Abstract

The optoelectronic properties of asymmetric metal nanostructures are of current interest for applications in photonics, sensing, and catalysis. Here, we break the symmetry of the localized surface plasmon resonance of gold nanorods by selective overgrowth of a single tip via a high-yield (${\gt}{80}\%$) wet-chemical method. While optical spectroscopy exhibits a bathochromic shift of the nanoparticle plasmon resonance, cathodoluminescence and electron energy loss spectroscopy measurements reveal a breaking of the symmetry of the associated localized surface plasmon resonance mode, which results in the subwavelength concentration of electromagnetic energy. The simple, one-step postsynthetic modification allows control of nanoparticle structural parameters, and we demonstrate how the asymmetric energy redistribution leads to increases in the surface-enhanced Raman scattering of a model analyte attached to the surface of the nanostructures. The spatial localization of energy in these nanostructures may find applications in nanofocusing, nanoimaging, and light harvesting.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Metal nanostructures enable subwavelength confinement of light, which can in turn enhance light–matter interactions [13]. The strongest confinements can be realized with asymmetric nanostructures [4], which has led to applications in diverse fields, including biological sensing [5], photothermal therapy [6,7], data storage [8], and photocatalysis [911]. Confinement of electromagnetic energy density is especially important in applications such as modifying the radiative decay rate and the emission pattern of fluorophores [12], demonstrating strong light–matter interactions [13] and surface-enhanced Raman scattering (SERS), where enhancement factors as high as $10^{15}$ have allowed single molecule detection [1416]. High-energy and spatial resolution techniques such as electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) microscopy are increasingly used for spectrally resolving and spatially imaging the surface plasmon resonances of metallic nanostructures [1719]. These studies show that the electromagnetic field intensity and distribution around the surface of metallic nanostructures can be augmented as a consequence of symmetry breaking.

Asymmetric nanostructures, including Au nanocaps [20] and Au L-shapes [21] particles, are commonly fabricated using a combination of lithography and physical vapor deposition [22,23]. These techniques are not only time-consuming and expensive, but also result in substrate-bound particles that are unsuitable for biological applications and homogeneous photocatalysis. Alternatively, many studies have demonstrated the synthesis of asymmetric nanostructures using wet-chemistry processes such as postsynthetic assembly, in which colloidal nanoparticles are self-assembled into dimers, trimers, and higher-order aggregates, either through the control of interparticle electrostatics [2426] or the nucleation and growth method, where metal salts are reduced in the presence of presynthesized seed nanostructures for asymmetric overgrowth [2729]. This easy wet-chemistry methodology allows the synthesis of varied shapes and compositions, while providing exquisite control over the resulting optoelectronic properties [30], but the numerous variables (e.g., temperature, molecular ligand, pH) can drastically influence product yield and robust methods for monodisperse asymmetric nanostructures are still rare.

In this study, we employ CL, EELS, and theoretical analysis based on an electrostatic eigenmode method to demonstrate that symmetry-breaking produces a strong and deep subwavelength localization of electromagnetic energy density in matchstick-shaped Au nanostructures. These structures are prepared from the selective growth of a single tip of Au nanorods, via a synthetic protocol that reproducibly afforded ${\gt}{80}\%$ shape selectivity [Fig. 1(A)]. This synthetic protocol also enables a systematic study of the effect of structural geometry on the optical properties of the asymmetric nanostructures. Finally, as a proof of concept, we show how the structural asymmetry influences the localization of electromagnetic energy by comparing the measured SERS signals of a representative chemical analyte when deposited on either symmetric or asymmetric Au nanorods.

 

Fig. 1. (A) Synthetic scheme for asymmetric growth of Au nanorods, where CTAB is cetyltrimethylammonium bromide and 4-MBA is 4-mercaptobenzoic acid; (B) TEM images of Au nanorods (left) and nanomatchsticks (right); (C) size distribution (particle length and diameter) of nanorod seeds (green) and nanomatchsticks (blue); (D) statistical analysis of shape distribution in synthesized nanomatchsticks, counted from TEM pictures across ${\gt}\;{600}$ individual nanostructures (Fig. S1); scale bars, 100 nm.

Download Full Size | PPT Slide | PDF

2. RESULTS AND DISCUSSION

Asymmetric Nanoparticle Synthesis. Careful control of nanostructure surface chemistry is necessary to induce asymmetric growth in fused nanostructures [31]. Surfactants such as the commonly used cetyl-trimethylammonium bromide (CTAB) pack more densely along the sides of Au nanorods than at the tip, allowing the control of both shape and growth [32,33]. Partial or complete exchange of CTAB with thiol-containing ligands often results in fused nanostructures; thiols preferentially bind to the (1 1 1) facet of the crystals (at the rod tip) and influence the rate of Au salt reduction [3436]. We first synthesized Au nanorods using standard, seed-mediated methods (detailed in Supplement 1, Section 1) [9]. Prior to the secondary growth phase, rods were concentrated into a CTAB solution (6.0 mM) and incubated with 4-mercaptobenzoic acid (10 mM). This ligand is more commonly used in the self-assembly of Au nanoparticles on top of a gold mirror and in the assembly of tip-to-tip dimers [37,38]. After aging for 1 h, these rods acted as seeds for asymmetric growth via the reduction of ${\rm HAuCl}_4$ with ascorbic acid [Fig. 1(A)]. Secondary growth occurred for 12 h before the isolation and redispersal of the nanostructures into milli-Q water.

Transmission electron microscopy (TEM) revealed uniform nanostructures both before and after seeded growth. The initial nanorods [Fig. 1(B)] were well described as hemispherically capped cylinders with identical ends. Size mapping using image analysis revealed rods ${45} {\pm} {3}\;{\rm nm}$ in length and ${10} {\pm} {1}\;{\rm nm}$ wide [Fig. 1(C)]. Following the secondary growth phase, we observed asymmetric nanoparticles characterized by an overgrowth on only one tip of the rods [Fig. 1(B)]. The synthesized nanomatchsticks preserved the original rod width (${10} {\pm} {1}\;{\rm nm}$), while the mostly spherical asymmetric cap exhibited an average diameter of ${15} {\pm} {4}\;{\rm nm}$. Cap growth also coincided with a slight increase in rod length to ${47} {\pm} {3}\;{\rm nm}$ [Fig. 1(C)]. Statistical analysis of numerous TEM images revealed this process was highly selective (see Supplement 1, Fig. S1); 87% of the resulting nanostructures corresponded to Au nanomatchsticks [Fig. 1(D)]. The remaining distribution consisted of rods and spheres (5% and 6%, respectively) as well as various fused rod/sphere polymorphs. The monodispersity of the initial nanorods was critical for ensuring high yields of the nanomatchstick product.

High-resolution transmission electron microscopy (HRTEM) revealed that the synthesized nanomatchsticks remained as single crystals, suggesting epitaxial growth of the spherical cap (Fig. 2) with a d-spacing of 0.23 nm along the nanostructure, which we assign to the (1 1 1) facet of Au. While epitaxial growth occurs at the tips of Au nanorods when no thiol is present, ligand exchange with 4-mercaptophenol precipitates growth at small stacking faults to form multiple-twinned crystals, which then recrystallize into a single nanostructure [28,39,40]. While the exact origin of asymmetric growth is unclear, we speculate that it may arise from a combination of reaction parameters. First, the high concentration of Au particles in solution effectively lowers the concentration of both CTAB and the thiol per particle, consistent with the previous observation of both twinning and epitaxial growth of Au nanorods at low thiol concentrations [28]. Furthermore, the carboxyl groups in 4-mercaptobenzoic acid form an extensive hydrogen bonding network that facilitates tip-to-tip aggregation and low thiol concentration would likely increase dimer formation [38,4143], leaving a single end cap on each rod component exposed to overgrowth. Finally, the long growth period we employed (several hours compared with minutes) may drive recrystallization towards a single crystalline product rather than fused structures.

 

Fig. 2. HTEM image of the nanomatchsticks and fast Fourier transform (FFT) patterns of the region shown in each panel, respectively; lattice fringes with the same orientation extend from the spherical cap into the body of the rod.

Download Full Size | PPT Slide | PDF

Controlling Nanoparticle Structure. The 4-mercaptobenzoic acid is critical for asymmetric growth. No nanomatchsticks were observed in the absence of thiol; instead, symmetric peanut-shaped nanoparticles were the sole product [Fig. 3(A)]. These structures are known to form at low CTAB concentration, as both tips are less, but equally, protected [44]. The addition of any amount of thiol (180–640 µM final concentration) resulted in the desired nanomatchsticks, but the shape distribution was highly dependent on the relative concentration of the thiol (4-mercaptobenzoic acid) and surfactant (CTAB). We obtained the greatest yield of nanomatchsticks, 87%, at a surfactant/thiol ratio of approximately 15 [Fig. 3(A)]. Increasing or decreasing this ratio increased the polydispersity of the resulting structures with a relative increase in the proportion of rods, spheres, or fused structures. These results reveal a fine balance between the concentrations of each principal reactant (initial particle, surfactant, and thiol) during nanoparticle growth. The large increase in the yield of rods exhibiting isotropic growth at high thiol concentration [over 40%; see Fig. 3(A)] may result from destabilization of the CTAB layers or significant tip-to-tip ordering [45]. A similar reduction in the percentage of nanomatchsticks occurred when we decreased the volume of CTAB used to initially redisperse the Au nanorods, which also effectively decreased the surfactant/thiol ratio (Figs. S2, S3).

 

Fig. 3. (A) Shape distribution of nanostructured products synthesized using different surfactant/thiol ratio, where ${\rm NT} = {\rm means}$ no thiol; (B) size distribution (particle length and cap diameter) of nanomatchsticks synthesized from different rod seeds: aspect ratios 5.2 (red), 5.6 (blue), and 6 (yellow); (C) size distribution of nanomatchsticks synthesized from the same rod seeds (green) and increasing [${{\rm HAuCl}_4}$]: 90 µM (blue), 180 µM (yellow), 270 µM (red).

Download Full Size | PPT Slide | PDF

Provided we maintained the optimal surfactant/thiol ratio, our synthetic protocol proved both robust and reproducible (Fig. S4), allowing the fine-tuning of individual morphological components. Nanorods of the same width but different aspect ratios (5.2, 5.6, and 6.0) produced particles of increasing length but a similar head size [Fig. 3(B)]. When using rods with a small aspect ratio (${\lt}{4}$), nanomatchsticks were no longer the major structure (Fig. S5). Rod length is manipulated through control of pH during the initial seed-mediated growth; low pH, afforded by addition of hydrochloric acid, results in longer particles due to stabilization of CTAB micelles and suppressed reducing power of ascorbic acid [46,47]. The addition of a strong acid is also thought to increase the propensity of the stacking faults implicated in asymmetric growth [28]. The diameter of the spherical cap can be controlled with the concentration of ${{\rm HAuCl}_4}$ and ascorbic acid during tip growth. Histograms of particle distributions revealed a successive increase in cap diameter, with only a minimal increase in overall length when using a single batch of Au nanorods [length ${42} {\pm} {1}\;{\rm nm}$, aspect ratio 6, Fig. 3(C)]. As the concentration of Au salt increased, the monodispersity of nanomatchstick structures decreased, comprising 70% of total structures when the initial salt concentration was 27 µM (compared to 18 µM in the standard synthetic protocol; see Fig. S6). The increased percentage of spheres and other amorphous structures at higher ${{\rm HAuCl}_4}$ concentrations likely result from seeding of Au atoms in solution in addition to the exposed nanorod tips.

