Abstract

High-dimensional entangled states of light provide novel possibilities for quantum information, from fundamental tests of quantum mechanics to enhanced computation and communication protocols. In this context, the frequency degree of freedom combines the assets of robustness to propagation and easy handling with standard telecommunication components. Here, we use an integrated semiconductor chip to engineer the wavefunction and exchange statistics of frequency-entangled photon pairs directly at the generation stage, without post-manipulation. Tailoring the spatial properties of the pump beam allows generating frequency-anticorrelated, correlated and separable states, and to control the symmetry of the spectral wavefunction to induce either bosonic or fermionic behaviors. These results, obtained at room temperature and telecom wavelength, open promising perspectives for the quantum simulation of fermionic problems with photons on an integrated platform, as well as for communication and computation protocols exploiting antisymmetric high-dimensional quantum states.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Nonclassical states of light are key resources for quantum information technologies thanks to their easy transmission, robustness to decoherence, and variety of degrees of freedom to encode information [1]. In recent years, great efforts have been directed towards entanglement in high-dimensional degrees of freedom of photons as a means to strengthen the violation of Bell inequalities [2,3], increase the density and security of quantum communication [4,5], and enhance flexibility in quantum computing [6]. In addition, high-dimensional degrees of freedom of photons display a perfect analogy with the continuous variables (CV) of a multiphoton mode of the electromagnetic field [7], which make them a promising platform to realize CV quantum information protocols in the few-photon regime [8,9]. Photonic high-dimensional entanglement has been recently demonstrated in orbital angular momentum [3,10], transverse spatial [11] and path [12,13] modes, and frequency (or frequency–time) [14,15] degrees of freedom.

Among these different degrees of freedom, frequency is particularly attractive thanks to its robustness to propagation in optical fibers and its capability to convey large-scale quantum information into a single spatial mode. This provides a strong incentive for the development of efficient and scalable methods for the generation and manipulation of frequency-encoded quantum states [1618]. Nonlinear parametric processes such as parametric down-conversion (PDC) and four-wave mixing offer a high versatility for the generation of frequency-entangled photon pairs [19,20]. However, under CW pumping, energy conservation naturally leads to the emission of frequency-anticorrelated states, whereas other types of correlations are needed for certain applications: for instance, non-correlated states are required for heralded single-photon sources [21,22] and correlated states are key resources for clock synchronization [23] or dispersion cancellation in long-distance communication [24]. At a deeper level, it is desirable to gain a higher control over the frequency degree of freedom by manipulating the biphoton joint spectrum both in amplitude and phase. Such shaping can be performed by post-manipulation using time lenses [25], spatial light modulators (SLM) [26,27], dispersive elements [28], or programmable phase filters [14], but this inevitably reduces the brightness of the source and its integrability into chip-based photonic circuits.

Direct shaping of quantum frequency states at the generation stage is therefore preferable. Using parametric processes in solid-state systems, this has been recently realized by engineering the spectral [15,21,29,30] and spatial [31] properties of the pump beam, by temperature tuning [32], or by tailoring the material nonlinearity in domain-engineered crystals [33]. Among these different approaches, the spatial tuning of the pump combines the advantages of reconfigurability and extended possibilities of frequency-state engineering [34]. However, to our knowledge, no previous work has demonstrated a complete toolbox for frequency-state engineering through pump spatial tuning, including a control over the symmetry of the joint spectrum and thus the exchange statistics of the photon pairs—an important feature of quantum state engineering though, particularly in view of quantum simulation [3537].

 figure: Fig. 1.

Fig. 1. (a) Sketch of the AlGaAs ridge microcavity emitting photon pairs by PDC in a transverse pump geometry. (b)–(e) Sketch of the experiment, showing the pump shaping stage (b), stimulated emission tomography (c), fiber spectrograph (d), and Hong–Ou–Mandel (e) setups. Abbreviations: SLM, spatial light modulator; WFA, wavefront analyzer; PBS, polarizing beam splitter; FPC, fibered polarization controller; P, polarizer; HWP, half-wave plate; F, filter; DCF, dispersion compensating fiber; OSA, optical spectrum analyzer; SPAD, single-photon avalanche photodiode; TDC, time-to-digital converter.

Download Full Size | PPT Slide | PDF

In this work, we exploit the high flexibility offered by PDC in a semiconductor AlGaAs microcavity under a transverse pump geometry [3840] to engineer the spectral wavefunction and exchange statistics of photon pairs without post-manipulation. Tuning the pump spatial intensity allows producing frequency-anticorrelated, correlated, and separable states, while tuning the spatial phase enables switching between symmetric and antisymmetric spectral wavefunctions, leading respectively to bosonic and fermionic behaviors in a quantum interference experiment [11,41]. We also demonstrate the generation of non-Gaussian entanglement [42,43] in the continuous variables formed by the frequency and time degrees of freedom of the photon pairs. We thus demonstrate a general method providing a complete toolbox for frequency-state engineering at the generation stage, and using a chip-based source: these characteristics are crucial in the perspective of the real-world deployment of photonic quantum technologies based on the frequency degree of freedom. Our results, obtained at room temperature and telecom wavelength, open promising perspectives for quantum simulation with particles of various statistics on a monolithic platform without requiring external sources of quantum light [3537], and to serve as a compact and flexible source for communication and computation protocols based on antisymmetric high-dimensional quantum states [44,45].

2. THEORETICAL FRAMEWORK

The working principle of our semiconductor integrated source is sketched in Fig. 1(a). It is a Bragg ridge microcavity made of a stack of AlGaAs layers with alternating aluminum contents [39,40,46]. The device is based on a transverse pump geometry, in which a pulsed pump laser beam impinging on top of the ridge (with an incidence angle $ \theta $) generates pairs of counterpropagating, orthogonally polarized telecom-band photons (signal and idler) through PDC [40,47]. The Bragg mirrors provide both a vertical microcavity to enhance the pump field and a cladding for the twin-photon modes. Of the two possible nonlinear interactions occurring in the device, in the following we consider the one that generates a TM-polarized signal photon [propagating along $ z \gt 0 $, see Fig. 1(a)] and a TE-polarized idler photon (propagating along $ z \lt 0 $). The corresponding biphoton state reads $|\psi \rangle =\iint {\rm d}{{\omega }_{s}}{\rm d}{{\omega }_{i}}\text{JSA}({{\omega }_{s}},{{\omega }_{i}})\hat{a}_{s}^{\dagger }({{\omega }_{s}})\hat{a}_{i}^{\dagger }({{\omega }_{i}})|0,0{{\rangle }_{s,i}}$, where the operator $ \hat a_{s(i)}^\dagger (\omega ) $ creates a signal (idler) photon of frequency $ \omega $. The joint spectral amplitude JSA gives the probability amplitude of measuring a signal photon at frequency $ {\omega _s} $ and an idler photon at frequency $ {\omega _i} $. Neglecting group velocity dispersion (which is justified by the narrow spectral range of the generated photon pairs), and in the limit of narrow pump bandwidth, the JSA can be expressed as [34,48]

$${\rm JSA}({\omega _s},{\omega _i}) = {\phi _{{\rm spectral}}}({\omega _s} + {\omega _i}) {\phi _{{\rm PM}}}({\omega _s} - {\omega _i}).$$
Here, $ {\phi _{{\rm spectral}}} $, reflecting the condition of energy conservation, corresponds to the spectrum of the pump beam and $ {\phi _{{\rm PM}}} $, reflecting the phase-matching condition, is governed by the spatial properties of the pump beam:
$${\phi _{{\rm PM}}}({\omega _s} - {\omega _i}) = \int_{ - L/2}^{L/2} {\rm d}z {{\cal A}_p}(z){e^{ - i({k_{{\rm deg}}} + ({\omega _s} - {\omega _i})/{v_{\rm g}})z}},$$
where $ {{\cal A}_p}(z) $ is the pump amplitude profile along the waveguide direction, $ L $ is the waveguide length, $ {v_g} $ is the harmonic mean of the group velocities of the twin photon modes, and $ {k_{{\rm deg}}} = {\omega _p}{\rm sin}({\theta _{{\rm deg}}})/c $. In the latter expression, $ {\omega _p} $ is the pump central frequency, $ c $ is the light velocity, and $ {\theta _{{\rm deg}}} $ is the pump incidence angle needed to produce frequency-degenerate twin photons. Due to the small modal birefringence of our device ($ \Delta n/n \sim {10^{ - 3}} $), this degeneracy angle is slightly different from zero ($ {\theta _{{\rm deg}}} \sim {0.5^ \circ } $). When departing from this angle, the JSA gets translated in frequency space, but its shape remains identical up to an excellent approximation [34].

Equation (1) indicates that the shape of the JSA along the diagonal direction of the biphoton frequency space ($ {\omega _ + } = {\omega _s} + {\omega _i} $) and that along the antidiagonal direction ($ {\omega _ - } = {\omega _s} - {\omega _i} $) can be tuned independently by varying respectively the spectral or spatial properties of the pump beam, providing a simple and versatile means to engineer the frequency–time correlations of the photon pairs [34]. In addition, in contrast to the co-propagative regime of guided-wave PDC [15,49], the signal and idler photons are here produced in two distinct spatial modes, facilitating their further utilization in protocols. Here, we will exploit the spatial control of the pump beam in intensity and phase by using a spatial light modulator (SLM).

3. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1(b). The AlGaAs source (ridge length $ L = 2\,\,{\rm mm} $, width $ 6\,\,\unicode{x00B5} {\rm m} $, height $ 7\,\,\unicode{x00B5} {\rm m} $) is pumped with a pulsed Ti:Sa laser with wavelength $ {\lambda _p} \simeq 773\,\,{\rm nm} $, pulse duration $ \simeq 6\,\,{\rm ps} $, repetition rate 76 MHz, and average pump power 50 mW incident on the sample. The pump beam is shaped in intensity and phase using a reflective phase-only SLM (Holoeye Leto) in a 4f configuration, and analyzed with a wavefront analyzer (WFA) to verify the obtained modulation. Finally, a cylindrical lens focuses the beam on the top of the waveguide, and the PDC photons are collected with two microscope objectives and collimated into telecom optical fibers. To characterize the emitted quantum states, we measure the joint spectral intensity (JSI), which is the modulus squared of the JSA, by using a stimulated emission tomography (SET) technique [50] as sketched in Fig. 1(c). In this technique, in addition to the transverse pump beam, a TM polarized CW telecom laser (seed beam), injected through one facet of the waveguide, stimulates the generation of the (TE polarized) idler field by difference frequency generation, and its spectrum is recorded with an optical spectrum analyzer (OSA). The wavelength of the seed laser is swept so as to iteratively reconstruct the whole JSI.

4. CONTROL OF FREQUENCY CORRELATIONS

We first demonstrate the control over frequency correlations by varying the spatial extension of the pump beam. We pump the device with Gaussian pump profiles, $ {{\cal A}_p}(z) = {e^{ - {z^2}/{w^2}}}{e^{ikz}} $, where $ w $ is the beam waist on the waveguide and $ k = {\omega _p}\sin (\theta )/c $ is the projection of the pump wavevector along the $ z $ direction. In this situation, the phase-matching term $ {\phi _{{\rm PM}}}({\omega _s} - {\omega _i}) $ is real and corresponds, in the biphoton frequency space $ ({\omega _s},{\omega _i}) $, to a stripe aligned along the diagonal, with a width inversely proportional to the pump waist (in the limit where $ L \gg w $). The other term of the JSA, $ {\phi _{{\rm spectral}}}({\omega _s} + {\omega _i}) $, is given by the spectral distribution of the pump beam: since we use unchirped (Fourier-transform limited) pulses, it is also a real function and corresponds to a stripe aligned along the antidiagonal, with a width inversely proportional to the duration of the pump pulses. The JSA is the product of these two functions: it thus has the shape of an ellipse whose size and orientation are determined by the pump waist and pulse duration.

 figure: Fig. 2.

Fig. 2. Measured joint spectral intensities (JSI) for increasing values of the pump beam waist: (a) 0.25 mm, (b) 0.4 mm, (c) 0.6 mm, and (d) 1 mm. (e)–(h) Numerically simulated JSI for the above parameters. $ {\lambda _s} $ and $ {\lambda _i} $ denote the wavelength of the signal and idler photons, respectively.

Download Full Size | PPT Slide | PDF

Figure 2(a) reports the JSI measured by the SET technique for a pump waist $ w = 0.25 $ mm and a pulse duration of 6 ps; the pump angle $ \theta $ is slightly offset from degeneracy as required for the SET measurement [50]. The spectrum is aligned along the antidiagonal, corresponding to a frequency-anticorrelated state. We note the presence of a grid-like pattern, which is related to the reflectivity of the waveguide facets: this creates a Fabry–Perot cavity along the $ z $ direction, whose transmission resonances modulate the joint spectrum [50]. This effect could be exploited to facilitate the manipulation of the frequency degree of freedom by discretizing it, as is the case for quantum frequency combs [20,51,52]; on the other hand, it could be removed if needed by depositing an anti-reflection coating, e.g., in silicon nitride [53]. Starting from the anticorrelated spectrum of Fig. 2(a), Figs. 2(b)2(d) show the JSI measured for increasing values of the pump waist. We observe that the extension of the JSI along the antidiagonal direction progressively shrinks, transforming the initial state into a frequency-correlated state when $ w = 1\,\,{\rm mm} $ [Fig. 2(d)]. For the intermediate value $ w = 0.6\,\,{\rm mm} $ [Fig. 2(c)], the width of the phase-matching and spectral terms of the JSA are nearly equal, yielding a circular joint spectrum corresponding to a frequency-separable state. The numerical simulations in Figs. 2(e)2(h), which take into account modal birefringence, chromatic dispersion, and cavity effects in the sample, are in excellent agreement with the experiment. We show also on each panel the calculated Schmidt number $ K $ (obtained from the JSA), which quantifies the effective number of orthogonal frequency modes spanned by the biphoton wavefunction [21]. For the experimental data [Figs. 2(a)2(d)], the Schmidt number is determined by assuming a flat-phase JSA, a reasonable approximation here since we use unchirped pulses with flat spatial phase profiles. The Schmidt number initially decreases, reaches $ K \simeq 1 $ (corresponding to a separable state) when the JSI is circular, before increasing again when the state becomes frequency-correlated. Note that quantum states with higher Schmidt numbers (i.e., involving more time–frequency modes) could be obtained with the same source by tuning the pumping parameters (see Supplement 1 for a quantitative discussion).

 figure: Fig. 3.

