Abstract

Flat lenses enable thinner, lighter, and simpler imaging systems. However, large-area and high-NA flat lenses have been elusive due to computational and fabrication challenges. Here we applied inverse design to create a multi-level diffractive lens (MDL) with thickness $ \lt {1}.{35}\;\unicode{x00B5} {\rm m}$, diameter of 4.13 mm, and ${\rm NA} = {0.9}$ at wavelength of 850 nm (bandwidth $\sim {35}\;{\rm nm}$). Since the MDL is created in polymer, it can be cost-effectively replicated via imprint lithography.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Corrections

Monjurul Meem, Sourangsu Banerji, Christian Pies, Timo Oberbiermann, Apratim Majumder, Berardi Sensale-Rodriguez, and Rajesh Menon, "Large-area, high-numerical-aperture multi-level diffractive lens via inverse design: erratum," Optica 7, 1323-1323 (2020)
https://www.osapublishing.org/optica/abstract.cfm?uri=optica-7-10-1323

Large-area metalenses are challenging due to their deep subwavelength critical dimensions, relatively large aspect ratios, and the need for high-refractive-index materials [1]. Therefore, only low-numerical-aperture (NA), large-area [1] or high-NA, small-area metalenses [2] have been demonstrated. Furthermore, recent work has also indicated that the unit-cell design methodology used in the vast majority of metalenses places an upper bound on focusing efficiencies at high NA [3]. The unit-cell design approach is critical to design large-area metalenses due to the huge computational cost of alternatives. Therefore, large-area, high-NA metalenses are extremely challenging.

On the other hand, binary-diffractive lenses at high NA have been proposed [4,5] and demonstrated in air [6] and also under water immersion for ${\rm NA} \gt {1}$ [7]. However, these suffer from relatively low efficiencies. Previously, we showed that high efficiency at all NAs could be achieved by exploiting inverse design in conjunction with 2.5D microstructures [8]. Specifically, we showed that such multi-level diffractive lenses (MDLs) offer the same or better performance when compared to metalenses, but with much simpler fabrication. Relatively large-area (${\rm diameter} = {15.2}\;{\rm mm}$) MDLs have also been demonstrated experimentally [9]. The concept of inverse design in optics, where the geometry of the device is computed based upon the desired photonic functionality, has been applied for many years in light trapping, [10] in photovoltaics, [11] in integrated photonics, [12] in free-space metasurfaces [13], and in MDLs [14]. In this paper, we apply inverse design and experimentally demonstrate an MDL with ${\rm NA} = {0.9}$, ${\rm diameter} = {4.13}\;{\rm mm}$, focal ${\rm length} = {1}\;{\rm mm}$, and operating wavelength $\lambda = {850}\;{\rm nm}$. Most importantly, we also show that high efficiency at high NA is indeed possible with an appropriate design of the MDL, something that has been considered very challenging for all flat lenses [15].

Our MDL is comprised of 4589 concentric rings, each of width 450 nm and heights varying between 0 and 1.35 µm. The heights were quantized to at most 100 discrete steps. The MDL was patterned in a positive-tone photoresist (maP1200G, Microresist Technology GmbH). The height distribution was chosen based on our inverse-design algorithm [8]. The MDL was patterned using grayscale-optical lithography via a laser-pattern generator (DWL $66+$, Heidelberg Instruments Mikrotechnik GmbH). Micrographs of the fabricated MDL are shown in Fig. 1.

 figure: Fig. 1.

Fig. 1. Details of the fabricated MDL. (a) Wide-field optical micrograph. The inset shows the radial cross section through the last 50 rings of the design. Scanning-confocal images of (b) the central rings and (c) a portion of the outer rings.

Download Full Size | PPT Slide | PDF

We characterized our device by illuminating it with a collimated beam at $\lambda = {850}\;{\rm nm}$ (${\rm bandwidth} = {15}\;{\rm nm}$, superK with Varia filter, NKT Photonics) and captured the point-spread function (PSF) by first magnifying it by 230 X and then recording the magnified PSF on a monochrome CMOS image sensor (DMM 27UP031-ML The Imaging Source, pixel ${\rm size} = {2.2}\;\unicode{x00B5} {\rm m}$). The recorded PSF and a cross section through its center are shown in Fig. 2(a), where the full width at half-maximum (FWHM) is confirmed to be 560 nm. The diffraction-limited FWHM is 472 nm. It is interesting to note the absence of any side lobes, which are present even in well-corrected high-NA microscope objectives. We calculated the modulation-transfer function from the measured PSF and plotted it in Fig. 2(b) (the inset shows the same data in log scale). At 10% contrast, the resolution is $ \gt {300}\;{\rm lp/mm}$.

 figure: Fig. 2.