Optical Properties. The localized surface plasmon resonance (LSPR) of Au nanostructures is particularly sensitive to changes in morphology. The optical absorption spectrum of Au nanorods, length ${36} {\pm} {4}\;{\rm nm}$ (and a width of ${7} {\pm} {3}\;{\rm nm}$), contains a dominant band at 890 nm (with a full width at half-maximum of 173 nm) and a weaker band centered at 510 nm [Fig. 4(A)]. These characteristic features are assigned to longitudinal and transverse LSPRs, respectively. The longitudinal mode is characterized by a net dipole moment that aligns with the long axis of the structures, while in the transverse mode, the dipole aligns perpendicularly to this axis.

 

Fig. 4. (A) Normalized absorption spectra for synthesized Au nanomatchsticks and rod seeds with aspect ratios 5.2 (blue), 5.6 (green), and 6 (red); darker lines correspond to the initial nanorod absorption spectrum and lighter lines to nanomatchsticks; insets, representative TEM images with size distributions. The average diameter of the nanomatchstick’s head was ${13} {\pm} {2}\;{\rm nm}$ for each aspect ratio. (B) Normalized absorption spectra of Au nanomatchsticks with different cap diameters; position of the transverse LSPR (in nanometers) plotted as a function of measured cap diameter; (C) localized surface plasmon eigenmodes and corresponding dipole moment (arbitrary units) of a theoretical nanomatchstick (width 10 nm, length 56 nm, and cap diameter 20 nm): (1) longitudinal dipole moment, (2)–(3) doubly degenerate transverse moment. Color scale indicates surface charge; (4) calculated spectrum of the absorption cross section; scale bars, 50 nm.

Download Full Size | PPT Slide | PDF

Conversion to nanomatchsticks results in two optical changes: a slight bathochromic shift of the longitudinal resonance to 910 nm and a broadening and enhancement of the transversal mode. The increase in wavelength of the longitudinal mode, usually governed by aspect ratio, can be accounted for by a slight increase in rod length to ${38} {\pm} {1}\;{\rm nm}$ following asymmetric growth. Meanwhile, we assign the changes to the transverse band to two overlapping resonances associated with the different thickness of the rod and cap regions in the modified nanostructures (average matchstick’s head diameter ${13} {\pm} {2}\;{\rm nm}$). As the aspect ratio of the nanorods seeds increased, the longitudinal localized plasmon resonance exhibited a bathochromic shift, along with a further increase in absorption maximum following cap growth; from 934 to 968 nm and 985 to 1020 nm when the initial rod lengths were ${39} {\pm} {1}$ and ${42} {\pm} {1}\;{\rm nm}$, respectively [Fig. 4(A)]. Modifying the morphology of the spherical head influenced the properties of the transverse plasmon resonance band. As the head diameter increased, so too did the intensity of the transverse resonance relative to the longitudinal resonance [Fig. 4(B)]. Concomitant with this increase in intensity, the maxima of the transverse resonances underwent successive bathochromic shifts with increasing head diameter. Nanorods 7 nm wide initially exhibited a band centered at 513 nm that increased to 550 nm in nanomatchsticks with a head width of 14 nm. The broadening of the longitudinal mode with high cap diameter is consistent with the greater polydispersity observed by TEM (Fig. S6).

Electrostatic Model of the Particle Plasmon Resonance. To describe the optical properties of the synthesized nanomatchsticks, we employed the electrostatic eigenmode method [48]. Within this theory, valid here as our structures are considerably smaller than the incident radiation wavelength, the optical properties of metal nanostructures are described by a set of self-sustained surface charge oscillations (eigenmodes) and their associated resonant frequencies. These oscillations are fixed by the geometry and the dielectric permittivity of the structure and surrounding medium. Using a geometric approximation of our asymmetric structures comprising a hemispherically capped cylinder with one cap of greater diameter (Fig. S7), the resulting longitudinal resonant mode lacks inversion symmetry around the midpoint of the long axis [Fig. 4(C)]. The transverse modes [Fig. 4(C)] localize most of the surface charge on the spherical cap and possess eigenvalues ($\gamma$, which in turn determine the value of the resonant frequencies [48]) very close to that of a perfect sphere (for which $\gamma = {3}$) [48]. The resulting calculated spectra of the optical cross section closely resembles the experimental spectra, with a dominant longitudinal resonant mode [Fig. 4(C)]. The calculated spectrum is narrower when compared to the experimental one. This discrepancy is predominantly due to the size averaging that takes place when performing measurements in solution. While the electrostatic eigenmode approximation neglects the effect of electromagnetic retardation (i.e., different points on the nanostructure experience excitation from the incident electromagnetic field with different phases), the size of the structures is significantly smaller than the resonance wavelength and, consequently, it is expected that retardation effects can be safely ignored.

Spatial Map of the Plasmon Resonance. We employed CL imaging to experimentally map the LSPRs across an asymmetric nanostructure [49,50]. Using hyperspectral CL [51], an electron beam is raster-scanned across a nanostructure, collecting a full CL spectrum at each “pixel.” The average pixel spectra of both Au nanorods and nanomatchsticks (Fig. S8) clearly exhibit a longitudinal and transverse mode, albeit slightly distorted by the photodetector’s limited spectral range (350–1100 nm). Different emission wavelengths are dispersed by a diffraction grating before measurement by the photodetector, allowing the parallel collection of multiple optical responses such as the two distinct resonant modes. Unfortunately, we could not quantify the relative magnitude of the two modes due to low signal and differing levels of adventitious carbon between each sample (resulting from excess surface ligands).

 

Fig. 5. (A) and (B) Hyperspectral CL spectroscopy for rods and matchstick, respectively; CL maps from the spectral regions 430–550 nm and 750–980 nm, respectively; (C) TEM survey images of a single Au nanorod and Au matchsticks and the EELS maps of their longitudinal (1.1–1.7 eV) and transverse (1.7–2.7 eV) plasmon modes. Scale bars correspond to 20 nm. (D) Eigenmode hybridization diagram; the diagram shows the hybridization of two dipoles corresponding to a sphere and the longitudinal mode of a rod. This results in two new, bright eigenmodes that exhibit asymmetric surface charge distributions.

Download Full Size | PPT Slide | PDF

CL maps of the transverse (430–550 nm) and longitudinal (750–980 nm) modes of each geometry highlight the differences in their LSPRs. Consistent with previous studies [52], for nanorods, the transverse mode is excited uniformly along the particle-environment interface delineated by the long axis, while the longitudinal mode is preferentially excited at both end caps [Fig. 5(A)]. In contrast, there is a marked spatial asymmetry to both modes in the nanomatchsticks. In particular, the map of the longitudinal resonance exhibits a strong asymmetry [Fig. 5(B)]. In order to map the localized plasmon modes with higher spatial resolution, we performed EELS measurements [Fig. 5(C); details in Supplement 1, Section 10]. The EELS maps indicate that the plasmon resonances of an Au nanorod are symmetric with respect to its geometric center, while for the matchstick, this symmetry is broken, resulting in higher localization on the small tip of the asymmetric structure [Fig. 5(C) and Fig. S9]. These results corroborate the electrostatic surface plasmon eigenmode analysis and demonstrate the asymmetry of the LSPR that occurs as a consequence of structural changes.

 

Fig. 6. (A) Representative SEM images of Au nanorods (orange) and nanomatchsticks (blue) used as SERS substrate; (B) representative spectra of 4-aminothiophenol bound to a substrate comprising bare silicon (green), nanorods (orange), and nanomatchsticks (blue). Samples were irradiated at 785 nm, 290 mW; scale bars, 50 nm.

Download Full Size | PPT Slide | PDF

Hybridization Model. One way to conceptualize the origin of the asymmetric localized surface plasmon modes in the matchstick geometry is to study the interaction of the fictitious rod and spherical cap subsystems that make up the geometric shape. To this end, we consider the interaction of the threefold degenerate dipole eigenmodes of a sphere, with an associated frequency ${\omega _d}$, and the longitudinal and transverse (twofold degenerate) eigenmodes of a rod (with frequencies ${\omega _L}$ and ${\omega _T}$, respectively; details in Supplement 1). An analysis of these interactions results in the prediction of six resonant modes, from which the lowest-in-energy, bright resonance of the matchstick (i.e., one with a nonzero dipole moment) occurs at a frequency given by $({\omega _d} + {\omega _L})/2 - \sqrt {{{({\omega _d} - {\omega _L})}^2} + 4V_L^2} /2$ and corresponds to a hybridization between one of the sphere dipole modes ${\sigma _d}({\boldsymbol r})$ and the longitudinal resonance mode of the rod ${\sigma _L}({\boldsymbol r})$. The hybrid eigenmode ${\sigma _M}({\boldsymbol r})$ can therefore be written as the following linear superposition: ${\sigma _M}({\boldsymbol r}) = \alpha {\sigma _d}({\boldsymbol r}) + \beta {\sigma _L}({\boldsymbol r})$ (omitting a normalization factor), where the value of the coefficients $\alpha$ and $\beta$ depend on the strength of the interaction between the sphere and rod eigenmodes, which is quantified by ${V_L}$ [Fig. 5(D)]. The concentration of surface charge density on the extremes of the matchstick are consequently predicted to be different (by virtue of the difference of the coefficients in the superposition), accounting for the observed asymmetry in the CL experiments.

Surface-Enhanced Raman Spectroscopy. The strong localization of the electromagnetic field at the edges and corners of asymmetric nanostructures enhances the Raman scattering of adsorbed molecules, integral in the SERS analytical technique [53,54]. As demonstrated by CL and EELS mapping, the asymmetric Au nanorods localize the electromagnetic field into a smaller region of space relative to their symmetric counterparts. It can be anticipated that this higher concentration of electromagnetic energy can be manifest into a stronger SERS effect. As a proof-of-concept demonstration, we compared the performance of Au nanorods and Au nanomatchsticks with the model analyte 4-aminothiophenol (experimental method in Supplement 1). Representative SEM images of the prepared substrates (Au matchsticks and Au nanorods) are shown in Fig. 6(A). This model analyte exhibits three dominant Raman signals at 1078, 1588, and ${1179}\;{{\rm cm}^{- 1}}$, assigned to $\nu ({\rm C} {\text -} {\rm S})$ stretching vibration, $\nu ({\rm C} {\text -} {\rm C})$ aromatic ring vibration, and $\beta ({\rm C} {\text -} {\rm H})$ in plane bending mode, respectively [Fig. 6(B)] [55].

Substrates comprising Au nano-matchsticks always exhibited stronger $\nu ({\rm C} {\text -} {\rm S})$ and $\nu ({\rm C} {\text -} {\rm C})$ signals when compared to nanorod signals [Fig. 6(B)]. No significant increase in the corresponding $\beta ({\rm C} {\text -} {\rm H})$ mode was observed in either substrate. Clearly, bare silicon substrates displayed no SERS signal [Fig. 6(B)]. The resulting relative enhancement factor using matchsticks as a substrate was ${\sim}{2.7}$ for $\nu ({\rm C} {\text -} {\rm S})$ and ${\sim}{2.5}$ and for $\nu ({\rm C} {\text -} {\rm C})$ (Table S2).

