Abstract

Compact and powerful ultrafast light sources at high pulse repetition rates, based on mode-locked near infrared fiber lasers, are now widely available and are being used in applications such as frequency metrology, molecular spectroscopy, and laser micro-machining. The realization of such lasers in the mid-infrared has, however, remained a challenge for many years. Here we report a record-breaking three-stage fiber laser system that uses an Er-doped fluoride fiber as gain medium, delivering W-level few-cycle pulses at 2.8 µm at a repetition rate of 42.1 MHz. A fiber-based seed oscillator, cavity dispersion-managed by a pulse-stretcher, generates near-100-fs mid-infrared pulses with ${\gt}{110}\;{\rm nm}$ spectral bandwidth. These pulses are amplified to an average power of ${\sim}{1}\;{\rm W}$ in a chirp-engineered fiber amplifier, and then compressed to ${\sim}{16}\;{\rm fs}$ in a short length of highly nonlinear ZBLAN fiber, resulting in a more-than-octave-wide spectrum reaching from 1.8 µm to 3.8 µm with a total power of 430 mW.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Mid-infrared (mid-IR) light sources are important in applications such as molecular spectroscopy, gas detection, and laser surgery, because the fundamental vibrational bands of many important molecules reside in the mid-infrared (mid-IR) “fingerprint” region, with oscillator strengths that are orders of magnitude greater than those of their overtones in the near-IR [1,2]. They are also used in laser ranging, remote sensing, aerospace imaging and communications, since the Earth’s atmosphere is naturally transparent at certain mid-IR frequencies [3]. Current mid-IR light sources, for example based on quantum cascade lasing [4], parametric frequency conversion [5], or difference-frequency generation [6,7], are limited to low pulse repetition rates or are relatively inefficient [48]. Although mode-locked lasers based on ${{\rm Cr}^{2 +}}:{\rm ZnS}$ crystals can deliver W-level, few-cycle pulses at 2.4 µm, the systems tend to be bulky and difficult to maintain [911].

Mode-locked lasers based on gain fibers made from infrared glass can potentially extend the well-established benefits of near-IR fiber lasers to the mid-IR [1216]. The realization of ultrafast high-power mid-IR fiber lasers that can directly emit at mid-infrared wavelengths with W-level average power and sub-100-fs pulse duration, remains however, a significant challenge. The strong anomalous dispersion of Er- or Ho-doped fluoride gain fiber generally forces conventionally mode-locked mid-IR fiber lasers to operate in the soliton regime, clamping the energy and therefore the duration of the pulses emitted directly from the seed oscillator [1215,17]. Chalcogenide fibers with high Kerr nonlinearity have been used to improve the quality of the mid-IR pulses from the seed oscillator, although the low damage threshold of the chalcogenide glass limits the power of these systems to several tens of mW [18]. In this paper we report a three-stage Er-doped ZBLAN fiber laser that generates sub-two-cycle mid-IR pulses at 2.8 µm with spectra greater that an octave wide. It generates pulses that are 4 times shorter (16 fs), at peak powers (500 kW) more than 10 times greater and average powers 14 times higher (430 mW), than previously achieved in 2.8 µm mode-locked mid-IR fiber lasers [18].

The system consists of a dispersion-managed seed oscillator, an amplifier and a nonlinear spectral broadening stage (Fig. 1). To avoid absorption in air, both seed oscillator and amplifier are enclosed in a chamber filled with dry nitrogen. A folded Martinez-type pulse stretcher [19] is incorporated into the oscillator, permitting the high anomalous dispersion in the gain fiber to be reduced to a small value and allowing the laser to operate in stretched-pulse mode. The resulting $70\times$ breathing ratio in pulse duration significantly decreases the effective cavity nonlinearity, resulting in intra-cavity pulse energies of ${\sim}{10}\;{\rm nJ}$ with spectral bandwidths ${\gt}{110}\;{\rm nm}$. The oscillator pulses are then amplified to W-level average power (pulse energies ${\sim}{30}\;{\rm nJ}$) in an Er-doped ZBLAN fiber amplifier with a built-in pulse stretcher to impose a large positive chirp. During amplification, nonlinear spectral broadening counterbalances gain filtering, while the positive chirp of the laser pulses is gradually neutralized by anomalous dispersion in the gain fiber. As a result the pulses at the amplifier output have 1.2 W average power, 82 fs duration, and ${\sim}{300}\;{\rm kW}$ peak power, which permits higher order solitons to be excited in a short length of highly-nonlinear, small-core, step-index ZBLAN fiber (the third stage). Soliton self-compression then leads to generation of sub-two-cycle 2.8 µm pulses with more-than-octave-spanning spectra.

 figure: Fig. 1.

