Abstract

Synthetic dimensions provide a promising platform for photonic quantum simulations. Manipulating the flow of photons in these dimensions requires an electric field. However, photons do not have charge and do not directly interact with electric fields. Therefore, alternative approaches are needed to realize electric fields in photonics. One approach is to use engineered gauge fields that can mimic the effect of electric fields and produce the same dynamical behavior. Here, we demonstrate such an electric field for photons propagating in a two-dimensional synthetic space. Generation of electric fields in a two-dimensional synthetic lattice provides the possibility to guide photons and to trap them through the creation of quantum confined structures. We achieve this using a linearly time-varying gauge field generated by direction-dependent phase modulations. We show that the generated electric field leads to Bloch oscillations and the revival of the state after a certain number of steps dependent on the field strength. We measure the probability of the revival and demonstrate a good agreement between the observed values and the theoretically predicted results. Furthermore, by applying a nonuniform electric field, we show the possibility of waveguiding photons. Ultimately, our results open up new opportunities for manipulating the propagation of photons with potential applications in photonic quantum simulations.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Photons are promising candidates for implementing quantum simulations due to their wave characteristics that exhibit strong interference effects. Recently, numerous complicated quantum simulations have been performed using photonic systems by molding the flow of light in real space [14]. However, there are limitations for these systems to simulate the higher-dimensional quantum systems needed for modeling a wider class of Hamiltonians. Synthetic dimensions provide a promising alternative approach for photonic quantum simulations in a scalable and resource-efficient way without requiring complex photonic circuits [518]. One powerful technique to implement a synthetic space is through time multiplexing [1924], which can scale to a higher number of dimensions efficiently. But significant challenges remain to fully control the evolution of photons in synthetic spaces.

One important challenge is that photons do not directly interact with electromagnetic fields because of their lack of charge. This limitation makes it difficult for photons to simulate the complex dynamical behavior of electrons or atoms. But significant progress in the past decade has led to the development of techniques to engineer magnetic and electric fields for photons [2528]. In particular, the realization of synthetic magnetic fields has led to the exploration of topological physics in photonic systems [29] and the measurement of associated topological invariants [18,3032]. Similarly, various ways to engineer electric fields have been reported in real dimensional photonic circuits [3335]. One outcome of applying a constant electric field in periodic systems is the generation of state revivals known as Bloch oscillations, originally predicted in electronic systems [3638]. Bloch oscillations have been observed in photonic systems such as coupled optical waveguide arrays [3945] and one-dimensional quantum walks of photons [46,47]. Bloch oscillations in one dimension have also been explored using frequency as a synthetic dimension [4850]. However, the extension of electric fields to two-dimensional synthetic spaces and demonstration of the associated Bloch oscillations has not yet been explored. Furthermore, the introduction of nonuniform electric fields in two-dimensional quantum walks remains largely unexplored. Such nonuniform fields could open up new methods to achieve quantum confinement for trapping and guiding of quantum walkers in synthetic dimensions.

Here we demonstrate an electric field for photons in a two-dimensional synthetic space. We use time multiplexing as a versatile platform to create the synthetic space and a time-varying gauge field to create the electric field. Under the application of a constant electric field, we show that photons return to the original state after a certain number of steps and thus demonstrate Bloch oscillations. Furthermore, by generating a spatially nonuniform electric field, we realize a synthetic quantum well, which guides photons without the use of a bandgap. Instead, the guiding is mediated by a discontinuous gauge field. This guiding effect does not have a direct analogue in one-dimensional systems, and it is therefore unique to two-dimensional systems with nonuniform fields.

2. RESULTS AND DISCUSSION

In our time-multiplexed photonic quantum walk, the quantum walker state space is mapped into time delays of optical pulses. The experimental setup is a closed-loop fiber architecture composed of two beam splitters with their ports connected to fibers of different lengths mapping the ${\pm}x$ and ${\pm}y$ directions to different time delays. Full details of the experimental setup are explained in Supplement 1. One complete propagation of an optical pulse around the loop is equivalent to the hopping of the walker to one of the four possible corners in the synthetic space (Fig. 1). In the first part of each time step, the quantum walker moves toward the right or left directions and acquires opposite phase shifts. In the second part of the time step, the quantum walker chooses to move toward the up or down direction. Semiconductor optical amplifiers as well as polarization controllers are used in the setup to compensate for the losses and polarization changes that the optical pulses experience in each round-trip, respectively. The quantum walk distribution at each time step is studied via two photodetectors analyzing two channels that we refer to as the up and down channels (see Fig. S1 of Supplement 1). A single incident laser pulse that is injected into the up channel initializes the quantum walk evolution from the origin in the synthetic space.

 figure: Fig. 1.

Fig. 1. Applied phase modulation scheme for the $n$th step of the quantum walk.

Download Full Size | PPT Slide | PDF

In this setup, we use electro-optic modulators that can introduce desired phase shifts to pulses moving to the right or left directions to generate the synthetic gauge field. Specifically, here we implement a linearly time-varying gauge field ($\vec A = - {\cal E}t\hat x$, in which $t$ denotes the time step and $\hat x$ is the unit vector in the $x$ direction) that leads to the generation of a constant electric field ($\vec {\cal E} = - \partial \vec A /\partial t$). To implement this gauge field, a phase modulation needs to be applied that varies with the time step. Figure 1 depicts the synthetic lattice with the required phase modulation criteria describing the amount of phase that the walker accumulates in hopping to the four possible corners at time step $n$.

This method of generating an electric field is distinguished from the approaches based on position-dependent but time-independent gauge fields [5153] used in discrete-time quantum walks. In these approaches, an effective linear electric potential $V = - {\cal E}x$ is implemented, which leads to the generation of electric fields based on $\vec {\cal E} = - \nabla V$. In order to create such a gauge field in discrete-time quantum walks, the unitary operation in each time step must have an extra term relative to the standard quantum walk evolution operator ${U_0}$ as ${U_\phi} = {e^{i\phi x}}{U_0}$. In contrast, the current approach does not require any coordinate-dependent unitary operation to generate an electric field. This is of particular interest for time-multiplexed quantum walks, as it relaxes the need for any variation of phase modulations during each time step. The equivalence of these approaches can be understood in terms of a gauge transformation [54]. The similarity between the approach used and the conventional coordinate-based method of implementing an electric field in a two-dimensional quantum walk [53] is described in Supplement 1. We show that the total phase accumulated in some sample closed loops that start from the origin and return to it in both pictures are the same. In fact, this similarity holds for any closed path starting from the origin and ending at it.

The application of the electric field in our two-dimensional discrete-time quantum walk will lead to Bloch oscillations and the revival of the quantum state. This can be intuitively explained through the band diagram structure of the system. In the band structure, we refer to energy eigenvalues of the system as pseudo-energies due to the time dependency of the gauge fields to distinguish them from the term quasi-energies we used for the case of time-independent gauge fields. Due to the periodicity of the system by time, pseudo-energy values are between ${-}\pi$ and $\pi$ similar to quasi-energies. As we show in Supplement 1, for a phase modulation with a fractional value of $\phi$ as $\phi = 2\pi /q$, the band structure has $2q$ bands. The analytical expressions for the pseudo-energy band structure under such a phase modulation are given by

$$\begin{split}{E_{n, \pm ,{k_x},{k_y}}} &= \frac{{2n\pi}}{q} \pm \frac{1}{q}\arccos \left(\cos \left({\frac{{\pi q}}{2}} \right)\left({\mathop {\sin}\nolimits^q {k_y} - 1} \right)\right.\\&\quad - \left.\cos \left({q{k_x} + \frac{{\pi q}}{2}} \right)\mathop {\sin}\nolimits^q {k_y} \right),\end{split}$$
where ${k_x}$ and ${k_y}$ are the momentum wave vectors in inverse synthetic space and $n \in Z$. This expression for $q = 1$ returns to the form of ${E_ \pm} = \pm \arccos ({\sin ({{k_x}})\sin ({{k_y}})})$, which represents the band structure for the quantum walk under no effective applied gauge field [55]. Figure 2 shows the band diagrams for three different values of the phase modulations. As this figure shows, in these band diagrams there exists no bandgap. By increasing $q$, the bands become flatter and equidistant from each other, and the corresponding group velocities tend toward zero. As has been demonstrated in one-dimensional quantum walks, this will lead to the revival of the quantum walk with high probability [52]. This band flattening also occurs in the two-dimensional Floquet quantum walks considered here, which will lead to the return of the quantum walker toward the origin after $q$ steps. In our system, the application of an electric field in the $x$ direction will lead to the revival of the quantum walk not only in the $x$ direction but also in the $y$ direction (see Supplement 1). This is quite interesting that the revival happens not only in the direction of the applied electric field but also in the orthogonal direction.
 figure: Fig. 2.

Fig. 2. Pseudo energy band diagrams of the two-dimensional quantum walk for different gauge field strengths: (a) $\phi = \pi /2$, (b) $\phi = \pi /3$, and (c) $\phi = \pi /4$. In each row the left figure shows the full band diagram, while the right one shows the zoomed in part of the band diagram.

Download Full Size | PPT Slide | PDF

 figure: Fig. 3.

Fig. 3. (a) Experimental observations and (b) theoretical predictions of the evolution of the quantum walk distribution under the application of the time-dependent phase modulation with $\phi = \pi /4$. The columns from left to right show the distributions at time steps of 0, 2, 4, 6, and 8, respectively. In these plots, all the distributions are normalized to their maximum.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4.

Fig. 4. Theoretical values for the quadratic means of (a) $y$ and (c) $x$ as a function of the time step for different gauge field strengths. Experimental values for the quadratic means of (b) $y$ and (d) $x$ as a function of the time step for different gauge field strengths.

Download Full Size | PPT Slide | PDF

 figure: Fig. 5.

Fig. 5. Theoretical values for the norm ones of (a) $y$ and (c) $x$ as a function of the time step for different gauge field strengths. Experimental values for the norm ones of (b) $y$ and (d) $x$ as a function of the time step for different gauge field strengths.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6.

Fig. 6. Probability of revival: experimental (blue solid squares) and theoretical (red solid circles) probabilities of the walker returning to the origin with respect to the required number of steps for the revival to happen. The error bars in the measurements are smaller than the size of the plotted data points.

Download Full Size | PPT Slide | PDF

 figure: Fig. 7.

Fig. 7. Confinement of the quantum walker through the application of a discontinuous electric field. (a) Schematic describing the phase modulation pattern in the synthetic space that leads to a zero electric field for ${-}2 \lt y \lt 2$ and a nonzero electric field outside this range. (b) Experimental observations and (c) theoretical predictions of the evolution of the quantum walk distribution under the discontinuous electric field. The columns from left to right show the distributions at time steps of 1, 5, and 9, respectively. All the distributions are normalized to their maximum. (d) Experimentally measured and theoretically predicted quadratic means of $x$ and $y$ as a function of the time step. The error bars in the measurements are smaller than the size of the plotted data points.

Download Full Size | PPT Slide | PDF

 figure: Fig. 8.

Fig. 8. Theoretical predictions of the evolution of the quantum walk distribution under the discontinuous electric field for the thickness of (a) $t = 2$, (b) $t = 6$, and (c) $t = 8$. The columns from left to right show the distributions at time steps of 0, 4, 8, and 12, respectively. All the distributions are normalized to their maximum. Quadratic means of (d) $x$ and (e) $y$ as a function of the time step for different thicknesses of the discontinuity.

Download Full Size | PPT Slide | PDF

To experimentally demonstrate Bloch oscillations in our 2D time-multiplexed quantum walk caused by the applied electric field, we investigate the evolution of the quantum walk distribution at different time steps. In order to measure the quantum walk distribution, we measure the power of the optical pulses received by the photodetectors at different time delays for each time step. Figure 3(a) shows the experimentally measured quantum walk distributions at different time steps. This figure demonstrates state revival under the application of the time-varying gauge field due to the uniform electric field generated. The phase strength of the applied electric field in this case is $\phi = \pi /4$. As this figure shows, after eight steps, the quantum walker returns to the origin with a probability as high as 0.6. The experimental results are in good agreement with the corresponding theoretical predictions shown in Fig. 3(b).

We measure the quantum walk distribution at different time steps under the application of the proposed time-varying gauge fields with different phases ($\phi = 0 \;[{\rm deg}]$, $\phi = 90 \;[{\rm deg}]$, $\phi = 60 \;[{\rm deg}]$, $\phi = 45 \;[{\rm deg}]$, and $\phi = 36 \;[{\rm deg}]$). Using the measured probability distributions, we can calculate the statistical averages of the distribution at different time steps. Specifically, we calculate the quadratic means as well as the norm ones of the $x$ and $y$ coordinates at different time steps. The corresponding results are shown in Figs. 4 and 5. As these results show, the quadratic means as well as the norm ones of $x$ and $y$ tend toward the local minimum values after $2\pi /\phi$ steps. The variational behaviors of these quantities with the time step confirm the revival effect in both the $x$ and $y$ directions and are in good agreement with the theoretically predicted results.

To quantify the effect of the gauge field on the revival of the quantum state, we measure the probability of the walker returning to the origin [revival probability ${P_U}({0,0})$] as a function of the number of steps taken (Fig. 6). We measure this probability for different time-varying phase modulations after the appropriate number of time steps ($2\pi /\phi$ steps) needed for the revival to happen. As shown in Fig. 6, the revival probability increases with increasing number of steps. Additionally, this figure indicates that the experimental results are in good agreement with the theoretical predictions. In Supplement 1], we demonstrate that by decreasing the phase modulation $\phi$, the revival probability increases and tends toward unity.

We are not restricted to implementing only uniform electric fields in our two-dimensional quantum walk. Spatially discontinuous electric fields can also be created by simply controlling the modulation pattern of the phase modulators. This provides the possibility to perform waveguiding in the synthetic space using gauge fields. Figure 7(a) shows an example of a discontinuous electric field in a two-dimensional synthetic space. In this configuration, the electric field is zero in the ${-}2 \lt y \lt 2$ region and nonzero outside this range. Due to the boundary created by the discontinuous gauge fields, the quantum random walk evolution is mainly confined to the region where the electric field is equal to zero. Figure 7(b) presents the experimentally measured quantum walk distributions at different time steps showing the trapping caused by the existence of the boundaries in the electric field pattern. The experimentally measured results are in good agreement with the theoretical predictions shown in Fig. 7(c). Additionally, more quantitative agreement can be inferred based on Fig. 7(d) depicting the variations of the quadratic means as functions of the time step. This figure clearly shows that the presence of boundaries in the field pattern has led to the confinement of the quantum walk in the $y$ ribbon. We note that this confinement is not induced by a bandgap and is therefore physically distinct from the confinement in conventional crystal heterostructures.

We can also investigate the evolution of the quantum walk for other thicknesses of the region with the electric field equal to zero. The evolution of the quantum walk for different thicknesses of the $y$ ribbon are shown in Figs. 8(a)8(c). These results correspond to the thicknesses of $t = 2$, $t = 6$, and $t = 8$, respectively. The obtained results show that the confinement in the $y$ direction holds for other thicknesses as well. In Figs. 8(d) and 8(e), we have shown the variations of the quadratic means of $x$ and $y$ for various thicknesses as functions of the time step. As these figures show, the confinement in the $y$ direction holds for all the considered thicknesses. However, it takes increasing number of time steps for higher thicknesses to see the effect of confinement due to the finite speed of the quantum walkers to reach the discontinuity. None of the three regions shown in Fig. 7(a) supports a bandgap, which thus demonstrates that the confinement is directly induced by the gauge field itself. These results demonstrate the possibility of using a nonuniform electric field in order to guide the path of the quantum walk in a desired fashion. This is in a sense similar to the guiding of light in a waveguide. Here, however, the required refractive index contrast between the core and the cladding of a waveguide is emulated using discontinuous synthetic electric fields.