3. CONCLUSION

In summary, we have demonstrated that it is possible to selectively enhance and concentrate the localized surface plasmon modes of Au nanorods by breaking their structural symmetry. An easy wet-chemistry process allowed the selective overgrowth of a single tip, enabling the metamorphosis of the rods into Au nanomatchstick shapes. High yields as well as size and shape distributions depended on a specific surfactant/thiol ratio, producing monodisperse nanomatchsticks up to 87% pure. While further studies are required to fully understand the mechanism of the observed asymmetric growth, we demonstrate that the optical properties of the asymmetric structures could be tuned through control of both rod length and cap diameter. Electrostatic eigenmode analysis corroborated hyperspectral CL and electron energy loss imaging that revealed asymmetric localization of the localized surface plasmon modes. This localization elicits a stronger SERS response from asymmetric nanostructures when compared with symmetrical analogs. Our study opens the prospect for creating asymmetric (Janus) heterostructures, where the overgrown tip could comprise different metals or semiconductors. The resulting heterostructures may be useful in varied applications, including sensing, photocatalysis, and optoelectronics.

Funding

Australian Research Council (FT140100514, FT180100594, LE110100223, LE140100104).

Acknowledgment

L. V. M acknowledges the support of Dr. Edwin LH. Mayes for EELS data acquisition at the RMIT Microscopy and Microanalysis Facility (RMMF). S. J. B. acknowledges support from RMIT University through a Vice Chancellor’s Postdoctoral Fellowship. HRTEM and CL were performed at the Monash Centre for Electron Microscopy.

Disclosures

The authors declare no conflicts of interest.

 

Please see Supplement 1 for supporting content.

REFERENCES

1. X. Kou, Z. Sun, Z. Yang, H. Chen, and J. Wang, “Curvature-directed assembly of gold nanocubes, nanobranches, and nanospheres,” Langmuir 25, 1692–1698 (2009). [CrossRef]  

2. B. H. Jun, M. Murata, E. Hahm, and L. P. Lee, “Synthesis method of asymmetric gold particles,” Sci. Rep. 7, 2921 (2017). [CrossRef]  

3. L. Zhang, H. J. Jang, S. Yoo, S. Cho, J. H. Won, L. Liu, and S. Park, “Synthesis of octahedral gold tip-blobbed nanoparticles and their dielectric sensing properties,” Nanotechnology 29, 375602 (2018). [CrossRef]  

4. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003). [CrossRef]  

5. L. Y. Wu, B. M. Ross, S. Hong, and L. P. Lee, “Bioinspired nanocorals with decoupled cellular targeting and sensing functionality,” Small 6, 503–507 (2010). [CrossRef]  

6. G. Su, D. Miao, Y. Yu, M. Zhou, P. Jiao, X. Cao, B. Yan, and H. Zhu, “Mesoporous silica-coated gold nanostars with drug payload for combined chemo-photothermal cancer therapy,” J. Drug. Target. 27, 201–210 (2019). [CrossRef]  

7. H. Liu, Y. Xu, Y. Qin, W. Sanderson, D. Crowley, C. H. Turner, and Y. Bao, “Ligand-directed formation of gold tetrapod nanostructures,” J. Phys. Chem. C 117, 17143–17150 (2013). [CrossRef]  

8. F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13, 2285–2291 (2018). [CrossRef]  

9. J. Huang, Y. Zhu, M. Lin, Q. Wang, L. Zhao, Y. Yang, K. X. Yao, and Y. Han, “Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy,” J. Am. Chem. Soc. 135, 8552–8561 (2013). [CrossRef]  

10. X. Zhu, H. Jia, X.-M. Zhu, S. Cheng, X. Zhuo, F. Qin, Z. Yang, and J. Wang, “Selective Pd deposition on Au nanobipyramids and Pd site-dependent plasmonic photocatalytic activity,” Adv. Funct. Mater. 27, 1700016 (2017). [CrossRef]  

11. X. Li, J. Cao, L. Yang, M. Wei, X. Liu, Q. Liu, Y. Hong, Y. Zhou, and J. Yang, “One-pot synthesis of ZnS nanowires/Cu7S4 nanoparticles/reduced graphene oxide nanocomposites for supercapacitor and photocatalysis applications,” Dalton. Trans. 48, 2442–2454 (2019). [CrossRef]  

12. J. E. Park, J. Kim, and J. M. Nam, “Emerging plasmonic nanostructures for controlling and enhancing photoluminescence,” Chem. Sci. 8,4696–4704 (2017). [CrossRef]  

13. J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. 18, 668–678 (2019). [CrossRef]  

14. W. Zhang, J. Liu, W. Niu, H. Yan, X. Lu, and B. Liu, “Tip-selective growth of silver on gold nanostars for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10, 14850–14856 (2018). [CrossRef]  

15. W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9, 485–490 (2009). [CrossRef]  

16. D. Lee and S. Yoon, “Gold nanocube–nanosphere dimers: preparation, plasmon coupling, and surface-enhanced Raman scattering,” J. Phys. Chem. C 119, 7873–7882 (2015). [CrossRef]  

17. V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. Garcia de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012). [CrossRef]  

18. V. Myroshnychenko, N. Nishio, F. J. Garcia de Abajo, J. Forstner, and N. Yamamoto, “Unveiling and imaging degenerate states in plasmonic nanoparticles with nanometer resolution,” ACS Nano 12, 8436–8446 (2018). [CrossRef]  

19. Z. Liu, M. Jiang, Y. Hu, F. Lin, B. Shen, X. Zhu, and Z. Fang, “Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures,” Opto-Electron. Adv. 1, 18000701 (2018). [CrossRef]  

20. S. J. Ding, H. Zhang, D. J. Yang, Y. H. Qiu, F. Nan, Z. J. Yang, J. Wang, Q. Q. Wang, and H. Q. Lin, “Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups,” Nano Lett. 19, 2005–2011 (2019). [CrossRef]  

21. R. Czaplicki, J. Makitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15, 530–534 (2015). [CrossRef]  

22. H. H. Jeong, M. C. Adams, J. P. Gunther, M. Alarcon-Correa, I. Kim, E. Choi, C. Miksch, A. F. Mark, A. G. Mark, and P. Fischer, “Arrays of plasmonic nanoparticle dimers with defined nanogap spacers,” ACS Nano 13, 11453–11459 (2019). [CrossRef]  

23. M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral plasmonic hydrogen sensors,” Small 14, 1702990 (2018). [CrossRef]  

24. S. J. Barrow, S. M. Collins, D. Rossouw, A. M. Funston, G. A. Botton, P. A. Midgley, and P. Mulvaney, “Electron energy loss spectroscopy investigation into symmetry in gold trimer and tetramer plasmonic nanoparticle structures,” ACS Nano 10, 8552–8563 (2016). [CrossRef]  

25. J. A. Lloyd, S. H. Ng, A. C. Y. Liu, Y. Zhu, W. Chao, T. Coenen, J. Etheridge, D. E. Gómez, and U. Bach, “Plasmonic nanolenses: electrostatic self-assembly of hierarchical nanoparticle trimers and their response to optical and electron beam stimuli,” ACS Nano 11, 1604–1612 (2017). [CrossRef]  

26. S. J. Barrow, D. Rossouw, A. M. Funston, G. A. Botton, and P. Mulvaney, “Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy,” Nano Lett. 14, 3799–3808 (2014). [CrossRef]  

27. M. Ha, J. H. Kim, M. You, Q. Li, C. Fan, and J. M. Nam, “Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures,” Chem. Rev. 119, 12208–12278 (2019). [CrossRef]  

28. J. Huang, Y. Zhu, C. Liu, Z. Shi, A. Fratalocchi, and Y. Han, “Unravelling thiol’s role in directing asymmetric growth of Au nanorod-Au nanoparticle dimers,” Nano Lett. 16, 617–623 (2016). [CrossRef]  

29. J. Huang, C. Liu, Y. Zhu, S. Masala, E. Alarousu, Y. Han, and A. Fratalocchi, “Harnessing structural darkness in the visible and infrared wavelengths for a new source of light,” Nat. Nanotechnol. 11, 60–66 (2016). [CrossRef]  

30. J. Qiu, M. Xie, Z. Lyu, K. D. Gilroy, H. Liu, and Y. Xia, “General approach to the synthesis of heterodimers of metal nanoparticles through site-selected protection and growth,” Nano Lett. 19, 6703–6708 (2019). [CrossRef]  

31. L. Weng, H. Zhang, A. O. Govorov, and M. Ouyang, “Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis,” Nat. Commun. 5, 4792 (2014). [CrossRef]  

32. J. Pérez-Juste, L. M. Liz-Marzán, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric-field-directed growth of gold nanorods in aqueous surfactant solutions,” Adv. Funct. Mater. 14, 571–579 (2004). [CrossRef]  

33. B. E. Janicek, J. G. Hinman, J. J. Hinman, S. H. Bae, M. Wu, J. Turner, H. H. Chang, E. Park, R. Lawless, K. S. Suslick, C. J. Murphy, and P. Y. Huang, “Quantitative imaging of organic ligand density on anisotropic inorganic nanocrystals,” Nano lett. 19, 6308–6314 (2019). [CrossRef]  

34. K. G. Thomas, S. Barazzouk, B. I. Ipe, S. T. S. Joseph, and P. V. Kamat, “Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods,” J. Phys. Chem. B. 108, 13066–13068 (2004). [CrossRef]  

35. Y. T. Chan, S. Li, C. N. Moorefield, P. Wang, C. D. Shreiner, and G. R. Newkome, “Self-assembly, disassembly, and reassembly of gold nanorods mediated by Bis(terpyridine)-metal connectivity,” Chem. Eur. J. 16, 4164–4168 (2010). [CrossRef]  

36. S. V. Snegir, P. Yu, F. Maurel, O. L. Kapitanchuk, A. A. Marchenko, and E. Lacaze, “Switching at the nanoscale: light- and STM-tip-induced switch of a thiolated diarylethene self-assembly on Au(111),” Langmuir 30, 13556–13563 (2014). [CrossRef]  

37. C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005). [CrossRef]  

38. T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints,” ACS Nano 4, 3087–3094 (2010). [CrossRef]  

39. K. Sohn, F. Kim, K. C. Pradel, J. Wu, Y. Peng, F. Zhou, and J. Huang, “Construction of evolutionary tree for morphological engineering of nanoparticles,” ACS Nano 3, 2191–2198 (2009). [CrossRef]  

40. Q. Zhang, L. Han, H. Jing, D. A. Blom, Y. Lin, H. L. Xin, and H. Wang, “Facet control of gold nanorods,” ACS Nano 10, 2960–2974 (2016). [CrossRef]  

41. J. Kumar and K. G. Thomas, “Surface-enhanced Raman spectroscopy: investigations at the nanorod edges and dimer junctions,” J. Phys. Chem. Lett. 2, 610–615 (2011). [CrossRef]  

42. Z. Zhu, W. Liu, Z. Li, B. Han, Y. Zhou, Y. Gao, and Z. Tang, “Manipulation of collective optical activity in one-dimensional plasmonic assembly,” ACS Nano 6, 2326–2332 (2012). [CrossRef]  

43. Y. Wang, W. Ji, H. Sui, Y. Kitahama, W. Ruan, Y. Ozaki, and B. Zhao, “Exploring the effect of intermolecular H-bonding: a study on charge-transfer contribution to surface-enhanced Raman scattering of p-mercaptobenzoic acid,” J. Phys. Chem. C 118, 10191–10197 (2014). [CrossRef]  

44. Y. Feng, J. He, H. Wang, Y. Y. Tay, H. Sun, L. Zhu, and H. Chen, “An unconventional role of ligand in continuously tuning of metal-metal interfacial strain,” J. Am. Chem. Soc. 134, 2004–2007 (2012). [CrossRef]  