Fig. 1. Three-stage fiber laser set-up. For details of the laser diagnostics, see section S1 in Supplement 1. DM, dichroic mirror; HWP, half-wave plate; QWP, quarter-wave plate; ISO, isolator; POL, polarizer; MS, Martinez stretcher.

Download Full Size | PPT Slide | PDF

 figure: Fig. 2.

Fig. 2. Performance of the seed oscillator. (a) and (b) Measured optical spectrum and autocorrelation function of the output pulses when the oscillator was operating in the soliton regime. (c) and (d) Optical spectrum and autocorrelation function of the laser pulses in the average-soliton regime. (e) Measured optical spectrum in the stretched-pulse regime. The inset shows the autocorrelation function of the pulses, measured directly at the oscillator output. (f) Output pulse train of the frequency doubled laser output, recorded by a 33 GHz oscilloscope. (g) FFT spectrum of the second-harmonic signal. (h) Simulated pulse energy evolution around the laser cavity. (i) Simulated variation in pulse duration and 3 dB spectral bandwidth around the cavity.

Download Full Size | PPT Slide | PDF

2. SEED OSCILLATOR

In the seed-oscillator, a 3.3-m-length of double-clad Er-doped ZBLAN (${{\rm ZrF}_4} {-} {{\rm BaF}_2} {-} {{\rm LaF}_3} {-} {{\rm AlF}_3} {-} {\rm NaF}$) fiber, core diameter 15 µm and inner-cladding diameter 250 µm, was used as the gain medium. A 25 W multimode laser diode was used to provide the 975 nm pump light. A dichroic mirror (DM) reflecting ${\gt}{90}\%$ at 975 nm and transmitting ${\gt}{92}\%$ at 2.8 µm was used to separate the pump from the signal light, and another DM reflecting ${\sim}{30}\%$ was used as output coupler. A polarization-dependent optical isolator (P-ISO) ensured unidirectional operation, while at the same time operating as a polarizer. In combination with three intra-cavity wave-plates (see Fig. 1), the polarizer acts as a fast saturable absorber through nonlinear polarization rotation (NPR), allowing mode-locking to self-start and suppressing background noise [20].

 figure: Fig. 3.

Fig. 3. Measured optical spectrum and duration of the laser pulses from the second-stage fiber amplifier. (a) The optical spectrum measured at the amplifier output has a FWHM bandwidth of ${\sim}{200}\;{\rm nm}$ (in purple and seed laser spectrum in green), for an output power of 1.2 W and a grating-mirror offset of 40.8 mm. (b) Measured autocorrelation function of the laser pulses directly at the amplifier output. (c) Compensation of the residual chirp using several few-mm-thick ${\rm CaF}_{2}$ or ZnSe windows. (d) The shortest pulse duration (82 fs) was obtained using a 5-mm-think ${\rm CaF}_{2}$ window. (e) Spectrum and (f) pulse duration at decreasing average power levels. As the signal power decreases, the nonlinear spectral broadening weakens. As a result, gain filtering dominates spectral shaping during amplification.