Fig. 3. (a) Sketch of the pumping geometry to control the symmetry of the biphoton quantum frequency state. (b)–(f) Measured JSI for increasing values of the phase step $ \Delta \varphi $ between the two halves of the pump beam. (g)–(k) Corresponding simulated JSI.

Download Full Size | PPT Slide | PDF

Overall, the results presented in Fig. 2 demonstrate a flexible frequency engineering of biphoton quantum states, which can be exploited to adapt the AlGaAs integrated source to different quantum information applications requiring either anticorrelated [14], separable [21], or correlated frequency states [23,24]. In contrast to filtering approaches that decrease the source brightness by removing unwanted parts of the spectrum [20,54], here the full biphoton spectral intensity is entirely directed into the desired shape at the generation stage. The pair production rate is here $\, \simeq 10\,{\rm MHz} $ at the chip output, corresponding to a brightness of $\, \simeq 200\,{\rm kHz}/{\rm mW} $.

5. CONTROL OF WAVEFUNCTION SYMMETRY AND EXCHANGE STATISTICS

We now investigate further control of the quantum frequency state by engineering the phase profile of the pump beam. A first natural way is to impose a phase step $ \Delta \varphi $ between the two halves of the pump spot, as sketched in Fig. 3(a). Placing the pump spot at the center $ z = 0 $ of the waveguide, the pump amplitude profile reads $ {{\cal A}_p}(z) = F(z){e^{ - {z^2}/{w^2}}}{e^{ikz}} $, with $ F(z) = 1 $ for $ z \lt 0 $ and $ F(z) = {e^{i\Delta \varphi }} $ for $ z \gt 0 $. When pumping at the degeneracy angle $ {\theta _{{\rm deg}}} $, one can show that the phase-matching term [Eq. (2)] takes the form (see Supplement 1)

$${\phi _{{\rm PM}}}({\omega _s},{\omega _i}) = f({\omega _s},{\omega _i}) + {e^{i\Delta \varphi }}f({\omega _i},{\omega _s}),$$
with $ f({\omega _s},{\omega _i}) = \int_0^{L/2}{\rm d}z {e^{ - {z^2}/{w^2}}}{e^{i({\omega _s} - {\omega _i})z/{v_{g}}}} $. As can be directly read from Eq. (3), for $ \Delta \varphi = 0 $ (which corresponds to a standard Gaussian beam as studied previously), the phase-matching function is symmetric with respect to particle exchange ($ {\phi _{{\rm PM}}}({\omega _s},{\omega _i}) = {\phi _{{\rm PM}}}({\omega _i},{\omega _s}) $), while for $ \Delta \varphi = \pi $ it becomes antisymmetric ($ {\phi _{{\rm PM}}}({\omega _s},{\omega _i}) = - {\phi _{{\rm PM}}}({\omega _i},{\omega _s}) $). Since the spectral function $ {\phi _{{\rm spectral}}} $ is always symmetric (it depends only on the frequency sum $ {\omega _s} + {\omega _i} $), the parity of $ {\phi _{{\rm PM}}} $ directly translates to the JSA. This analysis thus predicts that a simple phase engineering of the pump beam should allow controlling the symmetry of the spectral wavefunction of the photon pairs.

We experimentally implement this concept and show in Figs. 3(b)3(f) the measured JSI for increasing values of the phase step $ \Delta \varphi $, at fixed pump waist [1 mm, as in Fig. 2(d)] and pulse duration (4 ps). Starting from a frequency-correlated state at $ \Delta \varphi = 0 $, we observe the progressive appearance of a second lobe in the joint spectrum as $ \Delta \varphi $ increases. These results are in good agreement with the numerical simulations [Figs. 3(g)3(k)], where we show also the calculated Schmidt numbers (here, the non-flat phase structure of the JSA does not allow determining $ K $ experimentally). When $ \Delta \varphi = \pi $ [Figs. 3(f) and 3(k)], the spectrum is split into two lobes of equal intensity, and vanishes along the diagonal axis between the two lobes. According to the previous theoretical analysis, there is a $ \pi $ offset between the spectral phase of points that are mirror-symmetric with respect to this diagonal axis. However, the JSI measurement is not sensitive to such phase information: to retrieve this information and probe the biphoton spectral wavefunction parity, we will exploit two-photon interference in a Hong–Ou–Mandel (HOM) experiment.

The experimental HOM setup is shown in Fig. 1(e). The polarization of the signal photon is rotated and aligned with that of the idler, then the signal photon enters a fibered delay line before recombining with the idler on a fibered 50/50 beamsplitter. Coincidence counts at the outputs (after a long-wave pass filter to remove luminescence noise) are monitored while scanning the delay $ \tau $ of the interferometer. This HOM experiment has in principle four possible outcomes: the two photons can either leave the beamsplitter through the same output port (bunching) or through different ports (antibunching), with two possibilities in each case. When the entangled state is symmetric, antibunching probability amplitudes cancel each other, leaving only bunching events; when the biphoton state is antisymmetric, the reverse scenario occurs, leaving only antibunching events as would be the case for (independent) fermions [11,41,55,56].

We first consider the quantum frequency state obtained when pumping the waveguide with a Gaussian of flat phase profile ($ \Delta \varphi = 0 $). Figure 4(a) shows the corresponding JSI measured at degeneracy with a fiber spectrograph [50] [see Fig. 1(d)]: each photon of the pairs is sent into a spool of highly dispersive fiber so as to convert the frequency information into a time-of-arrival information, which is recorded with single-photon avalanche photodiodes (SPAD, of detection efficiency 25%) connected to a time-to-digital converter (TDC). This technique has here a lower resolution ($ \Delta \lambda \sim 200\,{\rm pm} $) than the SET technique but, contrary to the latter, it can be implemented at frequency degeneracy. The result of the HOM experiment performed with this quantum state is shown in Fig. 4(b), with the corresponding simulation in Fig. 4(c). We observe a coincidence dip (i.e., two-photon bunching), confirming the symmetric nature of the frequency state. The experimental dip visibility, defined as $ V = ({N_\infty } - {N_0})/{N_\infty } $ with $ {N_\infty } $ ($ {N_0} $) the mean coincidence counts at long (zero) time delay, is 88% (using raw coincidence counts); our simulations indicate that this value is mainly limited by slight imperfections of the pump spatial profile and incidence angle (see Supplement 1).

 figure: Fig. 4.

Fig. 4. (a) Measured JSI for a Gaussian pump beam, leading to a symmetric frequency-entangled state. (b) Corresponding measured and (c) calculated coincidences in a Hong–Ou–Mandel experiment, and (d) calculated chronocyclic Wigner function $ {W_ - } $ (normalized so that $ \pm 1 $ corresponds to a HOM dip (peak) of full visibility). (e)–(h) Same as (a)–(d) but when applying a $ \pi $ phase step at the center of the pump beam, leading to an antisymmetric frequency-entangled state. Experimental data correspond to raw (uncorrected) coincidence counts.

Download Full Size | PPT Slide | PDF

We next consider the biphoton state obtained when imposing a phase step $ \Delta \varphi = \pi $ at the center of the pump spot, resulting in a split JSI as seen in the spectrum of Fig. 4(e), measured at frequency degeneracy. Here, the HOM interferogram [Figs. 4(f)4(g)] show a coincidence peak (antibunching), demonstrating the antisymmetric nature of the frequency state and the effectively fermionic behavior of the photons. Here, the raw experimental visibility is 77%, again mainly limited by pump imperfections; the side dips at $ \pm 12\,{\rm ps} $ delay are due to the specific shape of the joint spectrum.

Interestingly, the anti-bunching behavior evidenced for the antisymmetric frequency state [Fig. 4(f)] is a direct proof of entanglement [41,57], and more precisely, of entanglement with non-Gaussian statistics [42,43] in the continuous variables formed by the time–frequency degrees of freedom of the biphotons. This non-Gaussian entanglement is associated with the negativity of the chronocyclic Wigner function (CWF) [58], $ W({\omega _s},{\omega _i},{t_s},{t_i}) $, which gives the quasi-probability amplitude of measuring a signal photon at frequency $ {\omega _s} $ and time $ {t_s} $, and an idler photon at frequency $ {\omega _i} $ and time $ {t_i} $. Similar to the JSA [Eq. (1)], in our case the CWF can be factorized into a spectral and phase-matching contributions, $ W = {W_ + }({\omega _ + },{t_ + }) {W_ - }({\omega _ - },{t_ - }) $, with $ {\omega _ \pm } = {\omega _s} \pm {\omega _i} $ and $ {t_ \pm } = ({t_s} \pm {t_i})/2 $. The coincidence probability $ P(\tau ) $ in the HOM experiment is determined by the cut of the $ {W_ - } $ function along $ {\omega _ - } = 0 $ [see dotted lines in Figs. 4(d) and 4(h)], $ P(\tau ) = \frac{1}{2}( {1 - {W_ - }(0,\tau )} ) $ [32,43]. Figures 4(d)4(h) show the $ {W_ - } $ function calculated for our symmetric and antisymmetric frequency states, respectively. In the latter case, the CWF takes negative values (reaching the theoretical minimum of $ - 1 $) at $ {\omega _ - } = 0 $ (i.e., $ {\lambda _s} - {\lambda _i} = 0 $), evidencing non-Gaussian entanglement. Note that in Fig. 4(d), a small negativity ($ \sim - 0.05 $) also appears at non-zero values of $ {\omega _ - } $ due to the finite length of the device. A full experimental determination of the CWF could be performed by using a generalized HOM experiment, where a frequency shift is added between the two photons (using, e.g., an electro-optic modulator) in addition to the usual temporal delay. Measuring the HOM trace for various frequency shifts would then allow moving along the vertical axis of the CWF shown in Figs. 4(d)4(h) and reconstruct the $ {W_ - } $ function slice by slice [32,43]; this provides an alternative and promising route to the characterization of a quantum frequency state that does not require a direct measurement of the phase of the JSA. Interestingly, in the particular case of our counter-propagative source, it has been shown that instead of using an electro-optic modulator, a simple change of the pump incidence angle can be used to scan the Wigner function along the frequency difference axis [34].

6. CONCLUSION

In summary, we have demonstrated a flexible control over the spectral wavefunction and particle statistics of photon pairs, with a chip-integrated source and directly at the generation stage. The symmetry control of high-dimensional entangled states has been demonstrated previously in the spatial degree of freedom [11,56], but using bulk sources only. In the frequency degree of freedom, displaying strong potential for applications thanks to its robustness to propagation and capability to convey large-scale quantum information into a single spatial mode, a recent work demonstrated the integrated and post-manipulation-free control of the spectrum of biphotons by engineering the spectrum of the pump field, leading in particular to the production of time–frequency Bell states and the implementation of high-dimensional operations in the time–frequency domain [15]. Another work developed a method to control two-color entanglement and gain control over the biphoton spectrum [28], but this approach requires two passages in a bulk source and post-manipulation with a dispersive element, and is limited to the production of two-color entangled states. By contrast, here we experimentally demonstrate a general method providing a complete toolbox to engineer quantum frequency states at the generation stage and using a chip-based source: these features are essential in view of practical and scalable applications for quantum information technologies. The demonstrated device operates at room temperature and telecom wavelength, is amenable to electrical pumping [59] thanks to the direct bandgap of AlGaAs, and has a high potential of integration within photonic circuits [60]: the monolithical integration with on-chip beamsplitters has been demonstrated [22], and the integration of electro-optic phase shifters [60,61] for further manipulation of the state and superconducting nanowires to achieve on-chip detection [62] can be envisaged. The used transverse pump configuration circumvents the usual issue of pump filtering and allows a direct spatial separation of the photons of each pair, facilitating their use in protocols. In particular, these results could be harnessed to study the effect of exchange statistics in various quantum simulation problems [3537] with a chip-integrated platform, and for communication and computation protocols making use of antisymmetric high-dimensional quantum states [44,45]. Other non-Gaussian high-dimensional photonic states such as time–frequency Schrödinger cat or compass states could also be realized in the used device by a further engineering of the pump beam [34]. In addition, direct generation of polarization entanglement has already been demonstrated with this source design [40] and similar chip-integrated structures [63], opening the perspective to combine such discrete-variable entanglement with the continuous-variable-like entanglement demonstrated here in the time–frequency degrees of freedom of the photon pairs.

Funding

Agence Nationale de la Recherche (SEMIQUANTROOM); Région Ile-de-France DIM NanoK (SPATIAL); Horizon 2020 Framework Programme (Marie Skłodowska-Curie grant agreement No 665850); Labex SEAM (ANR-10-LABX-0096); RENATECH network; IdEx Université de Paris (ANR-18-IDEX-0001).

Acknowledgment

The authors thank M. Apfel and F. Bouchard for technical support.

 

See Supplement 1 for supporting content.