45. Z. Sun, W. Ni, Z. Yang, X. Kou, L. Li, and J. Wang, “pH-controlled reversible assembly and disassembly of gold nanorods,” Small 4, 1287–1292 (2008). [CrossRef]  

46. J. Cheng, L. Ge, B. Xiong, and Y. He, “Investigation of pH effect on gold nanorod synthesis,” J. Chin. Chem. Soc. 58, 822–827 (2011). [CrossRef]  

47. W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2, 677–686 (2008). [CrossRef]  

48. T. J. Davis and D. E. Gómez, “Colloquium: an algebraic model of localized surface plasmons and their interactions,” Rev. Mod. Phys. 89, 011003 (2017). [CrossRef]  

49. A. Polman, M. Kociak, and F. J. Garcia de Abajo, “Electron-beam spectroscopy for nanophotonics,” Nat. Mater. 18, 1158–1171 (2019). [CrossRef]  

50. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010). [CrossRef]  

51. T. Coenen, “Angle-resolved cathodoluminescence nanoscopy,” Ph.D. dissertation (University of Amsterdam, 2014).

52. M. Kociak and O. Stephan, “Mapping plasmons at the nanometer scale in an electron microscope,” Chem. Soc. Rev. 43, 3865–3883 (2014). [CrossRef]  

53. J. J. Li, C. Wu, J. Zhao, G. J. Weng, J. Zhu, and J. W. Zhao, “Synthesis and SERS activity of super-multibranched AuAg nanostructure via silver coating-induced aggregation of nanostars,” Spectrochim. Acta. A 204, 380–387 (2018). [CrossRef]  

54. P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat. Commun. 3, 684 (2012). [CrossRef]  

55. S. L. Smitha, K. G. Gopchandran, N. R. Nair, K. M. Nampoothiri, and T. R. Ravindran, “SERS and antibacterial active green synthesized gold nanoparticles,” Plasmonics 7, 515–524 (2012). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. X. Kou, Z. Sun, Z. Yang, H. Chen, and J. Wang, “Curvature-directed assembly of gold nanocubes, nanobranches, and nanospheres,” Langmuir 25, 1692–1698 (2009).
    [Crossref]
  2. B. H. Jun, M. Murata, E. Hahm, and L. P. Lee, “Synthesis method of asymmetric gold particles,” Sci. Rep. 7, 2921 (2017).
    [Crossref]
  3. L. Zhang, H. J. Jang, S. Yoo, S. Cho, J. H. Won, L. Liu, and S. Park, “Synthesis of octahedral gold tip-blobbed nanoparticles and their dielectric sensing properties,” Nanotechnology 29, 375602 (2018).
    [Crossref]
  4. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
    [Crossref]
  5. L. Y. Wu, B. M. Ross, S. Hong, and L. P. Lee, “Bioinspired nanocorals with decoupled cellular targeting and sensing functionality,” Small 6, 503–507 (2010).
    [Crossref]
  6. G. Su, D. Miao, Y. Yu, M. Zhou, P. Jiao, X. Cao, B. Yan, and H. Zhu, “Mesoporous silica-coated gold nanostars with drug payload for combined chemo-photothermal cancer therapy,” J. Drug. Target. 27, 201–210 (2019).
    [Crossref]
  7. H. Liu, Y. Xu, Y. Qin, W. Sanderson, D. Crowley, C. H. Turner, and Y. Bao, “Ligand-directed formation of gold tetrapod nanostructures,” J. Phys. Chem. C 117, 17143–17150 (2013).
    [Crossref]
  8. F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13, 2285–2291 (2018).
    [Crossref]
  9. J. Huang, Y. Zhu, M. Lin, Q. Wang, L. Zhao, Y. Yang, K. X. Yao, and Y. Han, “Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy,” J. Am. Chem. Soc. 135, 8552–8561 (2013).
    [Crossref]
  10. X. Zhu, H. Jia, X.-M. Zhu, S. Cheng, X. Zhuo, F. Qin, Z. Yang, and J. Wang, “Selective Pd deposition on Au nanobipyramids and Pd site-dependent plasmonic photocatalytic activity,” Adv. Funct. Mater. 27, 1700016 (2017).
    [Crossref]
  11. X. Li, J. Cao, L. Yang, M. Wei, X. Liu, Q. Liu, Y. Hong, Y. Zhou, and J. Yang, “One-pot synthesis of ZnS nanowires/Cu7S4 nanoparticles/reduced graphene oxide nanocomposites for supercapacitor and photocatalysis applications,” Dalton. Trans. 48, 2442–2454 (2019).
    [Crossref]
  12. J. E. Park, J. Kim, and J. M. Nam, “Emerging plasmonic nanostructures for controlling and enhancing photoluminescence,” Chem. Sci. 8,4696–4704 (2017).
    [Crossref]
  13. J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. 18, 668–678 (2019).
    [Crossref]
  14. W. Zhang, J. Liu, W. Niu, H. Yan, X. Lu, and B. Liu, “Tip-selective growth of silver on gold nanostars for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10, 14850–14856 (2018).
    [Crossref]
  15. W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9, 485–490 (2009).
    [Crossref]
  16. D. Lee and S. Yoon, “Gold nanocube–nanosphere dimers: preparation, plasmon coupling, and surface-enhanced Raman scattering,” J. Phys. Chem. C 119, 7873–7882 (2015).
    [Crossref]
  17. V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. Garcia de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
    [Crossref]
  18. V. Myroshnychenko, N. Nishio, F. J. Garcia de Abajo, J. Forstner, and N. Yamamoto, “Unveiling and imaging degenerate states in plasmonic nanoparticles with nanometer resolution,” ACS Nano 12, 8436–8446 (2018).
    [Crossref]
  19. Z. Liu, M. Jiang, Y. Hu, F. Lin, B. Shen, X. Zhu, and Z. Fang, “Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures,” Opto-Electron. Adv. 1, 18000701 (2018).
    [Crossref]
  20. S. J. Ding, H. Zhang, D. J. Yang, Y. H. Qiu, F. Nan, Z. J. Yang, J. Wang, Q. Q. Wang, and H. Q. Lin, “Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups,” Nano Lett. 19, 2005–2011 (2019).
    [Crossref]
  21. R. Czaplicki, J. Makitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15, 530–534 (2015).
    [Crossref]
  22. H. H. Jeong, M. C. Adams, J. P. Gunther, M. Alarcon-Correa, I. Kim, E. Choi, C. Miksch, A. F. Mark, A. G. Mark, and P. Fischer, “Arrays of plasmonic nanoparticle dimers with defined nanogap spacers,” ACS Nano 13, 11453–11459 (2019).
    [Crossref]
  23. M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral plasmonic hydrogen sensors,” Small 14, 1702990 (2018).
    [Crossref]
  24. S. J. Barrow, S. M. Collins, D. Rossouw, A. M. Funston, G. A. Botton, P. A. Midgley, and P. Mulvaney, “Electron energy loss spectroscopy investigation into symmetry in gold trimer and tetramer plasmonic nanoparticle structures,” ACS Nano 10, 8552–8563 (2016).
    [Crossref]
  25. J. A. Lloyd, S. H. Ng, A. C. Y. Liu, Y. Zhu, W. Chao, T. Coenen, J. Etheridge, D. E. Gómez, and U. Bach, “Plasmonic nanolenses: electrostatic self-assembly of hierarchical nanoparticle trimers and their response to optical and electron beam stimuli,” ACS Nano 11, 1604–1612 (2017).
    [Crossref]
  26. S. J. Barrow, D. Rossouw, A. M. Funston, G. A. Botton, and P. Mulvaney, “Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy,” Nano Lett. 14, 3799–3808 (2014).
    [Crossref]
  27. M. Ha, J. H. Kim, M. You, Q. Li, C. Fan, and J. M. Nam, “Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures,” Chem. Rev. 119, 12208–12278 (2019).
    [Crossref]
  28. J. Huang, Y. Zhu, C. Liu, Z. Shi, A. Fratalocchi, and Y. Han, “Unravelling thiol’s role in directing asymmetric growth of Au nanorod-Au nanoparticle dimers,” Nano Lett. 16, 617–623 (2016).
    [Crossref]
  29. J. Huang, C. Liu, Y. Zhu, S. Masala, E. Alarousu, Y. Han, and A. Fratalocchi, “Harnessing structural darkness in the visible and infrared wavelengths for a new source of light,” Nat. Nanotechnol. 11, 60–66 (2016).
    [Crossref]
  30. J. Qiu, M. Xie, Z. Lyu, K. D. Gilroy, H. Liu, and Y. Xia, “General approach to the synthesis of heterodimers of metal nanoparticles through site-selected protection and growth,” Nano Lett. 19, 6703–6708 (2019).
    [Crossref]
  31. L. Weng, H. Zhang, A. O. Govorov, and M. Ouyang, “Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis,” Nat. Commun. 5, 4792 (2014).
    [Crossref]
  32. J. Pérez-Juste, L. M. Liz-Marzán, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric-field-directed growth of gold nanorods in aqueous surfactant solutions,” Adv. Funct. Mater. 14, 571–579 (2004).
    [Crossref]
  33. B. E. Janicek, J. G. Hinman, J. J. Hinman, S. H. Bae, M. Wu, J. Turner, H. H. Chang, E. Park, R. Lawless, K. S. Suslick, C. J. Murphy, and P. Y. Huang, “Quantitative imaging of organic ligand density on anisotropic inorganic nanocrystals,” Nano lett. 19, 6308–6314 (2019).
    [Crossref]
  34. K. G. Thomas, S. Barazzouk, B. I. Ipe, S. T. S. Joseph, and P. V. Kamat, “Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods,” J. Phys. Chem. B. 108, 13066–13068 (2004).
    [Crossref]
  35. Y. T. Chan, S. Li, C. N. Moorefield, P. Wang, C. D. Shreiner, and G. R. Newkome, “Self-assembly, disassembly, and reassembly of gold nanorods mediated by Bis(terpyridine)-metal connectivity,” Chem. Eur. J. 16, 4164–4168 (2010).
    [Crossref]
  36. S. V. Snegir, P. Yu, F. Maurel, O. L. Kapitanchuk, A. A. Marchenko, and E. Lacaze, “Switching at the nanoscale: light- and STM-tip-induced switch of a thiolated diarylethene self-assembly on Au(111),” Langmuir 30, 13556–13563 (2014).
    [Crossref]
  37. C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
    [Crossref]
  38. T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints,” ACS Nano 4, 3087–3094 (2010).
    [Crossref]
  39. K. Sohn, F. Kim, K. C. Pradel, J. Wu, Y. Peng, F. Zhou, and J. Huang, “Construction of evolutionary tree for morphological engineering of nanoparticles,” ACS Nano 3, 2191–2198 (2009).
    [Crossref]
  40. Q. Zhang, L. Han, H. Jing, D. A. Blom, Y. Lin, H. L. Xin, and H. Wang, “Facet control of gold nanorods,” ACS Nano 10, 2960–2974 (2016).
    [Crossref]
  41. J. Kumar and K. G. Thomas, “Surface-enhanced Raman spectroscopy: investigations at the nanorod edges and dimer junctions,” J. Phys. Chem. Lett. 2, 610–615 (2011).
    [Crossref]
  42. Z. Zhu, W. Liu, Z. Li, B. Han, Y. Zhou, Y. Gao, and Z. Tang, “Manipulation of collective optical activity in one-dimensional plasmonic assembly,” ACS Nano 6, 2326–2332 (2012).
    [Crossref]
  43. Y. Wang, W. Ji, H. Sui, Y. Kitahama, W. Ruan, Y. Ozaki, and B. Zhao, “Exploring the effect of intermolecular H-bonding: a study on charge-transfer contribution to surface-enhanced Raman scattering of p-mercaptobenzoic acid,” J. Phys. Chem. C 118, 10191–10197 (2014).
    [Crossref]
  44. Y. Feng, J. He, H. Wang, Y. Y. Tay, H. Sun, L. Zhu, and H. Chen, “An unconventional role of ligand in continuously tuning of metal-metal interfacial strain,” J. Am. Chem. Soc. 134, 2004–2007 (2012).
    [Crossref]
  45. Z. Sun, W. Ni, Z. Yang, X. Kou, L. Li, and J. Wang, “pH-controlled reversible assembly and disassembly of gold nanorods,” Small 4, 1287–1292 (2008).
    [Crossref]
  46. J. Cheng, L. Ge, B. Xiong, and Y. He, “Investigation of pH effect on gold nanorod synthesis,” J. Chin. Chem. Soc. 58, 822–827 (2011).
    [Crossref]
  47. W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2, 677–686 (2008).
    [Crossref]
  48. T. J. Davis and D. E. Gómez, “Colloquium: an algebraic model of localized surface plasmons and their interactions,” Rev. Mod. Phys. 89, 011003 (2017).
    [Crossref]
  49. A. Polman, M. Kociak, and F. J. Garcia de Abajo, “Electron-beam spectroscopy for nanophotonics,” Nat. Mater. 18, 1158–1171 (2019).
    [Crossref]
  50. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
    [Crossref]
  51. T. Coenen, “Angle-resolved cathodoluminescence nanoscopy,” Ph.D. dissertation (University of Amsterdam, 2014).
  52. M. Kociak and O. Stephan, “Mapping plasmons at the nanometer scale in an electron microscope,” Chem. Soc. Rev. 43, 3865–3883 (2014).
    [Crossref]
  53. J. J. Li, C. Wu, J. Zhao, G. J. Weng, J. Zhu, and J. W. Zhao, “Synthesis and SERS activity of super-multibranched AuAg nanostructure via silver coating-induced aggregation of nanostars,” Spectrochim. Acta. A 204, 380–387 (2018).
    [Crossref]
  54. P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat. Commun. 3, 684 (2012).
    [Crossref]
  55. S. L. Smitha, K. G. Gopchandran, N. R. Nair, K. M. Nampoothiri, and T. R. Ravindran, “SERS and antibacterial active green synthesized gold nanoparticles,” Plasmonics 7, 515–524 (2012).
    [Crossref]