Download Full Size | PPT Slide | PDF

The group velocity dispersion of the ZBLAN gain fiber is ${-}{0.086}\;{{\rm ps}^2}/{\rm m}$ [12], resulting in a total round-trip dispersion of ${-}{0.284}\;{{\rm ps}^2}$. Without dispersion management, the laser is thus forced to operate in the soliton regime, which clamps the maximum obtainable intra-cavity pulse energy to ${\lt}{4}\;{\rm nJ}$ [17]. At a pulse energy of 3.9 nJ, the measured spectral bandwidth and pulse duration are (section S1, Supplement 1) 12 nm and 805 fs [Figs. 2(a) and 2(b)], yielding a time-bandwidth product (TBP) of 0.37. Further increasing the pump power results in pulsation instability, pulse collapse and even pulse fragmentation due to excessive intra-cavity nonlinearity [17]. By introducing a folded Martinez-type stretcher into the seed oscillator, the total cavity dispersion could be precisely managed. The normal dispersion induced by the stretcher is adjusted by varying the offset between the grating and the spherical mirror. Average-soliton operation of the seed oscillator could be realized at a grating-mirror offset of 20 mm, corresponding to a residual cavity dispersion of approximately ${-}{0.055}\;{{\rm ps}^2}$. Under these conditions soliton-like pulses could be generated with energies of ${\sim}{6.5}\;{\rm nJ}$, resulting in a spectral bandwidth of ${\sim}{42}\;{\rm nm}$, a pulse duration of ${\sim}{259}\;{\rm fs}$ [Figs. 2(c) and 2(d)], and a TBP of 0.42. When the grating-mirror offset was further increased to 25.8 mm, the cavity dispersion was close to zero but very slightly positive (${\sim}{0.012}\;{{\rm ps}^2}$ within measurement error). At a pump power of 5.5 W, this resulted in pulse energies of ${\sim}{10}\;{\rm nJ}$ and durations of ${\sim}{126}\;{\rm fs}$ [see Fig. 2(e)] directly at the laser output. The measured spectrum has a flat-top shape [21], with a full-width-half-maximum (FWHM) bandwidth of ${\gt}{110}\;{\rm nm}$ and a calculated TBP of 0.53, slightly greater than the value (0.44) for transform-limited Gaussian pulses.

At pump powers ${\gt}{5}\;{\rm W}$, this stretched-pulse laser can easily be made to mode-lock by adjusting the three intra-cavity wave-plates, resulting in a near-100-fs pulse train that is extremely stable, providing low-noise operation for long periods of time (50 h in the experiments). The results (see section S2, Supplement 1) reveal that long-term fluctuations in laser output power are ${\lt}{1}\%$ and in pulse duration ${\lt}{5}\%$. We ran the seed oscillator from time to time (a few hours every day on average) over several months without observing any degradation in the pulse parameters. We also estimated the short-term relative intensity noise (RIN) of the seed oscillator by measuring its baseband noise spectrum (section S2, Supplement 1). By integrating the baseband noise, the RIN of the laser was estimated to be ${\lt}{0.4}\%$ from 1 Hz to 1 MHz [22].

When the seed laser was stably oscillating, its output frequency was doubled, and the ${\sim}{1.4}\;\unicode{x00B5}{\rm m}$ signal detected using a fast near-IR photodiode. The resulting time-domain pulse trace, recorded using a 33-GHz-bandwidth oscilloscope, is plotted in Fig. 2(f). A fast Fourier transform (FFT) of the time-domain trace is plotted in Fig. 2(g), showing many sharp harmonics of the cavity FSR with a high signal-to-noise ratio (${\gt}{50}\;{\rm dB}$) that indicates stable continuous-wave mode-locking of the oscillator.

To understand stretched-pulse operation of the dispersion-managed seed oscillator, we performed numerical simulations using the split-step Fourier method [23] (see section S3, Supplement 1). In the simulations, a pulse with energy 10 nJ and duration 300 fs was launched and the pulse evolution followed over consecutive cavity round-trips until the steady state was established. The simulated pulse energy, duration and spectral bandwidth in the steady state are plotted in Figs. 2(h) and 2(i). It can be seen that the temporal width of the laser pulse increases from ${\sim}{120}\;{\rm fs}$ to ${\sim}{9}\;{\rm ps}$ in the stretcher, and that the large positive chirp exerted on the pulse is gradually compensated for in the gain fiber, leading to an overall ${\gt}{70} \times$ temporal breathing ratio. Meanwhile, the spectral bandwidth of the pulse also varies back and forth (between ${\sim}{120}\;{\rm nm}$ and ${\sim}{75}\;{\rm nm}$) in the gain fiber due to competition between gain filtering and nonlinear spectral broadening.

 figure: Fig. 4.