REFERENCES

1. I. Walmsley, “Quantum optics: science and technology in a new light,” Science 348, 525–530 (2015). [CrossRef]  

2. D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88, 040404 (2002). [CrossRef]  

3. A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677 (2011). [CrossRef]  

4. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002). [CrossRef]  

5. J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282 (2008). [CrossRef]  

6. B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134 (2009). [CrossRef]  

7. A. F. Abouraddy, T. Yarnall, B. E. Saleh, and M. C. Teich, “Violation of Bell’s inequality with continuous spatial variables,” Phys. Rev. A 75, 052114 (2007). [CrossRef]  

8. D. Tasca, R. Gomes, F. Toscano, P. S. Ribeiro, and S. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83, 052325 (2011). [CrossRef]  

9. N. Fabre, G. Maltese, F. Appas, S. Felicetti, A. Ketterer, A. Keller, T. Coudreau, F. Baboux, M. Amanti, S. Ducci, and P. Milman, “Continuous variables error correction with integrated biphoton frequency combs,” arXiv:1904.01351 (2019).

10. R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012). [CrossRef]  

11. S. P. Walborn, A. N. de Oliveira, S. Pádua, and C. H. Monken, “Multimode Hong–Ou–Mandel interference,” Phys. Rev. Lett. 90, 143601 (2003). [CrossRef]  

12. A. S. Solntsev and A. A. Sukhorukov, “Path-entangled photon sources on nonlinear chips,” Rev. Phys. 2, 19–31 (2017). [CrossRef]  

13. J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018). [CrossRef]  

14. M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622 (2017). [CrossRef]  

15. V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018). [CrossRef]  

16. V. Ansari, J. M. Donohue, B. Brecht, and C. Silberhorn, “Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings,” Optica 5, 534–550 (2018). [CrossRef]  

17. J.-P. W. MacLean, J. M. Donohue, and K. J. Resch, “Direct characterization of ultrafast energy-time entangled photon pairs,” Phys. Rev. Lett. 120, 053601 (2018). [CrossRef]  

18. A. O. Davis, V. Thiel, M. Karpiński, and B. J. Smith, “Measuring the single-photon temporal-spectral wave function,” Phys. Rev. Lett. 121, 083602 (2018). [CrossRef]  

19. H. Chen, K. Laiho, B. Pressl, A. Schlager, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Optimizing the spectro-temporal properties of photon pairs from Bragg-reflection waveguides,” J. Opt. 21, 054001 (2019). [CrossRef]  

20. M. Kues, C. Reimer, J. M. Lukens, W. J. Munro, A. M. Weiner, D. J. Moss, and R. Morandotti, “Quantum optical microcombs,” Nat. Photonics 13, 170 (2019). [CrossRef]  

21. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008). [CrossRef]  

22. J. Belhassen, F. Baboux, Q. Yao, M. Amanti, I. Favero, A. Lematre, W. Kolthammer, I. Walmsley, and S. Ducci, “On-chip III-V monolithic integration of heralded single photon sources and beamsplitters,” Appl. Phys. Lett. 112, 071105 (2018). [CrossRef]  

23. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417 (2001). [CrossRef]  

24. T. Lutz, P. Kolenderski, and T. Jennewein, “Demonstration of spectral correlation control in a source of polarization-entangled photon pairs at telecom wavelength,” Opt. Lett. 39, 1481–1484 (2014). [CrossRef]  

25. J. M. Donohue, M. Mastrovich, and K. J. Resch, “Spectrally engineering photonic entanglement with a time lens,” Phys. Rev. Lett. 117, 243602 (2016). [CrossRef]  

26. A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005). [CrossRef]  

27. C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013). [CrossRef]  

28. R.-B. Jin, R. Shiina, and R. Shimizu, “Quantum manipulation of biphoton spectral distributions in a 2D frequency space toward arbitrary shaping of a biphoton wave packet,” Opt. Express 26, 21153–21158 (2018). [CrossRef]  

29. R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014). [CrossRef]  

30. V. Ansari, E. Roccia, M. Santandrea, M. Doostdar, C. Eigner, L. Padberg, I. Gianani, M. Sbroscia, J. M. Donohue, L. Mancino, M. Barbieri, and C. Silberhorn, “Heralded generation of high-purity ultrashort single photons in programmable temporal shapes,” Opt. Express 26, 2764–2774 (2018). [CrossRef]  

31. A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007). [CrossRef]  

32. N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015). [CrossRef]  

33. F. Graffitti, P. Barrow, M. Proietti, D. Kundys, and A. Fedrizzi, “Independent high-purity photons created in domain-engineered crystals,” Optica 5, 514–517 (2018). [CrossRef]  

34. G. Boucher, T. Douce, D. Bresteau, S. P. Walborn, A. Keller, T. Coudreau, S. Ducci, and P. Milman, “Toolbox for continuous-variable entanglement production and measurement using spontaneous parametric down-conversion,” Phys. Rev. A 92, 023804 (2015). [CrossRef]  

35. A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013). [CrossRef]  

36. J. C. Matthews, K. Poulios, J. D. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Wörhoff, M. G. Thompson, and J. L. O’Brien, “Observing fermionic statistics with photons in arbitrary processes,” Sci. Rep. 3, 1539 (2013). [CrossRef]  

37. A. Crespi, L. Sansoni, G. Della Valle, A. Ciamei, R. Ramponi, F. Sciarrino, P. Mataloni, S. Longhi, and R. Osellame, “Particle statistics affects quantum decay and Fano interference,” Phys. Rev. Lett. 114, 090201 (2015). [CrossRef]  

38. Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003). [CrossRef]  

39. X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009). [CrossRef]  

40. A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III-V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013). [CrossRef]  

41. A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009). [CrossRef]  

42. R. Gomes, A. Salles, F. Toscano, P. S. Ribeiro, and S. Walborn, “Quantum entanglement beyond Gaussian criteria,” Proc. Natl. Acad. Sci. USA 106, 21517–21520 (2009). [CrossRef]  

43. T. Douce, A. Eckstein, S. P. Walborn, A. Z. Khoury, S. Ducci, A. Keller, T. Coudreau, and P. Milman, “Direct measurement of the biphoton Wigner function through two-photon interference,” Sci. Rep. 3, 3530 (2013). [CrossRef]  

44. I. Jex, G. Alber, S. Barnett, and A. Delgado, “Antisymmetric multi-partite quantum states and their applications,” Fortschr. Phys. 51, 172–178 (2003). [CrossRef]  

45. S. K. Goyal, P. E. Boukama-Dzoussi, S. Ghosh, F. S. Roux, and T. Konrad, “Qudit-teleportation for photons with linear optics,” Sci. Rep. 4, 4543 (2014). [CrossRef]  

46. A. Orieux, X. Caillet, A. Lematre, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Efficient parametric generation of counterpropagating two-photon states,” J. Opt. Soc. Am. B 28, 45–51 (2011). [CrossRef]  

47. A. De Rossi and V. Berger, “Counterpropagating twin photons by parametric fluorescence,” Phys. Rev. Lett. 88, 043901 (2002). [CrossRef]  

48. M. Barbieri, E. Roccia, L. Mancino, M. Sbroscia, I. Gianani, and F. Sciarrino, “What Hong–Ou–Mandel interference says on two-photon frequency entanglement,” Sci. Rep. 7, 7247 (2017). [CrossRef]  

49. R. Kumar, J. R. Ong, J. Recchio, K. Srinivasan, and S. Mookherjea, “Spectrally multiplexed and tunable-wavelength photon pairs at 1.55 µm from a silicon coupled-resonator optical waveguide,” Opt. Lett. 38, 2969–2971 (2013). [CrossRef]  

50. A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014). [CrossRef]  

51. J. Roslund, R. M. De Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109 (2014). [CrossRef]  

52. G. Maltese, M. Amanti, F. Appas, G. Sinnl, A. Lemaitre, P. Milman, F. Baboux, and S. Ducci, “Generation and symmetry control of quantum frequency combs,” NPJ Quantum Inf. 6, 13 (2020). [CrossRef]  

53. P. Apiratikul, J. J. Wathen, G. A. Porkolab, B. Wang, L. He, T. E. Murphy, and C. J. Richardson, “Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides,” Opt. Express 22, 26814–26824 (2014). [CrossRef]  

54. C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91 (2007). [CrossRef]  

55. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010). [CrossRef]  

56. Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2, e1501165 (2016). [CrossRef]  

57. A. Eckstein and C. Silberhorn, “Broadband frequency mode entanglement in waveguided parametric downconversion,” Opt. Lett. 33, 1825–1827 (2008). [CrossRef]  

58. B. Brecht and C. Silberhorn, “Characterizing entanglement in pulsed parametric down-conversion using chronocyclic Wigner functions,” Phys. Rev. A 87, 053810 (2013). [CrossRef]  

59. F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014). [CrossRef]  

60. C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits,” Laser Photon. Rev. 10, 870–894 (2016). [CrossRef]  

61. J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014). [CrossRef]  

62. M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Llin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor–superconductor platform,” Nano Lett. 18, 6892–6897 (2018). [CrossRef]  

63. R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013). [CrossRef]  

References

  • View by:

  1. I. Walmsley, “Quantum optics: science and technology in a new light,” Science 348, 525–530 (2015).
    [Crossref]
  2. D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88, 040404 (2002).
    [Crossref]
  3. A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677 (2011).
    [Crossref]
  4. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
    [Crossref]
  5. J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282 (2008).
    [Crossref]
  6. B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134 (2009).
    [Crossref]
  7. A. F. Abouraddy, T. Yarnall, B. E. Saleh, and M. C. Teich, “Violation of Bell’s inequality with continuous spatial variables,” Phys. Rev. A 75, 052114 (2007).
    [Crossref]
  8. D. Tasca, R. Gomes, F. Toscano, P. S. Ribeiro, and S. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83, 052325 (2011).
    [Crossref]
  9. N. Fabre, G. Maltese, F. Appas, S. Felicetti, A. Ketterer, A. Keller, T. Coudreau, F. Baboux, M. Amanti, S. Ducci, and P. Milman, “Continuous variables error correction with integrated biphoton frequency combs,” arXiv:1904.01351 (2019).
  10. R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
    [Crossref]
  11. S. P. Walborn, A. N. de Oliveira, S. Pádua, and C. H. Monken, “Multimode Hong–Ou–Mandel interference,” Phys. Rev. Lett. 90, 143601 (2003).
    [Crossref]
  12. A. S. Solntsev and A. A. Sukhorukov, “Path-entangled photon sources on nonlinear chips,” Rev. Phys. 2, 19–31 (2017).
    [Crossref]
  13. J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
    [Crossref]
  14. M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622 (2017).
    [Crossref]
  15. V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
    [Crossref]
  16. V. Ansari, J. M. Donohue, B. Brecht, and C. Silberhorn, “Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings,” Optica 5, 534–550 (2018).
    [Crossref]
  17. J.-P. W. MacLean, J. M. Donohue, and K. J. Resch, “Direct characterization of ultrafast energy-time entangled photon pairs,” Phys. Rev. Lett. 120, 053601 (2018).
    [Crossref]
  18. A. O. Davis, V. Thiel, M. Karpiński, and B. J. Smith, “Measuring the single-photon temporal-spectral wave function,” Phys. Rev. Lett. 121, 083602 (2018).
    [Crossref]
  19. H. Chen, K. Laiho, B. Pressl, A. Schlager, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Optimizing the spectro-temporal properties of photon pairs from Bragg-reflection waveguides,” J. Opt. 21, 054001 (2019).
    [Crossref]
  20. M. Kues, C. Reimer, J. M. Lukens, W. J. Munro, A. M. Weiner, D. J. Moss, and R. Morandotti, “Quantum optical microcombs,” Nat. Photonics 13, 170 (2019).
    [Crossref]
  21. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
    [Crossref]
  22. J. Belhassen, F. Baboux, Q. Yao, M. Amanti, I. Favero, A. Lematre, W. Kolthammer, I. Walmsley, and S. Ducci, “On-chip III-V monolithic integration of heralded single photon sources and beamsplitters,” Appl. Phys. Lett. 112, 071105 (2018).
    [Crossref]
  23. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417 (2001).
    [Crossref]
  24. T. Lutz, P. Kolenderski, and T. Jennewein, “Demonstration of spectral correlation control in a source of polarization-entangled photon pairs at telecom wavelength,” Opt. Lett. 39, 1481–1484 (2014).
    [Crossref]
  25. J. M. Donohue, M. Mastrovich, and K. J. Resch, “Spectrally engineering photonic entanglement with a time lens,” Phys. Rev. Lett. 117, 243602 (2016).
    [Crossref]
  26. A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
    [Crossref]
  27. C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
    [Crossref]
  28. R.-B. Jin, R. Shiina, and R. Shimizu, “Quantum manipulation of biphoton spectral distributions in a 2D frequency space toward arbitrary shaping of a biphoton wave packet,” Opt. Express 26, 21153–21158 (2018).
    [Crossref]
  29. R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
    [Crossref]
  30. V. Ansari, E. Roccia, M. Santandrea, M. Doostdar, C. Eigner, L. Padberg, I. Gianani, M. Sbroscia, J. M. Donohue, L. Mancino, M. Barbieri, and C. Silberhorn, “Heralded generation of high-purity ultrashort single photons in programmable temporal shapes,” Opt. Express 26, 2764–2774 (2018).
    [Crossref]
  31. A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
    [Crossref]
  32. N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
    [Crossref]
  33. F. Graffitti, P. Barrow, M. Proietti, D. Kundys, and A. Fedrizzi, “Independent high-purity photons created in domain-engineered crystals,” Optica 5, 514–517 (2018).
    [Crossref]
  34. G. Boucher, T. Douce, D. Bresteau, S. P. Walborn, A. Keller, T. Coudreau, S. Ducci, and P. Milman, “Toolbox for continuous-variable entanglement production and measurement using spontaneous parametric down-conversion,” Phys. Rev. A 92, 023804 (2015).
    [Crossref]
  35. A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
    [Crossref]
  36. J. C. Matthews, K. Poulios, J. D. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Wörhoff, M. G. Thompson, and J. L. O’Brien, “Observing fermionic statistics with photons in arbitrary processes,” Sci. Rep. 3, 1539 (2013).
    [Crossref]
  37. A. Crespi, L. Sansoni, G. Della Valle, A. Ciamei, R. Ramponi, F. Sciarrino, P. Mataloni, S. Longhi, and R. Osellame, “Particle statistics affects quantum decay and Fano interference,” Phys. Rev. Lett. 114, 090201 (2015).
    [Crossref]
  38. Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
    [Crossref]
  39. X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009).
    [Crossref]
  40. A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III-V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
    [Crossref]
  41. A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
    [Crossref]
  42. R. Gomes, A. Salles, F. Toscano, P. S. Ribeiro, and S. Walborn, “Quantum entanglement beyond Gaussian criteria,” Proc. Natl. Acad. Sci. USA 106, 21517–21520 (2009).
    [Crossref]
  43. T. Douce, A. Eckstein, S. P. Walborn, A. Z. Khoury, S. Ducci, A. Keller, T. Coudreau, and P. Milman, “Direct measurement of the biphoton Wigner function through two-photon interference,” Sci. Rep. 3, 3530 (2013).
    [Crossref]
  44. I. Jex, G. Alber, S. Barnett, and A. Delgado, “Antisymmetric multi-partite quantum states and their applications,” Fortschr. Phys. 51, 172–178 (2003).
    [Crossref]
  45. S. K. Goyal, P. E. Boukama-Dzoussi, S. Ghosh, F. S. Roux, and T. Konrad, “Qudit-teleportation for photons with linear optics,” Sci. Rep. 4, 4543 (2014).
    [Crossref]
  46. A. Orieux, X. Caillet, A. Lematre, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Efficient parametric generation of counterpropagating two-photon states,” J. Opt. Soc. Am. B 28, 45–51 (2011).
    [Crossref]
  47. A. De Rossi and V. Berger, “Counterpropagating twin photons by parametric fluorescence,” Phys. Rev. Lett. 88, 043901 (2002).
    [Crossref]
  48. M. Barbieri, E. Roccia, L. Mancino, M. Sbroscia, I. Gianani, and F. Sciarrino, “What Hong–Ou–Mandel interference says on two-photon frequency entanglement,” Sci. Rep. 7, 7247 (2017).
    [Crossref]
  49. R. Kumar, J. R. Ong, J. Recchio, K. Srinivasan, and S. Mookherjea, “Spectrally multiplexed and tunable-wavelength photon pairs at 1.55 µm from a silicon coupled-resonator optical waveguide,” Opt. Lett. 38, 2969–2971 (2013).
    [Crossref]
  50. A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
    [Crossref]
  51. J. Roslund, R. M. De Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109 (2014).
    [Crossref]
  52. G. Maltese, M. Amanti, F. Appas, G. Sinnl, A. Lemaitre, P. Milman, F. Baboux, and S. Ducci, “Generation and symmetry control of quantum frequency combs,” NPJ Quantum Inf. 6, 13 (2020).
    [Crossref]
  53. P. Apiratikul, J. J. Wathen, G. A. Porkolab, B. Wang, L. He, T. E. Murphy, and C. J. Richardson, “Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides,” Opt. Express 22, 26814–26824 (2014).
    [Crossref]
  54. C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91 (2007).
    [Crossref]
  55. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
    [Crossref]
  56. Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2, e1501165 (2016).
    [Crossref]
  57. A. Eckstein and C. Silberhorn, “Broadband frequency mode entanglement in waveguided parametric downconversion,” Opt. Lett. 33, 1825–1827 (2008).
    [Crossref]
  58. B. Brecht and C. Silberhorn, “Characterizing entanglement in pulsed parametric down-conversion using chronocyclic Wigner functions,” Phys. Rev. A 87, 053810 (2013).
    [Crossref]
  59. F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
    [Crossref]
  60. C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits,” Laser Photon. Rev. 10, 870–894 (2016).
    [Crossref]
  61. J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
    [Crossref]
  62. M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Llin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor–superconductor platform,” Nano Lett. 18, 6892–6897 (2018).
    [Crossref]
  63. R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
    [Crossref]

