electro-optically TLD [2023] with practical performance has been hardly developed due to the poor refractive-index change ($\Delta n$) of the EO effect, which results in a narrow tuning range. Even the effective $\Delta n$ of the quantum-confined Stark effect (QCSE) in a semiconductor multiquantum well (MQW), which is a relatively large EO effect, is typically about 10% of that from TO and carrier effects. To address these issues, we exploited the QCSE and used a reflection-type transversal filter (RTF) [24,25] to develop a new type of electro-optically TLD. The tunability of an RTF is also determined by the geometric design of the waveguide, while the tunability of conventional filters such as a distributed Bragg reflector depends only on the $\Delta n$ of the waveguide material.

Figure 1 shows the schematic of an RTF laser, which consists of an active waveguide (ACT) array for cavity gains and a ${5} \times {5}$ RTF as a tunable filter. Corresponding delay-line lengths of the laser are listed in Table 1.

 figure: Fig. 1.

Fig. 1. Schematic of RTF laser. For red and blue coarse tuning, tuning electrodes with lengths of $m{L_e}$ and $({3}\! -\! m){L_e}$ ($m = {0}$, 2, 3) are installed on a delay line whose differential length is ${0.5{\rm x}}(md{L_c} + \delta {l_m})$. Note that since light makes a round trip in a delay line with an etched facet mirror, differential “optical path” lengths become $md{L_c} + \delta {l_m}$ and $d{L_{\! f}}$. ${L_0}\geqq {3}{L_e}$ is required from a geometric condition. So, the maximum electrode length for fine tuning is ${L_0} + {0.5}d{L_{\!f}}$, which is equal to ${3}{L_e} + {0.5}d{L_{\!f}}$. A length of $\delta {l_m}$ functions as a phase compensator to change the transfer matrix of a ${5} \times {5}$ MMI to the matrix of a ${5} \times {5}$ discrete Fourier transform circuit [24,25].

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Delay-Line Lengths of RTF Laser

The RTF is based on a ${5} \times {5}$ multimode interference coupler (MMI) of that is 500 µm ${\rm long} \times {17}\;\unicode{x00B5}{\rm m}$ wide with a phase-tuning electrode and a delay-line array with coarse/fine tuning electrodes. Figure 2 shows the calculated reflection spectra of an RTF. When we consider one ACT port of the RTF laser, the optical-frequency-dependent complex reflectance $r(\Delta\! f)$ is

$$ r(\Delta \!f)= \frac{1}{5}\left[\sum_{m}^{0,2,3}\left\{e^{-j\left(\frac{n_{g}}{c} 2 \pi \Delta \!f m d L_{c}+\theta_{c}^{m}\right)}\!\right\}+e^{-j\left(\frac{n_{g}}{c} 2 \pi \Delta \!f d L_{f}+\theta_{f}\right)}\!\right]\!.\\ $$
(See Supplement 1 for derivation.) In Eq. (1), $c$, ${n_g}$, and $\Delta \!f$, respectively, are the speed of light in vacuum, the group index of a delay line, and the relative optical frequency whose reference frequency differs from an ACT port. $\theta _c^m\;(m = {0},\;{2},\;{3})$ and ${\theta _{\!f}}$ are the phase shifts for coarse and fine tuning. We define the optical phase so that it decreases as light propagates a positive distance. As shown in Fig. 2, the reflection peaks of one ACT port appear at long (35 nm) and short (1.7 nm) intervals that correspond to the coarse and fine free spectrum ranges (FSRs) determined by $d{L_c}$ and $d{L_{\!f}}$. The former FSR roughly determines the lasing wavelength range and the latter is used to select one longitudinal mode within the coarse range. We can select the lasing wavelength of an RTF laser by biasing one of the five ACTs and applying voltages to the tuning electrodes. When we apply bias voltages to the electrodes for the coarse (red or blue) and fine tuning, $\theta _c^m$ and ${\theta _f}$ are
$${\theta _c^m = \pm \frac{{2\pi}}{{{\lambda _0}}}{\Gamma}\Delta nm\left({2{L_e}} \right),\quad {\theta _f} = \frac{{2\pi}}{{{\lambda _0}}}{\Gamma}\Delta n4\left({2{L_e}} \right)},$$
where ${\lambda _0}$ and $\Gamma$ are the reference wavelength of interest (1550 nm), the optical confinement factor to the well layers in MQW of a delay line; i.e., $\Gamma \Delta n$ represents the effective refractive index change of a beam propagating in a delay line. The signs of ${+}$ and ${-}$ for $\theta _c^m$ correspond to the coarse tuning of the red and blue shift. Here, the factor 2 in (${2}{L_e}$) in Eq. (2) represents the fact that light making a round trip in a delay line with an etched facet mirror experiences $\Delta n$ twice. Note that $\Delta n \gt {0}$ when we increase the reverse voltage to the MQW. The factor 4 of ${\theta _f}$ comes from ${3}{L_e} + {0.5}d{L_{\!f}}\; \approx {4}{L_e}$, by equating ${0.5}d{L_{\!f}}$ with ${L_e}$, as shown in Table 1. The norm of Eq. (1) reaches a maximum value when $\Delta \!f$ is the lasing optical frequency (wavelength) of an RTF, which corresponds to the optical phases in Eq. (1) being zero. Therefore, wavelength shifts ($\Delta \lambda$) for coarse (red/blue) and fine tuning of the RTF are obtained, using Eq. (2) and the relation $\Delta \!f = - c\Delta \lambda /{({\lambda _0})^2}$, as
$$\frac{{\Delta {\lambda _{{\rm coarse}}}}}{{{\lambda _0}}} = \pm \frac{{{\Gamma}\Delta n\left({2{L_e}}\! \right)}}{{{n_g}d{L_c}}},\quad \frac{{\Delta {\lambda _{{\rm fine}}}}}{{{\lambda _0}}} = \frac{{{\Gamma}\Delta n\left({8{L_e}}\! \right)}}{{{n_g}d{L_{\!f}}}}.$$

It is obvious that $\Delta \lambda$ for both coarse and fine tuning are proportional to ${L_e}$ in addition to $\Delta n$. Thus, we can obtain a large tunability of an RTF with a small $\Delta n$, such as that from the QCSE, by employing a long ${L_e}$. It should be noted that the value of ${L_0}$ does not affect the “differential” lengths of delay lines, which means that the reflection spectrum of an RTF is independent of ${L_0}$. The geometrical approach is impossible for conventional tunable filters.

 figure: Fig. 2.