Fig. 2. Characterization of the MDL. (a) Measured PSF. (b) MTF obtained from the PSF (inset: contrast in log scale). (c) Relative encircled power versus the radius of the spot. (d) Image of resolution chart. Illumination for (a) was a laser, while that for (d) was an LED flashlight, both centered at $ \lambda = 850\;{\rm nm}$.

Download Full Size | PPT Slide | PDF

There have been significant inconsistencies in the reporting of experimental efficiencies of flat lenses. In most cases, the focusing efficiency is defined as the ratio of optical power inside the focused spot to the power incident on the lens. However, the area of the focused spot is seldom consistently defined. This area is sometimes defined as a circle with diameter of 3 X FWHM [16] or 8 X FWHM [17], and often the area is not reported at all [18]. This last reference is particularly troubling because the claimed focusing efficiency of 86% at ${\rm NA} = {0}.{9}$ has been repeated in various review articles [15], but it is far higher than what is theoretically predicted to be possible in a recent article [3]. According to [3], the upper bound on efficiency for a ${\rm NA} = {0}.{9}$ metalens (using the unit-cell design method) is 32%. In order to avoid these pitfalls, instead of a single efficiency number, we prefer to plot the experimental relative encircled power as a function of the radius from the center of the focused spot in Fig. 2(c). The relative encircled power is defined as the ratio of the optical power within a spot centered on the optical axis of a given radius to the total incident power. Here, we approximate the incident power as the total power in the frame used to capture the PSF. This is a much more common metric used to characterize conventional refractive lenses [19]. The results indicate that more than 90% of the power is confined within a spot of radius $\sim {10}\;{\rm X}$ FWHM. We also emphasize that since our materials have a low refractive index (${n} = {1}.{62}$ at $\lambda = {850}\;{\rm nm}$), the transmission efficiency is very high ($\sim{90}\% $).

Finally, we also captured an image of the Air Force resolution chart, which is reproduced in Fig. 2(d), where one can see that all lines are well resolved, which is consistent with the measured PSF. The distance between the target and the MDL was 1.5 mm, while the distance between the MDL and the image plane was 3 mm. The illumination was from an 850 nm LED flashlight (${\rm bandwidth} = {35}\;{\rm nm}$).

In conclusion, we demonstrated that inverse design coupled with high-resolution grayscale lithography can achieve high-NA, large-area diffractive lenses. Since these lenses are made in polymer material, they can be manufactured at low cost via high-volume replication methods such as imprint lithography.

Funding

National Science Foundation (1351389, 1828480, 1936729); Office of Naval Research (N66001-10-1-4065).

Acknowledgment

We thank Dr. Brian van Devener for the use of a high-NA objective for characterization.

Disclosures

R. M.: Oblate Optics (I,E,P,R,S); C. P. & T. O.: Heidelberg Instruments (E).

REFERENCES

1. A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, Opt. Express 26, 1573 (2018). [CrossRef]  

2. Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for unpolarized high-NA visible imaging,” arXiv:1709.00573.

3. H. Chung and O. D. Miller, “High-NA achromatic metalenses by inverse design,” arXiv:1905.09213.

4. D. W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, J. Opt. Soc. Am. A 15, 1599 (1998). [CrossRef]  

5. J. N. Mait, D. W. Prather, and M. S. Mirotznik, Opt. Lett. 23, 1343 (1998). [CrossRef]  

6. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, J. Opt. Soc. Am. A 16, 1143 (1999). [CrossRef]  

7. D. Chao, A. Patel, T. Barwicz, H. I. Smith, and R. Menon, J. Vac. Sci. Technol. B 23, 2657 (2005). [CrossRef]  

8. S. Banerji, M. Meem, B. Sensale-Rodriguez, and R. Menon, Optica 6, 805 (2019). [CrossRef]  

9. M. Meem, S. Banerji, A. Majumder, F. Vasquez-Guevara, B. Sensale-Rodriguez, and R. Menon, Proc. Natl. Acad. Sci. USA 116, 21375 (2019). [CrossRef]  

10. P. Wang and R. Menon, Opt. Express 20, 1849 (2012). [CrossRef]  

11. G. Kim, J.-A. Dominguez-Caballero, H. Lee, D. Friedman, and R. Menon, Phys. Rev. Lett. 110, 123901 (2013). [CrossRef]  