2020 (1)

G. Maltese, M. Amanti, F. Appas, G. Sinnl, A. Lemaitre, P. Milman, F. Baboux, and S. Ducci, “Generation and symmetry control of quantum frequency combs,” NPJ Quantum Inf. 6, 13 (2020).
[Crossref]

2019 (2)

H. Chen, K. Laiho, B. Pressl, A. Schlager, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Optimizing the spectro-temporal properties of photon pairs from Bragg-reflection waveguides,” J. Opt. 21, 054001 (2019).
[Crossref]

M. Kues, C. Reimer, J. M. Lukens, W. J. Munro, A. M. Weiner, D. J. Moss, and R. Morandotti, “Quantum optical microcombs,” Nat. Photonics 13, 170 (2019).
[Crossref]

2018 (10)

J. Belhassen, F. Baboux, Q. Yao, M. Amanti, I. Favero, A. Lematre, W. Kolthammer, I. Walmsley, and S. Ducci, “On-chip III-V monolithic integration of heralded single photon sources and beamsplitters,” Appl. Phys. Lett. 112, 071105 (2018).
[Crossref]

R.-B. Jin, R. Shiina, and R. Shimizu, “Quantum manipulation of biphoton spectral distributions in a 2D frequency space toward arbitrary shaping of a biphoton wave packet,” Opt. Express 26, 21153–21158 (2018).
[Crossref]

V. Ansari, E. Roccia, M. Santandrea, M. Doostdar, C. Eigner, L. Padberg, I. Gianani, M. Sbroscia, J. M. Donohue, L. Mancino, M. Barbieri, and C. Silberhorn, “Heralded generation of high-purity ultrashort single photons in programmable temporal shapes,” Opt. Express 26, 2764–2774 (2018).
[Crossref]

F. Graffitti, P. Barrow, M. Proietti, D. Kundys, and A. Fedrizzi, “Independent high-purity photons created in domain-engineered crystals,” Optica 5, 514–517 (2018).
[Crossref]

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref]

V. Ansari, J. M. Donohue, B. Brecht, and C. Silberhorn, “Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings,” Optica 5, 534–550 (2018).
[Crossref]

J.-P. W. MacLean, J. M. Donohue, and K. J. Resch, “Direct characterization of ultrafast energy-time entangled photon pairs,” Phys. Rev. Lett. 120, 053601 (2018).
[Crossref]

A. O. Davis, V. Thiel, M. Karpiński, and B. J. Smith, “Measuring the single-photon temporal-spectral wave function,” Phys. Rev. Lett. 121, 083602 (2018).
[Crossref]

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Llin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor–superconductor platform,” Nano Lett. 18, 6892–6897 (2018).
[Crossref]

2017 (3)

M. Barbieri, E. Roccia, L. Mancino, M. Sbroscia, I. Gianani, and F. Sciarrino, “What Hong–Ou–Mandel interference says on two-photon frequency entanglement,” Sci. Rep. 7, 7247 (2017).
[Crossref]

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622 (2017).
[Crossref]

A. S. Solntsev and A. A. Sukhorukov, “Path-entangled photon sources on nonlinear chips,” Rev. Phys. 2, 19–31 (2017).
[Crossref]

2016 (3)

J. M. Donohue, M. Mastrovich, and K. J. Resch, “Spectrally engineering photonic entanglement with a time lens,” Phys. Rev. Lett. 117, 243602 (2016).
[Crossref]

Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2, e1501165 (2016).
[Crossref]

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits,” Laser Photon. Rev. 10, 870–894 (2016).
[Crossref]

2015 (4)

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref]

A. Crespi, L. Sansoni, G. Della Valle, A. Ciamei, R. Ramponi, F. Sciarrino, P. Mataloni, S. Longhi, and R. Osellame, “Particle statistics affects quantum decay and Fano interference,” Phys. Rev. Lett. 114, 090201 (2015).
[Crossref]

G. Boucher, T. Douce, D. Bresteau, S. P. Walborn, A. Keller, T. Coudreau, S. Ducci, and P. Milman, “Toolbox for continuous-variable entanglement production and measurement using spontaneous parametric down-conversion,” Phys. Rev. A 92, 023804 (2015).
[Crossref]

I. Walmsley, “Quantum optics: science and technology in a new light,” Science 348, 525–530 (2015).
[Crossref]

2014 (8)

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
[Crossref]

T. Lutz, P. Kolenderski, and T. Jennewein, “Demonstration of spectral correlation control in a source of polarization-entangled photon pairs at telecom wavelength,” Opt. Lett. 39, 1481–1484 (2014).
[Crossref]

S. K. Goyal, P. E. Boukama-Dzoussi, S. Ghosh, F. S. Roux, and T. Konrad, “Qudit-teleportation for photons with linear optics,” Sci. Rep. 4, 4543 (2014).
[Crossref]

P. Apiratikul, J. J. Wathen, G. A. Porkolab, B. Wang, L. He, T. E. Murphy, and C. J. Richardson, “Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides,” Opt. Express 22, 26814–26824 (2014).
[Crossref]

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

J. Roslund, R. M. De Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109 (2014).
[Crossref]

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

2013 (8)

B. Brecht and C. Silberhorn, “Characterizing entanglement in pulsed parametric down-conversion using chronocyclic Wigner functions,” Phys. Rev. A 87, 053810 (2013).
[Crossref]

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

R. Kumar, J. R. Ong, J. Recchio, K. Srinivasan, and S. Mookherjea, “Spectrally multiplexed and tunable-wavelength photon pairs at 1.55 µm from a silicon coupled-resonator optical waveguide,” Opt. Lett. 38, 2969–2971 (2013).
[Crossref]

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
[Crossref]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III-V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

T. Douce, A. Eckstein, S. P. Walborn, A. Z. Khoury, S. Ducci, A. Keller, T. Coudreau, and P. Milman, “Direct measurement of the biphoton Wigner function through two-photon interference,” Sci. Rep. 3, 3530 (2013).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

J. C. Matthews, K. Poulios, J. D. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Wörhoff, M. G. Thompson, and J. L. O’Brien, “Observing fermionic statistics with photons in arbitrary processes,” Sci. Rep. 3, 1539 (2013).
[Crossref]

2012 (1)

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
[Crossref]

2011 (3)

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677 (2011).
[Crossref]

D. Tasca, R. Gomes, F. Toscano, P. S. Ribeiro, and S. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83, 052325 (2011).
[Crossref]

A. Orieux, X. Caillet, A. Lematre, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Efficient parametric generation of counterpropagating two-photon states,” J. Opt. Soc. Am. B 28, 45–51 (2011).
[Crossref]

2010 (1)

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[Crossref]

2009 (4)

X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009).
[Crossref]

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

R. Gomes, A. Salles, F. Toscano, P. S. Ribeiro, and S. Walborn, “Quantum entanglement beyond Gaussian criteria,” Proc. Natl. Acad. Sci. USA 106, 21517–21520 (2009).
[Crossref]

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134 (2009).
[Crossref]

2008 (3)

J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282 (2008).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

A. Eckstein and C. Silberhorn, “Broadband frequency mode entanglement in waveguided parametric downconversion,” Opt. Lett. 33, 1825–1827 (2008).
[Crossref]

2007 (3)

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91 (2007).
[Crossref]

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

A. F. Abouraddy, T. Yarnall, B. E. Saleh, and M. C. Teich, “Violation of Bell’s inequality with continuous spatial variables,” Phys. Rev. A 75, 052114 (2007).
[Crossref]

2005 (1)

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

2003 (3)

S. P. Walborn, A. N. de Oliveira, S. Pádua, and C. H. Monken, “Multimode Hong–Ou–Mandel interference,” Phys. Rev. Lett. 90, 143601 (2003).
[Crossref]

I. Jex, G. Alber, S. Barnett, and A. Delgado, “Antisymmetric multi-partite quantum states and their applications,” Fortschr. Phys. 51, 172–178 (2003).
[Crossref]

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[Crossref]

2002 (3)

A. De Rossi and V. Berger, “Counterpropagating twin photons by parametric fluorescence,” Phys. Rev. Lett. 88, 043901 (2002).
[Crossref]

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88, 040404 (2002).
[Crossref]

2001 (1)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417 (2001).
[Crossref]

Abolghasem, P.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Abouraddy, A. F.

A. F. Abouraddy, T. Yarnall, B. E. Saleh, and M. C. Teich, “Violation of Bell’s inequality with continuous spatial variables,” Phys. Rev. A 75, 052114 (2007).
[Crossref]

Acín, A.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Agnew, M.

Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2, e1501165 (2016).
[Crossref]

Alber, G.

I. Jex, G. Alber, S. Barnett, and A. Delgado, “Antisymmetric multi-partite quantum states and their applications,” Fortschr. Phys. 51, 172–178 (2003).
[Crossref]

Allgaier, M.

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref]

Almeida, M. P.

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134 (2009).
[Crossref]

Amanti, M.

G. Maltese, M. Amanti, F. Appas, G. Sinnl, A. Lemaitre, P. Milman, F. Baboux, and S. Ducci, “Generation and symmetry control of quantum frequency combs,” NPJ Quantum Inf. 6, 13 (2020).
[Crossref]

J. Belhassen, F. Baboux, Q. Yao, M. Amanti, I. Favero, A. Lematre, W. Kolthammer, I. Walmsley, and S. Ducci, “On-chip III-V monolithic integration of heralded single photon sources and beamsplitters,” Appl. Phys. Lett. 112, 071105 (2018).
[Crossref]

N. Fabre, G. Maltese, F. Appas, S. Felicetti, A. Ketterer, A. Keller, T. Coudreau, F. Baboux, M. Amanti, S. Ducci, and P. Milman, “Continuous variables error correction with integrated biphoton frequency combs,” arXiv:1904.01351 (2019).

Andersson, E.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677 (2011).
[Crossref]

Ansari, V.

Apiratikul, P.

Appas, F.