Fig. 2. Calculated tuning spectra of RTF.

Download Full Size | PPT Slide | PDF

Figure 3 shows a fabricated RTF laser chip. The laser was fabricated on an InP wafer by butt-joint regrowth consisting of two types of MQW: one for optical gain (ACT section) and the other for the QCSE (RTF section including the MMI, the delay-line array, and the output port).

 figure: Fig. 3.

Fig. 3. Photograph of fabricated RTF laser chip. ${\lambda _{\text{PL}}}$ represents a photoluminescence peak wavelength of each MQW. See Supplement 1 for a description of the MQW for the QCSE.

Download Full Size | PPT Slide | PDF

After preparing the wafer, we formed ACT sections with a ridge waveguide and RTF sections with a deep-ridge waveguide by reactive ion etching. Next, we covered the waveguides with dielectric thin layers. Then, we used an electron beam process to deposit Au-based metal layers for electrodes and the etched facet mirrors of the RTF. Finally, we chipped out RTF lasers from the wafer by cleaving and coated the cleaved facets with antireflection (output port) and high-reflection (ACTs) film by sputtering. All layer patterns in the wafer process were defined by conventional photolithographic processes.

 figure: Fig. 4.

Fig. 4. Laser characteristics of an RTF laser. (a) Lasing spectra. (b) Corresponding applied voltage for ACT5. (c) Tuning power dissipation and laser linewidth. (d) Beat spectrum in delayed self-heterodyne measurement corresponding to a linewidth plot allowed in (c).

Download Full Size | PPT Slide | PDF

First, we measured the static lasing characteristics of a fabricated RTF laser. Figures 4(a) and 4(b) show lasing spectra of an RTF laser chip and bias voltages for successive longitudinal modes (${\rm FSR}\, =\, \sim{0.25}\;{\rm nm}$) for ACT5. All the experimental data below, including what is shown in Fig. 4, were measured at a bias current of 40 mA (threshold ${\rm current} = {15}\;{\rm mA}$) for one ACT in five, a chip temperature of 45ºC, and a fixed phase-tuning voltage of ${-}{4}\;{\rm V}$ while voltages from 0 to ${-}{9}\;{\rm V}$ are applied for coarse and fine tunings. The laser covers a 35 nm range (the full C-band) by individually biasing each ACT and applying voltage to the tuning electrodes of the RTF. Even for one ACT port, a tuning range of approximately 20 nm is achieved with the above voltage range. The TLD chip output power is about ${+}{0}\;{\rm dBm}$ for each wavelength (see Supplement 1). To the best of our knowledge, it is the first electro-optically TLD with a practical tuning range that can be further extended by using a longer ${L_e}$; namely, a longer ${L_0}$ as described above.

Next, we confirmed the ${P_\lambda}$ of the same RTF laser. The plots of ${P_\lambda}$ in Fig. 4(c) show the totals of the products of the bias voltages and corresponding currents (mainly caused by photocurrent) from the coarse-, fine-, and phase-tuning electrodes.

We obtain an extremely low ${P_\lambda}$ of less than 10 mW. We also measured the laser linewidth of the RTF laser using the delayed self-heterodyne method. The results are also plotted in Fig. 4(c), and one of the measured beat spectra is shown in Fig. 4(d), whose full width at half-maximum (FWHM) is about 700 kHz, which corresponds to the laser linewidth of less than 350 kHz. To the best of our knowledge, ${P_\lambda}$ of less than 10 mW is the best reported performance for a TLD that can cover the full-C band with linewidths available for conventional coherent systems.

In addition to the above extremely low ${P_\lambda}$ with a practical narrow linewidth, a further feature of the RTF laser based on the EO effect is a very short ${\tau _\lambda}$ and small wavelength drift. Using the experimental setup shown in Fig. 5(a), we measured the dynamic wavelength switching performance of an RTF laser. In the experiment, we biased ACT3 of the five ACTs and set the tuning voltages so that the lasing wavelength was ${\lambda _1} = {1532.5}\;{\rm nm}$. We applied a 10-kHz and 50-MHz square wave with an amplitude of ${-}{1}\;{\rm V}$ to the red-coarse electrode to change the lasing wavelength ${\lambda _1}$ to ${\lambda _2} = {1534.0}\;{\rm nm}$. As shown in Fig. 5(b), we confirmed a very short ${\tau _\lambda}$ of ${\sim}{500}\;{\rm ps}$. Although we need to simultaneously turn ACT ports on and off (causes a slow tuning due to thermal drift) for wavelength switching across a range wider than 20 nm [Fig. 4(b)], Fig. 5(b) shows the fundamental performance of very-high-speed wavelength switching based on the EO effect. Moreover, we also confirmed a stable output intensity during switching for 10 kHz modulation, which indicates that there is little of the wavelength drift in burst switching typically observed in carrier-injection TLDs. The suppressed wavelength drift, an unprecedented achievement that, to the best of our knowledge, is a practically important characteristic for simple laser control in optical switching with burst signals and also in sensing with adaptive tuning speeds, such as for foveated imaging in time-stretch LiDAR [14].

 figure: Fig. 5.

Fig. 5. Dynamic wavelength switching performance of an RTF laser. (a) Experimental setup (PPG, pulse patter generator; EDFA, erbium-doped fiber amplifier; OBF, optical bandpass filter). Inset: Lasing spectra of a pair of switching wavelengths of ${\lambda _1}$ and ${\lambda _2}$. (b) 10 kHz and 50 MHz modulation waveform from an oscilloscope. For 50 MHz modulation, we directly input electrical signals to the laser chip while putting 2200 pF capacitors beside the laser chips to reduce intrinsic electrical noise for all other measurements.