3. CONCLUSION

In this work, we studied the time evolution of a quantum random walk under a time-varying gauge field in a two-dimensional synthetic space. Using a linearly time-varying phase modulation, an electric field acting on photonic quantum walkers can be created. Creation of an electric field in two-dimensional discrete time quantum walks with the possibility of controlling its spatial variation enables the implementation of quantum confined structures with potential applications in trapping and guiding of quantum walkers. Our findings demonstrate that, under the influence of a uniform electric field, a complete revival caused by Bloch oscillations happens in two-dimensional quantum walks. This revival becomes more accurate as we increase the number of steps. Moreover, by exploiting spatially varying electric fields, we demonstrated and analyzed a new type of quantum confined structure: a synthetic quantum well. This structure, which has no analogue in one-dimensional systems, guides quantum walkers when there is no bandgap. The use of spatially varying electric fields in synthetic dimensions opens up the possibility to explore a broad range of quantum confined structures in discrete time quantum walks using smoothly varying fields as well as confinement in higher-dimensional systems. Time-multiplexed synthetic space provides a particularly compelling implementation, because it can realize quantum walks in higher-dimensional lattices unlike spatial quantum walks, which are limited to three dimensions.

While we demonstrated the Bloch oscillation for a quantum walk initiated with classical coherent laser pulses, the same physics holds at the single-photon level. The obtained results can be extended to the investigation of the effect of dynamic localization [5662]. Our demonstration of an electric field for photons in time-multiplexed synthetic lattices could also have potential applications in photonic quantum simulations, for example, multiphoton interference and Boson sampling in the time domain [63], and the realization of photonic lattices with strong nonlinearities mediated via artificial atoms like quantum dots [64,65]. Our results ultimately greatly expand the types of Hamiltonians that could be realized for applications in photonic quantum simulation and computation.

Funding

Air Force Office of Scientific Research (FA9550-16-1-0323); National Science Foundation (PHYS. 1415458, PHY-1430094); Center for Distributed Quantum Information.

Disclosures

The authors declare no conflicts of interest.

 

See Supplement 1 for supporting content.

REFERENCES AND NOTE

1. C. Sparrow, E. Martín-López, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew, and A. Laing, “Simulating the vibrational quantum dynamics of molecules using photonics,” Nature 557, 660–667 (2018). [CrossRef]  

2. X.-S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys. 7, 399–405 (2011). [CrossRef]  

3. B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–111 (2010). [CrossRef]  

4. A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012). [CrossRef]  

5. C. Navarrete-Benlloch, A. Pérez, and E. Roldán, “Nonlinear optical Galton board,” Phys. Rev. A 75, 062333 (2007). [CrossRef]  

6. D. Bouwmeester, I. Marzoli, G. P. Karman, W. Schleich, and J. P. Woerdman, “Optical Galton board,” Phys. Rev. A 61, 013410 (1999). [CrossRef]  

7. B. A. Bell, K. Wang, A. S. Solntsev, D. N. Neshev, A. A. Sukhorukov, and B. J. Eggleton, “Spectral photonic lattices with complex long-range coupling,” Optica 4, 1433–1436 (2017). [CrossRef]  

8. C. Qin, F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alù, and P. Lu, “Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials,” Phys. Rev. Lett. 120, 133901 (2018). [CrossRef]  

9. A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, “Experimental band structure spectroscopy along a synthetic dimension,” Nat. Commun. 10, 3122 (2019). [CrossRef]  

10. A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity–time synthetic photonic lattices,” Nature 488, 167–171 (2012). [CrossRef]  

11. E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, and M. Segev, “Photonic topological insulator in synthetic dimensions,” Nature 567, 356–360 (2019). [CrossRef]  

12. Q. Lin, M. Xiao, L. Yuan, and S. Fan, “Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension,” Nat. Commun. 7, 13731 (2016). [CrossRef]  

13. Q. Lin, X.-Q. Sun, M. Xiao, S.-C. Zhang, and S. Fan, “A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension,” Sci. Adv. 4, eaat2774 (2018). [CrossRef]  

14. L. Yuan, M. Xiao, Q. Lin, and S. Fan, “Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation,” Phys. Rev. B 97, 104105 (2018). [CrossRef]  

15. S. K. Goyal, F. S. Roux, A. Forbes, and T. Konrad, “Implementing quantum walks using orbital angular momentum of classical light,” Phys. Rev. Lett. 110, 263602 (2013). [CrossRef]  

16. F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, “Quantum walks and wavepacket dynamics on a lattice with twisted photons,” Sci. Adv. 1, e1500087 (2015). [CrossRef]  

17. F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, “Statistical moments of quantum-walk dynamics reveal topological quantum transitions,” Nat. Commun. 7, 11439 (2016). [CrossRef]  

18. F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, “Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons,” Nat. Commun. 8, 15516 (2017). [CrossRef]  

19. A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J. Mosley, E. Andersson, I. Jex, and C. Silberhorn, “Photons walking the line: a quantum walk with adjustable coin operations,” Phys. Rev. Lett. 104, 050502 (2010). [CrossRef]  

20. A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011). [CrossRef]  

21. A. Schreiber, A. Gabris, P. P. Rohde, K. Laiho, M. Stefanak, V. Potocek, C. Hamilton, I. Jex, and C. Silberhorn, “A 2D quantum walk simulation of two-particle dynamics,” Science 336, 55–58 (2012). [CrossRef]  

22. T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys. 18, 063017 (2016). [CrossRef]  

23. S. Barkhofen, T. Nitsche, F. Elster, L. Lorz, A. Gábris, I. Jex, and C. Silberhorn, “Measuring topological invariants in disordered discrete-time quantum walks,” Phys. Rev. A 96, 033846 (2017). [CrossRef]  

24. C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018). [CrossRef]  

25. M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7, 907–912 (2011). [CrossRef]  

26. S. Mittal, J. Fan, S. Faez, A. Migdall, J. M. Taylor, and M. Hafezi, “Topologically robust transport of photons in a synthetic gauge field,” Phys. Rev. Lett. 113, 087403 (2014). [CrossRef]  

27. M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013). [CrossRef]  

28. K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012). [CrossRef]  

29. T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019). [CrossRef]  

30. W. Hu, J. C. Pillay, K. Wu, M. Pasek, P. P. Shum, and Y. D. Chong, “Measurement of a topological edge invariant in a microwave network,” Phys. Rev. X 5, 011012 (2015). [CrossRef]  

31. A. D’Errico, F. Cardano, M. Maffei, A. Dauphin, R. Barboza, C. Esposito, B. Piccirillo, M. Lewenstein, P. Massignan, and L. Marrucci, “Two-dimensional topological quantum walks in the momentum space of structured light,” Optica 7, 108–114 (2018). [CrossRef]  

32. S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi, “Measurement of topological invariants in a 2D photonic system,” Nat. Photonics 10, 180–183 (2016). [CrossRef]  

33. Y. Bromberg, Y. Lahini, and Y. Silberberg, “Bloch oscillations of path-entangled photons,” Phys. Rev. Lett. 105, 263604 (2010). [CrossRef]  

34. G. Corrielli, A. Crespi, G. Della Valle, S. Longhi, and R. Osellame, “Fractional Bloch oscillations in photonic lattices,” Nat. Commun. 4, 1555 (2013). [CrossRef]  

35. D. Witthaut, F. Keck, H. J. Korsch, and S. Mossmann, “Bloch oscillations in two-dimensional lattices,” New J. Phys. 6, 41 (2004). [CrossRef]  

36. F. Bloch, “Über die Quantenmechanik der Elektronen in Kristallgittern,” Z. Phys. 52, 555–600 (1929). [CrossRef]  

37. E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, and H.-C. Nägerl, “Inducing transport in a dissipation-free lattice with super Bloch oscillations,” Phys. Rev. Lett. 104, 200403 (2010). [CrossRef]  

38. M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, “Bloch oscillations of atoms in an optical potential,” Phys. Rev. Lett. 76, 4508–4511 (1996). [CrossRef]  

39. T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83, 4752–4755 (1999). [CrossRef]  

40. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett. 83, 4756–4759 (1999). [CrossRef]  

41. G. Lenz, I. Talanina, and C. M. de Sterke, “Bloch Oscillations in an array of curved optical waveguides,” Phys. Rev. Lett. 83, 963–966 (1999). [CrossRef]  

42. H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903 (2006). [CrossRef]  

43. S. Longhi, “Optical Zener-Bloch oscillations in binary waveguide arrays,” Europhys. Lett. 76, 416–421 (2006). [CrossRef]  

44. F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, and S. Longhi, “Bloch-Zener oscillations in binary superlattices,” Phys. Rev. Lett. 102, 076802 (2009). [CrossRef]  

45. M. Levy and P. Kumar, “Nonreciprocal Bloch oscillations in magneto-optic waveguide arrays,” Opt. Lett. 35, 3147–3149 (2010). [CrossRef]  

46. P. Xue, R. Zhang, H. Qin, X. Zhan, Z. H. Bian, J. Li, and B. C. Sanders, “Experimental quantum-walk revival with a time-dependent coin,” Phys. Rev. Lett. 114, 140502 (2015). [CrossRef]  

47. C. Cedzich and R. F. Werner, “Revivals in quantum walks with a quasiperiodically-time-dependent coin,” Phys. Rev. A 93, 032329 (2016). [CrossRef]  

48. U. Peschel, C. Bersch, and G. Onishchukov, “Discreteness in time,” Open Phys. 6, 619–627 (2008). [CrossRef]  

49. C. Bersch, G. Onishchukov, and U. Peschel, “Experimental observation of spectral Bloch oscillations,” Opt. Lett. 34, 2372–2374 (2009). [CrossRef]  

50. L. Yuan and S. Fan, “Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator,” Optica 3, 1014–1018 (2016). [CrossRef]  

51. C. Cedzich, T. Rybár, A. H. Werner, A. Alberti, M. Genske, and R. F. Werner, “Propagation of quantum walks in electric fields,” Phys. Rev. Lett. 111, 160601 (2013). [CrossRef]  

52. M. Genske, W. Alt, A. Steffen, A. H. Werner, R. F. Werner, D. Meschede, and A. Alberti, “Electric quantum walks with individual atoms,” Phys. Rev. Lett. 110, 190601 (2013). [CrossRef]  

53. L. A. Bru, M. Hinarejos, F. Silva, G. J. de Valcárcel, and E. Roldán, “Electric quantum walks in two dimensions,” Phys. Rev. A 93, 032333 (2016). [CrossRef]  

54. C. Cedzich, T. Geib, A. H. Werner, and R. F. Werner, “Quantum walks in external gauge fields,” J. Math. Phys. 60, 012107 (2019). [CrossRef]  

55. H. Chalabi, S. Barik, S. Mittal, T. E. Murphy, M. Hafezi, and E. Waks, “Synthetic gauge field for two-dimensional time-multiplexed quantum random walks,” Phys. Rev. Lett. 123, 150503 (2019). [CrossRef]  

56. D. H. Dunlap and V. M. Kenkre, “Dynamic localization of a charged particle moving under the influence of an electric field,” Phys. Rev. B 34, 3625–3633 (1986). [CrossRef]  

57. G. Lenz, R. Parker, M. Wanke, and C. de Sterke, “Dynamical localization and AC Bloch oscillations in periodic optical waveguide arrays,” Opt. Commun. 218, 87–92 (2003). [CrossRef]  

58. S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006). [CrossRef]  

59. R. Iyer, J. S. Aitchison, J. Wan, M. M. Dignam, and C. M. de Sterke, “Exact dynamic localization in curved AlGaAs optical waveguide arrays,” Opt. Express 15, 3212–3223 (2007). [CrossRef]  

60. A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-Bloch oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103, 143903 (2009). [CrossRef]  

61. A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Generalized exact dynamic localization in curved coupled optical waveguide arrays,” Phys. Rev. Lett. 109, 103901 (2012). [CrossRef]  

62. L. Yuan and S. Fan, “Three-dimensional dynamic localization of light from a time-dependent effective gauge field for photons,” Phys. Rev. Lett. 114, 243901 (2015). [CrossRef]  

63. V. V. Orre, E. A. Goldschmidt, A. Deshpande, A. V. Gorshkov, V. Tamma, M. Hafezi, and S. Mittal, “Interference of temporally distinguishable photons using frequency-resolved detection,” Phys. Rev. Lett. 123, 123603 (2019). [CrossRef]  

64. H. Pichler, S. Choi, P. Zoller, and M. D. Lukin, “Universal photonic quantum computation via time-delayed feedback,” Proc. Natl. Acad. Sci. USA 114, 11362–11367 (2017). [CrossRef]  

65. H. Chalabi and E. Waks, “Interaction of photons with a coupled atom-cavity system through a bidirectional time-delayed feedback,” Phys. Rev. A 98, 063832 (2018). [CrossRef]  

References

  • View by:

  1. C. Sparrow, E. Martín-López, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew, and A. Laing, “Simulating the vibrational quantum dynamics of molecules using photonics,” Nature 557, 660–667 (2018).
    [Crossref]
  2. X.-S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys. 7, 399–405 (2011).
    [Crossref]
  3. B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–111 (2010).
    [Crossref]
  4. A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
    [Crossref]
  5. C. Navarrete-Benlloch, A. Pérez, and E. Roldán, “Nonlinear optical Galton board,” Phys. Rev. A 75, 062333 (2007).
    [Crossref]
  6. D. Bouwmeester, I. Marzoli, G. P. Karman, W. Schleich, and J. P. Woerdman, “Optical Galton board,” Phys. Rev. A 61, 013410 (1999).
    [Crossref]
  7. B. A. Bell, K. Wang, A. S. Solntsev, D. N. Neshev, A. A. Sukhorukov, and B. J. Eggleton, “Spectral photonic lattices with complex long-range coupling,” Optica 4, 1433–1436 (2017).
    [Crossref]
  8. C. Qin, F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alù, and P. Lu, “Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials,” Phys. Rev. Lett. 120, 133901 (2018).
    [Crossref]
  9. A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, “Experimental band structure spectroscopy along a synthetic dimension,” Nat. Commun. 10, 3122 (2019).
    [Crossref]
  10. A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity–time synthetic photonic lattices,” Nature 488, 167–171 (2012).
    [Crossref]
  11. E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, and M. Segev, “Photonic topological insulator in synthetic dimensions,” Nature 567, 356–360 (2019).
    [Crossref]
  12. Q. Lin, M. Xiao, L. Yuan, and S. Fan, “Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension,” Nat. Commun. 7, 13731 (2016).
    [Crossref]
  13. Q. Lin, X.-Q. Sun, M. Xiao, S.-C. Zhang, and S. Fan, “A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension,” Sci. Adv. 4, eaat2774 (2018).
    [Crossref]
  14. L. Yuan, M. Xiao, Q. Lin, and S. Fan, “Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation,” Phys. Rev. B 97, 104105 (2018).
    [Crossref]
  15. S. K. Goyal, F. S. Roux, A. Forbes, and T. Konrad, “Implementing quantum walks using orbital angular momentum of classical light,” Phys. Rev. Lett. 110, 263602 (2013).
    [Crossref]
  16. F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, “Quantum walks and wavepacket dynamics on a lattice with twisted photons,” Sci. Adv. 1, e1500087 (2015).
    [Crossref]
  17. F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, “Statistical moments of quantum-walk dynamics reveal topological quantum transitions,” Nat. Commun. 7, 11439 (2016).
    [Crossref]
  18. F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, “Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons,” Nat. Commun. 8, 15516 (2017).
    [Crossref]
  19. A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J. Mosley, E. Andersson, I. Jex, and C. Silberhorn, “Photons walking the line: a quantum walk with adjustable coin operations,” Phys. Rev. Lett. 104, 050502 (2010).
    [Crossref]
  20. A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
    [Crossref]
  21. A. Schreiber, A. Gabris, P. P. Rohde, K. Laiho, M. Stefanak, V. Potocek, C. Hamilton, I. Jex, and C. Silberhorn, “A 2D quantum walk simulation of two-particle dynamics,” Science 336, 55–58 (2012).
    [Crossref]
  22. T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys. 18, 063017 (2016).
    [Crossref]
  23. S. Barkhofen, T. Nitsche, F. Elster, L. Lorz, A. Gábris, I. Jex, and C. Silberhorn, “Measuring topological invariants in disordered discrete-time quantum walks,” Phys. Rev. A 96, 033846 (2017).
    [Crossref]
  24. C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018).
    [Crossref]
  25. M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7, 907–912 (2011).
    [Crossref]
  26. S. Mittal, J. Fan, S. Faez, A. Migdall, J. M. Taylor, and M. Hafezi, “Topologically robust transport of photons in a synthetic gauge field,” Phys. Rev. Lett. 113, 087403 (2014).
    [Crossref]
  27. M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
    [Crossref]
  28. K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
    [Crossref]
  29. T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
    [Crossref]
  30. W. Hu, J. C. Pillay, K. Wu, M. Pasek, P. P. Shum, and Y. D. Chong, “Measurement of a topological edge invariant in a microwave network,” Phys. Rev. X 5, 011012 (2015).
    [Crossref]
  31. A. D’Errico, F. Cardano, M. Maffei, A. Dauphin, R. Barboza, C. Esposito, B. Piccirillo, M. Lewenstein, P. Massignan, and L. Marrucci, “Two-dimensional topological quantum walks in the momentum space of structured light,” Optica 7, 108–114 (2018).
    [Crossref]
  32. S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi, “Measurement of topological invariants in a 2D photonic system,” Nat. Photonics 10, 180–183 (2016).
    [Crossref]
  33. Y. Bromberg, Y. Lahini, and Y. Silberberg, “Bloch oscillations of path-entangled photons,” Phys. Rev. Lett. 105, 263604 (2010).
    [Crossref]
  34. G. Corrielli, A. Crespi, G. Della Valle, S. Longhi, and R. Osellame, “Fractional Bloch oscillations in photonic lattices,” Nat. Commun. 4, 1555 (2013).
    [Crossref]
  35. D. Witthaut, F. Keck, H. J. Korsch, and S. Mossmann, “Bloch oscillations in two-dimensional lattices,” New J. Phys. 6, 41 (2004).
    [Crossref]
  36. F. Bloch, “Über die Quantenmechanik der Elektronen in Kristallgittern,” Z. Phys. 52, 555–600 (1929).
    [Crossref]
  37. E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, and H.-C. Nägerl, “Inducing transport in a dissipation-free lattice with super Bloch oscillations,” Phys. Rev. Lett. 104, 200403 (2010).
    [Crossref]
  38. M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, “Bloch oscillations of atoms in an optical potential,” Phys. Rev. Lett. 76, 4508–4511 (1996).
    [Crossref]
  39. T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83, 4752–4755 (1999).
    [Crossref]
  40. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett. 83, 4756–4759 (1999).
    [Crossref]
  41. G. Lenz, I. Talanina, and C. M. de Sterke, “Bloch Oscillations in an array of curved optical waveguides,” Phys. Rev. Lett. 83, 963–966 (1999).
    [Crossref]
  42. H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903 (2006).
    [Crossref]
  43. S. Longhi, “Optical Zener-Bloch oscillations in binary waveguide arrays,” Europhys. Lett. 76, 416–421 (2006).
    [Crossref]
  44. F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, and S. Longhi, “Bloch-Zener oscillations in binary superlattices,” Phys. Rev. Lett. 102, 076802 (2009).
    [Crossref]
  45. M. Levy and P. Kumar, “Nonreciprocal Bloch oscillations in magneto-optic waveguide arrays,” Opt. Lett. 35, 3147–3149 (2010).
    [Crossref]
  46. P. Xue, R. Zhang, H. Qin, X. Zhan, Z. H. Bian, J. Li, and B. C. Sanders, “Experimental quantum-walk revival with a time-dependent coin,” Phys. Rev. Lett. 114, 140502 (2015).
    [Crossref]
  47. C. Cedzich and R. F. Werner, “Revivals in quantum walks with a quasiperiodically-time-dependent coin,” Phys. Rev. A 93, 032329 (2016).
    [Crossref]
  48. U. Peschel, C. Bersch, and G. Onishchukov, “Discreteness in time,” Open Phys. 6, 619–627 (2008).
    [Crossref]
  49. C. Bersch, G. Onishchukov, and U. Peschel, “Experimental observation of spectral Bloch oscillations,” Opt. Lett. 34, 2372–2374 (2009).
    [Crossref]
  50. L. Yuan and S. Fan, “Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator,” Optica 3, 1014–1018 (2016).
    [Crossref]
  51. C. Cedzich, T. Rybár, A. H. Werner, A. Alberti, M. Genske, and R. F. Werner, “Propagation of quantum walks in electric fields,” Phys. Rev. Lett. 111, 160601 (2013).
    [Crossref]
  52. M. Genske, W. Alt, A. Steffen, A. H. Werner, R. F. Werner, D. Meschede, and A. Alberti, “Electric quantum walks with individual atoms,” Phys. Rev. Lett. 110, 190601 (2013).
    [Crossref]
  53. L. A. Bru, M. Hinarejos, F. Silva, G. J. de Valcárcel, and E. Roldán, “Electric quantum walks in two dimensions,” Phys. Rev. A 93, 032333 (2016).
    [Crossref]
  54. C. Cedzich, T. Geib, A. H. Werner, and R. F. Werner, “Quantum walks in external gauge fields,” J. Math. Phys. 60, 012107 (2019).
    [Crossref]
  55. H. Chalabi, S. Barik, S. Mittal, T. E. Murphy, M. Hafezi, and E. Waks, “Synthetic gauge field for two-dimensional time-multiplexed quantum random walks,” Phys. Rev. Lett. 123, 150503 (2019).
    [Crossref]
  56. D. H. Dunlap and V. M. Kenkre, “Dynamic localization of a charged particle moving under the influence of an electric field,” Phys. Rev. B 34, 3625–3633 (1986).
    [Crossref]
  57. G. Lenz, R. Parker, M. Wanke, and C. de Sterke, “Dynamical localization and AC Bloch oscillations in periodic optical waveguide arrays,” Opt. Commun. 218, 87–92 (2003).
    [Crossref]
  58. S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
    [Crossref]
  59. R. Iyer, J. S. Aitchison, J. Wan, M. M. Dignam, and C. M. de Sterke, “Exact dynamic localization in curved AlGaAs optical waveguide arrays,” Opt. Express 15, 3212–3223 (2007).
    [Crossref]
  60. A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-Bloch oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103, 143903 (2009).
    [Crossref]
  61. A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Generalized exact dynamic localization in curved coupled optical waveguide arrays,” Phys. Rev. Lett. 109, 103901 (2012).
    [Crossref]
  62. L. Yuan and S. Fan, “Three-dimensional dynamic localization of light from a time-dependent effective gauge field for photons,” Phys. Rev. Lett. 114, 243901 (2015).
    [Crossref]
  63. V. V. Orre, E. A. Goldschmidt, A. Deshpande, A. V. Gorshkov, V. Tamma, M. Hafezi, and S. Mittal, “Interference of temporally distinguishable photons using frequency-resolved detection,” Phys. Rev. Lett. 123, 123603 (2019).
    [Crossref]
  64. H. Pichler, S. Choi, P. Zoller, and M. D. Lukin, “Universal photonic quantum computation via time-delayed feedback,” Proc. Natl. Acad. Sci. USA 114, 11362–11367 (2017).
    [Crossref]
  65. H. Chalabi and E. Waks, “Interaction of photons with a coupled atom-cavity system through a bidirectional time-delayed feedback,” Phys. Rev. A 98, 063832 (2018).
    [Crossref]

2019 (6)

A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, “Experimental band structure spectroscopy along a synthetic dimension,” Nat. Commun. 10, 3122 (2019).
[Crossref]

E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, and M. Segev, “Photonic topological insulator in synthetic dimensions,” Nature 567, 356–360 (2019).
[Crossref]

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]

C. Cedzich, T. Geib, A. H. Werner, and R. F. Werner, “Quantum walks in external gauge fields,” J. Math. Phys. 60, 012107 (2019).
[Crossref]

H. Chalabi, S. Barik, S. Mittal, T. E. Murphy, M. Hafezi, and E. Waks, “Synthetic gauge field for two-dimensional time-multiplexed quantum random walks,” Phys. Rev. Lett. 123, 150503 (2019).
[Crossref]

V. V. Orre, E. A. Goldschmidt, A. Deshpande, A. V. Gorshkov, V. Tamma, M. Hafezi, and S. Mittal, “Interference of temporally distinguishable photons using frequency-resolved detection,” Phys. Rev. Lett. 123, 123603 (2019).
[Crossref]

2018 (7)

H. Chalabi and E. Waks, “Interaction of photons with a coupled atom-cavity system through a bidirectional time-delayed feedback,” Phys. Rev. A 98, 063832 (2018).
[Crossref]

A. D’Errico, F. Cardano, M. Maffei, A. Dauphin, R. Barboza, C. Esposito, B. Piccirillo, M. Lewenstein, P. Massignan, and L. Marrucci, “Two-dimensional topological quantum walks in the momentum space of structured light,” Optica 7, 108–114 (2018).
[Crossref]

C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018).
[Crossref]

Q. Lin, X.-Q. Sun, M. Xiao, S.-C. Zhang, and S. Fan, “A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension,” Sci. Adv. 4, eaat2774 (2018).
[Crossref]

L. Yuan, M. Xiao, Q. Lin, and S. Fan, “Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation,” Phys. Rev. B 97, 104105 (2018).
[Crossref]

C. Qin, F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alù, and P. Lu, “Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials,” Phys. Rev. Lett. 120, 133901 (2018).
[Crossref]

C. Sparrow, E. Martín-López, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew, and A. Laing, “Simulating the vibrational quantum dynamics of molecules using photonics,” Nature 557, 660–667 (2018).
[Crossref]

2017 (4)

B. A. Bell, K. Wang, A. S. Solntsev, D. N. Neshev, A. A. Sukhorukov, and B. J. Eggleton, “Spectral photonic lattices with complex long-range coupling,” Optica 4, 1433–1436 (2017).
[Crossref]

F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, “Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons,” Nat. Commun. 8, 15516 (2017).
[Crossref]

S. Barkhofen, T. Nitsche, F. Elster, L. Lorz, A. Gábris, I. Jex, and C. Silberhorn, “Measuring topological invariants in disordered discrete-time quantum walks,” Phys. Rev. A 96, 033846 (2017).
[Crossref]

H. Pichler, S. Choi, P. Zoller, and M. D. Lukin, “Universal photonic quantum computation via time-delayed feedback,” Proc. Natl. Acad. Sci. USA 114, 11362–11367 (2017).
[Crossref]

2016 (7)

L. A. Bru, M. Hinarejos, F. Silva, G. J. de Valcárcel, and E. Roldán, “Electric quantum walks in two dimensions,” Phys. Rev. A 93, 032333 (2016).
[Crossref]

L. Yuan and S. Fan, “Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator,” Optica 3, 1014–1018 (2016).
[Crossref]

C. Cedzich and R. F. Werner, “Revivals in quantum walks with a quasiperiodically-time-dependent coin,” Phys. Rev. A 93, 032329 (2016).
[Crossref]

T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys. 18, 063017 (2016).
[Crossref]

S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi, “Measurement of topological invariants in a 2D photonic system,” Nat. Photonics 10, 180–183 (2016).
[Crossref]

F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, “Statistical moments of quantum-walk dynamics reveal topological quantum transitions,” Nat. Commun. 7, 11439 (2016).
[Crossref]

Q. Lin, M. Xiao, L. Yuan, and S. Fan, “Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension,” Nat. Commun. 7, 13731 (2016).
[Crossref]

2015 (4)

F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, “Quantum walks and wavepacket dynamics on a lattice with twisted photons,” Sci. Adv. 1, e1500087 (2015).
[Crossref]

W. Hu, J. C. Pillay, K. Wu, M. Pasek, P. P. Shum, and Y. D. Chong, “Measurement of a topological edge invariant in a microwave network,” Phys. Rev. X 5, 011012 (2015).
[Crossref]

P. Xue, R. Zhang, H. Qin, X. Zhan, Z. H. Bian, J. Li, and B. C. Sanders, “Experimental quantum-walk revival with a time-dependent coin,” Phys. Rev. Lett. 114, 140502 (2015).
[Crossref]

L. Yuan and S. Fan, “Three-dimensional dynamic localization of light from a time-dependent effective gauge field for photons,” Phys. Rev. Lett. 114, 243901 (2015).
[Crossref]

2014 (1)

S. Mittal, J. Fan, S. Faez, A. Migdall, J. M. Taylor, and M. Hafezi, “Topologically robust transport of photons in a synthetic gauge field,” Phys. Rev. Lett. 113, 087403 (2014).
[Crossref]

2013 (5)

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

G. Corrielli, A. Crespi, G. Della Valle, S. Longhi, and R. Osellame, “Fractional Bloch oscillations in photonic lattices,” Nat. Commun. 4, 1555 (2013).
[Crossref]

S. K. Goyal, F. S. Roux, A. Forbes, and T. Konrad, “Implementing quantum walks using orbital angular momentum of classical light,” Phys. Rev. Lett. 110, 263602 (2013).
[Crossref]

C. Cedzich, T. Rybár, A. H. Werner, A. Alberti, M. Genske, and R. F. Werner, “Propagation of quantum walks in electric fields,” Phys. Rev. Lett. 111, 160601 (2013).
[Crossref]

M. Genske, W. Alt, A. Steffen, A. H. Werner, R. F. Werner, D. Meschede, and A. Alberti, “Electric quantum walks with individual atoms,” Phys. Rev. Lett. 110, 190601 (2013).
[Crossref]

2012 (5)

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Generalized exact dynamic localization in curved coupled optical waveguide arrays,” Phys. Rev. Lett. 109, 103901 (2012).
[Crossref]

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity–time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref]

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
[Crossref]

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
[Crossref]