Fig. 4. Soliton self-compression in the highly-nonlinear ZBLAN fiber (soliton order ${\sim}{5}$). (a)–(c) Measured (blue) and simulated (green) optical spectra at different ZBLAN fiber lengths. (d)–(e) Simulated temporal and spectral evolution of the laser pulse in the ZBLAN fiber.

Download Full Size | PPT Slide | PDF

3. CHIRP-ENGINEERED FIBER AMPLIFIER

The 126-fs pulses from the seed oscillator were launched via an isolator into a second pulse stretcher (Fig. 1), and the resulting stretched pulses with large positive chirp were amplified in a 5.5-m-long Er-doped ZBLAN fiber of the same type as used in the oscillator. We first increased the 975 nm pump power to ${\sim}{12}\;{\rm W}$, resulting in ${\sim}{1.2}\;{\rm W}$ output signal power at 2.8 µm. Then, by adjusting the grating-mirror offset, we could optimize both the duration and optical spectrum of the amplified pulses. The optical spectrum (FWHM bandwidth ${\sim}{200}\;{\rm nm}$) and pulse duration (88 fs) measured at the amplifier output for an optimized grating-mirror offset of 40.8 mm are plotted in Figs. 3(a) and 3(b). Note that the central wavelength of the amplified pulses is slightly shifted towards longer wavelengths [Fig. 3(a)], most probably because of the Raman self-frequency red-shift in the gain fiber [24].

The small residual chirp in the amplified pulses can be partially compensated using a 5-mm-thick ${{\rm CaF}_2}$ window with anomalous dispersion ${-}{476}\;{{\rm fs}^2}$, leading to a slightly shorter pulse duration of 82 fs [see Figs. 3(c) and 3(d)]. In the gain fiber the positive pulse chirp, together with self-phase modulation, leads to strong spectral broadening, which competes with gain filtering in the amplifier. This effect is clearly seen in our experiments. As the average power in the gain fiber was gradually lowered (by decreasing the pump power), we observed that the spectrum narrowed while the pulse duration increased [Figs. 3(e) and 3(f)] as expected, since at lower pulse energy nonlinear spectral broadening weakens, allowing gain filtering to dominate in the spectral reshaping process.

 figure: Fig. 5.

Fig. 5. SH-FROG measurements of the laser pulses emerging from a 90-mm-long highly-nonlinear ZBLAN fiber. (a) Measured and (b) retrieved SH-FROG traces. (c) Retrieved temporal intensity (blue) and phase (green) of the compressed pulse. (d) Spectral profile (blue) and phase (green) of the compressed pulse, retrieved from the SH-FROG trace. The power spectral density, measured using the FTIR, is also plotted in orange for comparison.

Download Full Size | PPT Slide | PDF

4. SOLITON SELF-COMPRESSION

By launching the 30 nJ, 82 fs mid-IR pulses into a short length of highly-nonlinear ZBLAN fiber, we were able to reduce the pulse duration to below two cycles. We initially used a 15-cm-long ZBLAN fiber with a core diameter of 6.5 µm and a numerical aperture of 0.2. The coupling efficiency into the small-core fiber was ${\sim}{36}\%$, resulting in an in-fiber pulse energy of ${\sim}{12}\;{\rm nJ}$. The Kerr nonlinearity coefficient of the small-core ZBLAN fiber is ${1.5}\;{{\rm km}^{- 1}}\;{{\rm W}^{- 1}}$ and the group velocity dispersion ${-}{15}\;{{\rm ps}^2}/{\rm km}$, resulting in a soliton order of ${\sim}{5}$ [23]. Higher-order-soliton compression was clearly observed using cut-back measurements. As shown in Figs. 4(a)4(c), the spectrum strongly oscillates as the pulse propagates along the ZBLAN fiber, widening to over an octave (1.8 µm to 3.8 µm at ${-}{30}\;{\rm dB}$) for a fiber length of 90 mm [Fig. 4(b)]. The average output power in this case was ${\sim}{430}\;{\rm mW}$. We simulated the pulse evolution in the small-core ZBLAN fiber using the split-step Fourier method [23]. The fiber and pulse parameters used in the simulations are summarized in section S4 of Supplement 1. The simulated temporal and spectral pulse evolution over a 200-mm-long ZBLAN fiber [Figs. 4(d) and 4(e)] are in striking agreement with the pulse spectra measured in the cut-back experiments [Figs. 4(a)4(c)].