Download Full Size | PPT Slide | PDF

Using the laser, we also demonstrated high-speed optical switching of coherent modulation signals. The experimental setup is shown in Fig. 6(a). The bias conditions were the same as in the experiment shown in Fig. 5. We chose 100 Gb/s optical signals with 32 Gbaud dual polarization quadrature-phase shift keying (DP-QPSK) as the coherent modulation format, which is a mature format that has been used for recent digital coherent systems. We successfully achieved a ${\lt}{50\! - \!{\rm ns}}$ optical switching operation and a dynamic bit error rate (BER) of ${\lt}{1} \times {{10}^{- 10}}$, evaluated from the error vector magnitudes (EVMs) for the 100 Gb/s signals. The switching time was limited to evaluate the BER from the EVMs from the constellation diagrams [1000 plots/symbol corresponds to the 35 ns timeslot in Fig. 6(b)]. Moreover, it should be noted that, in spite of the slow repetition switching of 10 kHz, we observed no degradation of the dynamic BER. The results indicate that the RTF laser exhibits no wavelength drift, as predicted in Fig. 5(b). The demonstration confirmed the practical performance of the RTF laser for high-speed optical switching, even in coherent systems.

 figure: Fig. 6.

Fig. 6. Dynamic optical switching demonstration for coherent modulation signals. (a) Experimental setup (LN mod., Lithium niobate modulator; AWG, arbitrary waveform generator; OMA, optical modulation analyzer). (b) Dynamic BER characteristics with corresponding constellation diagrams for ${X}$ and ${Y}$ polarization (pol.) with optical signal-to-noise ratio (OSNR) of ${\sim}{30}\;{\rm dB}$.

Download Full Size | PPT Slide | PDF

We developed what we believe, to the best of our knowledge, is a novel electro-optically TLD based on the QCSE of an MQW. The laser exhibited a record extremely low ${P_\lambda}$ of ${\lt}{10}\;{\rm mW}$ for 35 nm in the full C band range with a linewidth of ${\lt}{350}\;{\rm kHz}$. We also confirmed ${\tau _\lambda}$ of ${\sim}{500}\;{\rm ps}$ for an ACT port, which, to the best of our knowledge, is the highest operation speed yet reported. Our results prove that, in spite of the small $\Delta n$, we can use the EO effect for a TLD with a practical tuning range by employing an RTF. This electro-optically TLD meets future demands for coherent technology-based WDM systems, including low-latency mobile fronthauls and optical switching in DCI networks.

Acknowledgment

The authors thank T. Kanai (NTT Access Network Service Systems Laboratories), Drs. H. Matsuzaki, H. Ishii, and S. Matsuo (NTT Device Technology Labs) for feedback on the manuscript. We also thank Y. Shimpo, Y. Ote (NTT Electronics Corp.), and S. Yahara (NTT Electronics Techno Corp.) for help with laser chip fabrication.

Disclosures

The authors declare no conflicts of interest.

 

See Supplement 1 for supporting content.

REFERENCES

1. J. Buus and E. J. Murphy, J. Lightwave Technol. 24, 5 (2006). [CrossRef]  

2. L. A. Coldren, IEEE J. Sel. Top. Quantum Electron . 6, 988 (2000). [CrossRef]  

3. K. Sone, G. Nakagawa, Y. Hirose, and T. Hoshida, in Optical Fiber Communications Conference and Exhibition (2018), paper M2B.6.

4. N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, J. Lightwave. Technol. 36, 1485 (2018). [CrossRef]  

5. ITU-T Recommendation G Suppl. 66 (2018).

6. K. Sato, J. Lightwave. Technol. 36, 1411 (2017). [CrossRef]  

7. K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Gerard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts, H. Williams, P. Costa, G. Zervas, and Z. Liu, in European Conference on Optical Communication (ECOC) (IEEE, 2018), pp. 1–3.

8. M. P. Arroyo and R. K. Hanson, Appl. Opt. 32, 6104 (1993). [CrossRef]  

9. M. G. Allen, Meas. Sci. Technol. 9, 545 (1998). [CrossRef]  

10. O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, and V. Ebert, Opt. Express 21, 19951 (2013). [CrossRef]  

11. Y. Ueda, T. Shindo, T. Kanai, M. Shimokozono, N. Fujiwara, H. Ishii, and H. Matsuzaki, Appl. Phys. Express 12, 092011 (2019). [CrossRef]  

12. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, Opt. Lett. 42, 4091 (2017). [CrossRef]  

13. D. J. Lum, S. H. Knarr, and J. C. Howell, Opt. Express 26, 15420 (2018). [CrossRef]  

14. Y. Jiang, S. Karpf, and B. Jalali, Nat. Photonics 14, 14 (2020). [CrossRef]  

15. M. C. Larson, Y. Feng, P. C. Koh, X. Huang, M. Moewe, A. V. Semakov, A. Patwardhan, E. Y. Chiu, A. Bhardwaj, K. Y. Chan, J. Lu, S. Bajwa, and K. Duncan, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.4.

16. A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

17. J.-O. Wesstrom, G. Sarlet, S. Hammerfeldt, L. Lundqvist, P. Szabo, and P.-J. Rigole, in Optical Fiber Communication Conference (2004), paper TuE2.

18. T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, IEEE J. Quantum Electron. 45, 892 (2009). [CrossRef]  

19. T. Kanai, N. Nunoya, T. Yamanaka, R. Iga, M. Shimokozono, and H. Ishii, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.2.