2019 (9)

G. Su, D. Miao, Y. Yu, M. Zhou, P. Jiao, X. Cao, B. Yan, and H. Zhu, “Mesoporous silica-coated gold nanostars with drug payload for combined chemo-photothermal cancer therapy,” J. Drug. Target. 27, 201–210 (2019).
[Crossref]

X. Li, J. Cao, L. Yang, M. Wei, X. Liu, Q. Liu, Y. Hong, Y. Zhou, and J. Yang, “One-pot synthesis of ZnS nanowires/Cu7S4 nanoparticles/reduced graphene oxide nanocomposites for supercapacitor and photocatalysis applications,” Dalton. Trans. 48, 2442–2454 (2019).
[Crossref]

J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. 18, 668–678 (2019).
[Crossref]

S. J. Ding, H. Zhang, D. J. Yang, Y. H. Qiu, F. Nan, Z. J. Yang, J. Wang, Q. Q. Wang, and H. Q. Lin, “Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups,” Nano Lett. 19, 2005–2011 (2019).
[Crossref]

H. H. Jeong, M. C. Adams, J. P. Gunther, M. Alarcon-Correa, I. Kim, E. Choi, C. Miksch, A. F. Mark, A. G. Mark, and P. Fischer, “Arrays of plasmonic nanoparticle dimers with defined nanogap spacers,” ACS Nano 13, 11453–11459 (2019).
[Crossref]

M. Ha, J. H. Kim, M. You, Q. Li, C. Fan, and J. M. Nam, “Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures,” Chem. Rev. 119, 12208–12278 (2019).
[Crossref]

J. Qiu, M. Xie, Z. Lyu, K. D. Gilroy, H. Liu, and Y. Xia, “General approach to the synthesis of heterodimers of metal nanoparticles through site-selected protection and growth,” Nano Lett. 19, 6703–6708 (2019).
[Crossref]

B. E. Janicek, J. G. Hinman, J. J. Hinman, S. H. Bae, M. Wu, J. Turner, H. H. Chang, E. Park, R. Lawless, K. S. Suslick, C. J. Murphy, and P. Y. Huang, “Quantitative imaging of organic ligand density on anisotropic inorganic nanocrystals,” Nano lett. 19, 6308–6314 (2019).
[Crossref]

A. Polman, M. Kociak, and F. J. Garcia de Abajo, “Electron-beam spectroscopy for nanophotonics,” Nat. Mater. 18, 1158–1171 (2019).
[Crossref]

2018 (7)

J. J. Li, C. Wu, J. Zhao, G. J. Weng, J. Zhu, and J. W. Zhao, “Synthesis and SERS activity of super-multibranched AuAg nanostructure via silver coating-induced aggregation of nanostars,” Spectrochim. Acta. A 204, 380–387 (2018).
[Crossref]

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral plasmonic hydrogen sensors,” Small 14, 1702990 (2018).
[Crossref]

V. Myroshnychenko, N. Nishio, F. J. Garcia de Abajo, J. Forstner, and N. Yamamoto, “Unveiling and imaging degenerate states in plasmonic nanoparticles with nanometer resolution,” ACS Nano 12, 8436–8446 (2018).
[Crossref]

Z. Liu, M. Jiang, Y. Hu, F. Lin, B. Shen, X. Zhu, and Z. Fang, “Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures,” Opto-Electron. Adv. 1, 18000701 (2018).
[Crossref]

W. Zhang, J. Liu, W. Niu, H. Yan, X. Lu, and B. Liu, “Tip-selective growth of silver on gold nanostars for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10, 14850–14856 (2018).
[Crossref]

F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13, 2285–2291 (2018).
[Crossref]

L. Zhang, H. J. Jang, S. Yoo, S. Cho, J. H. Won, L. Liu, and S. Park, “Synthesis of octahedral gold tip-blobbed nanoparticles and their dielectric sensing properties,” Nanotechnology 29, 375602 (2018).
[Crossref]

2017 (5)

B. H. Jun, M. Murata, E. Hahm, and L. P. Lee, “Synthesis method of asymmetric gold particles,” Sci. Rep. 7, 2921 (2017).
[Crossref]

J. E. Park, J. Kim, and J. M. Nam, “Emerging plasmonic nanostructures for controlling and enhancing photoluminescence,” Chem. Sci. 8,4696–4704 (2017).
[Crossref]

X. Zhu, H. Jia, X.-M. Zhu, S. Cheng, X. Zhuo, F. Qin, Z. Yang, and J. Wang, “Selective Pd deposition on Au nanobipyramids and Pd site-dependent plasmonic photocatalytic activity,” Adv. Funct. Mater. 27, 1700016 (2017).
[Crossref]

J. A. Lloyd, S. H. Ng, A. C. Y. Liu, Y. Zhu, W. Chao, T. Coenen, J. Etheridge, D. E. Gómez, and U. Bach, “Plasmonic nanolenses: electrostatic self-assembly of hierarchical nanoparticle trimers and their response to optical and electron beam stimuli,” ACS Nano 11, 1604–1612 (2017).
[Crossref]

T. J. Davis and D. E. Gómez, “Colloquium: an algebraic model of localized surface plasmons and their interactions,” Rev. Mod. Phys. 89, 011003 (2017).
[Crossref]

2016 (4)

Q. Zhang, L. Han, H. Jing, D. A. Blom, Y. Lin, H. L. Xin, and H. Wang, “Facet control of gold nanorods,” ACS Nano 10, 2960–2974 (2016).
[Crossref]

S. J. Barrow, S. M. Collins, D. Rossouw, A. M. Funston, G. A. Botton, P. A. Midgley, and P. Mulvaney, “Electron energy loss spectroscopy investigation into symmetry in gold trimer and tetramer plasmonic nanoparticle structures,” ACS Nano 10, 8552–8563 (2016).
[Crossref]

J. Huang, Y. Zhu, C. Liu, Z. Shi, A. Fratalocchi, and Y. Han, “Unravelling thiol’s role in directing asymmetric growth of Au nanorod-Au nanoparticle dimers,” Nano Lett. 16, 617–623 (2016).
[Crossref]

J. Huang, C. Liu, Y. Zhu, S. Masala, E. Alarousu, Y. Han, and A. Fratalocchi, “Harnessing structural darkness in the visible and infrared wavelengths for a new source of light,” Nat. Nanotechnol. 11, 60–66 (2016).
[Crossref]

2015 (2)

R. Czaplicki, J. Makitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15, 530–534 (2015).
[Crossref]

D. Lee and S. Yoon, “Gold nanocube–nanosphere dimers: preparation, plasmon coupling, and surface-enhanced Raman scattering,” J. Phys. Chem. C 119, 7873–7882 (2015).
[Crossref]

2014 (5)

S. J. Barrow, D. Rossouw, A. M. Funston, G. A. Botton, and P. Mulvaney, “Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy,” Nano Lett. 14, 3799–3808 (2014).
[Crossref]

L. Weng, H. Zhang, A. O. Govorov, and M. Ouyang, “Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis,” Nat. Commun. 5, 4792 (2014).
[Crossref]

S. V. Snegir, P. Yu, F. Maurel, O. L. Kapitanchuk, A. A. Marchenko, and E. Lacaze, “Switching at the nanoscale: light- and STM-tip-induced switch of a thiolated diarylethene self-assembly on Au(111),” Langmuir 30, 13556–13563 (2014).
[Crossref]

Y. Wang, W. Ji, H. Sui, Y. Kitahama, W. Ruan, Y. Ozaki, and B. Zhao, “Exploring the effect of intermolecular H-bonding: a study on charge-transfer contribution to surface-enhanced Raman scattering of p-mercaptobenzoic acid,” J. Phys. Chem. C 118, 10191–10197 (2014).
[Crossref]

M. Kociak and O. Stephan, “Mapping plasmons at the nanometer scale in an electron microscope,” Chem. Soc. Rev. 43, 3865–3883 (2014).
[Crossref]

2013 (2)

J. Huang, Y. Zhu, M. Lin, Q. Wang, L. Zhao, Y. Yang, K. X. Yao, and Y. Han, “Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy,” J. Am. Chem. Soc. 135, 8552–8561 (2013).
[Crossref]

H. Liu, Y. Xu, Y. Qin, W. Sanderson, D. Crowley, C. H. Turner, and Y. Bao, “Ligand-directed formation of gold tetrapod nanostructures,” J. Phys. Chem. C 117, 17143–17150 (2013).
[Crossref]

2012 (5)

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. Garcia de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat. Commun. 3, 684 (2012).
[Crossref]

S. L. Smitha, K. G. Gopchandran, N. R. Nair, K. M. Nampoothiri, and T. R. Ravindran, “SERS and antibacterial active green synthesized gold nanoparticles,” Plasmonics 7, 515–524 (2012).
[Crossref]

Y. Feng, J. He, H. Wang, Y. Y. Tay, H. Sun, L. Zhu, and H. Chen, “An unconventional role of ligand in continuously tuning of metal-metal interfacial strain,” J. Am. Chem. Soc. 134, 2004–2007 (2012).
[Crossref]