12. B. Shen, P. Wang, R. C. Polson, and R. Menon, Opt. Express 22, 27175 (2014). [CrossRef]  

13. B. Shen, P. Wang, R. C. Polson, and R. Menon, Optica 1, 356 (2014). [CrossRef]  

14. P. Wang, N. Mohammad, and R. Menon, Sci. Rep. 6, 21545 (2016). [CrossRef]  

15. P. Lalanne and P. Chavel, Laser Photon. Rev. 11, 1600295 (2017). [CrossRef]  

16. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, Nat. Commun. 6, 7069 (2015). [CrossRef]  

17. M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, Nano Lett. 16, 7229 (2016). [CrossRef]  

18. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, Science 352, 1190 (2016). [CrossRef]  

19. J. Bentley and C. Olson, SPIE Press Book (2012).

References

  • View by:
  • |
  • |
  • |

  1. A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, Opt. Express 26, 1573 (2018).
    [Crossref]
  2. Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for unpolarized high-NA visible imaging,” arXiv:1709.00573.
  3. H. Chung and O. D. Miller, “High-NA achromatic metalenses by inverse design,” arXiv:1905.09213.
  4. D. W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, J. Opt. Soc. Am. A 15, 1599 (1998).
    [Crossref]
  5. J. N. Mait, D. W. Prather, and M. S. Mirotznik, Opt. Lett. 23, 1343 (1998).
    [Crossref]
  6. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, J. Opt. Soc. Am. A 16, 1143 (1999).
    [Crossref]
  7. D. Chao, A. Patel, T. Barwicz, H. I. Smith, and R. Menon, J. Vac. Sci. Technol. B 23, 2657 (2005).
    [Crossref]
  8. S. Banerji, M. Meem, B. Sensale-Rodriguez, and R. Menon, Optica 6, 805 (2019).
    [Crossref]
  9. M. Meem, S. Banerji, A. Majumder, F. Vasquez-Guevara, B. Sensale-Rodriguez, and R. Menon, Proc. Natl. Acad. Sci. USA 116, 21375 (2019).
    [Crossref]
  10. P. Wang and R. Menon, Opt. Express 20, 1849 (2012).
    [Crossref]
  11. G. Kim, J.-A. Dominguez-Caballero, H. Lee, D. Friedman, and R. Menon, Phys. Rev. Lett. 110, 123901 (2013).
    [Crossref]
  12. B. Shen, P. Wang, R. C. Polson, and R. Menon, Opt. Express 22, 27175 (2014).
    [Crossref]
  13. B. Shen, P. Wang, R. C. Polson, and R. Menon, Optica 1, 356 (2014).
    [Crossref]
  14. P. Wang, N. Mohammad, and R. Menon, Sci. Rep. 6, 21545 (2016).
    [Crossref]
  15. P. Lalanne and P. Chavel, Laser Photon. Rev. 11, 1600295 (2017).
    [Crossref]
  16. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, Nat. Commun. 6, 7069 (2015).
    [Crossref]
  17. M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, Nano Lett. 16, 7229 (2016).
    [Crossref]
  18. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, Science 352, 1190 (2016).
    [Crossref]
  19. J. Bentley and C. Olson, SPIE Press Book (2012).

2019 (2)

S. Banerji, M. Meem, B. Sensale-Rodriguez, and R. Menon, Optica 6, 805 (2019).
[Crossref]

M. Meem, S. Banerji, A. Majumder, F. Vasquez-Guevara, B. Sensale-Rodriguez, and R. Menon, Proc. Natl. Acad. Sci. USA 116, 21375 (2019).
[Crossref]

2018 (1)

2017 (1)

P. Lalanne and P. Chavel, Laser Photon. Rev. 11, 1600295 (2017).
[Crossref]

2016 (3)

P. Wang, N. Mohammad, and R. Menon, Sci. Rep. 6, 21545 (2016).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, Nano Lett. 16, 7229 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, Science 352, 1190 (2016).
[Crossref]

2015 (1)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, Nat. Commun. 6, 7069 (2015).
[Crossref]

2014 (2)

2013 (1)

G. Kim, J.-A. Dominguez-Caballero, H. Lee, D. Friedman, and R. Menon, Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

2012 (1)

2005 (1)

D. Chao, A. Patel, T. Barwicz, H. I. Smith, and R. Menon, J. Vac. Sci. Technol. B 23, 2657 (2005).
[Crossref]

1999 (1)

1998 (2)

Arbabi, A.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, Nat. Commun. 6, 7069 (2015).
[Crossref]

Astilean, S.

Bagheri, M.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, Nat. Commun. 6, 7069 (2015).
[Crossref]

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, Nat. Commun. 6, 7069 (2015).
[Crossref]

Banerji, S.