20. D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, Nat. Photonics 10, 719 (2016). [CrossRef]  

21. F. Delorme, S. Slempkes, A. Ramdane, B. Rose, and H. Nakajima, IEEE J. Sel. Top. Quantum Electron. 1, 396 (1995). [CrossRef]  

22. M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron . 13, 1112 (2007). [CrossRef]  

23. S. Latkowski, A. Hänsel, N. Bhattacharya, T. Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, IEEE Photon. J. 7, 1 (2015). [CrossRef]  

24. Y. Ueda, T. Fujisawa, K. Takahata, M. Kohtoku, and H. Ishii, Opt. Express 22, 7844 (2014). [CrossRef]  

25. Y. Ueda, T. Fujisawa, and M. Kohtoku, J. Lightwave Technol. 34, 2684 (2016). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. Buus and E. J. Murphy, J. Lightwave Technol. 24, 5 (2006).
    [Crossref]
  2. L. A. Coldren, IEEE J. Sel. Top. Quantum Electron. 6, 988 (2000).
    [Crossref]
  3. K. Sone, G. Nakagawa, Y. Hirose, and T. Hoshida, in Optical Fiber Communications Conference and Exhibition (2018), paper M2B.6.
  4. N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, J. Lightwave. Technol. 36, 1485 (2018).
    [Crossref]
  5. ITU-T Recommendation G Suppl. 66 (2018).
  6. K. Sato, J. Lightwave. Technol. 36, 1411 (2017).
    [Crossref]
  7. K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Gerard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts, H. Williams, P. Costa, G. Zervas, and Z. Liu, in European Conference on Optical Communication (ECOC) (IEEE, 2018), pp. 1–3.
  8. M. P. Arroyo and R. K. Hanson, Appl. Opt. 32, 6104 (1993).
    [Crossref]
  9. M. G. Allen, Meas. Sci. Technol. 9, 545 (1998).
    [Crossref]
  10. O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, and V. Ebert, Opt. Express 21, 19951 (2013).
    [Crossref]
  11. Y. Ueda, T. Shindo, T. Kanai, M. Shimokozono, N. Fujiwara, H. Ishii, and H. Matsuzaki, Appl. Phys. Express 12, 092011 (2019).
    [Crossref]
  12. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, Opt. Lett. 42, 4091 (2017).
    [Crossref]
  13. D. J. Lum, S. H. Knarr, and J. C. Howell, Opt. Express 26, 15420 (2018).
    [Crossref]
  14. Y. Jiang, S. Karpf, and B. Jalali, Nat. Photonics 14, 14 (2020).
    [Crossref]
  15. M. C. Larson, Y. Feng, P. C. Koh, X. Huang, M. Moewe, A. V. Semakov, A. Patwardhan, E. Y. Chiu, A. Bhardwaj, K. Y. Chan, J. Lu, S. Bajwa, and K. Duncan, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.4.
  16. A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.
  17. J.-O. Wesstrom, G. Sarlet, S. Hammerfeldt, L. Lundqvist, P. Szabo, and P.-J. Rigole, in Optical Fiber Communication Conference (2004), paper TuE2.
  18. T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, IEEE J. Quantum Electron. 45, 892 (2009).
    [Crossref]
  19. T. Kanai, N. Nunoya, T. Yamanaka, R. Iga, M. Shimokozono, and H. Ishii, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.2.
  20. D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, Nat. Photonics 10, 719 (2016).
    [Crossref]
  21. F. Delorme, S. Slempkes, A. Ramdane, B. Rose, and H. Nakajima, IEEE J. Sel. Top. Quantum Electron. 1, 396 (1995).
    [Crossref]
  22. M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
    [Crossref]
  23. S. Latkowski, A. Hänsel, N. Bhattacharya, T. Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, IEEE Photon. J. 7, 1 (2015).
    [Crossref]
  24. Y. Ueda, T. Fujisawa, K. Takahata, M. Kohtoku, and H. Ishii, Opt. Express 22, 7844 (2014).
    [Crossref]
  25. Y. Ueda, T. Fujisawa, and M. Kohtoku, J. Lightwave Technol. 34, 2684 (2016).
    [Crossref]

2020 (1)

Y. Jiang, S. Karpf, and B. Jalali, Nat. Photonics 14, 14 (2020).
[Crossref]

2019 (1)

Y. Ueda, T. Shindo, T. Kanai, M. Shimokozono, N. Fujiwara, H. Ishii, and H. Matsuzaki, Appl. Phys. Express 12, 092011 (2019).
[Crossref]

2018 (2)

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, J. Lightwave. Technol. 36, 1485 (2018).
[Crossref]

D. J. Lum, S. H. Knarr, and J. C. Howell, Opt. Express 26, 15420 (2018).
[Crossref]

2017 (2)

2016 (2)

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, Nat. Photonics 10, 719 (2016).
[Crossref]

Y. Ueda, T. Fujisawa, and M. Kohtoku, J. Lightwave Technol. 34, 2684 (2016).
[Crossref]

2015 (1)

S. Latkowski, A. Hänsel, N. Bhattacharya, T. Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, IEEE Photon. J. 7, 1 (2015).
[Crossref]

2014 (1)

2013 (1)

2009 (1)

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, IEEE J. Quantum Electron. 45, 892 (2009).
[Crossref]

2007 (1)

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[Crossref]

2006 (1)

2000 (1)

L. A. Coldren, IEEE J. Sel. Top. Quantum Electron. 6, 988 (2000).
[Crossref]

1998 (1)

M. G. Allen, Meas. Sci. Technol. 9, 545 (1998).
[Crossref]

1995 (1)

F. Delorme, S. Slempkes, A. Ramdane, B. Rose, and H. Nakajima, IEEE J. Sel. Top. Quantum Electron. 1, 396 (1995).
[Crossref]

1993 (1)

Ahmed, A.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Ahmed, M.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Allen, M. G.

M. G. Allen, Meas. Sci. Technol. 9, 545 (1998).
[Crossref]

Arroyo, M. P.

Augustin, L.

S. Latkowski, A. Hänsel, N. Bhattacharya, T. Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, IEEE Photon. J. 7, 1 (2015).
[Crossref]

Baehr-Jones, T.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Bajwa, S.

M. C. Larson, Y. Feng, P. C. Koh, X. Huang, M. Moewe, A. V. Semakov, A. Patwardhan, E. Y. Chiu, A. Bhardwaj, K. Y. Chan, J. Lu, S. Bajwa, and K. Duncan, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.4.