A. Schreiber, A. Gabris, P. P. Rohde, K. Laiho, M. Stefanak, V. Potocek, C. Hamilton, I. Jex, and C. Silberhorn, “A 2D quantum walk simulation of two-particle dynamics,” Science 336, 55–58 (2012).
[Crossref]

2011 (3)

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[Crossref]

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7, 907–912 (2011).
[Crossref]

X.-S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys. 7, 399–405 (2011).
[Crossref]

2010 (5)

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–111 (2010).
[Crossref]

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J. Mosley, E. Andersson, I. Jex, and C. Silberhorn, “Photons walking the line: a quantum walk with adjustable coin operations,” Phys. Rev. Lett. 104, 050502 (2010).
[Crossref]

E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, and H.-C. Nägerl, “Inducing transport in a dissipation-free lattice with super Bloch oscillations,” Phys. Rev. Lett. 104, 200403 (2010).
[Crossref]

Y. Bromberg, Y. Lahini, and Y. Silberberg, “Bloch oscillations of path-entangled photons,” Phys. Rev. Lett. 105, 263604 (2010).
[Crossref]

M. Levy and P. Kumar, “Nonreciprocal Bloch oscillations in magneto-optic waveguide arrays,” Opt. Lett. 35, 3147–3149 (2010).
[Crossref]

2009 (3)

F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, and S. Longhi, “Bloch-Zener oscillations in binary superlattices,” Phys. Rev. Lett. 102, 076802 (2009).
[Crossref]

C. Bersch, G. Onishchukov, and U. Peschel, “Experimental observation of spectral Bloch oscillations,” Opt. Lett. 34, 2372–2374 (2009).
[Crossref]

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-Bloch oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103, 143903 (2009).
[Crossref]

2008 (1)

U. Peschel, C. Bersch, and G. Onishchukov, “Discreteness in time,” Open Phys. 6, 619–627 (2008).
[Crossref]

2007 (2)

2006 (3)

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
[Crossref]

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903 (2006).
[Crossref]

S. Longhi, “Optical Zener-Bloch oscillations in binary waveguide arrays,” Europhys. Lett. 76, 416–421 (2006).
[Crossref]

2004 (1)

D. Witthaut, F. Keck, H. J. Korsch, and S. Mossmann, “Bloch oscillations in two-dimensional lattices,” New J. Phys. 6, 41 (2004).
[Crossref]

2003 (1)

G. Lenz, R. Parker, M. Wanke, and C. de Sterke, “Dynamical localization and AC Bloch oscillations in periodic optical waveguide arrays,” Opt. Commun. 218, 87–92 (2003).
[Crossref]

1999 (4)

T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83, 4752–4755 (1999).
[Crossref]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett. 83, 4756–4759 (1999).
[Crossref]

G. Lenz, I. Talanina, and C. M. de Sterke, “Bloch Oscillations in an array of curved optical waveguides,” Phys. Rev. Lett. 83, 963–966 (1999).
[Crossref]

D. Bouwmeester, I. Marzoli, G. P. Karman, W. Schleich, and J. P. Woerdman, “Optical Galton board,” Phys. Rev. A 61, 013410 (1999).
[Crossref]

1996 (1)

M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, “Bloch oscillations of atoms in an optical potential,” Phys. Rev. Lett. 76, 4508–4511 (1996).
[Crossref]

1986 (1)

D. H. Dunlap and V. M. Kenkre, “Dynamic localization of a charged particle moving under the influence of an electric field,” Phys. Rev. B 34, 3625–3633 (1986).
[Crossref]

1929 (1)

F. Bloch, “Über die Quantenmechanik der Elektronen in Kristallgittern,” Z. Phys. 52, 555–600 (1929).
[Crossref]

Aitchison, J. S.

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Generalized exact dynamic localization in curved coupled optical waveguide arrays,” Phys. Rev. Lett. 109, 103901 (2012).
[Crossref]

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-Bloch oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103, 143903 (2009).
[Crossref]

R. Iyer, J. S. Aitchison, J. Wan, M. M. Dignam, and C. M. de Sterke, “Exact dynamic localization in curved AlGaAs optical waveguide arrays,” Opt. Express 15, 3212–3223 (2007).
[Crossref]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett. 83, 4756–4759 (1999).
[Crossref]

Alberti, A.

C. Cedzich, T. Rybár, A. H. Werner, A. Alberti, M. Genske, and R. F. Werner, “Propagation of quantum walks in electric fields,” Phys. Rev. Lett. 111, 160601 (2013).
[Crossref]

M. Genske, W. Alt, A. Steffen, A. H. Werner, R. F. Werner, D. Meschede, and A. Alberti, “Electric quantum walks with individual atoms,” Phys. Rev. Lett. 110, 190601 (2013).
[Crossref]

Almeida, M. P.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–111 (2010).
[Crossref]

Alt, W.

M. Genske, W. Alt, A. Steffen, A. H. Werner, R. F. Werner, D. Meschede, and A. Alberti, “Electric quantum walks with individual atoms,” Phys. Rev. Lett. 110, 190601 (2013).
[Crossref]

Alù, A.

C. Qin, F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alù, and P. Lu, “Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials,” Phys. Rev. Lett. 120, 133901 (2018).
[Crossref]

Amo, A.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]

Andersson, E.

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J. Mosley, E. Andersson, I. Jex, and C. Silberhorn, “Photons walking the line: a quantum walk with adjustable coin operations,” Phys. Rev. Lett. 104, 050502 (2010).
[Crossref]

Aspuru-Guzik, A.

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
[Crossref]

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–111 (2010).
[Crossref]

Bandres, M. A.

E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, and M. Segev, “Photonic topological insulator in synthetic dimensions,” Nature 567, 356–360 (2019).
[Crossref]

Barbieri, M.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–111 (2010).
[Crossref]

Barboza, R.

Barik, S.

H. Chalabi, S. Barik, S. Mittal, T. E. Murphy, M. Hafezi, and E. Waks, “Synthetic gauge field for two-dimensional time-multiplexed quantum random walks,” Phys. Rev. Lett. 123, 150503 (2019).
[Crossref]

Barkhofen, S.

S. Barkhofen, T. Nitsche, F. Elster, L. Lorz, A. Gábris, I. Jex, and C. Silberhorn, “Measuring topological invariants in disordered discrete-time quantum walks,” Phys. Rev. A 96, 033846 (2017).
[Crossref]

T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys. 18, 063017 (2016).
[Crossref]

Bell, B. A.

Ben Dahan, M.

M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, “Bloch oscillations of atoms in an optical potential,” Phys. Rev. Lett. 76, 4508–4511 (1996).
[Crossref]

Bersch, C.

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity–time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref]

C. Bersch, G. Onishchukov, and U. Peschel, “Experimental observation of spectral Bloch oscillations,” Opt. Lett. 34, 2372–2374 (2009).
[Crossref]

U. Peschel, C. Bersch, and G. Onishchukov, “Discreteness in time,” Open Phys. 6, 619–627 (2008).
[Crossref]

Biamonte, J. D.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–111 (2010).
[Crossref]

Bian, Z. H.

P. Xue, R. Zhang, H. Qin, X. Zhan, Z. H. Bian, J. Li, and B. C. Sanders, “Experimental quantum-walk revival with a time-dependent coin,” Phys. Rev. Lett. 114, 140502 (2015).
[Crossref]

Bloch, F.

F. Bloch, “Über die Quantenmechanik der Elektronen in Kristallgittern,” Z. Phys. 52, 555–600 (1929).
[Crossref]

Bouwmeester, D.

D. Bouwmeester, I. Marzoli, G. P. Karman, W. Schleich, and J. P. Woerdman, “Optical Galton board,” Phys. Rev. A 61, 013410 (1999).
[Crossref]

Boyd, R. W.

F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, “Quantum walks and wavepacket dynamics on a lattice with twisted photons,” Sci. Adv. 1, e1500087 (2015).
[Crossref]

Bräuer, A.

T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83, 4752–4755 (1999).
[Crossref]

Bromberg, Y.

Y. Bromberg, Y. Lahini, and Y. Silberberg, “Bloch oscillations of path-entangled photons,” Phys. Rev. Lett. 105, 263604 (2010).
[Crossref]

Bru, L. A.

L. A. Bru, M. Hinarejos, F. Silva, G. J. de Valcárcel, and E. Roldán, “Electric quantum walks in two dimensions,” Phys. Rev. A 93, 032333 (2016).
[Crossref]

Cardano, F.

A. D’Errico, F. Cardano, M. Maffei, A. Dauphin, R. Barboza, C. Esposito, B. Piccirillo, M. Lewenstein, P. Massignan, and L. Marrucci, “Two-dimensional topological quantum walks in the momentum space of structured light,” Optica 7, 108–114 (2018).
[Crossref]

F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, “Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons,” Nat. Commun. 8, 15516 (2017).
[Crossref]

F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, “Statistical moments of quantum-walk dynamics reveal topological quantum transitions,” Nat. Commun. 7, 11439 (2016).
[Crossref]

F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, “Quantum walks and wavepacket dynamics on a lattice with twisted photons,” Sci. Adv. 1, e1500087 (2015).
[Crossref]

Carolan, J.

C. Sparrow, E. Martín-López, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew, and A. Laing, “Simulating the vibrational quantum dynamics of molecules using photonics,” Nature 557, 660–667 (2018).
[Crossref]

Carusotto, I.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]

Cassemiro, K. N.

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[Crossref]

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J. Mosley, E. Andersson, I. Jex, and C. Silberhorn, “Photons walking the line: a quantum walk with adjustable coin operations,” Phys. Rev. Lett. 104, 050502 (2010).
[Crossref]

Castin, Y.

M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, “Bloch oscillations of atoms in an optical potential,” Phys. Rev. Lett. 76, 4508–4511 (1996).
[Crossref]

Cataudella, V.

F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, “Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons,” Nat. Commun. 8, 15516 (2017).
[Crossref]

F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, “Statistical moments of quantum-walk dynamics reveal topological quantum transitions,” Nat. Commun. 7, 11439 (2016).
[Crossref]

Cedzich, C.

C. Cedzich, T. Geib, A. H. Werner, and R. F. Werner, “Quantum walks in external gauge fields,” J. Math. Phys. 60, 012107 (2019).
[Crossref]

C. Cedzich and R. F. Werner, “Revivals in quantum walks with a quasiperiodically-time-dependent coin,” Phys. Rev. A 93, 032329 (2016).
[Crossref]

C. Cedzich, T. Rybár, A. H. Werner, A. Alberti, M. Genske, and R. F. Werner, “Propagation of quantum walks in electric fields,” Phys. Rev. Lett. 111, 160601 (2013).
[Crossref]

Chalabi, H.

H. Chalabi, S. Barik, S. Mittal, T. E. Murphy, M. Hafezi, and E. Waks, “Synthetic gauge field for two-dimensional time-multiplexed quantum random walks,” Phys. Rev. Lett. 123, 150503 (2019).
[Crossref]

H. Chalabi and E. Waks, “Interaction of photons with a coupled atom-cavity system through a bidirectional time-delayed feedback,” Phys. Rev. A 98, 063832 (2018).
[Crossref]

Chen, C.

C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018).
[Crossref]

Chen, M.-C.

C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018).
[Crossref]

Choi, S.

H. Pichler, S. Choi, P. Zoller, and M. D. Lukin, “Universal photonic quantum computation via time-delayed feedback,” Proc. Natl. Acad. Sci. USA 114, 11362–11367 (2017).
[Crossref]

Chong, Y. D.

W. Hu, J. C. Pillay, K. Wu, M. Pasek, P. P. Shum, and Y. D. Chong, “Measurement of a topological edge invariant in a microwave network,” Phys. Rev. X 5, 011012 (2015).
[Crossref]

Christodoulides, D. N.

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity–time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref]

Cianci, E.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
[Crossref]

Corrielli, G.

G. Corrielli, A. Crespi, G. Della Valle, S. Longhi, and R. Osellame, “Fractional Bloch oscillations in photonic lattices,” Nat. Commun. 4, 1555 (2013).
[Crossref]

Crespi, A.

G. Corrielli, A. Crespi, G. Della Valle, S. Longhi, and R. Osellame, “Fractional Bloch oscillations in photonic lattices,” Nat. Commun. 4, 1555 (2013).
[Crossref]

D’Errico, A.

A. D’Errico, F. Cardano, M. Maffei, A. Dauphin, R. Barboza, C. Esposito, B. Piccirillo, M. Lewenstein, P. Massignan, and L. Marrucci, “Two-dimensional topological quantum walks in the momentum space of structured light,” Optica 7, 108–114 (2018).
[Crossref]

F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, “Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons,” Nat. Commun. 8, 15516 (2017).
[Crossref]

Dakic, B.

X.-S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys. 7, 399–405 (2011).
[Crossref]

Dannberg, P.

T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83, 4752–4755 (1999).
[Crossref]

Danzl, J. G.

E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, and H.-C. Nägerl, “Inducing transport in a dissipation-free lattice with super Bloch oscillations,” Phys. Rev. Lett. 104, 200403 (2010).
[Crossref]

Dauphin, A.

A. D’Errico, F. Cardano, M. Maffei, A. Dauphin, R. Barboza, C. Esposito, B. Piccirillo, M. Lewenstein, P. Massignan, and L. Marrucci, “Two-dimensional topological quantum walks in the momentum space of structured light,” Optica 7, 108–114 (2018).
[Crossref]

F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, “Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons,” Nat. Commun. 8, 15516 (2017).
[Crossref]

De Filippis, G.

F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, “Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons,” Nat. Commun. 8, 15516 (2017).
[Crossref]

F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, “Statistical moments of quantum-walk dynamics reveal topological quantum transitions,” Nat. Commun. 7, 11439 (2016).
[Crossref]

de Lisio, C.

F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, “Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons,” Nat. Commun. 8, 15516 (2017).
[Crossref]

F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, “Statistical moments of quantum-walk dynamics reveal topological quantum transitions,” Nat. Commun. 7, 11439 (2016).
[Crossref]

F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, “Quantum walks and wavepacket dynamics on a lattice with twisted photons,” Sci. Adv. 1, e1500087 (2015).
[Crossref]

de Sterke, C.

G. Lenz, R. Parker, M. Wanke, and C. de Sterke, “Dynamical localization and AC Bloch oscillations in periodic optical waveguide arrays,” Opt. Commun. 218, 87–92 (2003).
[Crossref]

de Sterke, C. M.

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Generalized exact dynamic localization in curved coupled optical waveguide arrays,” Phys. Rev. Lett. 109, 103901 (2012).
[Crossref]

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-Bloch oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103, 143903 (2009).
[Crossref]

R. Iyer, J. S. Aitchison, J. Wan, M. M. Dignam, and C. M. de Sterke, “Exact dynamic localization in curved AlGaAs optical waveguide arrays,” Opt. Express 15, 3212–3223 (2007).
[Crossref]

G. Lenz, I. Talanina, and C. M. de Sterke, “Bloch Oscillations in an array of curved optical waveguides,” Phys. Rev. Lett. 83, 963–966 (1999).
[Crossref]

de Valcárcel, G. J.

L. A. Bru, M. Hinarejos, F. Silva, G. J. de Valcárcel, and E. Roldán, “Electric quantum walks in two dimensions,” Phys. Rev. A 93, 032333 (2016).
[Crossref]

Della Valle, G.