G. Maltese, M. Amanti, F. Appas, G. Sinnl, A. Lemaitre, P. Milman, F. Baboux, and S. Ducci, “Generation and symmetry control of quantum frequency combs,” NPJ Quantum Inf. 6, 13 (2020).
[Crossref]

N. Fabre, G. Maltese, F. Appas, S. Felicetti, A. Ketterer, A. Keller, T. Coudreau, F. Baboux, M. Amanti, S. Ducci, and P. Milman, “Continuous variables error correction with integrated biphoton frequency combs,” arXiv:1904.01351 (2019).

Aspelmeyer, M.

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

Augusiak, R.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Autebert, C.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

Azaña, J.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622 (2017).
[Crossref]

Baboux, F.

G. Maltese, M. Amanti, F. Appas, G. Sinnl, A. Lemaitre, P. Milman, F. Baboux, and S. Ducci, “Generation and symmetry control of quantum frequency combs,” NPJ Quantum Inf. 6, 13 (2020).
[Crossref]

J. Belhassen, F. Baboux, Q. Yao, M. Amanti, I. Favero, A. Lematre, W. Kolthammer, I. Walmsley, and S. Ducci, “On-chip III-V monolithic integration of heralded single photon sources and beamsplitters,” Appl. Phys. Lett. 112, 071105 (2018).
[Crossref]

N. Fabre, G. Maltese, F. Appas, S. Felicetti, A. Ketterer, A. Keller, T. Coudreau, F. Baboux, M. Amanti, S. Ducci, and P. Milman, “Continuous variables error correction with integrated biphoton frequency combs,” arXiv:1904.01351 (2019).

Bacco, D.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Barbieri, M.

V. Ansari, E. Roccia, M. Santandrea, M. Doostdar, C. Eigner, L. Padberg, I. Gianani, M. Sbroscia, J. M. Donohue, L. Mancino, M. Barbieri, and C. Silberhorn, “Heralded generation of high-purity ultrashort single photons in programmable temporal shapes,” Opt. Express 26, 2764–2774 (2018).
[Crossref]

M. Barbieri, E. Roccia, L. Mancino, M. Sbroscia, I. Gianani, and F. Sciarrino, “What Hong–Ou–Mandel interference says on two-photon frequency entanglement,” Sci. Rep. 7, 7247 (2017).
[Crossref]

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134 (2009).
[Crossref]

Barnett, S.

I. Jex, G. Alber, S. Barnett, and A. Delgado, “Antisymmetric multi-partite quantum states and their applications,” Fortschr. Phys. 51, 172–178 (2003).
[Crossref]

Barreiro, J. T.

J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282 (2008).
[Crossref]

Barrow, P.

Beetz, J.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Belhassen, J.

J. Belhassen, F. Baboux, Q. Yao, M. Amanti, I. Favero, A. Lematre, W. Kolthammer, I. Walmsley, and S. Ducci, “On-chip III-V monolithic integration of heralded single photon sources and beamsplitters,” Appl. Phys. Lett. 112, 071105 (2018).
[Crossref]

Berger, V.

X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009).
[Crossref]

A. De Rossi and V. Berger, “Counterpropagating twin photons by parametric fluorescence,” Phys. Rev. Lett. 88, 043901 (2002).
[Crossref]

Bernhard, C.

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
[Crossref]

Bessire, B.

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
[Crossref]

Boitier, F.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

Bonneau, D.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Booth, M. C.

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[Crossref]

Boucher, G.

G. Boucher, T. Douce, D. Bresteau, S. P. Walborn, A. Keller, T. Coudreau, S. Ducci, and P. Milman, “Toolbox for continuous-variable entanglement production and measurement using spontaneous parametric down-conversion,” Phys. Rev. A 92, 023804 (2015).
[Crossref]

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

Boukama-Dzoussi, P. E.

S. K. Goyal, P. E. Boukama-Dzoussi, S. Ghosh, F. S. Roux, and T. Konrad, “Qudit-teleportation for photons with linear optics,” Sci. Rep. 4, 4543 (2014).
[Crossref]

Bourennane, M.

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

Brecht, B.

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref]

V. Ansari, J. M. Donohue, B. Brecht, and C. Silberhorn, “Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings,” Optica 5, 534–550 (2018).
[Crossref]

B. Brecht and C. Silberhorn, “Characterizing entanglement in pulsed parametric down-conversion using chronocyclic Wigner functions,” Phys. Rev. A 87, 053810 (2013).
[Crossref]

Bresteau, D.

G. Boucher, T. Douce, D. Bresteau, S. P. Walborn, A. Keller, T. Coudreau, S. Ducci, and P. Milman, “Toolbox for continuous-variable entanglement production and measurement using spontaneous parametric down-conversion,” Phys. Rev. A 92, 023804 (2015).
[Crossref]

Brod, D. J.

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

Buller, G. S.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677 (2011).
[Crossref]

Büse, A.

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref]

Caillet, X.

A. Orieux, X. Caillet, A. Lematre, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Efficient parametric generation of counterpropagating two-photon states,” J. Opt. Soc. Am. B 28, 45–51 (2011).
[Crossref]

X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009).
[Crossref]

Caspani, L.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622 (2017).
[Crossref]

Ceré, A.

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

Cerf, N. J.

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

Chen, H.

H. Chen, K. Laiho, B. Pressl, A. Schlager, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Optimizing the spectro-temporal properties of photon pairs from Bragg-reflection waveguides,” J. Opt. 21, 054001 (2019).
[Crossref]

Chu, S. T.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622 (2017).
[Crossref]

Ciamei, A.

A. Crespi, L. Sansoni, G. Della Valle, A. Ciamei, R. Ramponi, F. Sciarrino, P. Mataloni, S. Longhi, and R. Osellame, “Particle statistics affects quantum decay and Fano interference,” Phys. Rev. Lett. 114, 090201 (2015).
[Crossref]

Cino, A.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622 (2017).
[Crossref]

Collins, D.

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88, 040404 (2002).
[Crossref]

Cortés, L. R.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622 (2017).
[Crossref]

Coudreau, T.

G. Boucher, T. Douce, D. Bresteau, S. P. Walborn, A. Keller, T. Coudreau, S. Ducci, and P. Milman, “Toolbox for continuous-variable entanglement production and measurement using spontaneous parametric down-conversion,” Phys. Rev. A 92, 023804 (2015).
[Crossref]

T. Douce, A. Eckstein, S. P. Walborn, A. Z. Khoury, S. Ducci, A. Keller, T. Coudreau, and P. Milman, “Direct measurement of the biphoton Wigner function through two-photon interference,” Sci. Rep. 3, 3530 (2013).
[Crossref]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III-V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

N. Fabre, G. Maltese, F. Appas, S. Felicetti, A. Ketterer, A. Keller, T. Coudreau, F. Baboux, M. Amanti, S. Ducci, and P. Milman, “Continuous variables error correction with integrated biphoton frequency combs,” arXiv:1904.01351 (2019).

Crespi, A.

A. Crespi, L. Sansoni, G. Della Valle, A. Ciamei, R. Ramponi, F. Sciarrino, P. Mataloni, S. Longhi, and R. Osellame, “Particle statistics affects quantum decay and Fano interference,” Phys. Rev. Lett. 114, 090201 (2015).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[Crossref]

Dada, A. C.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677 (2011).
[Crossref]

Davis, A. O.

A. O. Davis, V. Thiel, M. Karpiński, and B. J. Smith, “Measuring the single-photon temporal-spectral wave function,” Phys. Rev. Lett. 121, 083602 (2018).
[Crossref]

Dayan, B.

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

De Araujo, R. M.

J. Roslund, R. M. De Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109 (2014).
[Crossref]

de Oliveira, A. N.

S. P. Walborn, A. N. de Oliveira, S. Pádua, and C. H. Monken, “Multimode Hong–Ou–Mandel interference,” Phys. Rev. Lett. 90, 143601 (2003).
[Crossref]

De Rossi, A.

A. De Rossi and V. Berger, “Counterpropagating twin photons by parametric fluorescence,” Phys. Rev. Lett. 88, 043901 (2002).
[Crossref]

Delgado, A.

I. Jex, G. Alber, S. Barnett, and A. Delgado, “Antisymmetric multi-partite quantum states and their applications,” Fortschr. Phys. 51, 172–178 (2003).
[Crossref]

Della Frera, A.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Della Valle, G.

A. Crespi, L. Sansoni, G. Della Valle, A. Ciamei, R. Ramponi, F. Sciarrino, P. Mataloni, S. Longhi, and R. Osellame, “Particle statistics affects quantum decay and Fano interference,” Phys. Rev. Lett. 114, 090201 (2015).
[Crossref]

Dietrich, C. P.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits,” Laser Photon. Rev. 10, 870–894 (2016).
[Crossref]

Ding, Y.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Donohue, J. M.

J.-P. W. MacLean, J. M. Donohue, and K. J. Resch, “Direct characterization of ultrafast energy-time entangled photon pairs,” Phys. Rev. Lett. 120, 053601 (2018).
[Crossref]

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref]

V. Ansari, J. M. Donohue, B. Brecht, and C. Silberhorn, “Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings,” Optica 5, 534–550 (2018).
[Crossref]

V. Ansari, E. Roccia, M. Santandrea, M. Doostdar, C. Eigner, L. Padberg, I. Gianani, M. Sbroscia, J. M. Donohue, L. Mancino, M. Barbieri, and C. Silberhorn, “Heralded generation of high-purity ultrashort single photons in programmable temporal shapes,” Opt. Express 26, 2764–2774 (2018).
[Crossref]

J. M. Donohue, M. Mastrovich, and K. J. Resch, “Spectrally engineering photonic entanglement with a time lens,” Phys. Rev. Lett. 117, 243602 (2016).
[Crossref]

Doostdar, M.

Dorenbos, S. N.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Douce, T.

G. Boucher, T. Douce, D. Bresteau, S. P. Walborn, A. Keller, T. Coudreau, S. Ducci, and P. Milman, “Toolbox for continuous-variable entanglement production and measurement using spontaneous parametric down-conversion,” Phys. Rev. A 92, 023804 (2015).
[Crossref]

T. Douce, A. Eckstein, S. P. Walborn, A. Z. Khoury, S. Ducci, A. Keller, T. Coudreau, and P. Milman, “Direct measurement of the biphoton Wigner function through two-photon interference,” Sci. Rep. 3, 3530 (2013).
[Crossref]

Ducci, S.

G. Maltese, M. Amanti, F. Appas, G. Sinnl, A. Lemaitre, P. Milman, F. Baboux, and S. Ducci, “Generation and symmetry control of quantum frequency combs,” NPJ Quantum Inf. 6, 13 (2020).
[Crossref]

J. Belhassen, F. Baboux, Q. Yao, M. Amanti, I. Favero, A. Lematre, W. Kolthammer, I. Walmsley, and S. Ducci, “On-chip III-V monolithic integration of heralded single photon sources and beamsplitters,” Appl. Phys. Lett. 112, 071105 (2018).
[Crossref]

G. Boucher, T. Douce, D. Bresteau, S. P. Walborn, A. Keller, T. Coudreau, S. Ducci, and P. Milman, “Toolbox for continuous-variable entanglement production and measurement using spontaneous parametric down-conversion,” Phys. Rev. A 92, 023804 (2015).
[Crossref]

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III-V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

T. Douce, A. Eckstein, S. P. Walborn, A. Z. Khoury, S. Ducci, A. Keller, T. Coudreau, and P. Milman, “Direct measurement of the biphoton Wigner function through two-photon interference,” Sci. Rep. 3, 3530 (2013).
[Crossref]

A. Orieux, X. Caillet, A. Lematre, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Efficient parametric generation of counterpropagating two-photon states,” J. Opt. Soc. Am. B 28, 45–51 (2011).
[Crossref]

X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009).
[Crossref]

N. Fabre, G. Maltese, F. Appas, S. Felicetti, A. Ketterer, A. Keller, T. Coudreau, F. Baboux, M. Amanti, S. Ducci, and P. Milman, “Continuous variables error correction with integrated biphoton frequency combs,” arXiv:1904.01351 (2019).

Eckstein, A.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III-V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

T. Douce, A. Eckstein, S. P. Walborn, A. Z. Khoury, S. Ducci, A. Keller, T. Coudreau, and P. Milman, “Direct measurement of the biphoton Wigner function through two-photon interference,” Sci. Rep. 3, 3530 (2013).
[Crossref]

A. Eckstein and C. Silberhorn, “Broadband frequency mode entanglement in waveguided parametric downconversion,” Opt. Lett. 33, 1825–1827 (2008).
[Crossref]

Eigner, C.

Engin, E.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Fabre, C.

J. Roslund, R. M. De Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109 (2014).
[Crossref]

Fabre, N.

N. Fabre, G. Maltese, F. Appas, S. Felicetti, A. Ketterer, A. Keller, T. Coudreau, F. Baboux, M. Amanti, S. Ducci, and P. Milman, “Continuous variables error correction with integrated biphoton frequency combs,” arXiv:1904.01351 (2019).

Favero, I.

J. Belhassen, F. Baboux, Q. Yao, M. Amanti, I. Favero, A. Lematre, W. Kolthammer, I. Walmsley, and S. Ducci, “On-chip III-V monolithic integration of heralded single photon sources and beamsplitters,” Appl. Phys. Lett. 112, 071105 (2018).
[Crossref]

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III-V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

A. Orieux, X. Caillet, A. Lematre, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Efficient parametric generation of counterpropagating two-photon states,” J. Opt. Soc. Am. B 28, 45–51 (2011).
[Crossref]

Fedrizzi, A.

F. Graffitti, P. Barrow, M. Proietti, D. Kundys, and A. Fedrizzi, “Independent high-purity photons created in domain-engineered crystals,” Optica 5, 514–517 (2018).
[Crossref]

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

Felicetti, S.

N. Fabre, G. Maltese, F. Appas, S. Felicetti, A. Ketterer, A. Keller, T. Coudreau, F. Baboux, M. Amanti, S. Ducci, and P. Milman, “Continuous variables error correction with integrated biphoton frequency combs,” arXiv:1904.01351 (2019).