Ballani, H.

K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Gerard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts, H. Williams, P. Costa, G. Zervas, and Z. Liu, in European Conference on Optical Communication (ECOC) (IEEE, 2018), pp. 1–3.

Bayvel, P.

K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Gerard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts, H. Williams, P. Costa, G. Zervas, and Z. Liu, in European Conference on Optical Communication (ECOC) (IEEE, 2018), pp. 1–3.

Beausoleil, R. G.

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, Nat. Photonics 10, 719 (2016).
[Crossref]

Bente, E.

S. Latkowski, A. Hänsel, N. Bhattacharya, T. Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, IEEE Photon. J. 7, 1 (2015).
[Crossref]

Bhardwaj, A.

M. C. Larson, Y. Feng, P. C. Koh, X. Huang, M. Moewe, A. V. Semakov, A. Patwardhan, E. Y. Chiu, A. Bhardwaj, K. Y. Chan, J. Lu, S. Bajwa, and K. Duncan, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.4.

Bhattacharya, N.

S. Latkowski, A. Hänsel, N. Bhattacharya, T. Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, IEEE Photon. J. 7, 1 (2015).
[Crossref]

Bohn, M.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Buus, J.

Byrd, M. J.

Cannard, P.

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[Crossref]

Chan, K. Y.

M. C. Larson, Y. Feng, P. C. Koh, X. Huang, M. Moewe, A. V. Semakov, A. Patwardhan, E. Y. Chiu, A. Bhardwaj, K. Y. Chan, J. Lu, S. Bajwa, and K. Duncan, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.4.

Chen, Y.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Chiu, E. Y.

M. C. Larson, Y. Feng, P. C. Koh, X. Huang, M. Moewe, A. V. Semakov, A. Patwardhan, E. Y. Chiu, A. Bhardwaj, K. Y. Chan, J. Lu, S. Bajwa, and K. Duncan, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.4.

Clark, K.

K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Gerard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts, H. Williams, P. Costa, G. Zervas, and Z. Liu, in European Conference on Optical Communication (ECOC) (IEEE, 2018), pp. 1–3.

Cletheroe, D.

K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Gerard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts, H. Williams, P. Costa, G. Zervas, and Z. Liu, in European Conference on Optical Communication (ECOC) (IEEE, 2018), pp. 1–3.

Coldren, L. A.

L. A. Coldren, IEEE J. Sel. Top. Quantum Electron. 6, 988 (2000).
[Crossref]

Cole, D. B.

Costa, P.

K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Gerard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts, H. Williams, P. Costa, G. Zervas, and Z. Liu, in European Conference on Optical Communication (ECOC) (IEEE, 2018), pp. 1–3.

Delorme, F.

F. Delorme, S. Slempkes, A. Ramdane, B. Rose, and H. Nakajima, IEEE J. Sel. Top. Quantum Electron. 1, 396 (1995).
[Crossref]

Ding, R.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Duncan, K.

M. C. Larson, Y. Feng, P. C. Koh, X. Huang, M. Moewe, A. V. Semakov, A. Patwardhan, E. Y. Chiu, A. Bhardwaj, K. Y. Chan, J. Lu, S. Bajwa, and K. Duncan, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.4.

Dziashko, Y.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Ebert, V.

Elmoznine, A.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Fathololoumi, S.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Feng, Y.

M. C. Larson, Y. Feng, P. C. Koh, X. Huang, M. Moewe, A. V. Semakov, A. Patwardhan, E. Y. Chiu, A. Bhardwaj, K. Y. Chan, J. Lu, S. Bajwa, and K. Duncan, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.4.

Fiorentino, M.

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, Nat. Photonics 10, 719 (2016).
[Crossref]

Fujisawa, T.

Fujiwara, N.

Y. Ueda, T. Shindo, T. Kanai, M. Shimokozono, N. Fujiwara, H. Ishii, and H. Matsuzaki, Appl. Phys. Express 12, 092011 (2019).
[Crossref]

Galfsky, T.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Gerard, T.

K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Gerard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts, H. Williams, P. Costa, G. Zervas, and Z. Liu, in European Conference on Optical Communication (ECOC) (IEEE, 2018), pp. 1–3.

Guan, H.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Gwilliam, R.

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[Crossref]

Haller, I.

K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Gerard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts, H. Williams, P. Costa, G. Zervas, and Z. Liu, in European Conference on Optical Communication (ECOC) (IEEE, 2018), pp. 1–3.

Hammerfeldt, S.

J.-O. Wesstrom, G. Sarlet, S. Hammerfeldt, L. Lundqvist, P. Szabo, and P.-J. Rigole, in Optical Fiber Communication Conference (2004), paper TuE2.

Hanjani, A.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Hänsel, A.

S. Latkowski, A. Hänsel, N. Bhattacharya, T. Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, IEEE Photon. J. 7, 1 (2015).
[Crossref]

Hanson, R. K.

Hirose, Y.

K. Sone, G. Nakagawa, Y. Hirose, and T. Hoshida, in Optical Fiber Communications Conference and Exhibition (2018), paper M2B.6.

Hochberg, M.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Horth, A.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Hoshida, T.

K. Sone, G. Nakagawa, Y. Hirose, and T. Hoshida, in Optical Fiber Communications Conference and Exhibition (2018), paper M2B.6.

Howell, J. C.

Huang, X.

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, Nat. Photonics 10, 719 (2016).
[Crossref]

M. C. Larson, Y. Feng, P. C. Koh, X. Huang, M. Moewe, A. V. Semakov, A. Patwardhan, E. Y. Chiu, A. Bhardwaj, K. Y. Chan, J. Lu, S. Bajwa, and K. Duncan, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.4.

Huynh, T.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Iga, R.

T. Kanai, N. Nunoya, T. Yamanaka, R. Iga, M. Shimokozono, and H. Ishii, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.2.

Ishii, H.