M. Meem, S. Banerji, A. Majumder, F. Vasquez-Guevara, B. Sensale-Rodriguez, and R. Menon, Proc. Natl. Acad. Sci. USA 116, 21375 (2019).
[Crossref]

S. Banerji, M. Meem, B. Sensale-Rodriguez, and R. Menon, Optica 6, 805 (2019).
[Crossref]

Barwicz, T.

D. Chao, A. Patel, T. Barwicz, H. I. Smith, and R. Menon, J. Vac. Sci. Technol. B 23, 2657 (2005).
[Crossref]

Bentley, J.

J. Bentley and C. Olson, SPIE Press Book (2012).

Cambril, E.

Capasso, F.

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, Opt. Express 26, 1573 (2018).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, Nano Lett. 16, 7229 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, Science 352, 1190 (2016).
[Crossref]

Chao, D.

D. Chao, A. Patel, T. Barwicz, H. I. Smith, and R. Menon, J. Vac. Sci. Technol. B 23, 2657 (2005).
[Crossref]

Chavel, P.

Chen, W. T.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, Nano Lett. 16, 7229 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, Science 352, 1190 (2016).
[Crossref]

Chen, Y.-J.

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for unpolarized high-NA visible imaging,” arXiv:1709.00573.

Chung, H.

H. Chung and O. D. Miller, “High-NA achromatic metalenses by inverse design,” arXiv:1905.09213.

Clarke, D. R.

Collins, J. P.

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, Science 352, 1190 (2016).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, Nano Lett. 16, 7229 (2016).
[Crossref]

Dominguez-Caballero, J.-A.

G. Kim, J.-A. Dominguez-Caballero, H. Lee, D. Friedman, and R. Menon, Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

Dong, J.-W.

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for unpolarized high-NA visible imaging,” arXiv:1709.00573.

Fan, Z.-B.

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for unpolarized high-NA visible imaging,” arXiv:1709.00573.

Faraon, A.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, Nat. Commun. 6, 7069 (2015).
[Crossref]

Friedman, D.

G. Kim, J.-A. Dominguez-Caballero, H. Lee, D. Friedman, and R. Menon, Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

Horie, Y.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, Nat. Commun. 6, 7069 (2015).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, Nano Lett. 16, 7229 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, Science 352, 1190 (2016).
[Crossref]

Kim, G.

G. Kim, J.-A. Dominguez-Caballero, H. Lee, D. Friedman, and R. Menon, Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

Lalanne, P.

Launois, H.

Lee, H.

G. Kim, J.-A. Dominguez-Caballero, H. Lee, D. Friedman, and R. Menon, Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

Mait, J. N.

Majumder, A.

M. Meem, S. Banerji, A. Majumder, F. Vasquez-Guevara, B. Sensale-Rodriguez, and R. Menon, Proc. Natl. Acad. Sci. USA 116, 21375 (2019).
[Crossref]

Meem, M.

M. Meem, S. Banerji, A. Majumder, F. Vasquez-Guevara, B. Sensale-Rodriguez, and R. Menon, Proc. Natl. Acad. Sci. USA 116, 21375 (2019).
[Crossref]

S. Banerji, M. Meem, B. Sensale-Rodriguez, and R. Menon, Optica 6, 805 (2019).
[Crossref]

Menon, R.

S. Banerji, M. Meem, B. Sensale-Rodriguez, and R. Menon, Optica 6, 805 (2019).
[Crossref]

M. Meem, S. Banerji, A. Majumder, F. Vasquez-Guevara, B. Sensale-Rodriguez, and R. Menon, Proc. Natl. Acad. Sci. USA 116, 21375 (2019).
[Crossref]

P. Wang, N. Mohammad, and R. Menon, Sci. Rep. 6, 21545 (2016).
[Crossref]

B. Shen, P. Wang, R. C. Polson, and R. Menon, Opt. Express 22, 27175 (2014).
[Crossref]

B. Shen, P. Wang, R. C. Polson, and R. Menon, Optica 1, 356 (2014).
[Crossref]

G. Kim, J.-A. Dominguez-Caballero, H. Lee, D. Friedman, and R. Menon, Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

P. Wang and R. Menon, Opt. Express 20, 1849 (2012).
[Crossref]

D. Chao, A. Patel, T. Barwicz, H. I. Smith, and R. Menon, J. Vac. Sci. Technol. B 23, 2657 (2005).
[Crossref]

Miller, O. D.