To measure the temporal profile of the laser pulse after higher-order-soliton compression, we used second-harmonic frequency-resolved optical gating (SH-FROG), employing all-reflective optics and a 50-µm-thick BBO crystal to generate the second-harmonic signal. For a ZBLAN fiber length of 90 mm, the measured and retrieved SH-FROG traces are shown in Figs. 5(a) and 5(b). The retrieved temporal intensity and phase profiles [Fig. 5(c)] yield a pulse duration of 15.9 fs, corresponding to 1.75 optical cycles. The optical spectrum retrieved from the SH-FROG trace shows good agreement with the pulse spectrum measured using a Fourier transform infrared spectrometer [see Fig. 5(d)]. The pulse energy emitted by the 90-mm-long ZBLAN fiber was measured to be ${\sim}{11}\;{\rm nJ}$, corresponding to a peak power of ${\sim}{500}\;{\rm kW}$.

5. CONCLUSIONS

By careful intra-cavity dispersion management, chirp-engineered amplification, and higher-order-soliton compression in a three-stage system, high-quality sub-100 fs laser pulses can be generated at 2.8 µm in an Er-doped ZBLAN fiber laser with W-level average power, few-cycle pulse durations, near-MW peak powers, and tens-of-MHz pulse repetition rates. These performance levels are comparable with those achieved in near-IR fiber lasers [16,21,25], and represent a major step forward in mid-IR fiber laser technology. The successful incorporation of dispersion-management and chirp-engineering in the seed-oscillator and amplifier stages significantly improves the duration and therefore the peak power of the 2.8 µm pulses directly generated from Er-doped fluoride fiber lasers [1215,17], enabling the first (to the best of our knowledge) demonstration of higher-order-soliton compression at 2.8 µm in a short length of step-index ZBLAN fiber [7,9]. The high-quality mid-IR pulses generated from this three-stage system have great potential in applications such as molecular spectroscopy, frequency metrology, remote sensing, laser surgery, and optical diagnosis [13].

Funding

Max-Planck-Gesellschaft.

Disclosures

The authors declare no conflicts of interest.

 

See Supplement 1 for supporting content.

REFERENCES

1. S. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012). [CrossRef]  

2. A. Schliesser, N. Picqué, and T. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012). [CrossRef]  

3. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005). [CrossRef]  

4. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994). [CrossRef]  

5. P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017). [CrossRef]  

6. I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015). [CrossRef]  

7. T. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, and J. Limpert, “Multi-octave spanning, watt-level ultrafast mid-infrared source,” J. Phys. Photon. 1, 044006 (2019). [CrossRef]  

8. C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014). [CrossRef]  

9. N. Nagl, K. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett. 44, 2390–2393 (2019). [CrossRef]  

10. S. Vasilyev, I. Moskalev, V. Smolski, J. Peppers, M. Mirov, A. Muraviev, K. Zawilski, P. Schunemann, S. Mirov, K. Vodopyanov, and V. Gapontsev, “Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5 µm pulses,” Optica 6, 111–114 (2019). [CrossRef]  

11. S. Vasilyev, M. Mirov, and V. Gapontsev, “Kerr-lens mode-locked femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe lasers,” Opt. Express 22, 5118–5123 (2014). [CrossRef]  

12. S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2, 623–626 (2015). [CrossRef]  

13. S. Antipov, D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica 3, 1373–1376 (2016). [CrossRef]  

14. Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, and J. Si, “Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser,” Sci. Rep. 7, 1 (2017). [CrossRef]  

15. O. Henderson-Sapir, N. Bawden, M. Majewski, R. Woodward, D. Ottaway, and S. Jackson, “Mode-locked and tunable fiber laser at the 3.5 µm band using frequency-shifted feedback,” Opt. Lett. 45, 224–227 (2020). [CrossRef]  

16. M. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013). [CrossRef]  

17. J. Huang, M. Pang, X. Jiang, W. He, and P. St. J. Russell, “Route from single-pulse to multi-pulse states in a mid-infrared soliton fiber laser,” Opt. Express 27, 26392–26404 (2019). [CrossRef]  