Feurer, T.

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
[Crossref]

Fickler, R.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
[Crossref]

Filloux, P.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III-V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

A. Orieux, X. Caillet, A. Lematre, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Efficient parametric generation of counterpropagating two-photon states,” J. Opt. Soc. Am. B 28, 45–51 (2011).
[Crossref]

Fiore, A.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits,” Laser Photon. Rev. 10, 870–894 (2016).
[Crossref]

Forbes, A.

Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2, e1501165 (2016).
[Crossref]

Friesem, A. A.

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

Galopin, E.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

Galvao, E. F.

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

Gao, W.-B.

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91 (2007).
[Crossref]

Ghosh, J.

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref]

Ghosh, S.

S. K. Goyal, P. E. Boukama-Dzoussi, S. Ghosh, F. S. Roux, and T. Konrad, “Qudit-teleportation for photons with linear optics,” Sci. Rep. 4, 4543 (2014).
[Crossref]

Gianani, I.

Gilchrist, A.

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134 (2009).
[Crossref]

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417 (2001).
[Crossref]

Gisin, N.

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88, 040404 (2002).
[Crossref]

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

Goebel, A.

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91 (2007).
[Crossref]

Gomes, R.

D. Tasca, R. Gomes, F. Toscano, P. S. Ribeiro, and S. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83, 052325 (2011).
[Crossref]

R. Gomes, A. Salles, F. Toscano, P. S. Ribeiro, and S. Walborn, “Quantum entanglement beyond Gaussian criteria,” Proc. Natl. Acad. Sci. USA 106, 21517–21520 (2009).
[Crossref]

Gong, Q.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Goyal, S. K.

S. K. Goyal, P. E. Boukama-Dzoussi, S. Ghosh, F. S. Roux, and T. Konrad, “Qudit-teleportation for photons with linear optics,” Sci. Rep. 4, 4543 (2014).
[Crossref]

Graffitti, F.

Gühne, O.

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91 (2007).
[Crossref]

Hadfield, R. H.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Harder, G.

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref]

He, L.

Helmy, A. S.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Helt, L. G.

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref]

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Hepp, S.

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Llin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor–superconductor platform,” Nano Lett. 18, 6892–6897 (2018).
[Crossref]

Herbst, T.

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

Höfling, S.

H. Chen, K. Laiho, B. Pressl, A. Schlager, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Optimizing the spectro-temporal properties of photon pairs from Bragg-reflection waveguides,” J. Opt. 21, 054001 (2019).
[Crossref]

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits,” Laser Photon. Rev. 10, 870–894 (2016).
[Crossref]

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Horn, R. T.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Hornung, F.

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Llin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor–superconductor platform,” Nano Lett. 18, 6892–6897 (2018).
[Crossref]

Ismail, N.

J. C. Matthews, K. Poulios, J. D. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Wörhoff, M. G. Thompson, and J. L. O’Brien, “Observing fermionic statistics with photons in arbitrary processes,” Sci. Rep. 3, 1539 (2013).
[Crossref]

Jennewein, T.

T. Lutz, P. Kolenderski, and T. Jennewein, “Demonstration of spectral correlation control in a source of polarization-entangled photon pairs at telecom wavelength,” Opt. Lett. 39, 1481–1484 (2014).
[Crossref]

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134 (2009).
[Crossref]

Jetter, M.

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Llin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor–superconductor platform,” Nano Lett. 18, 6892–6897 (2018).
[Crossref]

Jex, I.

I. Jex, G. Alber, S. Barnett, and A. Delgado, “Antisymmetric multi-partite quantum states and their applications,” Fortschr. Phys. 51, 172–178 (2003).
[Crossref]

Jiang, P.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Jiang, S.

J. Roslund, R. M. De Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109 (2014).
[Crossref]

Jin, R.-B.

Juan, M. L.

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref]

Kamp, M.

H. Chen, K. Laiho, B. Pressl, A. Schlager, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Optimizing the spectro-temporal properties of photon pairs from Bragg-reflection waveguides,” J. Opt. 21, 054001 (2019).
[Crossref]

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits,” Laser Photon. Rev. 10, 870–894 (2016).
[Crossref]

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Kang, D.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Karlsson, A.

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

Karpinski, M.

A. O. Davis, V. Thiel, M. Karpiński, and B. J. Smith, “Measuring the single-photon temporal-spectral wave function,” Phys. Rev. Lett. 121, 083602 (2018).
[Crossref]

Keller, A.

G. Boucher, T. Douce, D. Bresteau, S. P. Walborn, A. Keller, T. Coudreau, S. Ducci, and P. Milman, “Toolbox for continuous-variable entanglement production and measurement using spontaneous parametric down-conversion,” Phys. Rev. A 92, 023804 (2015).
[Crossref]

T. Douce, A. Eckstein, S. P. Walborn, A. Z. Khoury, S. Ducci, A. Keller, T. Coudreau, and P. Milman, “Direct measurement of the biphoton Wigner function through two-photon interference,” Sci. Rep. 3, 3530 (2013).
[Crossref]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III-V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

N. Fabre, G. Maltese, F. Appas, S. Felicetti, A. Ketterer, A. Keller, T. Coudreau, F. Baboux, M. Amanti, S. Ducci, and P. Milman, “Continuous variables error correction with integrated biphoton frequency combs,” arXiv:1904.01351 (2019).

Ketterer, A.

N. Fabre, G. Maltese, F. Appas, S. Felicetti, A. Ketterer, A. Keller, T. Coudreau, F. Baboux, M. Amanti, S. Ducci, and P. Milman, “Continuous variables error correction with integrated biphoton frequency combs,” arXiv:1904.01351 (2019).

Khoury, A. Z.

T. Douce, A. Eckstein, S. P. Walborn, A. Z. Khoury, S. Ducci, A. Keller, T. Coudreau, and P. Milman, “Direct measurement of the biphoton Wigner function through two-photon interference,” Sci. Rep. 3, 3530 (2013).
[Crossref]

Kolenderski, P.

T. Lutz, P. Kolenderski, and T. Jennewein, “Demonstration of spectral correlation control in a source of polarization-entangled photon pairs at telecom wavelength,” Opt. Lett. 39, 1481–1484 (2014).
[Crossref]

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Kolthammer, W.

J. Belhassen, F. Baboux, Q. Yao, M. Amanti, I. Favero, A. Lematre, W. Kolthammer, I. Walmsley, and S. Ducci, “On-chip III-V monolithic integration of heralded single photon sources and beamsplitters,” Appl. Phys. Lett. 112, 071105 (2018).
[Crossref]

Konrad, T.

Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2, e1501165 (2016).
[Crossref]

S. K. Goyal, P. E. Boukama-Dzoussi, S. Ghosh, F. S. Roux, and T. Konrad, “Qudit-teleportation for photons with linear optics,” Sci. Rep. 4, 4543 (2014).
[Crossref]

Krenn, M.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
[Crossref]

Kues, M.

M. Kues, C. Reimer, J. M. Lukens, W. J. Munro, A. M. Weiner, D. J. Moss, and R. Morandotti, “Quantum optical microcombs,” Nat. Photonics 13, 170 (2019).
[Crossref]

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622 (2017).
[Crossref]

Kumar, R.

Kundys, D.

Kwiat, P. G.

J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282 (2008).
[Crossref]

Laiho, K.

H. Chen, K. Laiho, B. Pressl, A. Schlager, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Optimizing the spectro-temporal properties of photon pairs from Bragg-reflection waveguides,” J. Opt. 21, 054001 (2019).
[Crossref]

Laing, A.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Lanyon, B. P.

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134 (2009).
[Crossref]

Lapkiewicz, R.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
[Crossref]

Leach, J.

Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2, e1501165 (2016).
[Crossref]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677 (2011).
[Crossref]

Lemaitre, A.

G. Maltese, M. Amanti, F. Appas, G. Sinnl, A. Lemaitre, P. Milman, F. Baboux, and S. Ducci, “Generation and symmetry control of quantum frequency combs,” NPJ Quantum Inf. 6, 13 (2020).
[Crossref]

Lemaître, A.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III-V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

Lematre, A.

J. Belhassen, F. Baboux, Q. Yao, M. Amanti, I. Favero, A. Lematre, W. Kolthammer, I. Walmsley, and S. Ducci, “On-chip III-V monolithic integration of heralded single photon sources and beamsplitters,” Appl. Phys. Lett. 112, 071105 (2018).
[Crossref]

A. Orieux, X. Caillet, A. Lematre, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Efficient parametric generation of counterpropagating two-photon states,” J. Opt. Soc. Am. B 28, 45–51 (2011).
[Crossref]

Leo, G.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III-V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

A. Orieux, X. Caillet, A. Lematre, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Efficient parametric generation of counterpropagating two-photon states,” J. Opt. Soc. Am. B 28, 45–51 (2011).
[Crossref]

X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009).
[Crossref]

Lermer, M.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Linden, N.

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88, 040404 (2002).
[Crossref]

Liscidini, M.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

Little, B. E.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622 (2017).
[Crossref]

Llin, K.

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Llin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor–superconductor platform,” Nano Lett. 18, 6892–6897 (2018).
[Crossref]

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417 (2001).
[Crossref]

Longhi, S.

A. Crespi, L. Sansoni, G. Della Valle, A. Ciamei, R. Ramponi, F. Sciarrino, P. Mataloni, S. Longhi, and R. Osellame, “Particle statistics affects quantum decay and Fano interference,” Phys. Rev. Lett. 114, 090201 (2015).
[Crossref]

Lu, C.-Y.

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91 (2007).
[Crossref]

Lukens, J. M.

M. Kues, C. Reimer, J. M. Lukens, W. J. Munro, A. M. Weiner, D. J. Moss, and R. Morandotti, “Quantum optical microcombs,” Nat. Photonics 13, 170 (2019).
[Crossref]

Lundeen, J. S.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

Lutz, T.

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417 (2001).
[Crossref]

MacLean, J.-P. W.

J.-P. W. MacLean, J. M. Donohue, and K. J. Resch, “Direct characterization of ultrafast energy-time entangled photon pairs,” Phys. Rev. Lett. 120, 053601 (2018).
[Crossref]

Maiorino, E.

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

Maltese, G.

G. Maltese, M. Amanti, F. Appas, G. Sinnl, A. Lemaitre, P. Milman, F. Baboux, and S. Ducci, “Generation and symmetry control of quantum frequency combs,” NPJ Quantum Inf. 6, 13 (2020).
[Crossref]

N. Fabre, G. Maltese, F. Appas, S. Felicetti, A. Ketterer, A. Keller, T. Coudreau, F. Baboux, M. Amanti, S. Ducci, and P. Milman, “Continuous variables error correction with integrated biphoton frequency combs,” arXiv:1904.01351 (2019).

Mancino, L.

Mancinska, L.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Manquest, C.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

Massar, S.

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88, 040404 (2002).
[Crossref]

Mastrovich, M.

J. M. Donohue, M. Mastrovich, and K. J. Resch, “Spectrally engineering photonic entanglement with a time lens,” Phys. Rev. Lett. 117, 243602 (2016).
[Crossref]

Mataloni, P.

A. Crespi, L. Sansoni, G. Della Valle, A. Ciamei, R. Ramponi, F. Sciarrino, P. Mataloni, S. Longhi, and R. Osellame, “Particle statistics affects quantum decay and Fano interference,” Phys. Rev. Lett. 114, 090201 (2015).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[Crossref]

Matthews, J. C.

J. C. Matthews, K. Poulios, J. D. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Wörhoff, M. G. Thompson, and J. L. O’Brien, “Observing fermionic statistics with photons in arbitrary processes,” Sci. Rep. 3, 1539 (2013).
[Crossref]

Meinecke, J. D.

J. C. Matthews, K. Poulios, J. D. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Wörhoff, M. G. Thompson, and J. L. O’Brien, “Observing fermionic statistics with photons in arbitrary processes,” Sci. Rep. 3, 1539 (2013).
[Crossref]

Michler, P.

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Llin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor–superconductor platform,” Nano Lett. 18, 6892–6897 (2018).
[Crossref]

Milman, P.

G. Maltese, M. Amanti, F. Appas, G. Sinnl, A. Lemaitre, P. Milman, F. Baboux, and S. Ducci, “Generation and symmetry control of quantum frequency combs,” NPJ Quantum Inf. 6, 13 (2020).
[Crossref]

G. Boucher, T. Douce, D. Bresteau, S. P. Walborn, A. Keller, T. Coudreau, S. Ducci, and P. Milman, “Toolbox for continuous-variable entanglement production and measurement using spontaneous parametric down-conversion,” Phys. Rev. A 92, 023804 (2015).
[Crossref]

T. Douce, A. Eckstein, S. P. Walborn, A. Z. Khoury, S. Ducci, A. Keller, T. Coudreau, and P. Milman, “Direct measurement of the biphoton Wigner function through two-photon interference,” Sci. Rep. 3, 3530 (2013).
[Crossref]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III-V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

N. Fabre, G. Maltese, F. Appas, S. Felicetti, A. Ketterer, A. Keller, T. Coudreau, F. Baboux, M. Amanti, S. Ducci, and P. Milman, “Continuous variables error correction with integrated biphoton frequency combs,” arXiv:1904.01351 (2019).

Molina-Terriza, G.

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref]

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

Monken, C. H.

S. P. Walborn, A. N. de Oliveira, S. Pádua, and C. H. Monken, “Multimode Hong–Ou–Mandel interference,” Phys. Rev. Lett. 90, 143601 (2003).
[Crossref]

Mookherjea, S.

Morandotti, R.

M. Kues, C. Reimer, J. M. Lukens, W. J. Munro, A. M. Weiner, D. J. Moss, and R. Morandotti, “Quantum optical microcombs,” Nat. Photonics 13, 170 (2019).
[Crossref]

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622 (2017).
[Crossref]

Mosley, P. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

Moss, D. J.