Z. Zhu, W. Liu, Z. Li, B. Han, Y. Zhou, Y. Gao, and Z. Tang, “Manipulation of collective optical activity in one-dimensional plasmonic assembly,” ACS Nano 6, 2326–2332 (2012).
[Crossref]

2011 (2)

J. Kumar and K. G. Thomas, “Surface-enhanced Raman spectroscopy: investigations at the nanorod edges and dimer junctions,” J. Phys. Chem. Lett. 2, 610–615 (2011).
[Crossref]

J. Cheng, L. Ge, B. Xiong, and Y. He, “Investigation of pH effect on gold nanorod synthesis,” J. Chin. Chem. Soc. 58, 822–827 (2011).
[Crossref]

2010 (4)

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
[Crossref]

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints,” ACS Nano 4, 3087–3094 (2010).
[Crossref]

Y. T. Chan, S. Li, C. N. Moorefield, P. Wang, C. D. Shreiner, and G. R. Newkome, “Self-assembly, disassembly, and reassembly of gold nanorods mediated by Bis(terpyridine)-metal connectivity,” Chem. Eur. J. 16, 4164–4168 (2010).
[Crossref]

L. Y. Wu, B. M. Ross, S. Hong, and L. P. Lee, “Bioinspired nanocorals with decoupled cellular targeting and sensing functionality,” Small 6, 503–507 (2010).
[Crossref]

2009 (3)

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9, 485–490 (2009).
[Crossref]

X. Kou, Z. Sun, Z. Yang, H. Chen, and J. Wang, “Curvature-directed assembly of gold nanocubes, nanobranches, and nanospheres,” Langmuir 25, 1692–1698 (2009).
[Crossref]

K. Sohn, F. Kim, K. C. Pradel, J. Wu, Y. Peng, F. Zhou, and J. Huang, “Construction of evolutionary tree for morphological engineering of nanoparticles,” ACS Nano 3, 2191–2198 (2009).
[Crossref]

2008 (2)

Z. Sun, W. Ni, Z. Yang, X. Kou, L. Li, and J. Wang, “pH-controlled reversible assembly and disassembly of gold nanorods,” Small 4, 1287–1292 (2008).
[Crossref]

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2, 677–686 (2008).
[Crossref]

2005 (1)

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
[Crossref]

2004 (2)

K. G. Thomas, S. Barazzouk, B. I. Ipe, S. T. S. Joseph, and P. V. Kamat, “Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods,” J. Phys. Chem. B. 108, 13066–13068 (2004).
[Crossref]

J. Pérez-Juste, L. M. Liz-Marzán, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric-field-directed growth of gold nanorods in aqueous surfactant solutions,” Adv. Funct. Mater. 14, 571–579 (2004).
[Crossref]

2003 (1)

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref]

Adamo, G.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. Garcia de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Adams, M. C.

H. H. Jeong, M. C. Adams, J. P. Gunther, M. Alarcon-Correa, I. Kim, E. Choi, C. Miksch, A. F. Mark, A. G. Mark, and P. Fischer, “Arrays of plasmonic nanoparticle dimers with defined nanogap spacers,” ACS Nano 13, 11453–11459 (2019).
[Crossref]

Aizpurua, J.

J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. 18, 668–678 (2019).
[Crossref]

P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat. Commun. 3, 684 (2012).
[Crossref]

Alarcon-Correa, M.

H. H. Jeong, M. C. Adams, J. P. Gunther, M. Alarcon-Correa, I. Kim, E. Choi, C. Miksch, A. F. Mark, A. G. Mark, and P. Fischer, “Arrays of plasmonic nanoparticle dimers with defined nanogap spacers,” ACS Nano 13, 11453–11459 (2019).
[Crossref]

Alarousu, E.

J. Huang, C. Liu, Y. Zhu, S. Masala, E. Alarousu, Y. Han, and A. Fratalocchi, “Harnessing structural darkness in the visible and infrared wavelengths for a new source of light,” Nat. Nanotechnol. 11, 60–66 (2016).
[Crossref]

Albella, P.

P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat. Commun. 3, 684 (2012).
[Crossref]

Alonso-González, P.

P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat. Commun. 3, 684 (2012).
[Crossref]

Arzubiaga, L.

P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat. Commun. 3, 684 (2012).
[Crossref]

Bach, U.

J. A. Lloyd, S. H. Ng, A. C. Y. Liu, Y. Zhu, W. Chao, T. Coenen, J. Etheridge, D. E. Gómez, and U. Bach, “Plasmonic nanolenses: electrostatic self-assembly of hierarchical nanoparticle trimers and their response to optical and electron beam stimuli,” ACS Nano 11, 1604–1612 (2017).
[Crossref]

Bae, S. H.

B. E. Janicek, J. G. Hinman, J. J. Hinman, S. H. Bae, M. Wu, J. Turner, H. H. Chang, E. Park, R. Lawless, K. S. Suslick, C. J. Murphy, and P. Y. Huang, “Quantitative imaging of organic ligand density on anisotropic inorganic nanocrystals,” Nano lett. 19, 6308–6314 (2019).
[Crossref]

Bao, Y.

H. Liu, Y. Xu, Y. Qin, W. Sanderson, D. Crowley, C. H. Turner, and Y. Bao, “Ligand-directed formation of gold tetrapod nanostructures,” J. Phys. Chem. C 117, 17143–17150 (2013).
[Crossref]

Barazzouk, S.

K. G. Thomas, S. Barazzouk, B. I. Ipe, S. T. S. Joseph, and P. V. Kamat, “Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods,” J. Phys. Chem. B. 108, 13066–13068 (2004).
[Crossref]

Barrow, S. J.

S. J. Barrow, S. M. Collins, D. Rossouw, A. M. Funston, G. A. Botton, P. A. Midgley, and P. Mulvaney, “Electron energy loss spectroscopy investigation into symmetry in gold trimer and tetramer plasmonic nanoparticle structures,” ACS Nano 10, 8552–8563 (2016).
[Crossref]

S. J. Barrow, D. Rossouw, A. M. Funston, G. A. Botton, and P. Mulvaney, “Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy,” Nano Lett. 14, 3799–3808 (2014).
[Crossref]

Baumberg, J. J.

J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. 18, 668–678 (2019).
[Crossref]

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref]

Blom, D. A.

Q. Zhang, L. Han, H. Jing, D. A. Blom, Y. Lin, H. L. Xin, and H. Wang, “Facet control of gold nanorods,” ACS Nano 10, 2960–2974 (2016).
[Crossref]

Botton, G. A.

S. J. Barrow, S. M. Collins, D. Rossouw, A. M. Funston, G. A. Botton, P. A. Midgley, and P. Mulvaney, “Electron energy loss spectroscopy investigation into symmetry in gold trimer and tetramer plasmonic nanoparticle structures,” ACS Nano 10, 8552–8563 (2016).
[Crossref]

S. J. Barrow, D. Rossouw, A. M. Funston, G. A. Botton, and P. Mulvaney, “Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy,” Nano Lett. 14, 3799–3808 (2014).
[Crossref]

Camargo, P. H. C.

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9, 485–490 (2009).
[Crossref]

Cao, J.

X. Li, J. Cao, L. Yang, M. Wei, X. Liu, Q. Liu, Y. Hong, Y. Zhou, and J. Yang, “One-pot synthesis of ZnS nanowires/Cu7S4 nanoparticles/reduced graphene oxide nanocomposites for supercapacitor and photocatalysis applications,” Dalton. Trans. 48, 2442–2454 (2019).
[Crossref]

Cao, X.

G. Su, D. Miao, Y. Yu, M. Zhou, P. Jiao, X. Cao, B. Yan, and H. Zhu, “Mesoporous silica-coated gold nanostars with drug payload for combined chemo-photothermal cancer therapy,” J. Drug. Target. 27, 201–210 (2019).
[Crossref]

Carnie, S.

J. Pérez-Juste, L. M. Liz-Marzán, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric-field-directed growth of gold nanorods in aqueous surfactant solutions,” Adv. Funct. Mater. 14, 571–579 (2004).
[Crossref]

Casanova, F.

P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat. Commun. 3, 684 (2012).
[Crossref]

Chan, D. Y. C.

J. Pérez-Juste, L. M. Liz-Marzán, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric-field-directed growth of gold nanorods in aqueous surfactant solutions,” Adv. Funct. Mater. 14, 571–579 (2004).
[Crossref]

Chan, Y. T.

Y. T. Chan, S. Li, C. N. Moorefield, P. Wang, C. D. Shreiner, and G. R. Newkome, “Self-assembly, disassembly, and reassembly of gold nanorods mediated by Bis(terpyridine)-metal connectivity,” Chem. Eur. J. 16, 4164–4168 (2010).
[Crossref]

Chang, H. H.

B. E. Janicek, J. G. Hinman, J. J. Hinman, S. H. Bae, M. Wu, J. Turner, H. H. Chang, E. Park, R. Lawless, K. S. Suslick, C. J. Murphy, and P. Y. Huang, “Quantitative imaging of organic ligand density on anisotropic inorganic nanocrystals,” Nano lett. 19, 6308–6314 (2019).
[Crossref]

Chao, W.

J. A. Lloyd, S. H. Ng, A. C. Y. Liu, Y. Zhu, W. Chao, T. Coenen, J. Etheridge, D. E. Gómez, and U. Bach, “Plasmonic nanolenses: electrostatic self-assembly of hierarchical nanoparticle trimers and their response to optical and electron beam stimuli,” ACS Nano 11, 1604–1612 (2017).
[Crossref]

Chen, G.

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints,” ACS Nano 4, 3087–3094 (2010).
[Crossref]

Chen, H.

Y. Feng, J. He, H. Wang, Y. Y. Tay, H. Sun, L. Zhu, and H. Chen, “An unconventional role of ligand in continuously tuning of metal-metal interfacial strain,” J. Am. Chem. Soc. 134, 2004–2007 (2012).
[Crossref]

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints,” ACS Nano 4, 3087–3094 (2010).
[Crossref]

X. Kou, Z. Sun, Z. Yang, H. Chen, and J. Wang, “Curvature-directed assembly of gold nanocubes, nanobranches, and nanospheres,” Langmuir 25, 1692–1698 (2009).
[Crossref]

Chen, J.

P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat. Commun. 3, 684 (2012).
[Crossref]

Chen, T.

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints,” ACS Nano 4, 3087–3094 (2010).
[Crossref]

Cheng, J.

J. Cheng, L. Ge, B. Xiong, and Y. He, “Investigation of pH effect on gold nanorod synthesis,” J. Chin. Chem. Soc. 58, 822–827 (2011).
[Crossref]

Cheng, S.

X. Zhu, H. Jia, X.-M. Zhu, S. Cheng, X. Zhuo, F. Qin, Z. Yang, and J. Wang, “Selective Pd deposition on Au nanobipyramids and Pd site-dependent plasmonic photocatalytic activity,” Adv. Funct. Mater. 27, 1700016 (2017).
[Crossref]

Cho, S.

L. Zhang, H. J. Jang, S. Yoo, S. Cho, J. H. Won, L. Liu, and S. Park, “Synthesis of octahedral gold tip-blobbed nanoparticles and their dielectric sensing properties,” Nanotechnology 29, 375602 (2018).
[Crossref]

Choi, E.

H. H. Jeong, M. C. Adams, J. P. Gunther, M. Alarcon-Correa, I. Kim, E. Choi, C. Miksch, A. F. Mark, A. G. Mark, and P. Fischer, “Arrays of plasmonic nanoparticle dimers with defined nanogap spacers,” ACS Nano 13, 11453–11459 (2019).
[Crossref]

Coenen, T.