Y. Ueda, T. Shindo, T. Kanai, M. Shimokozono, N. Fujiwara, H. Ishii, and H. Matsuzaki, Appl. Phys. Express 12, 092011 (2019).
[Crossref]

Y. Ueda, T. Fujisawa, K. Takahata, M. Kohtoku, and H. Ishii, Opt. Express 22, 7844 (2014).
[Crossref]

T. Kanai, N. Nunoya, T. Yamanaka, R. Iga, M. Shimokozono, and H. Ishii, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.2.

Jalali, B.

Y. Jiang, S. Karpf, and B. Jalali, Nat. Photonics 14, 14 (2020).
[Crossref]

Jiang, Y.

Y. Jiang, S. Karpf, and B. Jalali, Nat. Photonics 14, 14 (2020).
[Crossref]

Jozwik, K.

K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Gerard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts, H. Williams, P. Costa, G. Zervas, and Z. Liu, in European Conference on Optical Communication (ECOC) (IEEE, 2018), pp. 1–3.

Kaiser, S.

Kakitsuka, T.

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, IEEE J. Quantum Electron. 45, 892 (2009).
[Crossref]

Kanai, T.

Y. Ueda, T. Shindo, T. Kanai, M. Shimokozono, N. Fujiwara, H. Ishii, and H. Matsuzaki, Appl. Phys. Express 12, 092011 (2019).
[Crossref]

T. Kanai, N. Nunoya, T. Yamanaka, R. Iga, M. Shimokozono, and H. Ishii, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.2.

Karpf, S.

Y. Jiang, S. Karpf, and B. Jalali, Nat. Photonics 14, 14 (2020).
[Crossref]

Klein, A.

Knarr, S. H.

Koh, P. C.

M. C. Larson, Y. Feng, P. C. Koh, X. Huang, M. Moewe, A. V. Semakov, A. Patwardhan, E. Y. Chiu, A. Bhardwaj, K. Y. Chan, J. Lu, S. Bajwa, and K. Duncan, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.4.

Kohtoku, M.

Kondo, Y.

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, IEEE J. Quantum Electron. 45, 892 (2009).
[Crossref]

Kurczveil, G.

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, Nat. Photonics 10, 719 (2016).
[Crossref]

Larson, M. C.

M. C. Larson, Y. Feng, P. C. Koh, X. Huang, M. Moewe, A. V. Semakov, A. Patwardhan, E. Y. Chiu, A. Bhardwaj, K. Y. Chan, J. Lu, S. Bajwa, and K. Duncan, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.4.

Latkowski, S.

S. Latkowski, A. Hänsel, N. Bhattacharya, T. Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, IEEE Photon. J. 7, 1 (2015).
[Crossref]

Liang, D.

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, Nat. Photonics 10, 719 (2016).
[Crossref]

Lim, A. E.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Lim, D.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Liu, Y.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Liu, Z.

K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Gerard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts, H. Williams, P. Costa, G. Zervas, and Z. Liu, in European Conference on Optical Communication (ECOC) (IEEE, 2018), pp. 1–3.

Lu, J.

M. C. Larson, Y. Feng, P. C. Koh, X. Huang, M. Moewe, A. V. Semakov, A. Patwardhan, E. Y. Chiu, A. Bhardwaj, K. Y. Chan, J. Lu, S. Bajwa, and K. Duncan, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.4.

Lum, D. J.

Lundqvist, L.

J.-O. Wesstrom, G. Sarlet, S. Hammerfeldt, L. Lundqvist, P. Szabo, and P.-J. Rigole, in Optical Fiber Communication Conference (2004), paper TuE2.

Ma, Y.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Magill, P.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Matsuda, K.

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, J. Lightwave. Technol. 36, 1485 (2018).
[Crossref]

Matsumoto, R.

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, J. Lightwave. Technol. 36, 1485 (2018).
[Crossref]

Matsuo, S.

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, IEEE J. Quantum Electron. 45, 892 (2009).
[Crossref]

Matsuzaki, H.

Y. Ueda, T. Shindo, T. Kanai, M. Shimokozono, N. Fujiwara, H. Ishii, and H. Matsuzaki, Appl. Phys. Express 12, 092011 (2019).
[Crossref]

Meffert, C.

Miura, H.

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, J. Lightwave. Technol. 36, 1485 (2018).
[Crossref]

Moewe, M.

M. C. Larson, Y. Feng, P. C. Koh, X. Huang, M. Moewe, A. V. Semakov, A. Patwardhan, E. Y. Chiu, A. Bhardwaj, K. Y. Chan, J. Lu, S. Bajwa, and K. Duncan, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.4.

Motoshima, K.

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, J. Lightwave. Technol. 36, 1485 (2018).
[Crossref]

Murphy, E. J.

Nakagawa, G.

K. Sone, G. Nakagawa, Y. Hirose, and T. Hoshida, in Optical Fiber Communications Conference and Exhibition (2018), paper M2B.6.

Nakajima, H.

F. Delorme, S. Slempkes, A. Ramdane, B. Rose, and H. Nakajima, IEEE J. Sel. Top. Quantum Electron. 1, 396 (1995).
[Crossref]

Novack, A.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Nunoya, N.

T. Kanai, N. Nunoya, T. Yamanaka, R. Iga, M. Shimokozono, and H. Ishii, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.2.

Padmaraju, K.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Palmer, R.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Pantouvaki, M.

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[Crossref]

Patwardhan, A.

M. C. Larson, Y. Feng, P. C. Koh, X. Huang, M. Moewe, A. V. Semakov, A. Patwardhan, E. Y. Chiu, A. Bhardwaj, K. Y. Chan, J. Lu, S. Bajwa, and K. Duncan, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.4.

Poulton, C. V.

Ramdane, A.

F. Delorme, S. Slempkes, A. Ramdane, B. Rose, and H. Nakajima, IEEE J. Sel. Top. Quantum Electron. 1, 396 (1995).
[Crossref]

Raval, M.

Renaud, C. C.

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[Crossref]

Rigole, P.-J.