G. Corrielli, A. Crespi, G. Della Valle, S. Longhi, and R. Osellame, “Fractional Bloch oscillations in photonic lattices,” Nat. Commun. 4, 1555 (2013).
[Crossref]

Demler, E. A.

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7, 907–912 (2011).
[Crossref]

Deshpande, A.

V. V. Orre, E. A. Goldschmidt, A. Deshpande, A. V. Gorshkov, V. Tamma, M. Hafezi, and S. Mittal, “Interference of temporally distinguishable photons using frequency-resolved detection,” Phys. Rev. Lett. 123, 123603 (2019).
[Crossref]

Desyatnikov, A. S.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903 (2006).
[Crossref]

Dignam, M. M.

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Generalized exact dynamic localization in curved coupled optical waveguide arrays,” Phys. Rev. Lett. 109, 103901 (2012).
[Crossref]

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-Bloch oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103, 143903 (2009).
[Crossref]

R. Iyer, J. S. Aitchison, J. Wan, M. M. Dignam, and C. M. de Sterke, “Exact dynamic localization in curved AlGaAs optical waveguide arrays,” Opt. Express 15, 3212–3223 (2007).
[Crossref]

Ding, X.

C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018).
[Crossref]

Dong, J.

C. Qin, F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alù, and P. Lu, “Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials,” Phys. Rev. Lett. 120, 133901 (2018).
[Crossref]

Dreisow, F.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, and S. Longhi, “Bloch-Zener oscillations in binary superlattices,” Phys. Rev. Lett. 102, 076802 (2009).
[Crossref]

Dunlap, D. H.

D. H. Dunlap and V. M. Kenkre, “Dynamic localization of a charged particle moving under the influence of an electric field,” Phys. Rev. B 34, 3625–3633 (1986).
[Crossref]

Dutt, A.

A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, “Experimental band structure spectroscopy along a synthetic dimension,” Nat. Commun. 10, 3122 (2019).
[Crossref]

Eggleton, B. J.

Eisenberg, H. S.

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett. 83, 4756–4759 (1999).
[Crossref]

Elflein, W.

T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83, 4752–4755 (1999).
[Crossref]

Elster, F.

S. Barkhofen, T. Nitsche, F. Elster, L. Lorz, A. Gábris, I. Jex, and C. Silberhorn, “Measuring topological invariants in disordered discrete-time quantum walks,” Phys. Rev. A 96, 033846 (2017).
[Crossref]

T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys. 18, 063017 (2016).
[Crossref]

Esposito, C.

Faez, S.

S. Mittal, J. Fan, S. Faez, A. Migdall, J. M. Taylor, and M. Hafezi, “Topologically robust transport of photons in a synthetic gauge field,” Phys. Rev. Lett. 113, 087403 (2014).
[Crossref]

Fan, J.

S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi, “Measurement of topological invariants in a 2D photonic system,” Nat. Photonics 10, 180–183 (2016).
[Crossref]

S. Mittal, J. Fan, S. Faez, A. Migdall, J. M. Taylor, and M. Hafezi, “Topologically robust transport of photons in a synthetic gauge field,” Phys. Rev. Lett. 113, 087403 (2014).
[Crossref]

Fan, S.

A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, “Experimental band structure spectroscopy along a synthetic dimension,” Nat. Commun. 10, 3122 (2019).
[Crossref]

Q. Lin, X.-Q. Sun, M. Xiao, S.-C. Zhang, and S. Fan, “A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension,” Sci. Adv. 4, eaat2774 (2018).
[Crossref]

L. Yuan, M. Xiao, Q. Lin, and S. Fan, “Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation,” Phys. Rev. B 97, 104105 (2018).
[Crossref]

Q. Lin, M. Xiao, L. Yuan, and S. Fan, “Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension,” Nat. Commun. 7, 13731 (2016).
[Crossref]

L. Yuan and S. Fan, “Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator,” Optica 3, 1014–1018 (2016).
[Crossref]

L. Yuan and S. Fan, “Three-dimensional dynamic localization of light from a time-dependent effective gauge field for photons,” Phys. Rev. Lett. 114, 243901 (2015).
[Crossref]

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
[Crossref]

Fang, K.

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
[Crossref]

Foglietti, V.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
[Crossref]

Forbes, A.

S. K. Goyal, F. S. Roux, A. Forbes, and T. Konrad, “Implementing quantum walks using orbital angular momentum of classical light,” Phys. Rev. Lett. 110, 263602 (2013).
[Crossref]

Gabris, A.

A. Schreiber, A. Gabris, P. P. Rohde, K. Laiho, M. Stefanak, V. Potocek, C. Hamilton, I. Jex, and C. Silberhorn, “A 2D quantum walk simulation of two-particle dynamics,” Science 336, 55–58 (2012).
[Crossref]

Gábris, A.

S. Barkhofen, T. Nitsche, F. Elster, L. Lorz, A. Gábris, I. Jex, and C. Silberhorn, “Measuring topological invariants in disordered discrete-time quantum walks,” Phys. Rev. A 96, 033846 (2017).
[Crossref]

T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys. 18, 063017 (2016).
[Crossref]

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[Crossref]

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J. Mosley, E. Andersson, I. Jex, and C. Silberhorn, “Photons walking the line: a quantum walk with adjustable coin operations,” Phys. Rev. Lett. 104, 050502 (2010).
[Crossref]

Ganeshan, S.

S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi, “Measurement of topological invariants in a 2D photonic system,” Nat. Photonics 10, 180–183 (2016).
[Crossref]

Geib, T.

C. Cedzich, T. Geib, A. H. Werner, and R. F. Werner, “Quantum walks in external gauge fields,” J. Math. Phys. 60, 012107 (2019).
[Crossref]

Genske, M.

M. Genske, W. Alt, A. Steffen, A. H. Werner, R. F. Werner, D. Meschede, and A. Alberti, “Electric quantum walks with individual atoms,” Phys. Rev. Lett. 110, 190601 (2013).
[Crossref]

C. Cedzich, T. Rybár, A. H. Werner, A. Alberti, M. Genske, and R. F. Werner, “Propagation of quantum walks in electric fields,” Phys. Rev. Lett. 111, 160601 (2013).
[Crossref]

Gillett, G. G.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–111 (2010).
[Crossref]

Goggin, M. E.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–111 (2010).
[Crossref]

Goldman, N.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]

Goldschmidt, E. A.

V. V. Orre, E. A. Goldschmidt, A. Deshpande, A. V. Gorshkov, V. Tamma, M. Hafezi, and S. Mittal, “Interference of temporally distinguishable photons using frequency-resolved detection,” Phys. Rev. Lett. 123, 123603 (2019).
[Crossref]

Gorshkov, A. V.

V. V. Orre, E. A. Goldschmidt, A. Deshpande, A. V. Gorshkov, V. Tamma, M. Hafezi, and S. Mittal, “Interference of temporally distinguishable photons using frequency-resolved detection,” Phys. Rev. Lett. 123, 123603 (2019).
[Crossref]

Goyal, S. K.

S. K. Goyal, F. S. Roux, A. Forbes, and T. Konrad, “Implementing quantum walks using orbital angular momentum of classical light,” Phys. Rev. Lett. 110, 263602 (2013).
[Crossref]

Hafezi, M.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]

V. V. Orre, E. A. Goldschmidt, A. Deshpande, A. V. Gorshkov, V. Tamma, M. Hafezi, and S. Mittal, “Interference of temporally distinguishable photons using frequency-resolved detection,” Phys. Rev. Lett. 123, 123603 (2019).
[Crossref]

H. Chalabi, S. Barik, S. Mittal, T. E. Murphy, M. Hafezi, and E. Waks, “Synthetic gauge field for two-dimensional time-multiplexed quantum random walks,” Phys. Rev. Lett. 123, 150503 (2019).
[Crossref]

S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi, “Measurement of topological invariants in a 2D photonic system,” Nat. Photonics 10, 180–183 (2016).
[Crossref]

S. Mittal, J. Fan, S. Faez, A. Migdall, J. M. Taylor, and M. Hafezi, “Topologically robust transport of photons in a synthetic gauge field,” Phys. Rev. Lett. 113, 087403 (2014).
[Crossref]

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7, 907–912 (2011).
[Crossref]

Haller, E.

E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, and H.-C. Nägerl, “Inducing transport in a dissipation-free lattice with super Bloch oscillations,” Phys. Rev. Lett. 104, 200403 (2010).
[Crossref]

Hamilton, C.

A. Schreiber, A. Gabris, P. P. Rohde, K. Laiho, M. Stefanak, V. Potocek, C. Hamilton, I. Jex, and C. Silberhorn, “A 2D quantum walk simulation of two-particle dynamics,” Science 336, 55–58 (2012).
[Crossref]

Harrold, C.

C. Sparrow, E. Martín-López, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew, and A. Laing, “Simulating the vibrational quantum dynamics of molecules using photonics,” Nature 557, 660–667 (2018).
[Crossref]

Hart, R.

E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, and H.-C. Nägerl, “Inducing transport in a dissipation-free lattice with super Bloch oscillations,” Phys. Rev. Lett. 104, 200403 (2010).
[Crossref]

Hashimoto, T.

C. Sparrow, E. Martín-López, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew, and A. Laing, “Simulating the vibrational quantum dynamics of molecules using photonics,” Nature 557, 660–667 (2018).
[Crossref]

He, Y.

C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018).
[Crossref]

Heinrich, M.

F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, and S. Longhi, “Bloch-Zener oscillations in binary superlattices,” Phys. Rev. Lett. 102, 076802 (2009).
[Crossref]

Hinarejos, M.

L. A. Bru, M. Hinarejos, F. Silva, G. J. de Valcárcel, and E. Roldán, “Electric quantum walks in two dimensions,” Phys. Rev. A 93, 032333 (2016).
[Crossref]

Hu, W.

W. Hu, J. C. Pillay, K. Wu, M. Pasek, P. P. Shum, and Y. D. Chong, “Measurement of a topological edge invariant in a microwave network,” Phys. Rev. X 5, 011012 (2015).
[Crossref]

Iyer, R.

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Generalized exact dynamic localization in curved coupled optical waveguide arrays,” Phys. Rev. Lett. 109, 103901 (2012).
[Crossref]

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-Bloch oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103, 143903 (2009).
[Crossref]

R. Iyer, J. S. Aitchison, J. Wan, M. M. Dignam, and C. M. de Sterke, “Exact dynamic localization in curved AlGaAs optical waveguide arrays,” Opt. Express 15, 3212–3223 (2007).
[Crossref]

Jex, I.

S. Barkhofen, T. Nitsche, F. Elster, L. Lorz, A. Gábris, I. Jex, and C. Silberhorn, “Measuring topological invariants in disordered discrete-time quantum walks,” Phys. Rev. A 96, 033846 (2017).
[Crossref]

T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys. 18, 063017 (2016).
[Crossref]

A. Schreiber, A. Gabris, P. P. Rohde, K. Laiho, M. Stefanak, V. Potocek, C. Hamilton, I. Jex, and C. Silberhorn, “A 2D quantum walk simulation of two-particle dynamics,” Science 336, 55–58 (2012).
[Crossref]

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[Crossref]

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J. Mosley, E. Andersson, I. Jex, and C. Silberhorn, “Photons walking the line: a quantum walk with adjustable coin operations,” Phys. Rev. Lett. 104, 050502 (2010).
[Crossref]

Joglekar, Y. N.

C. Sparrow, E. Martín-López, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew, and A. Laing, “Simulating the vibrational quantum dynamics of molecules using photonics,” Nature 557, 660–667 (2018).
[Crossref]

Joushaghani, A.

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Generalized exact dynamic localization in curved coupled optical waveguide arrays,” Phys. Rev. Lett. 109, 103901 (2012).
[Crossref]

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-Bloch oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103, 143903 (2009).
[Crossref]

Karimi, E.

F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, “Quantum walks and wavepacket dynamics on a lattice with twisted photons,” Sci. Adv. 1, e1500087 (2015).
[Crossref]

Karman, G. P.

D. Bouwmeester, I. Marzoli, G. P. Karman, W. Schleich, and J. P. Woerdman, “Optical Galton board,” Phys. Rev. A 61, 013410 (1999).
[Crossref]

Kassal, I.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–111 (2010).
[Crossref]

Keck, F.

D. Witthaut, F. Keck, H. J. Korsch, and S. Mossmann, “Bloch oscillations in two-dimensional lattices,” New J. Phys. 6, 41 (2004).
[Crossref]

Kenkre, V. M.

D. H. Dunlap and V. M. Kenkre, “Dynamic localization of a charged particle moving under the influence of an electric field,” Phys. Rev. B 34, 3625–3633 (1986).
[Crossref]

Kivshar, Y. S.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903 (2006).
[Crossref]

Konrad, T.

S. K. Goyal, F. S. Roux, A. Forbes, and T. Konrad, “Implementing quantum walks using orbital angular momentum of classical light,” Phys. Rev. Lett. 110, 263602 (2013).
[Crossref]

Korsch, H. J.

D. Witthaut, F. Keck, H. J. Korsch, and S. Mossmann, “Bloch oscillations in two-dimensional lattices,” New J. Phys. 6, 41 (2004).
[Crossref]

Krolikowski, W.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903 (2006).
[Crossref]

Kumar, P.

Lahini, Y.

Y. Bromberg, Y. Lahini, and Y. Silberberg, “Bloch oscillations of path-entangled photons,” Phys. Rev. Lett. 105, 263604 (2010).
[Crossref]

Laiho, K.

A. Schreiber, A. Gabris, P. P. Rohde, K. Laiho, M. Stefanak, V. Potocek, C. Hamilton, I. Jex, and C. Silberhorn, “A 2D quantum walk simulation of two-particle dynamics,” Science 336, 55–58 (2012).
[Crossref]

Laing, A.

C. Sparrow, E. Martín-López, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew, and A. Laing, “Simulating the vibrational quantum dynamics of molecules using photonics,” Nature 557, 660–667 (2018).
[Crossref]

Lanyon, B. P.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–111 (2010).
[Crossref]

Laporta, P.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
[Crossref]

Lederer, F.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903 (2006).
[Crossref]

T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83, 4752–4755 (1999).
[Crossref]

Lenz, G.

G. Lenz, R. Parker, M. Wanke, and C. de Sterke, “Dynamical localization and AC Bloch oscillations in periodic optical waveguide arrays,” Opt. Commun. 218, 87–92 (2003).
[Crossref]

G. Lenz, I. Talanina, and C. M. de Sterke, “Bloch Oscillations in an array of curved optical waveguides,” Phys. Rev. Lett. 83, 963–966 (1999).
[Crossref]

Levy, M.

Lewenstein, M.

A. D’Errico, F. Cardano, M. Maffei, A. Dauphin, R. Barboza, C. Esposito, B. Piccirillo, M. Lewenstein, P. Massignan, and L. Marrucci, “Two-dimensional topological quantum walks in the momentum space of structured light,” Optica 7, 108–114 (2018).
[Crossref]

F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, “Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons,” Nat. Commun. 8, 15516 (2017).
[Crossref]

Li, H.

C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018).
[Crossref]

Li, J.

P. Xue, R. Zhang, H. Qin, X. Zhan, Z. H. Bian, J. Li, and B. C. Sanders, “Experimental quantum-walk revival with a time-dependent coin,” Phys. Rev. Lett. 114, 140502 (2015).
[Crossref]

Lin, Q.