J. A. Lloyd, S. H. Ng, A. C. Y. Liu, Y. Zhu, W. Chao, T. Coenen, J. Etheridge, D. E. Gómez, and U. Bach, “Plasmonic nanolenses: electrostatic self-assembly of hierarchical nanoparticle trimers and their response to optical and electron beam stimuli,” ACS Nano 11, 1604–1612 (2017).
[Crossref]

T. Coenen, “Angle-resolved cathodoluminescence nanoscopy,” Ph.D. dissertation (University of Amsterdam, 2014).

Collins, S. M.

S. J. Barrow, S. M. Collins, D. Rossouw, A. M. Funston, G. A. Botton, P. A. Midgley, and P. Mulvaney, “Electron energy loss spectroscopy investigation into symmetry in gold trimer and tetramer plasmonic nanoparticle structures,” ACS Nano 10, 8552–8563 (2016).
[Crossref]

Crowley, D.

H. Liu, Y. Xu, Y. Qin, W. Sanderson, D. Crowley, C. H. Turner, and Y. Bao, “Ligand-directed formation of gold tetrapod nanostructures,” J. Phys. Chem. C 117, 17143–17150 (2013).
[Crossref]

Czaplicki, R.

R. Czaplicki, J. Makitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15, 530–534 (2015).
[Crossref]

Davis, A.

F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13, 2285–2291 (2018).
[Crossref]

Davis, T. J.

T. J. Davis and D. E. Gómez, “Colloquium: an algebraic model of localized surface plasmons and their interactions,” Rev. Mod. Phys. 89, 011003 (2017).
[Crossref]

Ding, S. J.

S. J. Ding, H. Zhang, D. J. Yang, Y. H. Qiu, F. Nan, Z. J. Yang, J. Wang, Q. Q. Wang, and H. Q. Lin, “Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups,” Nano Lett. 19, 2005–2011 (2019).
[Crossref]

Etheridge, J.

J. A. Lloyd, S. H. Ng, A. C. Y. Liu, Y. Zhu, W. Chao, T. Coenen, J. Etheridge, D. E. Gómez, and U. Bach, “Plasmonic nanolenses: electrostatic self-assembly of hierarchical nanoparticle trimers and their response to optical and electron beam stimuli,” ACS Nano 11, 1604–1612 (2017).
[Crossref]

Fan, C.

M. Ha, J. H. Kim, M. You, Q. Li, C. Fan, and J. M. Nam, “Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures,” Chem. Rev. 119, 12208–12278 (2019).
[Crossref]

Fang, Z.

Z. Liu, M. Jiang, Y. Hu, F. Lin, B. Shen, X. Zhu, and Z. Fang, “Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures,” Opto-Electron. Adv. 1, 18000701 (2018).
[Crossref]

Feng, Y.

Y. Feng, J. He, H. Wang, Y. Y. Tay, H. Sun, L. Zhu, and H. Chen, “An unconventional role of ligand in continuously tuning of metal-metal interfacial strain,” J. Am. Chem. Soc. 134, 2004–2007 (2012).
[Crossref]

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints,” ACS Nano 4, 3087–3094 (2010).
[Crossref]

Fischer, P.

H. H. Jeong, M. C. Adams, J. P. Gunther, M. Alarcon-Correa, I. Kim, E. Choi, C. Miksch, A. F. Mark, A. G. Mark, and P. Fischer, “Arrays of plasmonic nanoparticle dimers with defined nanogap spacers,” ACS Nano 13, 11453–11459 (2019).
[Crossref]

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral plasmonic hydrogen sensors,” Small 14, 1702990 (2018).
[Crossref]

Forstner, J.

V. Myroshnychenko, N. Nishio, F. J. Garcia de Abajo, J. Forstner, and N. Yamamoto, “Unveiling and imaging degenerate states in plasmonic nanoparticles with nanometer resolution,” ACS Nano 12, 8436–8446 (2018).
[Crossref]

Fratalocchi, A.

J. Huang, C. Liu, Y. Zhu, S. Masala, E. Alarousu, Y. Han, and A. Fratalocchi, “Harnessing structural darkness in the visible and infrared wavelengths for a new source of light,” Nat. Nanotechnol. 11, 60–66 (2016).
[Crossref]

J. Huang, Y. Zhu, C. Liu, Z. Shi, A. Fratalocchi, and Y. Han, “Unravelling thiol’s role in directing asymmetric growth of Au nanorod-Au nanoparticle dimers,” Nano Lett. 16, 617–623 (2016).
[Crossref]

Funston, A. M.

S. J. Barrow, S. M. Collins, D. Rossouw, A. M. Funston, G. A. Botton, P. A. Midgley, and P. Mulvaney, “Electron energy loss spectroscopy investigation into symmetry in gold trimer and tetramer plasmonic nanoparticle structures,” ACS Nano 10, 8552–8563 (2016).
[Crossref]

S. J. Barrow, D. Rossouw, A. M. Funston, G. A. Botton, and P. Mulvaney, “Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy,” Nano Lett. 14, 3799–3808 (2014).
[Crossref]

Gao, Y.

Z. Zhu, W. Liu, Z. Li, B. Han, Y. Zhou, Y. Gao, and Z. Tang, “Manipulation of collective optical activity in one-dimensional plasmonic assembly,” ACS Nano 6, 2326–2332 (2012).
[Crossref]

Garcia de Abajo, F. J.

A. Polman, M. Kociak, and F. J. Garcia de Abajo, “Electron-beam spectroscopy for nanophotonics,” Nat. Mater. 18, 1158–1171 (2019).
[Crossref]

V. Myroshnychenko, N. Nishio, F. J. Garcia de Abajo, J. Forstner, and N. Yamamoto, “Unveiling and imaging degenerate states in plasmonic nanoparticles with nanometer resolution,” ACS Nano 12, 8436–8446 (2018).
[Crossref]

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. Garcia de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
[Crossref]

García-Etxarri, A.

P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat. Commun. 3, 684 (2012).
[Crossref]

Ge, L.

J. Cheng, L. Ge, B. Xiong, and Y. He, “Investigation of pH effect on gold nanorod synthesis,” J. Chin. Chem. Soc. 58, 822–827 (2011).
[Crossref]

Geuquet, N.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. Garcia de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Gilroy, K. D.

J. Qiu, M. Xie, Z. Lyu, K. D. Gilroy, H. Liu, and Y. Xia, “General approach to the synthesis of heterodimers of metal nanoparticles through site-selected protection and growth,” Nano Lett. 19, 6703–6708 (2019).
[Crossref]

Gole, A.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
[Crossref]

Golmar, F.

P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat. Commun. 3, 684 (2012).
[Crossref]

Gómez, D. E.

T. J. Davis and D. E. Gómez, “Colloquium: an algebraic model of localized surface plasmons and their interactions,” Rev. Mod. Phys. 89, 011003 (2017).
[Crossref]

J. A. Lloyd, S. H. Ng, A. C. Y. Liu, Y. Zhu, W. Chao, T. Coenen, J. Etheridge, D. E. Gómez, and U. Bach, “Plasmonic nanolenses: electrostatic self-assembly of hierarchical nanoparticle trimers and their response to optical and electron beam stimuli,” ACS Nano 11, 1604–1612 (2017).
[Crossref]

Gopchandran, K. G.

S. L. Smitha, K. G. Gopchandran, N. R. Nair, K. M. Nampoothiri, and T. R. Ravindran, “SERS and antibacterial active green synthesized gold nanoparticles,” Plasmonics 7, 515–524 (2012).
[Crossref]

Govorov, A. O.

L. Weng, H. Zhang, A. O. Govorov, and M. Ouyang, “Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis,” Nat. Commun. 5, 4792 (2014).
[Crossref]

Gunther, J. P.

H. H. Jeong, M. C. Adams, J. P. Gunther, M. Alarcon-Correa, I. Kim, E. Choi, C. Miksch, A. F. Mark, A. G. Mark, and P. Fischer, “Arrays of plasmonic nanoparticle dimers with defined nanogap spacers,” ACS Nano 13, 11453–11459 (2019).
[Crossref]

Ha, M.

M. Ha, J. H. Kim, M. You, Q. Li, C. Fan, and J. M. Nam, “Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures,” Chem. Rev. 119, 12208–12278 (2019).
[Crossref]

Hahm, E.

B. H. Jun, M. Murata, E. Hahm, and L. P. Lee, “Synthesis method of asymmetric gold particles,” Sci. Rep. 7, 2921 (2017).
[Crossref]

Han, B.

Z. Zhu, W. Liu, Z. Li, B. Han, Y. Zhou, Y. Gao, and Z. Tang, “Manipulation of collective optical activity in one-dimensional plasmonic assembly,” ACS Nano 6, 2326–2332 (2012).
[Crossref]

Han, L.

Q. Zhang, L. Han, H. Jing, D. A. Blom, Y. Lin, H. L. Xin, and H. Wang, “Facet control of gold nanorods,” ACS Nano 10, 2960–2974 (2016).
[Crossref]

Han, Y.

J. Huang, Y. Zhu, C. Liu, Z. Shi, A. Fratalocchi, and Y. Han, “Unravelling thiol’s role in directing asymmetric growth of Au nanorod-Au nanoparticle dimers,” Nano Lett. 16, 617–623 (2016).
[Crossref]

J. Huang, C. Liu, Y. Zhu, S. Masala, E. Alarousu, Y. Han, and A. Fratalocchi, “Harnessing structural darkness in the visible and infrared wavelengths for a new source of light,” Nat. Nanotechnol. 11, 60–66 (2016).
[Crossref]

J. Huang, Y. Zhu, M. Lin, Q. Wang, L. Zhao, Y. Yang, K. X. Yao, and Y. Han, “Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy,” J. Am. Chem. Soc. 135, 8552–8561 (2013).
[Crossref]

He, J.

Y. Feng, J. He, H. Wang, Y. Y. Tay, H. Sun, L. Zhu, and H. Chen, “An unconventional role of ligand in continuously tuning of metal-metal interfacial strain,” J. Am. Chem. Soc. 134, 2004–2007 (2012).
[Crossref]

He, Y.

J. Cheng, L. Ge, B. Xiong, and Y. He, “Investigation of pH effect on gold nanorod synthesis,” J. Chin. Chem. Soc. 58, 822–827 (2011).
[Crossref]

Henrard, L.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. Garcia de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Hillenbrand, R.

P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat. Commun. 3, 684 (2012).
[Crossref]

Hinman, J. G.

B. E. Janicek, J. G. Hinman, J. J. Hinman, S. H. Bae, M. Wu, J. Turner, H. H. Chang, E. Park, R. Lawless, K. S. Suslick, C. J. Murphy, and P. Y. Huang, “Quantitative imaging of organic ligand density on anisotropic inorganic nanocrystals,” Nano lett. 19, 6308–6314 (2019).
[Crossref]

Hinman, J. J.

B. E. Janicek, J. G. Hinman, J. J. Hinman, S. H. Bae, M. Wu, J. Turner, H. H. Chang, E. Park, R. Lawless, K. S. Suslick, C. J. Murphy, and P. Y. Huang, “Quantitative imaging of organic ligand density on anisotropic inorganic nanocrystals,” Nano lett. 19, 6308–6314 (2019).
[Crossref]

Hong, S.

L. Y. Wu, B. M. Ross, S. Hong, and L. P. Lee, “Bioinspired nanocorals with decoupled cellular targeting and sensing functionality,” Small 6, 503–507 (2010).
[Crossref]

Hong, Y.