J.-O. Wesstrom, G. Sarlet, S. Hammerfeldt, L. Lundqvist, P. Szabo, and P.-J. Rigole, in Optical Fiber Communication Conference (2004), paper TuE2.

Robertson, M. J.

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[Crossref]

Rohde, H.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Roman, J.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Rose, B.

F. Delorme, S. Slempkes, A. Ramdane, B. Rose, and H. Nakajima, IEEE J. Sel. Top. Quantum Electron. 1, 396 (1995).
[Crossref]

Rylyakov, A.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Saathoff, G.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Sarlet, G.

J.-O. Wesstrom, G. Sarlet, S. Hammerfeldt, L. Lundqvist, P. Szabo, and P.-J. Rigole, in Optical Fiber Communication Conference (2004), paper TuE2.

Sato, K.

K. Sato, J. Lightwave. Technol. 36, 1411 (2017).
[Crossref]

Sato, T.

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, IEEE J. Quantum Electron. 45, 892 (2009).
[Crossref]

Schulz, C.

Scordo, D.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Seeds, A. J.

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[Crossref]

Segawa, T.

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, IEEE J. Quantum Electron. 45, 892 (2009).
[Crossref]

Semakov, A. V.

M. C. Larson, Y. Feng, P. C. Koh, X. Huang, M. Moewe, A. V. Semakov, A. Patwardhan, E. Y. Chiu, A. Bhardwaj, K. Y. Chan, J. Lu, S. Bajwa, and K. Duncan, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.4.

Shi, K.

K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Gerard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts, H. Williams, P. Costa, G. Zervas, and Z. Liu, in European Conference on Optical Communication (ECOC) (IEEE, 2018), pp. 1–3.

Shi, R.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Shimokozono, M.

Y. Ueda, T. Shindo, T. Kanai, M. Shimokozono, N. Fujiwara, H. Ishii, and H. Matsuzaki, Appl. Phys. Express 12, 092011 (2019).
[Crossref]

T. Kanai, N. Nunoya, T. Yamanaka, R. Iga, M. Shimokozono, and H. Ishii, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.2.

Shindo, T.

Y. Ueda, T. Shindo, T. Kanai, M. Shimokozono, N. Fujiwara, H. Ishii, and H. Matsuzaki, Appl. Phys. Express 12, 092011 (2019).
[Crossref]

Slempkes, S.

F. Delorme, S. Slempkes, A. Ramdane, B. Rose, and H. Nakajima, IEEE J. Sel. Top. Quantum Electron. 1, 396 (1995).
[Crossref]

Smit, M.

S. Latkowski, A. Hänsel, N. Bhattacharya, T. Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, IEEE Photon. J. 7, 1 (2015).
[Crossref]

Sone, K.

K. Sone, G. Nakagawa, Y. Hirose, and T. Hoshida, in Optical Fiber Communications Conference and Exhibition (2018), paper M2B.6.

Streshinsky, M.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Sukkar, R.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Suzuki, N.

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, J. Lightwave. Technol. 36, 1485 (2018).
[Crossref]

Szabo, P.

J.-O. Wesstrom, G. Sarlet, S. Hammerfeldt, L. Lundqvist, P. Szabo, and P.-J. Rigole, in Optical Fiber Communication Conference (2004), paper TuE2.

Takahashi, R.

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, IEEE J. Quantum Electron. 45, 892 (2009).
[Crossref]

Takahata, K.

Thomsen, B.

K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Gerard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts, H. Williams, P. Costa, G. Zervas, and Z. Liu, in European Conference on Optical Communication (ECOC) (IEEE, 2018), pp. 1–3.

Ueda, Y.

Vermeulen, D.

Vries, T.

S. Latkowski, A. Hänsel, N. Bhattacharya, T. Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, IEEE Photon. J. 7, 1 (2015).
[Crossref]

Wagner, S.

Watts, M. R.

Watts, P.

K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Gerard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts, H. Williams, P. Costa, G. Zervas, and Z. Liu, in European Conference on Optical Communication (ECOC) (IEEE, 2018), pp. 1–3.

Wesstrom, J.-O.

J.-O. Wesstrom, G. Sarlet, S. Hammerfeldt, L. Lundqvist, P. Szabo, and P.-J. Rigole, in Optical Fiber Communication Conference (2004), paper TuE2.

Williams, C.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Williams, H.

K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Gerard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts, H. Williams, P. Costa, G. Zervas, and Z. Liu, in European Conference on Optical Communication (ECOC) (IEEE, 2018), pp. 1–3.

Williams, K.

S. Latkowski, A. Hänsel, N. Bhattacharya, T. Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, IEEE Photon. J. 7, 1 (2015).
[Crossref]

Witzel, O.

Wuth, T.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Yaacobi, A.

Yamanaka, T.

T. Kanai, N. Nunoya, T. Yamanaka, R. Iga, M. Shimokozono, and H. Ishii, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.2.

Younce, R.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

Zervas, G.

K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Gerard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts, H. Williams, P. Costa, G. Zervas, and Z. Liu, in European Conference on Optical Communication (ECOC) (IEEE, 2018), pp. 1–3.

Appl. Opt. (1)

Appl. Phys. Express (1)

Y. Ueda, T. Shindo, T. Kanai, M. Shimokozono, N. Fujiwara, H. Ishii, and H. Matsuzaki, Appl. Phys. Express 12, 092011 (2019).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, IEEE J. Quantum Electron. 45, 892 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron (2)

M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[Crossref]

L. A. Coldren, IEEE J. Sel. Top. Quantum Electron. 6, 988 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Delorme, S. Slempkes, A. Ramdane, B. Rose, and H. Nakajima, IEEE J. Sel. Top. Quantum Electron. 1, 396 (1995).
[Crossref]

IEEE Photon. J. (1)

S. Latkowski, A. Hänsel, N. Bhattacharya, T. Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, IEEE Photon. J. 7, 1 (2015).
[Crossref]