18. R. I. Woodward, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Generation of 70-fs pulses at 2.86 µm from a mid-infrared fiber laser,” Opt. Lett. 42, 4893–4896 (2017). [CrossRef]  

19. O. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6 µm region,” IEEE J. Quantum Electron. 23, 59–64 (1987). [CrossRef]  

20. M. E. Fermann, “Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber,” Opt. Lett. 18, 894–896 (1993). [CrossRef]  

21. K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34, 593–595 (2009). [CrossRef]  

22. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993). [CrossRef]  

23. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

24. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986). [CrossRef]  

25. J. Travers, J. Stone, A. Rulkov, B. Cumberland, A. George, S. Popov, J. Knight, and J. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt. Express 15, 13203–13211 (2007). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
    [Crossref]
  2. A. Schliesser, N. Picqué, and T. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
    [Crossref]
  3. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005).
    [Crossref]
  4. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [Crossref]
  5. P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
    [Crossref]
  6. I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
    [Crossref]
  7. T. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, and J. Limpert, “Multi-octave spanning, watt-level ultrafast mid-infrared source,” J. Phys. Photon. 1, 044006 (2019).
    [Crossref]
  8. C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  9. N. Nagl, K. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett. 44, 2390–2393 (2019).
    [Crossref]
  10. S. Vasilyev, I. Moskalev, V. Smolski, J. Peppers, M. Mirov, A. Muraviev, K. Zawilski, P. Schunemann, S. Mirov, K. Vodopyanov, and V. Gapontsev, “Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5 µm pulses,” Optica 6, 111–114 (2019).
    [Crossref]
  11. S. Vasilyev, M. Mirov, and V. Gapontsev, “Kerr-lens mode-locked femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe lasers,” Opt. Express 22, 5118–5123 (2014).
    [Crossref]
  12. S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2, 623–626 (2015).
    [Crossref]
  13. S. Antipov, D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica 3, 1373–1376 (2016).
    [Crossref]
  14. Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, and J. Si, “Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser,” Sci. Rep. 7, 1 (2017).
    [Crossref]
  15. O. Henderson-Sapir, N. Bawden, M. Majewski, R. Woodward, D. Ottaway, and S. Jackson, “Mode-locked and tunable fiber laser at the 3.5 µm band using frequency-shifted feedback,” Opt. Lett. 45, 224–227 (2020).
    [Crossref]
  16. M. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
    [Crossref]
  17. J. Huang, M. Pang, X. Jiang, W. He, and P. St. J. Russell, “Route from single-pulse to multi-pulse states in a mid-infrared soliton fiber laser,” Opt. Express 27, 26392–26404 (2019).
    [Crossref]
  18. R. I. Woodward, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Generation of 70-fs pulses at 2.86 µm from a mid-infrared fiber laser,” Opt. Lett. 42, 4893–4896 (2017).
    [Crossref]
  19. O. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6 µm region,” IEEE J. Quantum Electron. 23, 59–64 (1987).
    [Crossref]
  20. M. E. Fermann, “Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber,” Opt. Lett. 18, 894–896 (1993).
    [Crossref]
  21. K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34, 593–595 (2009).
    [Crossref]
  22. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
    [Crossref]
  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  24. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [Crossref]
  25. J. Travers, J. Stone, A. Rulkov, B. Cumberland, A. George, S. Popov, J. Knight, and J. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt. Express 15, 13203–13211 (2007).
    [Crossref]

2020 (1)

2019 (4)

2017 (3)

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

R. I. Woodward, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Generation of 70-fs pulses at 2.86 µm from a mid-infrared fiber laser,” Opt. Lett. 42, 4893–4896 (2017).
[Crossref]

Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, and J. Si, “Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser,” Sci. Rep. 7, 1 (2017).
[Crossref]

2016 (1)

2015 (2)

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2, 623–626 (2015).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

2014 (2)

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

S. Vasilyev, M. Mirov, and V. Gapontsev, “Kerr-lens mode-locked femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe lasers,” Opt. Express 22, 5118–5123 (2014).
[Crossref]

2013 (1)

M. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

2012 (2)

S. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

2009 (1)

2007 (1)

2005 (1)

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

1993 (2)

1987 (1)

O. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6 µm region,” IEEE J. Quantum Electron. 23, 59–64 (1987).
[Crossref]

1986 (1)

Abdel-Moneim, N.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Antipov, S.