A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, “Experimental band structure spectroscopy along a synthetic dimension,” Nat. Commun. 10, 3122 (2019).
[Crossref]

Q. Lin, X.-Q. Sun, M. Xiao, S.-C. Zhang, and S. Fan, “A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension,” Sci. Adv. 4, eaat2774 (2018).
[Crossref]

L. Yuan, M. Xiao, Q. Lin, and S. Fan, “Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation,” Phys. Rev. B 97, 104105 (2018).
[Crossref]

Q. Lin, M. Xiao, L. Yuan, and S. Fan, “Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension,” Nat. Commun. 7, 13731 (2016).
[Crossref]

Liu, C.

C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018).
[Crossref]

Lobino, M.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
[Crossref]

Longhi, S.

G. Corrielli, A. Crespi, G. Della Valle, S. Longhi, and R. Osellame, “Fractional Bloch oscillations in photonic lattices,” Nat. Commun. 4, 1555 (2013).
[Crossref]

F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, and S. Longhi, “Bloch-Zener oscillations in binary superlattices,” Phys. Rev. Lett. 102, 076802 (2009).
[Crossref]

S. Longhi, “Optical Zener-Bloch oscillations in binary waveguide arrays,” Europhys. Lett. 76, 416–421 (2006).
[Crossref]

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
[Crossref]

Lorz, L.

S. Barkhofen, T. Nitsche, F. Elster, L. Lorz, A. Gábris, I. Jex, and C. Silberhorn, “Measuring topological invariants in disordered discrete-time quantum walks,” Phys. Rev. A 96, 033846 (2017).
[Crossref]

Lu, C.-Y.

C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018).
[Crossref]

Lu, L.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]

Lu, P.

C. Qin, F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alù, and P. Lu, “Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials,” Phys. Rev. Lett. 120, 133901 (2018).
[Crossref]

Lukin, M. D.

H. Pichler, S. Choi, P. Zoller, and M. D. Lukin, “Universal photonic quantum computation via time-delayed feedback,” Proc. Natl. Acad. Sci. USA 114, 11362–11367 (2017).
[Crossref]

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7, 907–912 (2011).
[Crossref]

Lumer, Y.

E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, and M. Segev, “Photonic topological insulator in synthetic dimensions,” Nature 567, 356–360 (2019).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

Luo, Y.-H.

C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018).
[Crossref]

Lustig, E.

E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, and M. Segev, “Photonic topological insulator in synthetic dimensions,” Nature 567, 356–360 (2019).
[Crossref]

Ma, X.-S.

X.-S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys. 7, 399–405 (2011).
[Crossref]

Maffei, M.

A. D’Errico, F. Cardano, M. Maffei, A. Dauphin, R. Barboza, C. Esposito, B. Piccirillo, M. Lewenstein, P. Massignan, and L. Marrucci, “Two-dimensional topological quantum walks in the momentum space of structured light,” Optica 7, 108–114 (2018).
[Crossref]

F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, “Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons,” Nat. Commun. 8, 15516 (2017).
[Crossref]

F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, “Statistical moments of quantum-walk dynamics reveal topological quantum transitions,” Nat. Commun. 7, 11439 (2016).
[Crossref]

Marangoni, M.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
[Crossref]

Maraviglia, N.

C. Sparrow, E. Martín-López, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew, and A. Laing, “Simulating the vibrational quantum dynamics of molecules using photonics,” Nature 557, 660–667 (2018).
[Crossref]

Mark, M. J.

E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, and H.-C. Nägerl, “Inducing transport in a dissipation-free lattice with super Bloch oscillations,” Phys. Rev. Lett. 104, 200403 (2010).
[Crossref]

Marrucci, L.

A. D’Errico, F. Cardano, M. Maffei, A. Dauphin, R. Barboza, C. Esposito, B. Piccirillo, M. Lewenstein, P. Massignan, and L. Marrucci, “Two-dimensional topological quantum walks in the momentum space of structured light,” Optica 7, 108–114 (2018).
[Crossref]

F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, “Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons,” Nat. Commun. 8, 15516 (2017).
[Crossref]

F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, “Statistical moments of quantum-walk dynamics reveal topological quantum transitions,” Nat. Commun. 7, 11439 (2016).
[Crossref]

F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, “Quantum walks and wavepacket dynamics on a lattice with twisted photons,” Sci. Adv. 1, e1500087 (2015).
[Crossref]

Martín-López, E.

C. Sparrow, E. Martín-López, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew, and A. Laing, “Simulating the vibrational quantum dynamics of molecules using photonics,” Nature 557, 660–667 (2018).
[Crossref]

Marzoli, I.

D. Bouwmeester, I. Marzoli, G. P. Karman, W. Schleich, and J. P. Woerdman, “Optical Galton board,” Phys. Rev. A 61, 013410 (1999).
[Crossref]

Massa, F.

F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, “Statistical moments of quantum-walk dynamics reveal topological quantum transitions,” Nat. Commun. 7, 11439 (2016).
[Crossref]

F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, “Quantum walks and wavepacket dynamics on a lattice with twisted photons,” Sci. Adv. 1, e1500087 (2015).
[Crossref]

Massignan, P.

A. D’Errico, F. Cardano, M. Maffei, A. Dauphin, R. Barboza, C. Esposito, B. Piccirillo, M. Lewenstein, P. Massignan, and L. Marrucci, “Two-dimensional topological quantum walks in the momentum space of structured light,” Optica 7, 108–114 (2018).
[Crossref]

F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, “Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons,” Nat. Commun. 8, 15516 (2017).
[Crossref]

Matsuda, N.

C. Sparrow, E. Martín-López, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew, and A. Laing, “Simulating the vibrational quantum dynamics of molecules using photonics,” Nature 557, 660–667 (2018).
[Crossref]

Meschede, D.

M. Genske, W. Alt, A. Steffen, A. H. Werner, R. F. Werner, D. Meschede, and A. Alberti, “Electric quantum walks with individual atoms,” Phys. Rev. Lett. 110, 190601 (2013).
[Crossref]

Migdall, A.

S. Mittal, J. Fan, S. Faez, A. Migdall, J. M. Taylor, and M. Hafezi, “Topologically robust transport of photons in a synthetic gauge field,” Phys. Rev. Lett. 113, 087403 (2014).
[Crossref]

Miller, D. A. B.

A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, “Experimental band structure spectroscopy along a synthetic dimension,” Nat. Commun. 10, 3122 (2019).
[Crossref]

Minkov, M.

A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, “Experimental band structure spectroscopy along a synthetic dimension,” Nat. Commun. 10, 3122 (2019).
[Crossref]

Miri, M.-A.

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity–time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref]

Mittal, S.

H. Chalabi, S. Barik, S. Mittal, T. E. Murphy, M. Hafezi, and E. Waks, “Synthetic gauge field for two-dimensional time-multiplexed quantum random walks,” Phys. Rev. Lett. 123, 150503 (2019).
[Crossref]

V. V. Orre, E. A. Goldschmidt, A. Deshpande, A. V. Gorshkov, V. Tamma, M. Hafezi, and S. Mittal, “Interference of temporally distinguishable photons using frequency-resolved detection,” Phys. Rev. Lett. 123, 123603 (2019).
[Crossref]

S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi, “Measurement of topological invariants in a 2D photonic system,” Nat. Photonics 10, 180–183 (2016).
[Crossref]

S. Mittal, J. Fan, S. Faez, A. Migdall, J. M. Taylor, and M. Hafezi, “Topologically robust transport of photons in a synthetic gauge field,” Phys. Rev. Lett. 113, 087403 (2014).
[Crossref]

Mohseni, M.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–111 (2010).
[Crossref]

Morandotti, R.

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett. 83, 4756–4759 (1999).
[Crossref]

Mosley, P. J.

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J. Mosley, E. Andersson, I. Jex, and C. Silberhorn, “Photons walking the line: a quantum walk with adjustable coin operations,” Phys. Rev. Lett. 104, 050502 (2010).
[Crossref]

Mossmann, S.

D. Witthaut, F. Keck, H. J. Korsch, and S. Mossmann, “Bloch oscillations in two-dimensional lattices,” New J. Phys. 6, 41 (2004).
[Crossref]

Murphy, T. E.

H. Chalabi, S. Barik, S. Mittal, T. E. Murphy, M. Hafezi, and E. Waks, “Synthetic gauge field for two-dimensional time-multiplexed quantum random walks,” Phys. Rev. Lett. 123, 150503 (2019).
[Crossref]

Nägerl, H.-C.

E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, and H.-C. Nägerl, “Inducing transport in a dissipation-free lattice with super Bloch oscillations,” Phys. Rev. Lett. 104, 200403 (2010).
[Crossref]

Navarrete-Benlloch, C.

C. Navarrete-Benlloch, A. Pérez, and E. Roldán, “Nonlinear optical Galton board,” Phys. Rev. A 75, 062333 (2007).
[Crossref]

Naylor, W.

X.-S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys. 7, 399–405 (2011).
[Crossref]

Neshev, D. N.

B. A. Bell, K. Wang, A. S. Solntsev, D. N. Neshev, A. A. Sukhorukov, and B. J. Eggleton, “Spectral photonic lattices with complex long-range coupling,” Optica 4, 1433–1436 (2017).
[Crossref]

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903 (2006).
[Crossref]

Neville, A.

C. Sparrow, E. Martín-López, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew, and A. Laing, “Simulating the vibrational quantum dynamics of molecules using photonics,” Nature 557, 660–667 (2018).
[Crossref]

Nitsche, T.

S. Barkhofen, T. Nitsche, F. Elster, L. Lorz, A. Gábris, I. Jex, and C. Silberhorn, “Measuring topological invariants in disordered discrete-time quantum walks,” Phys. Rev. A 96, 033846 (2017).
[Crossref]

T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys. 18, 063017 (2016).
[Crossref]

Nolte, S.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, and S. Longhi, “Bloch-Zener oscillations in binary superlattices,” Phys. Rev. Lett. 102, 076802 (2009).
[Crossref]

Novotný, J.

T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys. 18, 063017 (2016).
[Crossref]

O’Brien, J. L.

C. Sparrow, E. Martín-López, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew, and A. Laing, “Simulating the vibrational quantum dynamics of molecules using photonics,” Nature 557, 660–667 (2018).
[Crossref]

Onishchukov, G.

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity–time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref]

C. Bersch, G. Onishchukov, and U. Peschel, “Experimental observation of spectral Bloch oscillations,” Opt. Lett. 34, 2372–2374 (2009).
[Crossref]

U. Peschel, C. Bersch, and G. Onishchukov, “Discreteness in time,” Open Phys. 6, 619–627 (2008).
[Crossref]

Orre, V. V.

V. V. Orre, E. A. Goldschmidt, A. Deshpande, A. V. Gorshkov, V. Tamma, M. Hafezi, and S. Mittal, “Interference of temporally distinguishable photons using frequency-resolved detection,” Phys. Rev. Lett. 123, 123603 (2019).
[Crossref]

Osellame, R.

G. Corrielli, A. Crespi, G. Della Valle, S. Longhi, and R. Osellame, “Fractional Bloch oscillations in photonic lattices,” Nat. Commun. 4, 1555 (2013).
[Crossref]

Ozawa, T.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]

Pan, J.-W.

C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018).
[Crossref]

Paparo, D.

F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, “Quantum walks and wavepacket dynamics on a lattice with twisted photons,” Sci. Adv. 1, e1500087 (2015).
[Crossref]

Parker, R.

G. Lenz, R. Parker, M. Wanke, and C. de Sterke, “Dynamical localization and AC Bloch oscillations in periodic optical waveguide arrays,” Opt. Commun. 218, 87–92 (2003).
[Crossref]

Pasek, M.

W. Hu, J. C. Pillay, K. Wu, M. Pasek, P. P. Shum, and Y. D. Chong, “Measurement of a topological edge invariant in a microwave network,” Phys. Rev. X 5, 011012 (2015).
[Crossref]

Peik, E.

M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, “Bloch oscillations of atoms in an optical potential,” Phys. Rev. Lett. 76, 4508–4511 (1996).
[Crossref]

Peng, Y.

C. Qin, F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alù, and P. Lu, “Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials,” Phys. Rev. Lett. 120, 133901 (2018).
[Crossref]

Pérez, A.

C. Navarrete-Benlloch, A. Pérez, and E. Roldán, “Nonlinear optical Galton board,” Phys. Rev. A 75, 062333 (2007).
[Crossref]

Pertsch, T.

F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, and S. Longhi, “Bloch-Zener oscillations in binary superlattices,” Phys. Rev. Lett. 102, 076802 (2009).
[Crossref]

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903 (2006).
[Crossref]

T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83, 4752–4755 (1999).
[Crossref]

Peschel, U.

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity–time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref]

C. Bersch, G. Onishchukov, and U. Peschel, “Experimental observation of spectral Bloch oscillations,” Opt. Lett. 34, 2372–2374 (2009).
[Crossref]

U. Peschel, C. Bersch, and G. Onishchukov, “Discreteness in time,” Open Phys. 6, 619–627 (2008).
[Crossref]

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903 (2006).
[Crossref]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett. 83, 4756–4759 (1999).
[Crossref]

Piccirillo, B.

A. D’Errico, F. Cardano, M. Maffei, A. Dauphin, R. Barboza, C. Esposito, B. Piccirillo, M. Lewenstein, P. Massignan, and L. Marrucci, “Two-dimensional topological quantum walks in the momentum space of structured light,” Optica 7, 108–114 (2018).
[Crossref]

F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, “Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons,” Nat. Commun. 8, 15516 (2017).
[Crossref]

F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, “Statistical moments of quantum-walk dynamics reveal topological quantum transitions,” Nat. Commun. 7, 11439 (2016).
[Crossref]

Pichler, H.

H. Pichler, S. Choi, P. Zoller, and M. D. Lukin, “Universal photonic quantum computation via time-delayed feedback,” Proc. Natl. Acad. Sci. USA 114, 11362–11367 (2017).
[Crossref]

Pillay, J. C.

W. Hu, J. C. Pillay, K. Wu, M. Pasek, P. P. Shum, and Y. D. Chong, “Measurement of a topological edge invariant in a microwave network,” Phys. Rev. X 5, 011012 (2015).
[Crossref]

Plotnik, Y.

E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, and M. Segev, “Photonic topological insulator in synthetic dimensions,” Nature 567, 356–360 (2019).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

Podolsky, D.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

Poon, J. K. S.

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Generalized exact dynamic localization in curved coupled optical waveguide arrays,” Phys. Rev. Lett. 109, 103901 (2012).
[Crossref]

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-Bloch oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103, 143903 (2009).
[Crossref]

Potocek, V.

A. Schreiber, A. Gabris, P. P. Rohde, K. Laiho, M. Stefanak, V. Potocek, C. Hamilton, I. Jex, and C. Silberhorn, “A 2D quantum walk simulation of two-particle dynamics,” Science 336, 55–58 (2012).
[Crossref]

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[Crossref]

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J. Mosley, E. Andersson, I. Jex, and C. Silberhorn, “Photons walking the line: a quantum walk with adjustable coin operations,” Phys. Rev. Lett. 104, 050502 (2010).
[Crossref]

Powell, B. J.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–111 (2010).
[Crossref]

Price, H. M.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]

Qassim, H.