J. Lightwave Technol. (2)

J. Lightwave. Technol. (2)

N. Suzuki, H. Miura, K. Matsuda, R. Matsumoto, and K. Motoshima, J. Lightwave. Technol. 36, 1485 (2018).
[Crossref]

K. Sato, J. Lightwave. Technol. 36, 1411 (2017).
[Crossref]

Meas. Sci. Technol. (1)

M. G. Allen, Meas. Sci. Technol. 9, 545 (1998).
[Crossref]

Nat. Photonics (2)

Y. Jiang, S. Karpf, and B. Jalali, Nat. Photonics 14, 14 (2020).
[Crossref]

D. Liang, X. Huang, G. Kurczveil, M. Fiorentino, and R. G. Beausoleil, Nat. Photonics 10, 719 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Other (7)

M. C. Larson, Y. Feng, P. C. Koh, X. Huang, M. Moewe, A. V. Semakov, A. Patwardhan, E. Y. Chiu, A. Bhardwaj, K. Y. Chan, J. Lu, S. Bajwa, and K. Duncan, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.4.

A. Novack, M. Streshinsky, T. Huynh, T. Galfsky, H. Guan, Y. Liu, Y. Ma, R. Shi, A. Horth, Y. Chen, A. Hanjani, J. Roman, Y. Dziashko, R. Ding, S. Fathololoumi, A. E. Lim, K. Padmaraju, R. Sukkar, R. Younce, H. Rohde, R. Palmer, G. Saathoff, T. Wuth, M. Bohn, A. Ahmed, M. Ahmed, C. Williams, D. Lim, A. Elmoznine, A. Rylyakov, T. Baehr-Jones, P. Magill, D. Scordo, and M. Hochberg, in Optical Fiber Communications Conference and Exposition (2018), paper Th4D.4.

J.-O. Wesstrom, G. Sarlet, S. Hammerfeldt, L. Lundqvist, P. Szabo, and P.-J. Rigole, in Optical Fiber Communication Conference (2004), paper TuE2.

K. Clark, H. Ballani, P. Bayvel, D. Cletheroe, T. Gerard, I. Haller, K. Jozwik, K. Shi, B. Thomsen, P. Watts, H. Williams, P. Costa, G. Zervas, and Z. Liu, in European Conference on Optical Communication (ECOC) (IEEE, 2018), pp. 1–3.

ITU-T Recommendation G Suppl. 66 (2018).

K. Sone, G. Nakagawa, Y. Hirose, and T. Hoshida, in Optical Fiber Communications Conference and Exhibition (2018), paper M2B.6.

T. Kanai, N. Nunoya, T. Yamanaka, R. Iga, M. Shimokozono, and H. Ishii, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), paper OTh3I.2.

Supplementary Material (1)

NameDescription
» Supplement 1       Mainy shows derivation of equation (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of RTF laser. For red and blue coarse tuning, tuning electrodes with lengths of $m{L_e}$ and $({3}\! -\! m){L_e}$ ($m = {0}$, 2, 3) are installed on a delay line whose differential length is ${0.5{\rm x}}(md{L_c} + \delta {l_m})$. Note that since light makes a round trip in a delay line with an etched facet mirror, differential “optical path” lengths become $md{L_c} + \delta {l_m}$ and $d{L_{\! f}}$. ${L_0}\geqq {3}{L_e}$ is required from a geometric condition. So, the maximum electrode length for fine tuning is ${L_0} + {0.5}d{L_{\!f}}$, which is equal to ${3}{L_e} + {0.5}d{L_{\!f}}$. A length of $\delta {l_m}$ functions as a phase compensator to change the transfer matrix of a ${5} \times {5}$ MMI to the matrix of a ${5} \times {5}$ discrete Fourier transform circuit [24,25].
Fig. 2.
Fig. 2. Calculated tuning spectra of RTF.
Fig. 3.
Fig. 3. Photograph of fabricated RTF laser chip. ${\lambda _{\text{PL}}}$ represents a photoluminescence peak wavelength of each MQW. See Supplement 1 for a description of the MQW for the QCSE.
Fig. 4.
Fig. 4. Laser characteristics of an RTF laser. (a) Lasing spectra. (b) Corresponding applied voltage for ACT5. (c) Tuning power dissipation and laser linewidth. (d) Beat spectrum in delayed self-heterodyne measurement corresponding to a linewidth plot allowed in (c).
Fig. 5.
Fig. 5. Dynamic wavelength switching performance of an RTF laser. (a) Experimental setup (PPG, pulse patter generator; EDFA, erbium-doped fiber amplifier; OBF, optical bandpass filter). Inset: Lasing spectra of a pair of switching wavelengths of ${\lambda _1}$ and ${\lambda _2}$. (b) 10 kHz and 50 MHz modulation waveform from an oscilloscope. For 50 MHz modulation, we directly input electrical signals to the laser chip while putting 2200 pF capacitors beside the laser chips to reduce intrinsic electrical noise for all other measurements.
Fig. 6.
Fig. 6. Dynamic optical switching demonstration for coherent modulation signals. (a) Experimental setup (LN mod., Lithium niobate modulator; AWG, arbitrary waveform generator; OMA, optical modulation analyzer). (b) Dynamic BER characteristics with corresponding constellation diagrams for ${X}$ and ${Y}$ polarization (pol.) with optical signal-to-noise ratio (OSNR) of ${\sim}{30}\;{\rm dB}$.

Tables (1)

Tables Icon

Table 1. Delay-Line Lengths of RTF Laser

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r ( Δ f ) = 1 5 [ m 0 , 2 , 3 { e j ( n g c 2 π Δ f m d L c + θ c m ) } + e j ( n g c 2 π Δ f d L f + θ f ) ] .
θ c m = ± 2 π λ 0 Γ Δ n m ( 2 L e ) , θ f = 2 π λ 0 Γ Δ n 4 ( 2 L e ) ,
Δ λ c o a r s e λ 0 = ± Γ Δ n ( 2 L e ) n g d L c , Δ λ f i n e λ 0 = Γ Δ n ( 8 L e ) n g d L f .

Metrics