H. Chung and O. D. Miller, “High-NA achromatic metalenses by inverse design,” arXiv:1905.09213.

Mirotznik, M. S.

Mishra, L.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, Nano Lett. 16, 7229 (2016).
[Crossref]

Mohammad, N.

P. Wang, N. Mohammad, and R. Menon, Sci. Rep. 6, 21545 (2016).
[Crossref]

Oh, J.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, Nano Lett. 16, 7229 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, Science 352, 1190 (2016).
[Crossref]

Olson, C.

J. Bentley and C. Olson, SPIE Press Book (2012).

Pang, X.-N.

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for unpolarized high-NA visible imaging,” arXiv:1709.00573.

Patel, A.

D. Chao, A. Patel, T. Barwicz, H. I. Smith, and R. Menon, J. Vac. Sci. Technol. B 23, 2657 (2005).
[Crossref]

Polson, R. C.

Prather, D. W.

Roques-Carmes, C.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, Nano Lett. 16, 7229 (2016).
[Crossref]

Ruan, W.-S.

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for unpolarized high-NA visible imaging,” arXiv:1709.00573.

Sensale-Rodriguez, B.

S. Banerji, M. Meem, B. Sensale-Rodriguez, and R. Menon, Optica 6, 805 (2019).
[Crossref]

M. Meem, S. Banerji, A. Majumder, F. Vasquez-Guevara, B. Sensale-Rodriguez, and R. Menon, Proc. Natl. Acad. Sci. USA 116, 21375 (2019).
[Crossref]

Shao, Z.-K.

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for unpolarized high-NA visible imaging,” arXiv:1709.00573.

She, A.

Shen, B.

Shian, S.

Smith, H. I.

D. Chao, A. Patel, T. Barwicz, H. I. Smith, and R. Menon, J. Vac. Sci. Technol. B 23, 2657 (2005).
[Crossref]

Vasquez-Guevara, F.

M. Meem, S. Banerji, A. Majumder, F. Vasquez-Guevara, B. Sensale-Rodriguez, and R. Menon, Proc. Natl. Acad. Sci. USA 116, 21375 (2019).
[Crossref]

Wang, P.

Xie, M.-Y.

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for unpolarized high-NA visible imaging,” arXiv:1709.00573.

Yu, S.-Y.

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for unpolarized high-NA visible imaging,” arXiv:1709.00573.

Zhang, S.

Zhao, F.-L.

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for unpolarized high-NA visible imaging,” arXiv:1709.00573.

Zhu, A. Y.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, Nano Lett. 16, 7229 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, Science 352, 1190 (2016).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. B (1)

D. Chao, A. Patel, T. Barwicz, H. I. Smith, and R. Menon, J. Vac. Sci. Technol. B 23, 2657 (2005).
[Crossref]

Laser Photon. Rev. (1)

P. Lalanne and P. Chavel, Laser Photon. Rev. 11, 1600295 (2017).
[Crossref]

Nano Lett. (1)

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, Nano Lett. 16, 7229 (2016).
[Crossref]

Nat. Commun. (1)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, Nat. Commun. 6, 7069 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optica (2)

Phys. Rev. Lett. (1)

G. Kim, J.-A. Dominguez-Caballero, H. Lee, D. Friedman, and R. Menon, Phys. Rev. Lett. 110, 123901 (2013).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

M. Meem, S. Banerji, A. Majumder, F. Vasquez-Guevara, B. Sensale-Rodriguez, and R. Menon, Proc. Natl. Acad. Sci. USA 116, 21375 (2019).
[Crossref]

Sci. Rep. (1)

P. Wang, N. Mohammad, and R. Menon, Sci. Rep. 6, 21545 (2016).
[Crossref]

Science (1)

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, Science 352, 1190 (2016).
[Crossref]

Other (3)

J. Bentley and C. Olson, SPIE Press Book (2012).

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for unpolarized high-NA visible imaging,” arXiv:1709.00573.

H. Chung and O. D. Miller, “High-NA achromatic metalenses by inverse design,” arXiv:1905.09213.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1. Details of the fabricated MDL. (a) Wide-field optical micrograph. The inset shows the radial cross section through the last 50 rings of the design. Scanning-confocal images of (b) the central rings and (c) a portion of the outer rings.
Fig. 2.
Fig. 2. Characterization of the MDL. (a) Measured PSF. (b) MTF obtained from the PSF (inset: contrast in log scale). (c) Relative encircled power versus the radius of the spot. (d) Image of resolution chart. Illumination for (a) was a laser, while that for (d) was an LED flashlight, both centered at $ \lambda = 850\;{\rm nm}$.

Metrics