Apolonski, A.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Bang, O.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Bawden, N.

Benson, T.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Bernier, M.

Biegert, J.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Brehm, M.

Butler, T.

T. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, and J. Limpert, “Multi-octave spanning, watt-level ultrafast mid-infrared source,” J. Phys. Photon. 1, 044006 (2019).
[Crossref]

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Chen, H.

Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, and J. Si, “Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser,” Sci. Rep. 7, 1 (2017).
[Crossref]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Chong, A.

Cumberland, B.

Dupont, S.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Duval, S.

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Fermann, M.

M. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

Fermann, M. E.

Fill, E.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Flemens, N.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

Fortin, V.

Fuerbach, A.

Furniss, D.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Gapontsev, V.

Genest, J.

George, A.

Gerz, D.

T. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, and J. Limpert, “Multi-octave spanning, watt-level ultrafast mid-infrared source,” J. Phys. Photon. 1, 044006 (2019).
[Crossref]

Gordon, J. P.

Hänsch, T.

A. Schliesser, N. Picqué, and T. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Hartl, I.

M. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

Haus, H. A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[Crossref]

He, W.

Henderson-Sapir, O.

Hofer, C.

T. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, and J. Limpert, “Multi-octave spanning, watt-level ultrafast mid-infrared source,” J. Phys. Photon. 1, 044006 (2019).
[Crossref]

Hong, K.-H.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

Huang, J.

Hudson, D.

Hudson, D. D.

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Jackson, S.

Jackson, S. D.

Jiang, X.

Karpowicz, N.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Kärtner, F.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

Keilmann, F.

Kieu, K.

Knight, J.

Krausz, F.

N. Nagl, K. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett. 44, 2390–2393 (2019).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Krogen, P.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

Kubat, I.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Liang, H.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

Lilienfein, N.

T. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, and J. Limpert, “Multi-octave spanning, watt-level ultrafast mid-infrared source,” J. Phys. Photon. 1, 044006 (2019).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Limpert, J.

T. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, and J. Limpert, “Multi-octave spanning, watt-level ultrafast mid-infrared source,” J. Phys. Photon. 1, 044006 (2019).
[Crossref]

Luan, K.

Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, and J. Si, “Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser,” Sci. Rep. 7, 1 (2017).
[Crossref]

Majewski, M.

Mak, K.

Martinez, O.

O. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6 µm region,” IEEE J. Quantum Electron. 23, 59–64 (1987).
[Crossref]

Mecozzi, A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[Crossref]

Mirov, M.

Mirov, S.

Møller, U.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Moses, J.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

Moskalev, I.

Muraviev, A.

Nagl, N.

N. Nagl, K. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett. 44, 2390–2393 (2019).
[Crossref]

T. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, and J. Limpert, “Multi-octave spanning, watt-level ultrafast mid-infrared source,” J. Phys. Photon. 1, 044006 (2019).
[Crossref]

Ottaway, D.

Paasch-Colberg, T.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Pang, M.

Peppers, J.

Pervak, V.

N. Nagl, K. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett. 44, 2390–2393 (2019).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Pescher, M.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Petersen, C.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Piché, M.

Picqué, N.

A. Schliesser, N. Picqué, and T. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Popov, S.

Pronin, O.

N. Nagl, K. Mak, Q. Wang, V. Pervak, F. Krausz, and O. Pronin, “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett. 44, 2390–2393 (2019).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Pupeza, I.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Ramsay, J.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Renninger, W. H.

Rulkov, A.

Sánchez, D.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Schliesser, A.

Schunemann, P.

Schweinberger, W.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Seddon, A.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Seidel, M.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Shen, Y.

Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, and J. Si, “Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser,” Sci. Rep. 7, 1 (2017).
[Crossref]

Si, J.

Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, and J. Si, “Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser,” Sci. Rep. 7, 1 (2017).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Smolski, V.

St. J. Russell, P.

Stone, J.

Suchowski, H.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

Sujecki, S.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Tang, Z.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Tao, M.

Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, and J. Si, “Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser,” Sci. Rep. 7, 1 (2017).
[Crossref]

Taylor, J.

Travers, J.

Vallée, R.

van der Weide, D. W.

Vasilyev, S.

Vodopyanov, K.

Wang, Q.

Wang, Y.

Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, and J. Si, “Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser,” Sci. Rep. 7, 1 (2017).
[Crossref]

Wei, Z.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Wise, F. W.

Woodward, R.

Woodward, R. I.

Xu, J.

T. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, and J. Limpert, “Multi-octave spanning, watt-level ultrafast mid-infrared source,” J. Phys. Photon. 1, 044006 (2019).
[Crossref]

Zawilski, K.

Zhang, J.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

Zhou, B.

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Znakovskaya, I.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

IEEE J. Quantum Electron. (2)

O. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3–1.6 µm region,” IEEE J. Quantum Electron. 23, 59–64 (1987).
[Crossref]

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[Crossref]

J. Phys. Photon. (1)

T. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, and J. Limpert, “Multi-octave spanning, watt-level ultrafast mid-infrared source,” J. Phys. Photon. 1, 044006 (2019).
[Crossref]

Nat. Photonics (6)

C. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

S. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9, 721–724 (2015).
[Crossref]

M. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Optica (3)

Sci. Rep. (1)

Y. Shen, Y. Wang, H. Chen, K. Luan, M. Tao, and J. Si, “Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser,” Sci. Rep. 7, 1 (2017).
[Crossref]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Three-stage fiber laser set-up. For details of the laser diagnostics, see section S1 in Supplement 1. DM, dichroic mirror; HWP, half-wave plate; QWP, quarter-wave plate; ISO, isolator; POL, polarizer; MS, Martinez stretcher.
Fig. 2.
Fig. 2. Performance of the seed oscillator. (a) and (b) Measured optical spectrum and autocorrelation function of the output pulses when the oscillator was operating in the soliton regime. (c) and (d) Optical spectrum and autocorrelation function of the laser pulses in the average-soliton regime. (e) Measured optical spectrum in the stretched-pulse regime. The inset shows the autocorrelation function of the pulses, measured directly at the oscillator output. (f) Output pulse train of the frequency doubled laser output, recorded by a 33 GHz oscilloscope. (g) FFT spectrum of the second-harmonic signal. (h) Simulated pulse energy evolution around the laser cavity. (i) Simulated variation in pulse duration and 3 dB spectral bandwidth around the cavity.
Fig. 3.
Fig. 3. Measured optical spectrum and duration of the laser pulses from the second-stage fiber amplifier. (a) The optical spectrum measured at the amplifier output has a FWHM bandwidth of ${\sim}{200}\;{\rm nm}$ (in purple and seed laser spectrum in green), for an output power of 1.2 W and a grating-mirror offset of 40.8 mm. (b) Measured autocorrelation function of the laser pulses directly at the amplifier output. (c) Compensation of the residual chirp using several few-mm-thick ${\rm CaF}_{2}$ or ZnSe windows. (d) The shortest pulse duration (82 fs) was obtained using a 5-mm-think ${\rm CaF}_{2}$ window. (e) Spectrum and (f) pulse duration at decreasing average power levels. As the signal power decreases, the nonlinear spectral broadening weakens. As a result, gain filtering dominates spectral shaping during amplification.
Fig. 4.
Fig. 4. Soliton self-compression in the highly-nonlinear ZBLAN fiber (soliton order ${\sim}{5}$). (a)–(c) Measured (blue) and simulated (green) optical spectra at different ZBLAN fiber lengths. (d)–(e) Simulated temporal and spectral evolution of the laser pulse in the ZBLAN fiber.
Fig. 5.
Fig. 5. SH-FROG measurements of the laser pulses emerging from a 90-mm-long highly-nonlinear ZBLAN fiber. (a) Measured and (b) retrieved SH-FROG traces. (c) Retrieved temporal intensity (blue) and phase (green) of the compressed pulse. (d) Spectral profile (blue) and phase (green) of the compressed pulse, retrieved from the SH-FROG trace. The power spectral density, measured using the FTIR, is also plotted in orange for comparison.

Metrics