M. Kues, C. Reimer, J. M. Lukens, W. J. Munro, A. M. Weiner, D. J. Moss, and R. Morandotti, “Quantum optical microcombs,” Nat. Photonics 13, 170 (2019).
[Crossref]

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622 (2017).
[Crossref]

Munro, W. J.

M. Kues, C. Reimer, J. M. Lukens, W. J. Munro, A. M. Weiner, D. J. Moss, and R. Morandotti, “Quantum optical microcombs,” Nat. Photonics 13, 170 (2019).
[Crossref]

Murphy, T. E.

Natarajan, C. M.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

O’Brien, J. L.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

J. C. Matthews, K. Poulios, J. D. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Wörhoff, M. G. Thompson, and J. L. O’Brien, “Observing fermionic statistics with photons in arbitrary processes,” Sci. Rep. 3, 1539 (2013).
[Crossref]

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134 (2009).
[Crossref]

Ong, J. R.

Orieux, A.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III-V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

A. Orieux, X. Caillet, A. Lematre, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Efficient parametric generation of counterpropagating two-photon states,” J. Opt. Soc. Am. B 28, 45–51 (2011).
[Crossref]

Osellame, R.

A. Crespi, L. Sansoni, G. Della Valle, A. Ciamei, R. Ramponi, F. Sciarrino, P. Mataloni, S. Longhi, and R. Osellame, “Particle statistics affects quantum decay and Fano interference,” Phys. Rev. Lett. 114, 090201 (2015).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[Crossref]

Oxenløwe, L. K.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Padberg, L.

Padgett, M. J.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677 (2011).
[Crossref]

Pádua, S.

S. P. Walborn, A. N. de Oliveira, S. Pádua, and C. H. Monken, “Multimode Hong–Ou–Mandel interference,” Phys. Rev. Lett. 90, 143601 (2003).
[Crossref]

Paesani, S.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Pan, J.-W.

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91 (2007).
[Crossref]

Pe’er, A.

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

Peruzzo, A.

J. C. Matthews, K. Poulios, J. D. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Wörhoff, M. G. Thompson, and J. L. O’Brien, “Observing fermionic statistics with photons in arbitrary processes,” Sci. Rep. 3, 1539 (2013).
[Crossref]

Piro, N.

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref]

Plick, W. N.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
[Crossref]

Politi, A.

J. C. Matthews, K. Poulios, J. D. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Wörhoff, M. G. Thompson, and J. L. O’Brien, “Observing fermionic statistics with photons in arbitrary processes,” Sci. Rep. 3, 1539 (2013).
[Crossref]

Popescu, S.

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88, 040404 (2002).
[Crossref]

Porkolab, G. A.

Portalupi, S. L.

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Llin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor–superconductor platform,” Nano Lett. 18, 6892–6897 (2018).
[Crossref]

Poulios, K.

J. C. Matthews, K. Poulios, J. D. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Wörhoff, M. G. Thompson, and J. L. O’Brien, “Observing fermionic statistics with photons in arbitrary processes,” Sci. Rep. 3, 1539 (2013).
[Crossref]

Pressl, B.

H. Chen, K. Laiho, B. Pressl, A. Schlager, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Optimizing the spectro-temporal properties of photon pairs from Bragg-reflection waveguides,” J. Opt. 21, 054001 (2019).
[Crossref]

Proietti, M.

Pryde, G. J.

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134 (2009).
[Crossref]

Ralph, T. C.

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134 (2009).
[Crossref]

Ramelow, S.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
[Crossref]

Ramponi, R.

A. Crespi, L. Sansoni, G. Della Valle, A. Ciamei, R. Ramponi, F. Sciarrino, P. Mataloni, S. Longhi, and R. Osellame, “Particle statistics affects quantum decay and Fano interference,” Phys. Rev. Lett. 114, 090201 (2015).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[Crossref]

Recchio, J.

Reimer, C.

M. Kues, C. Reimer, J. M. Lukens, W. J. Munro, A. M. Weiner, D. J. Moss, and R. Morandotti, “Quantum optical microcombs,” Nat. Photonics 13, 170 (2019).
[Crossref]

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622 (2017).
[Crossref]

Rengstl, U.

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Llin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor–superconductor platform,” Nano Lett. 18, 6892–6897 (2018).
[Crossref]

Resch, K. J.

J.-P. W. MacLean, J. M. Donohue, and K. J. Resch, “Direct characterization of ultrafast energy-time entangled photon pairs,” Phys. Rev. Lett. 120, 053601 (2018).
[Crossref]

J. M. Donohue, M. Mastrovich, and K. J. Resch, “Spectrally engineering photonic entanglement with a time lens,” Phys. Rev. Lett. 117, 243602 (2016).
[Crossref]

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134 (2009).
[Crossref]

Ribeiro, P. S.

D. Tasca, R. Gomes, F. Toscano, P. S. Ribeiro, and S. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83, 052325 (2011).
[Crossref]

R. Gomes, A. Salles, F. Toscano, P. S. Ribeiro, and S. Walborn, “Quantum entanglement beyond Gaussian criteria,” Proc. Natl. Acad. Sci. USA 106, 21517–21520 (2009).
[Crossref]

Richardson, C. J.

Roccia, E.

Roslund, J.

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref]

J. Roslund, R. M. De Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109 (2014).
[Crossref]

Rottwitt, K.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Roux, F. S.

Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2, e1501165 (2016).
[Crossref]

S. K. Goyal, P. E. Boukama-Dzoussi, S. Ghosh, F. S. Roux, and T. Konrad, “Qudit-teleportation for photons with linear optics,” Sci. Rep. 4, 4543 (2014).
[Crossref]

Roztocki, P.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622 (2017).
[Crossref]

Salavrakos, A.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Saleh, B. E.

A. F. Abouraddy, T. Yarnall, B. E. Saleh, and M. C. Teich, “Violation of Bell’s inequality with continuous spatial variables,” Phys. Rev. A 75, 052114 (2007).
[Crossref]

Saleh, B. E. A.

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[Crossref]

Salles, A.

R. Gomes, A. Salles, F. Toscano, P. S. Ribeiro, and S. Walborn, “Quantum entanglement beyond Gaussian criteria,” Proc. Natl. Acad. Sci. USA 106, 21517–21520 (2009).
[Crossref]

Sansoni, L.

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref]

A. Crespi, L. Sansoni, G. Della Valle, A. Ciamei, R. Ramponi, F. Sciarrino, P. Mataloni, S. Longhi, and R. Osellame, “Particle statistics affects quantum decay and Fano interference,” Phys. Rev. Lett. 114, 090201 (2015).
[Crossref]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[Crossref]

Santagati, R.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Santamato, A.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Santandrea, M.

Savanier, M.

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
[Crossref]

Sbroscia, M.

Scarcella, C.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Schaeff, C.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
[Crossref]

Schlager, A.

H. Chen, K. Laiho, B. Pressl, A. Schlager, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Optimizing the spectro-temporal properties of photon pairs from Bragg-reflection waveguides,” J. Opt. 21, 054001 (2019).
[Crossref]

Schmidt, E.

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Llin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor–superconductor platform,” Nano Lett. 18, 6892–6897 (2018).
[Crossref]

Schneider, C.

H. Chen, K. Laiho, B. Pressl, A. Schlager, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Optimizing the spectro-temporal properties of photon pairs from Bragg-reflection waveguides,” J. Opt. 21, 054001 (2019).
[Crossref]

Schwartz, M.

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Llin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor–superconductor platform,” Nano Lett. 18, 6892–6897 (2018).
[Crossref]

Sciara, S.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622 (2017).
[Crossref]

Sciarrino, F.

M. Barbieri, E. Roccia, L. Mancino, M. Sbroscia, I. Gianani, and F. Sciarrino, “What Hong–Ou–Mandel interference says on two-photon frequency entanglement,” Sci. Rep. 7, 7247 (2017).
[Crossref]

A. Crespi, L. Sansoni, G. Della Valle, A. Ciamei, R. Ramponi, F. Sciarrino, P. Mataloni, S. Longhi, and R. Osellame, “Particle statistics affects quantum decay and Fano interference,” Phys. Rev. Lett. 114, 090201 (2015).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[Crossref]

Sergienko, A. V.

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[Crossref]

Shi, X.

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

Shiina, R.

Shimizu, R.

Siegel, M.

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Llin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor–superconductor platform,” Nano Lett. 18, 6892–6897 (2018).
[Crossref]

Silberberg, Y.

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

Silberhorn, C.

V. Ansari, E. Roccia, M. Santandrea, M. Doostdar, C. Eigner, L. Padberg, I. Gianani, M. Sbroscia, J. M. Donohue, L. Mancino, M. Barbieri, and C. Silberhorn, “Heralded generation of high-purity ultrashort single photons in programmable temporal shapes,” Opt. Express 26, 2764–2774 (2018).
[Crossref]

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref]

V. Ansari, J. M. Donohue, B. Brecht, and C. Silberhorn, “Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings,” Optica 5, 534–550 (2018).
[Crossref]

B. Brecht and C. Silberhorn, “Characterizing entanglement in pulsed parametric down-conversion using chronocyclic Wigner functions,” Phys. Rev. A 87, 053810 (2013).
[Crossref]

A. Eckstein and C. Silberhorn, “Broadband frequency mode entanglement in waveguided parametric downconversion,” Opt. Lett. 33, 1825–1827 (2008).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

Silverstone, J. W.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Sinnl, G.

G. Maltese, M. Amanti, F. Appas, G. Sinnl, A. Lemaitre, P. Milman, F. Baboux, and S. Ducci, “Generation and symmetry control of quantum frequency combs,” NPJ Quantum Inf. 6, 13 (2020).
[Crossref]

Sipe, J. E.

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Sirtori, C.

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

Skrzypczyk, P.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

Smith, B. J.

A. O. Davis, V. Thiel, M. Karpiński, and B. J. Smith, “Measuring the single-photon temporal-spectral wave function,” Phys. Rev. Lett. 121, 083602 (2018).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

Solntsev, A. S.

A. S. Solntsev and A. A. Sukhorukov, “Path-entangled photon sources on nonlinear chips,” Rev. Phys. 2, 19–31 (2017).
[Crossref]

Spagnolo, N.

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

Srinivasan, K.

Steel, M. J.

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref]

Stefanov, A.

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
[Crossref]

Suchomel, H.

H. Chen, K. Laiho, B. Pressl, A. Schlager, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Optimizing the spectro-temporal properties of photon pairs from Bragg-reflection waveguides,” J. Opt. 21, 054001 (2019).
[Crossref]

Sukhorukov, A. A.

A. S. Solntsev and A. A. Sukhorukov, “Path-entangled photon sources on nonlinear chips,” Rev. Phys. 2, 19–31 (2017).
[Crossref]

Tanner, M. G.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Tasca, D.

D. Tasca, R. Gomes, F. Toscano, P. S. Ribeiro, and S. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83, 052325 (2011).
[Crossref]

Teich, M. C.

A. F. Abouraddy, T. Yarnall, B. E. Saleh, and M. C. Teich, “Violation of Bell’s inequality with continuous spatial variables,” Phys. Rev. A 75, 052114 (2007).
[Crossref]

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[Crossref]

Thiel, V.

A. O. Davis, V. Thiel, M. Karpiński, and B. J. Smith, “Measuring the single-photon temporal-spectral wave function,” Phys. Rev. Lett. 121, 083602 (2018).
[Crossref]

Thompson, M. G.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits,” Laser Photon. Rev. 10, 870–894 (2016).
[Crossref]

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

J. C. Matthews, K. Poulios, J. D. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Wörhoff, M. G. Thompson, and J. L. O’Brien, “Observing fermionic statistics with photons in arbitrary processes,” Sci. Rep. 3, 1539 (2013).
[Crossref]

Tischler, N.

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref]

Torres, J. P.

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

Toscano, F.

D. Tasca, R. Gomes, F. Toscano, P. S. Ribeiro, and S. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83, 052325 (2011).
[Crossref]

R. Gomes, A. Salles, F. Toscano, P. S. Ribeiro, and S. Walborn, “Quantum entanglement beyond Gaussian criteria,” Proc. Natl. Acad. Sci. USA 106, 21517–21520 (2009).
[Crossref]

Tosi, A.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Treps, N.

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref]

J. Roslund, R. M. De Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109 (2014).
[Crossref]

Tura, J.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

U’Ren, A. B.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

Valencia, A.

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

Vallone, G.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[Crossref]

Vitelli, C.

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

Walborn, S.

D. Tasca, R. Gomes, F. Toscano, P. S. Ribeiro, and S. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83, 052325 (2011).
[Crossref]

R. Gomes, A. Salles, F. Toscano, P. S. Ribeiro, and S. Walborn, “Quantum entanglement beyond Gaussian criteria,” Proc. Natl. Acad. Sci. USA 106, 21517–21520 (2009).
[Crossref]

Walborn, S. P.

G. Boucher, T. Douce, D. Bresteau, S. P. Walborn, A. Keller, T. Coudreau, S. Ducci, and P. Milman, “Toolbox for continuous-variable entanglement production and measurement using spontaneous parametric down-conversion,” Phys. Rev. A 92, 023804 (2015).
[Crossref]

T. Douce, A. Eckstein, S. P. Walborn, A. Z. Khoury, S. Ducci, A. Keller, T. Coudreau, and P. Milman, “Direct measurement of the biphoton Wigner function through two-photon interference,” Sci. Rep. 3, 3530 (2013).
[Crossref]

S. P. Walborn, A. N. de Oliveira, S. Pádua, and C. H. Monken, “Multimode Hong–Ou–Mandel interference,” Phys. Rev. Lett. 90, 143601 (2003).
[Crossref]

Walmsley, I.