F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, “Quantum walks and wavepacket dynamics on a lattice with twisted photons,” Sci. Adv. 1, e1500087 (2015).
[Crossref]

Qin, C.

C. Qin, F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alù, and P. Lu, “Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials,” Phys. Rev. Lett. 120, 133901 (2018).
[Crossref]

Qin, H.

P. Xue, R. Zhang, H. Qin, X. Zhan, Z. H. Bian, J. Li, and B. C. Sanders, “Experimental quantum-walk revival with a time-dependent coin,” Phys. Rev. Lett. 114, 140502 (2015).
[Crossref]

Qin, J.

C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018).
[Crossref]

Ramponi, R.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
[Crossref]

Rechtsman, M. C.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

Regensburger, A.

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity–time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref]

Reichel, J.

M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, “Bloch oscillations of atoms in an optical potential,” Phys. Rev. Lett. 76, 4508–4511 (1996).
[Crossref]

Reichsöllner, L.

E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, and H.-C. Nägerl, “Inducing transport in a dissipation-free lattice with super Bloch oscillations,” Phys. Rev. Lett. 104, 200403 (2010).
[Crossref]

Rohde, P. P.

A. Schreiber, A. Gabris, P. P. Rohde, K. Laiho, M. Stefanak, V. Potocek, C. Hamilton, I. Jex, and C. Silberhorn, “A 2D quantum walk simulation of two-particle dynamics,” Science 336, 55–58 (2012).
[Crossref]

Roldán, E.

L. A. Bru, M. Hinarejos, F. Silva, G. J. de Valcárcel, and E. Roldán, “Electric quantum walks in two dimensions,” Phys. Rev. A 93, 032333 (2016).
[Crossref]

C. Navarrete-Benlloch, A. Pérez, and E. Roldán, “Nonlinear optical Galton board,” Phys. Rev. A 75, 062333 (2007).
[Crossref]

Roux, F. S.

S. K. Goyal, F. S. Roux, A. Forbes, and T. Konrad, “Implementing quantum walks using orbital angular momentum of classical light,” Phys. Rev. Lett. 110, 263602 (2013).
[Crossref]

Rybár, T.

C. Cedzich, T. Rybár, A. H. Werner, A. Alberti, M. Genske, and R. F. Werner, “Propagation of quantum walks in electric fields,” Phys. Rev. Lett. 111, 160601 (2013).
[Crossref]

Salomon, C.

M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, “Bloch oscillations of atoms in an optical potential,” Phys. Rev. Lett. 76, 4508–4511 (1996).
[Crossref]

Sanders, B. C.

C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018).
[Crossref]

P. Xue, R. Zhang, H. Qin, X. Zhan, Z. H. Bian, J. Li, and B. C. Sanders, “Experimental quantum-walk revival with a time-dependent coin,” Phys. Rev. Lett. 114, 140502 (2015).
[Crossref]

Santamato, E.

F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, “Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons,” Nat. Commun. 8, 15516 (2017).
[Crossref]

F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, “Statistical moments of quantum-walk dynamics reveal topological quantum transitions,” Nat. Commun. 7, 11439 (2016).
[Crossref]

F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, “Quantum walks and wavepacket dynamics on a lattice with twisted photons,” Sci. Adv. 1, e1500087 (2015).
[Crossref]

Schleich, W.

D. Bouwmeester, I. Marzoli, G. P. Karman, W. Schleich, and J. P. Woerdman, “Optical Galton board,” Phys. Rev. A 61, 013410 (1999).
[Crossref]

Schreiber, A.

A. Schreiber, A. Gabris, P. P. Rohde, K. Laiho, M. Stefanak, V. Potocek, C. Hamilton, I. Jex, and C. Silberhorn, “A 2D quantum walk simulation of two-particle dynamics,” Science 336, 55–58 (2012).
[Crossref]

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[Crossref]

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J. Mosley, E. Andersson, I. Jex, and C. Silberhorn, “Photons walking the line: a quantum walk with adjustable coin operations,” Phys. Rev. Lett. 104, 050502 (2010).
[Crossref]

Schuster, D.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]

Sciarrino, F.

F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, “Quantum walks and wavepacket dynamics on a lattice with twisted photons,” Sci. Adv. 1, e1500087 (2015).
[Crossref]

Segev, M.

E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, and M. Segev, “Photonic topological insulator in synthetic dimensions,” Nature 567, 356–360 (2019).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

Shum, P. P.

W. Hu, J. C. Pillay, K. Wu, M. Pasek, P. P. Shum, and Y. D. Chong, “Measurement of a topological edge invariant in a microwave network,” Phys. Rev. X 5, 011012 (2015).
[Crossref]

Silberberg, Y.

Y. Bromberg, Y. Lahini, and Y. Silberberg, “Bloch oscillations of path-entangled photons,” Phys. Rev. Lett. 105, 263604 (2010).
[Crossref]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett. 83, 4756–4759 (1999).
[Crossref]

Silberhorn, C.

S. Barkhofen, T. Nitsche, F. Elster, L. Lorz, A. Gábris, I. Jex, and C. Silberhorn, “Measuring topological invariants in disordered discrete-time quantum walks,” Phys. Rev. A 96, 033846 (2017).
[Crossref]

T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys. 18, 063017 (2016).
[Crossref]

A. Schreiber, A. Gabris, P. P. Rohde, K. Laiho, M. Stefanak, V. Potocek, C. Hamilton, I. Jex, and C. Silberhorn, “A 2D quantum walk simulation of two-particle dynamics,” Science 336, 55–58 (2012).
[Crossref]

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[Crossref]

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J. Mosley, E. Andersson, I. Jex, and C. Silberhorn, “Photons walking the line: a quantum walk with adjustable coin operations,” Phys. Rev. Lett. 104, 050502 (2010).
[Crossref]

Silva, F.

L. A. Bru, M. Hinarejos, F. Silva, G. J. de Valcárcel, and E. Roldán, “Electric quantum walks in two dimensions,” Phys. Rev. A 93, 032333 (2016).
[Crossref]

Simon, J.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]

Slussarenko, S.

F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, “Quantum walks and wavepacket dynamics on a lattice with twisted photons,” Sci. Adv. 1, e1500087 (2015).
[Crossref]

Solntsev, A. S.

Sounas, D.

C. Qin, F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alù, and P. Lu, “Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials,” Phys. Rev. Lett. 120, 133901 (2018).
[Crossref]

Sparrow, C.

C. Sparrow, E. Martín-López, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew, and A. Laing, “Simulating the vibrational quantum dynamics of molecules using photonics,” Nature 557, 660–667 (2018).
[Crossref]

Stefanak, M.

A. Schreiber, A. Gabris, P. P. Rohde, K. Laiho, M. Stefanak, V. Potocek, C. Hamilton, I. Jex, and C. Silberhorn, “A 2D quantum walk simulation of two-particle dynamics,” Science 336, 55–58 (2012).
[Crossref]

Steffen, A.

M. Genske, W. Alt, A. Steffen, A. H. Werner, R. F. Werner, D. Meschede, and A. Alberti, “Electric quantum walks with individual atoms,” Phys. Rev. Lett. 110, 190601 (2013).
[Crossref]

Sukhorukov, A. A.

B. A. Bell, K. Wang, A. S. Solntsev, D. N. Neshev, A. A. Sukhorukov, and B. J. Eggleton, “Spectral photonic lattices with complex long-range coupling,” Optica 4, 1433–1436 (2017).
[Crossref]

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903 (2006).
[Crossref]

Sun, X.-Q.

Q. Lin, X.-Q. Sun, M. Xiao, S.-C. Zhang, and S. Fan, “A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension,” Sci. Adv. 4, eaat2774 (2018).
[Crossref]

Szameit, A.

E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, and M. Segev, “Photonic topological insulator in synthetic dimensions,” Nature 567, 356–360 (2019).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, and S. Longhi, “Bloch-Zener oscillations in binary superlattices,” Phys. Rev. Lett. 102, 076802 (2009).
[Crossref]

Talanina, I.

G. Lenz, I. Talanina, and C. M. de Sterke, “Bloch Oscillations in an array of curved optical waveguides,” Phys. Rev. Lett. 83, 963–966 (1999).
[Crossref]

Tamma, V.

V. V. Orre, E. A. Goldschmidt, A. Deshpande, A. V. Gorshkov, V. Tamma, M. Hafezi, and S. Mittal, “Interference of temporally distinguishable photons using frequency-resolved detection,” Phys. Rev. Lett. 123, 123603 (2019).
[Crossref]

Taylor, J. M.

S. Mittal, J. Fan, S. Faez, A. Migdall, J. M. Taylor, and M. Hafezi, “Topologically robust transport of photons in a synthetic gauge field,” Phys. Rev. Lett. 113, 087403 (2014).
[Crossref]

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7, 907–912 (2011).
[Crossref]

Tew, D. P.

C. Sparrow, E. Martín-López, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew, and A. Laing, “Simulating the vibrational quantum dynamics of molecules using photonics,” Nature 557, 660–667 (2018).
[Crossref]

Trompeter, H.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903 (2006).
[Crossref]

Tünnermann, A.

F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, and S. Longhi, “Bloch-Zener oscillations in binary superlattices,” Phys. Rev. Lett. 102, 076802 (2009).
[Crossref]

Vaezi, A.

S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi, “Measurement of topological invariants in a 2D photonic system,” Nat. Photonics 10, 180–183 (2016).
[Crossref]

Waks, E.

H. Chalabi, S. Barik, S. Mittal, T. E. Murphy, M. Hafezi, and E. Waks, “Synthetic gauge field for two-dimensional time-multiplexed quantum random walks,” Phys. Rev. Lett. 123, 150503 (2019).
[Crossref]

H. Chalabi and E. Waks, “Interaction of photons with a coupled atom-cavity system through a bidirectional time-delayed feedback,” Phys. Rev. A 98, 063832 (2018).
[Crossref]

Walther, P.

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
[Crossref]

X.-S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys. 7, 399–405 (2011).
[Crossref]

Wan, J.

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Generalized exact dynamic localization in curved coupled optical waveguide arrays,” Phys. Rev. Lett. 109, 103901 (2012).
[Crossref]

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-Bloch oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103, 143903 (2009).
[Crossref]

R. Iyer, J. S. Aitchison, J. Wan, M. M. Dignam, and C. M. de Sterke, “Exact dynamic localization in curved AlGaAs optical waveguide arrays,” Opt. Express 15, 3212–3223 (2007).
[Crossref]

Wang, B.

C. Qin, F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alù, and P. Lu, “Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials,” Phys. Rev. Lett. 120, 133901 (2018).
[Crossref]

Wang, D.-W.

C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018).
[Crossref]

Wang, K.

Wang, X.-L.

C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018).
[Crossref]

Wang, Z.

C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018).
[Crossref]

Wanke, M.

G. Lenz, R. Parker, M. Wanke, and C. de Sterke, “Dynamical localization and AC Bloch oscillations in periodic optical waveguide arrays,” Opt. Commun. 218, 87–92 (2003).
[Crossref]

Weimann, S.

E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, and M. Segev, “Photonic topological insulator in synthetic dimensions,” Nature 567, 356–360 (2019).
[Crossref]

Werner, A. H.

C. Cedzich, T. Geib, A. H. Werner, and R. F. Werner, “Quantum walks in external gauge fields,” J. Math. Phys. 60, 012107 (2019).
[Crossref]

M. Genske, W. Alt, A. Steffen, A. H. Werner, R. F. Werner, D. Meschede, and A. Alberti, “Electric quantum walks with individual atoms,” Phys. Rev. Lett. 110, 190601 (2013).
[Crossref]

C. Cedzich, T. Rybár, A. H. Werner, A. Alberti, M. Genske, and R. F. Werner, “Propagation of quantum walks in electric fields,” Phys. Rev. Lett. 111, 160601 (2013).
[Crossref]

Werner, R. F.

C. Cedzich, T. Geib, A. H. Werner, and R. F. Werner, “Quantum walks in external gauge fields,” J. Math. Phys. 60, 012107 (2019).
[Crossref]

C. Cedzich and R. F. Werner, “Revivals in quantum walks with a quasiperiodically-time-dependent coin,” Phys. Rev. A 93, 032329 (2016).
[Crossref]

M. Genske, W. Alt, A. Steffen, A. H. Werner, R. F. Werner, D. Meschede, and A. Alberti, “Electric quantum walks with individual atoms,” Phys. Rev. Lett. 110, 190601 (2013).
[Crossref]

C. Cedzich, T. Rybár, A. H. Werner, A. Alberti, M. Genske, and R. F. Werner, “Propagation of quantum walks in electric fields,” Phys. Rev. Lett. 111, 160601 (2013).
[Crossref]

White, A. G.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–111 (2010).
[Crossref]

Whitfield, J. D.

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–111 (2010).
[Crossref]

Witthaut, D.

D. Witthaut, F. Keck, H. J. Korsch, and S. Mossmann, “Bloch oscillations in two-dimensional lattices,” New J. Phys. 6, 41 (2004).
[Crossref]

Woerdman, J. P.

D. Bouwmeester, I. Marzoli, G. P. Karman, W. Schleich, and J. P. Woerdman, “Optical Galton board,” Phys. Rev. A 61, 013410 (1999).
[Crossref]

Wu, K.

W. Hu, J. C. Pillay, K. Wu, M. Pasek, P. P. Shum, and Y. D. Chong, “Measurement of a topological edge invariant in a microwave network,” Phys. Rev. X 5, 011012 (2015).
[Crossref]

Xiao, M.

Q. Lin, X.-Q. Sun, M. Xiao, S.-C. Zhang, and S. Fan, “A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension,” Sci. Adv. 4, eaat2774 (2018).
[Crossref]

L. Yuan, M. Xiao, Q. Lin, and S. Fan, “Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation,” Phys. Rev. B 97, 104105 (2018).
[Crossref]

Q. Lin, M. Xiao, L. Yuan, and S. Fan, “Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension,” Nat. Commun. 7, 13731 (2016).
[Crossref]

Xue, P.

P. Xue, R. Zhang, H. Qin, X. Zhan, Z. H. Bian, J. Li, and B. C. Sanders, “Experimental quantum-walk revival with a time-dependent coin,” Phys. Rev. Lett. 114, 140502 (2015).
[Crossref]

You, L.-X.

C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018).
[Crossref]

Yu, Z.

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
[Crossref]

Yuan, L.

A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, “Experimental band structure spectroscopy along a synthetic dimension,” Nat. Commun. 10, 3122 (2019).
[Crossref]

L. Yuan, M. Xiao, Q. Lin, and S. Fan, “Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation,” Phys. Rev. B 97, 104105 (2018).
[Crossref]

Q. Lin, M. Xiao, L. Yuan, and S. Fan, “Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension,” Nat. Commun. 7, 13731 (2016).
[Crossref]

L. Yuan and S. Fan, “Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator,” Optica 3, 1014–1018 (2016).
[Crossref]

L. Yuan and S. Fan, “Three-dimensional dynamic localization of light from a time-dependent effective gauge field for photons,” Phys. Rev. Lett. 114, 243901 (2015).
[Crossref]

Zeilinger, A.

X.-S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys. 7, 399–405 (2011).
[Crossref]

Zeuner, J. M.