J. Belhassen, F. Baboux, Q. Yao, M. Amanti, I. Favero, A. Lematre, W. Kolthammer, I. Walmsley, and S. Ducci, “On-chip III-V monolithic integration of heralded single photon sources and beamsplitters,” Appl. Phys. Lett. 112, 071105 (2018).
[Crossref]

I. Walmsley, “Quantum optics: science and technology in a new light,” Science 348, 525–530 (2015).
[Crossref]

Walmsley, I. A.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

Walton, Z. D.

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[Crossref]

Wang, B.

Wang, J.

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Wasylczyk, P.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

Wathen, J. J.

Wei, T.-C.

J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282 (2008).
[Crossref]

Weihs, G.

H. Chen, K. Laiho, B. Pressl, A. Schlager, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Optimizing the spectro-temporal properties of photon pairs from Bragg-reflection waveguides,” J. Opt. 21, 054001 (2019).
[Crossref]

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Weiner, A. M.

M. Kues, C. Reimer, J. M. Lukens, W. J. Munro, A. M. Weiner, D. J. Moss, and R. Morandotti, “Quantum optical microcombs,” Nat. Photonics 13, 170 (2019).
[Crossref]

Wetzel, B.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622 (2017).
[Crossref]

White, A. G.

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134 (2009).
[Crossref]

Wörhoff, K.

J. C. Matthews, K. Poulios, J. D. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Wörhoff, M. G. Thompson, and J. L. O’Brien, “Observing fermionic statistics with photons in arbitrary processes,” Sci. Rep. 3, 1539 (2013).
[Crossref]

Yang, T.

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91 (2007).
[Crossref]

Yao, Q.

J. Belhassen, F. Baboux, Q. Yao, M. Amanti, I. Favero, A. Lematre, W. Kolthammer, I. Walmsley, and S. Ducci, “On-chip III-V monolithic integration of heralded single photon sources and beamsplitters,” Appl. Phys. Lett. 112, 071105 (2018).
[Crossref]

Yarnall, T.

A. F. Abouraddy, T. Yarnall, B. E. Saleh, and M. C. Teich, “Violation of Bell’s inequality with continuous spatial variables,” Phys. Rev. A 75, 052114 (2007).
[Crossref]

Yuan, Z.-S.

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91 (2007).
[Crossref]

Zeilinger, A.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
[Crossref]

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

Zhang, J.

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91 (2007).
[Crossref]

Zhang, Y.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622 (2017).
[Crossref]

Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2, e1501165 (2016).
[Crossref]

Zhou, X.-Q.

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91 (2007).
[Crossref]

Zhukovsky, S. V.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Zwiller, V.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Appl. Phys. Lett. (1)

J. Belhassen, F. Baboux, Q. Yao, M. Amanti, I. Favero, A. Lematre, W. Kolthammer, I. Walmsley, and S. Ducci, “On-chip III-V monolithic integration of heralded single photon sources and beamsplitters,” Appl. Phys. Lett. 112, 071105 (2018).
[Crossref]

Fortschr. Phys. (1)

I. Jex, G. Alber, S. Barnett, and A. Delgado, “Antisymmetric multi-partite quantum states and their applications,” Fortschr. Phys. 51, 172–178 (2003).
[Crossref]

J. Mod. Opt. (1)

X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009).
[Crossref]

J. Opt. (1)

H. Chen, K. Laiho, B. Pressl, A. Schlager, H. Suchomel, M. Kamp, S. Höfling, C. Schneider, and G. Weihs, “Optimizing the spectro-temporal properties of photon pairs from Bragg-reflection waveguides,” J. Opt. 21, 054001 (2019).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (2)

A. Eckstein, G. Boucher, A. Lemaître, P. Filloux, I. Favero, G. Leo, J. E. Sipe, M. Liscidini, and S. Ducci, “High-resolution spectral characterization of two photon states via classical measurements,” Laser Photon. Rev. 8, L76–L80 (2014).
[Crossref]

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits,” Laser Photon. Rev. 10, 870–894 (2016).
[Crossref]

Nano Lett. (1)

M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Llin, M. Jetter, M. Siegel, and P. Michler, “Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor–superconductor platform,” Nano Lett. 18, 6892–6897 (2018).
[Crossref]

Nat. Commun. (1)

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
[Crossref]

Nat. Photonics (3)

A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photonics 7, 545–549 (2013).
[Crossref]

M. Kues, C. Reimer, J. M. Lukens, W. J. Munro, A. M. Weiner, D. J. Moss, and R. Morandotti, “Quantum optical microcombs,” Nat. Photonics 13, 170 (2019).
[Crossref]

J. Roslund, R. M. De Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109 (2014).
[Crossref]

Nat. Phys. (4)

C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91 (2007).
[Crossref]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677 (2011).
[Crossref]

J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282 (2008).
[Crossref]

B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134 (2009).
[Crossref]

Nature (2)

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622 (2017).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchronization,” Nature 412, 417 (2001).
[Crossref]

New J. Phys. (1)

A. Fedrizzi, T. Herbst, M. Aspelmeyer, M. Barbieri, T. Jennewein, and A. Zeilinger, “Anti-symmetrization reveals hidden entanglement,” New J. Phys. 11, 103052 (2009).
[Crossref]

NPJ Quantum Inf. (1)

G. Maltese, M. Amanti, F. Appas, G. Sinnl, A. Lemaitre, P. Milman, F. Baboux, and S. Ducci, “Generation and symmetry control of quantum frequency combs,” NPJ Quantum Inf. 6, 13 (2020).
[Crossref]

Opt. Commun. (1)

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Optica (2)

Phys. Rev. A (6)

A. F. Abouraddy, T. Yarnall, B. E. Saleh, and M. C. Teich, “Violation of Bell’s inequality with continuous spatial variables,” Phys. Rev. A 75, 052114 (2007).
[Crossref]

D. Tasca, R. Gomes, F. Toscano, P. S. Ribeiro, and S. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83, 052325 (2011).
[Crossref]

G. Boucher, T. Douce, D. Bresteau, S. P. Walborn, A. Keller, T. Coudreau, S. Ducci, and P. Milman, “Toolbox for continuous-variable entanglement production and measurement using spontaneous parametric down-conversion,” Phys. Rev. A 92, 023804 (2015).
[Crossref]

C. Bernhard, B. Bessire, T. Feurer, and A. Stefanov, “Shaping frequency-entangled qudits,” Phys. Rev. A 88, 032322 (2013).
[Crossref]

B. Brecht and C. Silberhorn, “Characterizing entanglement in pulsed parametric down-conversion using chronocyclic Wigner functions,” Phys. Rev. A 87, 053810 (2013).
[Crossref]

Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, 053810 (2003).
[Crossref]

Phys. Rev. Lett. (16)

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[Crossref]

A. Orieux, A. Eckstein, A. Lemaître, P. Filloux, I. Favero, G. Leo, T. Coudreau, A. Keller, P. Milman, and S. Ducci, “Direct Bell states generation on a III-V semiconductor chip at room temperature,” Phys. Rev. Lett. 110, 160502 (2013).
[Crossref]

A. De Rossi and V. Berger, “Counterpropagating twin photons by parametric fluorescence,” Phys. Rev. Lett. 88, 043901 (2002).
[Crossref]

F. Boitier, A. Orieux, C. Autebert, A. Lemaître, E. Galopin, C. Manquest, C. Sirtori, I. Favero, G. Leo, and S. Ducci, “Electrically injected photon-pair source at room temperature,” Phys. Rev. Lett. 112, 183901 (2014).
[Crossref]

A. Crespi, L. Sansoni, G. Della Valle, A. Ciamei, R. Ramponi, F. Sciarrino, P. Mataloni, S. Longhi, and R. Osellame, “Particle statistics affects quantum decay and Fano interference,” Phys. Rev. Lett. 114, 090201 (2015).
[Crossref]

J. M. Donohue, M. Mastrovich, and K. J. Resch, “Spectrally engineering photonic entanglement with a time lens,” Phys. Rev. Lett. 117, 243602 (2016).
[Crossref]

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett. 94, 073601 (2005).
[Crossref]

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99, 243601 (2007).
[Crossref]

N. Tischler, A. Büse, L. G. Helt, M. L. Juan, N. Piro, J. Ghosh, M. J. Steel, and G. Molina-Terriza, “Measurement and shaping of biphoton spectral wave functions,” Phys. Rev. Lett. 115, 193602 (2015).
[Crossref]

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett. 88, 040404 (2002).
[Crossref]

J.-P. W. MacLean, J. M. Donohue, and K. J. Resch, “Direct characterization of ultrafast energy-time entangled photon pairs,” Phys. Rev. Lett. 120, 053601 (2018).
[Crossref]

A. O. Davis, V. Thiel, M. Karpiński, and B. J. Smith, “Measuring the single-photon temporal-spectral wave function,” Phys. Rev. Lett. 121, 083602 (2018).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht, J. Roslund, N. Treps, G. Harder, and C. Silberhorn, “Tomography and purification of the temporal-mode structure of quantum light,” Phys. Rev. Lett. 120, 213601 (2018).
[Crossref]

S. P. Walborn, A. N. de Oliveira, S. Pádua, and C. H. Monken, “Multimode Hong–Ou–Mandel interference,” Phys. Rev. Lett. 90, 143601 (2003).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

R. Gomes, A. Salles, F. Toscano, P. S. Ribeiro, and S. Walborn, “Quantum entanglement beyond Gaussian criteria,” Proc. Natl. Acad. Sci. USA 106, 21517–21520 (2009).
[Crossref]

Rev. Phys. (1)

A. S. Solntsev and A. A. Sukhorukov, “Path-entangled photon sources on nonlinear chips,” Rev. Phys. 2, 19–31 (2017).
[Crossref]

Sci. Adv. (1)

Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, and A. Forbes, “Engineering two-photon high-dimensional states through quantum interference,” Sci. Adv. 2, e1501165 (2016).
[Crossref]

Sci. Rep. (5)

T. Douce, A. Eckstein, S. P. Walborn, A. Z. Khoury, S. Ducci, A. Keller, T. Coudreau, and P. Milman, “Direct measurement of the biphoton Wigner function through two-photon interference,” Sci. Rep. 3, 3530 (2013).
[Crossref]

M. Barbieri, E. Roccia, L. Mancino, M. Sbroscia, I. Gianani, and F. Sciarrino, “What Hong–Ou–Mandel interference says on two-photon frequency entanglement,” Sci. Rep. 7, 7247 (2017).
[Crossref]

S. K. Goyal, P. E. Boukama-Dzoussi, S. Ghosh, F. S. Roux, and T. Konrad, “Qudit-teleportation for photons with linear optics,” Sci. Rep. 4, 4543 (2014).
[Crossref]

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. Della Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

J. C. Matthews, K. Poulios, J. D. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Wörhoff, M. G. Thompson, and J. L. O’Brien, “Observing fermionic statistics with photons in arbitrary processes,” Sci. Rep. 3, 1539 (2013).
[Crossref]

Science (3)

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science 338, 640–643 (2012).
[Crossref]

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, “Multidimensional quantum entanglement with large-scale integrated optics,” Science 360, 285–291 (2018).
[Crossref]

I. Walmsley, “Quantum optics: science and technology in a new light,” Science 348, 525–530 (2015).
[Crossref]

Other (1)

N. Fabre, G. Maltese, F. Appas, S. Felicetti, A. Ketterer, A. Keller, T. Coudreau, F. Baboux, M. Amanti, S. Ducci, and P. Milman, “Continuous variables error correction with integrated biphoton frequency combs,” arXiv:1904.01351 (2019).

Supplementary Material (1)

NameDescription
Supplement 1       Supplementary Information

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Sketch of the AlGaAs ridge microcavity emitting photon pairs by PDC in a transverse pump geometry. (b)–(e) Sketch of the experiment, showing the pump shaping stage (b), stimulated emission tomography (c), fiber spectrograph (d), and Hong–Ou–Mandel (e) setups. Abbreviations: SLM, spatial light modulator; WFA, wavefront analyzer; PBS, polarizing beam splitter; FPC, fibered polarization controller; P, polarizer; HWP, half-wave plate; F, filter; DCF, dispersion compensating fiber; OSA, optical spectrum analyzer; SPAD, single-photon avalanche photodiode; TDC, time-to-digital converter.
Fig. 2.
Fig. 2. Measured joint spectral intensities (JSI) for increasing values of the pump beam waist: (a) 0.25 mm, (b) 0.4 mm, (c) 0.6 mm, and (d) 1 mm. (e)–(h) Numerically simulated JSI for the above parameters. $ {\lambda _s} $ and $ {\lambda _i} $ denote the wavelength of the signal and idler photons, respectively.
Fig. 3.
Fig. 3. (a) Sketch of the pumping geometry to control the symmetry of the biphoton quantum frequency state. (b)–(f) Measured JSI for increasing values of the phase step $ \Delta \varphi $ between the two halves of the pump beam. (g)–(k) Corresponding simulated JSI.
Fig. 4.
Fig. 4. (a) Measured JSI for a Gaussian pump beam, leading to a symmetric frequency-entangled state. (b) Corresponding measured and (c) calculated coincidences in a Hong–Ou–Mandel experiment, and (d) calculated chronocyclic Wigner function $ {W_ - } $ (normalized so that $ \pm 1 $ corresponds to a HOM dip (peak) of full visibility). (e)–(h) Same as (a)–(d) but when applying a $ \pi $ phase step at the center of the pump beam, leading to an antisymmetric frequency-entangled state. Experimental data correspond to raw (uncorrected) coincidence counts.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

J S A ( ω s , ω i ) = ϕ s p e c t r a l ( ω s + ω i ) ϕ P M ( ω s ω i ) .
ϕ P M ( ω s ω i ) = L / 2 L / 2 d z A p ( z ) e i ( k d e g + ( ω s ω i ) / v g ) z ,
ϕ P M ( ω s , ω i ) = f ( ω s , ω i ) + e i Δ φ f ( ω i , ω s ) ,

Metrics