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

Zhan, X.

P. Xue, R. Zhang, H. Qin, X. Zhan, Z. H. Bian, J. Li, and B. C. Sanders, “Experimental quantum-walk revival with a time-dependent coin,” Phys. Rev. Lett. 114, 140502 (2015).
[Crossref]

Zhang, R.

P. Xue, R. Zhang, H. Qin, X. Zhan, Z. H. Bian, J. Li, and B. C. Sanders, “Experimental quantum-walk revival with a time-dependent coin,” Phys. Rev. Lett. 114, 140502 (2015).
[Crossref]

Zhang, S.-C.

Q. Lin, X.-Q. Sun, M. Xiao, S.-C. Zhang, and S. Fan, “A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension,” Sci. Adv. 4, eaat2774 (2018).
[Crossref]

Zhang, W.-J.

C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018).
[Crossref]

Zhang, X.

C. Qin, F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alù, and P. Lu, “Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials,” Phys. Rev. Lett. 120, 133901 (2018).
[Crossref]

Zhou, F.

C. Qin, F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alù, and P. Lu, “Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials,” Phys. Rev. Lett. 120, 133901 (2018).
[Crossref]

Zhu, X.

C. Qin, F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alù, and P. Lu, “Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials,” Phys. Rev. Lett. 120, 133901 (2018).
[Crossref]

Zilberberg, O.

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]

Zoller, P.

H. Pichler, S. Choi, P. Zoller, and M. D. Lukin, “Universal photonic quantum computation via time-delayed feedback,” Proc. Natl. Acad. Sci. USA 114, 11362–11367 (2017).
[Crossref]

Europhys. Lett. (1)

S. Longhi, “Optical Zener-Bloch oscillations in binary waveguide arrays,” Europhys. Lett. 76, 416–421 (2006).
[Crossref]

J. Math. Phys. (1)

C. Cedzich, T. Geib, A. H. Werner, and R. F. Werner, “Quantum walks in external gauge fields,” J. Math. Phys. 60, 012107 (2019).
[Crossref]

Nat. Chem. (1)

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem. 2, 106–111 (2010).
[Crossref]

Nat. Commun. (5)

A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S. Fan, “Experimental band structure spectroscopy along a synthetic dimension,” Nat. Commun. 10, 3122 (2019).
[Crossref]

Q. Lin, M. Xiao, L. Yuan, and S. Fan, “Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension,” Nat. Commun. 7, 13731 (2016).
[Crossref]

F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, “Statistical moments of quantum-walk dynamics reveal topological quantum transitions,” Nat. Commun. 7, 11439 (2016).
[Crossref]

F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo, C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L. Marrucci, M. Lewenstein, and P. Massignan, “Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons,” Nat. Commun. 8, 15516 (2017).
[Crossref]

G. Corrielli, A. Crespi, G. Della Valle, S. Longhi, and R. Osellame, “Fractional Bloch oscillations in photonic lattices,” Nat. Commun. 4, 1555 (2013).
[Crossref]

Nat. Photonics (2)

K. Fang, Z. Yu, and S. Fan, “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photonics 6, 782–787 (2012).
[Crossref]

S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi, “Measurement of topological invariants in a 2D photonic system,” Nat. Photonics 10, 180–183 (2016).
[Crossref]

Nat. Phys. (3)

M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys. 7, 907–912 (2011).
[Crossref]

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
[Crossref]

X.-S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys. 7, 399–405 (2011).
[Crossref]

Nature (4)

C. Sparrow, E. Martín-López, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y. N. Joglekar, T. Hashimoto, N. Matsuda, J. L. O’Brien, D. P. Tew, and A. Laing, “Simulating the vibrational quantum dynamics of molecules using photonics,” Nature 557, 660–667 (2018).
[Crossref]

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity–time synthetic photonic lattices,” Nature 488, 167–171 (2012).
[Crossref]

E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, and M. Segev, “Photonic topological insulator in synthetic dimensions,” Nature 567, 356–360 (2019).
[Crossref]

M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, “Photonic Floquet topological insulators,” Nature 496, 196–200 (2013).
[Crossref]

New J. Phys. (2)

T. Nitsche, F. Elster, J. Novotný, A. Gábris, I. Jex, S. Barkhofen, and C. Silberhorn, “Quantum walks with dynamical control: graph engineering, initial state preparation and state transfer,” New J. Phys. 18, 063017 (2016).
[Crossref]

D. Witthaut, F. Keck, H. J. Korsch, and S. Mossmann, “Bloch oscillations in two-dimensional lattices,” New J. Phys. 6, 41 (2004).
[Crossref]

Open Phys. (1)

U. Peschel, C. Bersch, and G. Onishchukov, “Discreteness in time,” Open Phys. 6, 619–627 (2008).
[Crossref]

Opt. Commun. (1)

G. Lenz, R. Parker, M. Wanke, and C. de Sterke, “Dynamical localization and AC Bloch oscillations in periodic optical waveguide arrays,” Opt. Commun. 218, 87–92 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Optica (3)

Phys. Rev. A (6)

C. Navarrete-Benlloch, A. Pérez, and E. Roldán, “Nonlinear optical Galton board,” Phys. Rev. A 75, 062333 (2007).
[Crossref]

D. Bouwmeester, I. Marzoli, G. P. Karman, W. Schleich, and J. P. Woerdman, “Optical Galton board,” Phys. Rev. A 61, 013410 (1999).
[Crossref]

S. Barkhofen, T. Nitsche, F. Elster, L. Lorz, A. Gábris, I. Jex, and C. Silberhorn, “Measuring topological invariants in disordered discrete-time quantum walks,” Phys. Rev. A 96, 033846 (2017).
[Crossref]

L. A. Bru, M. Hinarejos, F. Silva, G. J. de Valcárcel, and E. Roldán, “Electric quantum walks in two dimensions,” Phys. Rev. A 93, 032333 (2016).
[Crossref]

C. Cedzich and R. F. Werner, “Revivals in quantum walks with a quasiperiodically-time-dependent coin,” Phys. Rev. A 93, 032329 (2016).
[Crossref]

H. Chalabi and E. Waks, “Interaction of photons with a coupled atom-cavity system through a bidirectional time-delayed feedback,” Phys. Rev. A 98, 063832 (2018).
[Crossref]

Phys. Rev. B (2)

D. H. Dunlap and V. M. Kenkre, “Dynamic localization of a charged particle moving under the influence of an electric field,” Phys. Rev. B 34, 3625–3633 (1986).
[Crossref]

L. Yuan, M. Xiao, Q. Lin, and S. Fan, “Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation,” Phys. Rev. B 97, 104105 (2018).
[Crossref]

Phys. Rev. Lett. (23)

S. K. Goyal, F. S. Roux, A. Forbes, and T. Konrad, “Implementing quantum walks using orbital angular momentum of classical light,” Phys. Rev. Lett. 110, 263602 (2013).
[Crossref]

C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, “Observation of topologically protected edge states in a photonic two-dimensional quantum walk,” Phys. Rev. Lett. 121, 100502 (2018).
[Crossref]

S. Mittal, J. Fan, S. Faez, A. Migdall, J. M. Taylor, and M. Hafezi, “Topologically robust transport of photons in a synthetic gauge field,” Phys. Rev. Lett. 113, 087403 (2014).
[Crossref]

Y. Bromberg, Y. Lahini, and Y. Silberberg, “Bloch oscillations of path-entangled photons,” Phys. Rev. Lett. 105, 263604 (2010).
[Crossref]

E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, and H.-C. Nägerl, “Inducing transport in a dissipation-free lattice with super Bloch oscillations,” Phys. Rev. Lett. 104, 200403 (2010).
[Crossref]

M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, “Bloch oscillations of atoms in an optical potential,” Phys. Rev. Lett. 76, 4508–4511 (1996).
[Crossref]

T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, “Optical Bloch oscillations in temperature tuned waveguide arrays,” Phys. Rev. Lett. 83, 4752–4755 (1999).
[Crossref]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical Bloch oscillations,” Phys. Rev. Lett. 83, 4756–4759 (1999).
[Crossref]

G. Lenz, I. Talanina, and C. M. de Sterke, “Bloch Oscillations in an array of curved optical waveguides,” Phys. Rev. Lett. 83, 963–966 (1999).
[Crossref]

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903 (2006).
[Crossref]

C. Qin, F. Zhou, Y. Peng, D. Sounas, X. Zhu, B. Wang, J. Dong, X. Zhang, A. Alù, and P. Lu, “Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials,” Phys. Rev. Lett. 120, 133901 (2018).
[Crossref]

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J. Mosley, E. Andersson, I. Jex, and C. Silberhorn, “Photons walking the line: a quantum walk with adjustable coin operations,” Phys. Rev. Lett. 104, 050502 (2010).
[Crossref]

A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, and C. Silberhorn, “Decoherence and disorder in quantum walks: from ballistic spread to localization,” Phys. Rev. Lett. 106, 180403 (2011).
[Crossref]

H. Chalabi, S. Barik, S. Mittal, T. E. Murphy, M. Hafezi, and E. Waks, “Synthetic gauge field for two-dimensional time-multiplexed quantum random walks,” Phys. Rev. Lett. 123, 150503 (2019).
[Crossref]

C. Cedzich, T. Rybár, A. H. Werner, A. Alberti, M. Genske, and R. F. Werner, “Propagation of quantum walks in electric fields,” Phys. Rev. Lett. 111, 160601 (2013).
[Crossref]

M. Genske, W. Alt, A. Steffen, A. H. Werner, R. F. Werner, D. Meschede, and A. Alberti, “Electric quantum walks with individual atoms,” Phys. Rev. Lett. 110, 190601 (2013).
[Crossref]

P. Xue, R. Zhang, H. Qin, X. Zhan, Z. H. Bian, J. Li, and B. C. Sanders, “Experimental quantum-walk revival with a time-dependent coin,” Phys. Rev. Lett. 114, 140502 (2015).
[Crossref]

F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, and S. Longhi, “Bloch-Zener oscillations in binary superlattices,” Phys. Rev. Lett. 102, 076802 (2009).
[Crossref]

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96, 243901 (2006).
[Crossref]

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Quasi-Bloch oscillations in curved coupled optical waveguides,” Phys. Rev. Lett. 103, 143903 (2009).
[Crossref]

A. Joushaghani, R. Iyer, J. K. S. Poon, J. S. Aitchison, C. M. de Sterke, J. Wan, and M. M. Dignam, “Generalized exact dynamic localization in curved coupled optical waveguide arrays,” Phys. Rev. Lett. 109, 103901 (2012).
[Crossref]

L. Yuan and S. Fan, “Three-dimensional dynamic localization of light from a time-dependent effective gauge field for photons,” Phys. Rev. Lett. 114, 243901 (2015).
[Crossref]

V. V. Orre, E. A. Goldschmidt, A. Deshpande, A. V. Gorshkov, V. Tamma, M. Hafezi, and S. Mittal, “Interference of temporally distinguishable photons using frequency-resolved detection,” Phys. Rev. Lett. 123, 123603 (2019).
[Crossref]

Phys. Rev. X (1)

W. Hu, J. C. Pillay, K. Wu, M. Pasek, P. P. Shum, and Y. D. Chong, “Measurement of a topological edge invariant in a microwave network,” Phys. Rev. X 5, 011012 (2015).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

H. Pichler, S. Choi, P. Zoller, and M. D. Lukin, “Universal photonic quantum computation via time-delayed feedback,” Proc. Natl. Acad. Sci. USA 114, 11362–11367 (2017).
[Crossref]

Rev. Mod. Phys. (1)

T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019).
[Crossref]

Sci. Adv. (2)

F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. de Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, “Quantum walks and wavepacket dynamics on a lattice with twisted photons,” Sci. Adv. 1, e1500087 (2015).
[Crossref]

Q. Lin, X.-Q. Sun, M. Xiao, S.-C. Zhang, and S. Fan, “A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension,” Sci. Adv. 4, eaat2774 (2018).
[Crossref]

Science (1)

A. Schreiber, A. Gabris, P. P. Rohde, K. Laiho, M. Stefanak, V. Potocek, C. Hamilton, I. Jex, and C. Silberhorn, “A 2D quantum walk simulation of two-particle dynamics,” Science 336, 55–58 (2012).
[Crossref]

Z. Phys. (1)

F. Bloch, “Über die Quantenmechanik der Elektronen in Kristallgittern,” Z. Phys. 52, 555–600 (1929).
[Crossref]

Supplementary Material (1)

NameDescription
Supplement 1       Experimental details and theoretical analysis

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Applied phase modulation scheme for the $n$th step of the quantum walk.
Fig. 2.
Fig. 2. Pseudo energy band diagrams of the two-dimensional quantum walk for different gauge field strengths: (a) $\phi = \pi /2$, (b) $\phi = \pi /3$, and (c) $\phi = \pi /4$. In each row the left figure shows the full band diagram, while the right one shows the zoomed in part of the band diagram.
Fig. 3.
Fig. 3. (a) Experimental observations and (b) theoretical predictions of the evolution of the quantum walk distribution under the application of the time-dependent phase modulation with $\phi = \pi /4$. The columns from left to right show the distributions at time steps of 0, 2, 4, 6, and 8, respectively. In these plots, all the distributions are normalized to their maximum.
Fig. 4.
Fig. 4. Theoretical values for the quadratic means of (a) $y$ and (c) $x$ as a function of the time step for different gauge field strengths. Experimental values for the quadratic means of (b) $y$ and (d) $x$ as a function of the time step for different gauge field strengths.
Fig. 5.
Fig. 5. Theoretical values for the norm ones of (a) $y$ and (c) $x$ as a function of the time step for different gauge field strengths. Experimental values for the norm ones of (b) $y$ and (d) $x$ as a function of the time step for different gauge field strengths.
Fig. 6.
Fig. 6. Probability of revival: experimental (blue solid squares) and theoretical (red solid circles) probabilities of the walker returning to the origin with respect to the required number of steps for the revival to happen. The error bars in the measurements are smaller than the size of the plotted data points.
Fig. 7.
Fig. 7. Confinement of the quantum walker through the application of a discontinuous electric field. (a) Schematic describing the phase modulation pattern in the synthetic space that leads to a zero electric field for ${-}2 \lt y \lt 2$ and a nonzero electric field outside this range. (b) Experimental observations and (c) theoretical predictions of the evolution of the quantum walk distribution under the discontinuous electric field. The columns from left to right show the distributions at time steps of 1, 5, and 9, respectively. All the distributions are normalized to their maximum. (d) Experimentally measured and theoretically predicted quadratic means of $x$ and $y$ as a function of the time step. The error bars in the measurements are smaller than the size of the plotted data points.
Fig. 8.
Fig. 8. Theoretical predictions of the evolution of the quantum walk distribution under the discontinuous electric field for the thickness of (a) $t = 2$, (b) $t = 6$, and (c) $t = 8$. The columns from left to right show the distributions at time steps of 0, 4, 8, and 12, respectively. All the distributions are normalized to their maximum. Quadratic means of (d) $x$ and (e) $y$ as a function of the time step for different thicknesses of the discontinuity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E n , ± , k x , k y = 2 n π q ± 1 q arccos ( cos ( π q 2 ) ( sin q k y 1 ) cos ( q k x + π q 2 ) sin q k y ) ,

Metrics