X. Li, J. Cao, L. Yang, M. Wei, X. Liu, Q. Liu, Y. Hong, Y. Zhou, and J. Yang, “One-pot synthesis of ZnS nanowires/Cu7S4 nanoparticles/reduced graphene oxide nanocomposites for supercapacitor and photocatalysis applications,” Dalton. Trans. 48, 2442–2454 (2019).
[Crossref]

Hu, Y.

Z. Liu, M. Jiang, Y. Hu, F. Lin, B. Shen, X. Zhu, and Z. Fang, “Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures,” Opto-Electron. Adv. 1, 18000701 (2018).
[Crossref]

Huang, J.

J. Huang, C. Liu, Y. Zhu, S. Masala, E. Alarousu, Y. Han, and A. Fratalocchi, “Harnessing structural darkness in the visible and infrared wavelengths for a new source of light,” Nat. Nanotechnol. 11, 60–66 (2016).
[Crossref]

J. Huang, Y. Zhu, C. Liu, Z. Shi, A. Fratalocchi, and Y. Han, “Unravelling thiol’s role in directing asymmetric growth of Au nanorod-Au nanoparticle dimers,” Nano Lett. 16, 617–623 (2016).
[Crossref]

J. Huang, Y. Zhu, M. Lin, Q. Wang, L. Zhao, Y. Yang, K. X. Yao, and Y. Han, “Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy,” J. Am. Chem. Soc. 135, 8552–8561 (2013).
[Crossref]

K. Sohn, F. Kim, K. C. Pradel, J. Wu, Y. Peng, F. Zhou, and J. Huang, “Construction of evolutionary tree for morphological engineering of nanoparticles,” ACS Nano 3, 2191–2198 (2009).
[Crossref]

Huang, P. Y.

B. E. Janicek, J. G. Hinman, J. J. Hinman, S. H. Bae, M. Wu, J. Turner, H. H. Chang, E. Park, R. Lawless, K. S. Suslick, C. J. Murphy, and P. Y. Huang, “Quantitative imaging of organic ligand density on anisotropic inorganic nanocrystals,” Nano lett. 19, 6308–6314 (2019).
[Crossref]

Hueso, L. E.

P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat. Commun. 3, 684 (2012).
[Crossref]

Husu, H.

R. Czaplicki, J. Makitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15, 530–534 (2015).
[Crossref]

Huth, F.

P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat. Commun. 3, 684 (2012).
[Crossref]

Ipe, B. I.

K. G. Thomas, S. Barazzouk, B. I. Ipe, S. T. S. Joseph, and P. V. Kamat, “Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods,” J. Phys. Chem. B. 108, 13066–13068 (2004).
[Crossref]

Jang, H. J.

L. Zhang, H. J. Jang, S. Yoo, S. Cho, J. H. Won, L. Liu, and S. Park, “Synthesis of octahedral gold tip-blobbed nanoparticles and their dielectric sensing properties,” Nanotechnology 29, 375602 (2018).
[Crossref]

Janicek, B. E.

B. E. Janicek, J. G. Hinman, J. J. Hinman, S. H. Bae, M. Wu, J. Turner, H. H. Chang, E. Park, R. Lawless, K. S. Suslick, C. J. Murphy, and P. Y. Huang, “Quantitative imaging of organic ligand density on anisotropic inorganic nanocrystals,” Nano lett. 19, 6308–6314 (2019).
[Crossref]

Jeong, H. H.

H. H. Jeong, M. C. Adams, J. P. Gunther, M. Alarcon-Correa, I. Kim, E. Choi, C. Miksch, A. F. Mark, A. G. Mark, and P. Fischer, “Arrays of plasmonic nanoparticle dimers with defined nanogap spacers,” ACS Nano 13, 11453–11459 (2019).
[Crossref]

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral plasmonic hydrogen sensors,” Small 14, 1702990 (2018).
[Crossref]

Ji, W.

Y. Wang, W. Ji, H. Sui, Y. Kitahama, W. Ruan, Y. Ozaki, and B. Zhao, “Exploring the effect of intermolecular H-bonding: a study on charge-transfer contribution to surface-enhanced Raman scattering of p-mercaptobenzoic acid,” J. Phys. Chem. C 118, 10191–10197 (2014).
[Crossref]

Jia, H.

X. Zhu, H. Jia, X.-M. Zhu, S. Cheng, X. Zhuo, F. Qin, Z. Yang, and J. Wang, “Selective Pd deposition on Au nanobipyramids and Pd site-dependent plasmonic photocatalytic activity,” Adv. Funct. Mater. 27, 1700016 (2017).
[Crossref]

Jiang, M.

Z. Liu, M. Jiang, Y. Hu, F. Lin, B. Shen, X. Zhu, and Z. Fang, “Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures,” Opto-Electron. Adv. 1, 18000701 (2018).
[Crossref]

Jiao, P.

G. Su, D. Miao, Y. Yu, M. Zhou, P. Jiao, X. Cao, B. Yan, and H. Zhu, “Mesoporous silica-coated gold nanostars with drug payload for combined chemo-photothermal cancer therapy,” J. Drug. Target. 27, 201–210 (2019).
[Crossref]

Jing, H.

Q. Zhang, L. Han, H. Jing, D. A. Blom, Y. Lin, H. L. Xin, and H. Wang, “Facet control of gold nanorods,” ACS Nano 10, 2960–2974 (2016).
[Crossref]

Joseph, S. T. S.

K. G. Thomas, S. Barazzouk, B. I. Ipe, S. T. S. Joseph, and P. V. Kamat, “Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods,” J. Phys. Chem. B. 108, 13066–13068 (2004).
[Crossref]

Jun, B. H.

B. H. Jun, M. Murata, E. Hahm, and L. P. Lee, “Synthesis method of asymmetric gold particles,” Sci. Rep. 7, 2921 (2017).
[Crossref]

Kamat, P. V.

K. G. Thomas, S. Barazzouk, B. I. Ipe, S. T. S. Joseph, and P. V. Kamat, “Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods,” J. Phys. Chem. B. 108, 13066–13068 (2004).
[Crossref]

Kapitanchuk, O. L.

S. V. Snegir, P. Yu, F. Maurel, O. L. Kapitanchuk, A. A. Marchenko, and E. Lacaze, “Switching at the nanoscale: light- and STM-tip-induced switch of a thiolated diarylethene self-assembly on Au(111),” Langmuir 30, 13556–13563 (2014).
[Crossref]

Kauranen, M.

R. Czaplicki, J. Makitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15, 530–534 (2015).
[Crossref]

Kim, F.

K. Sohn, F. Kim, K. C. Pradel, J. Wu, Y. Peng, F. Zhou, and J. Huang, “Construction of evolutionary tree for morphological engineering of nanoparticles,” ACS Nano 3, 2191–2198 (2009).
[Crossref]

Kim, I.

H. H. Jeong, M. C. Adams, J. P. Gunther, M. Alarcon-Correa, I. Kim, E. Choi, C. Miksch, A. F. Mark, A. G. Mark, and P. Fischer, “Arrays of plasmonic nanoparticle dimers with defined nanogap spacers,” ACS Nano 13, 11453–11459 (2019).
[Crossref]

Kim, J.

J. E. Park, J. Kim, and J. M. Nam, “Emerging plasmonic nanostructures for controlling and enhancing photoluminescence,” Chem. Sci. 8,4696–4704 (2017).
[Crossref]

Kim, J. H.

M. Ha, J. H. Kim, M. You, Q. Li, C. Fan, and J. M. Nam, “Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures,” Chem. Rev. 119, 12208–12278 (2019).
[Crossref]

Kitahama, Y.

Y. Wang, W. Ji, H. Sui, Y. Kitahama, W. Ruan, Y. Ozaki, and B. Zhao, “Exploring the effect of intermolecular H-bonding: a study on charge-transfer contribution to surface-enhanced Raman scattering of p-mercaptobenzoic acid,” J. Phys. Chem. C 118, 10191–10197 (2014).
[Crossref]

Kociak, M.

A. Polman, M. Kociak, and F. J. Garcia de Abajo, “Electron-beam spectroscopy for nanophotonics,” Nat. Mater. 18, 1158–1171 (2019).
[Crossref]

M. Kociak and O. Stephan, “Mapping plasmons at the nanometer scale in an electron microscope,” Chem. Soc. Rev. 43, 3865–3883 (2014).
[Crossref]

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. Garcia de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Kou, X.

X. Kou, Z. Sun, Z. Yang, H. Chen, and J. Wang, “Curvature-directed assembly of gold nanocubes, nanobranches, and nanospheres,” Langmuir 25, 1692–1698 (2009).
[Crossref]

Z. Sun, W. Ni, Z. Yang, X. Kou, L. Li, and J. Wang, “pH-controlled reversible assembly and disassembly of gold nanorods,” Small 4, 1287–1292 (2008).
[Crossref]

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2, 677–686 (2008).
[Crossref]

Kuittinen, M.

R. Czaplicki, J. Makitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15, 530–534 (2015).
[Crossref]

Kumar, J.

J. Kumar and K. G. Thomas, “Surface-enhanced Raman spectroscopy: investigations at the nanorod edges and dimer junctions,” J. Phys. Chem. Lett. 2, 610–615 (2011).
[Crossref]

Lacaze, E.

S. V. Snegir, P. Yu, F. Maurel, O. L. Kapitanchuk, A. A. Marchenko, and E. Lacaze, “Switching at the nanoscale: light- and STM-tip-induced switch of a thiolated diarylethene self-assembly on Au(111),” Langmuir 30, 13556–13563 (2014).
[Crossref]

Lai, N. D.

F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13, 2285–2291 (2018).
[Crossref]

Lawless, R.

B. E. Janicek, J. G. Hinman, J. J. Hinman, S. H. Bae, M. Wu, J. Turner, H. H. Chang, E. Park, R. Lawless, K. S. Suslick, C. J. Murphy, and P. Y. Huang, “Quantitative imaging of organic ligand density on anisotropic inorganic nanocrystals,” Nano lett. 19, 6308–6314 (2019).
[Crossref]

Ledoux-Rak, I.

F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13, 2285–2291 (2018).
[Crossref]

Lee, D.

D. Lee and S. Yoon, “Gold nanocube–nanosphere dimers: preparation, plasmon coupling, and surface-enhanced Raman scattering,” J. Phys. Chem. C 119, 7873–7882 (2015).
[Crossref]

Lee, L. P.

B. H. Jun, M. Murata, E. Hahm, and L. P. Lee, “Synthesis method of asymmetric gold particles,” Sci. Rep. 7, 2921 (2017).
[Crossref]

L. Y. Wu, B. M. Ross, S. Hong, and L. P. Lee, “Bioinspired nanocorals with decoupled cellular targeting and sensing functionality,” Small 6, 503–507 (2010).
[Crossref]

Lehtolahti, J.

R. Czaplicki, J. Makitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15, 530–534 (2015).
[Crossref]

Li, J. J.

J. J. Li, C. Wu, J. Zhao, G. J. Weng, J. Zhu, and J. W. Zhao, “Synthesis and SERS activity of super-multibranched AuAg nanostructure via silver coating-induced aggregation of nanostars,” Spectrochim. Acta. A 204, 380–387 (2018).
[Crossref]

Li, K.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref]

Li, L.

Z. Sun, W. Ni, Z. Yang, X. Kou, L. Li, and J. Wang, “pH-controlled reversible assembly and disassembly of gold nanorods,” Small 4, 1287–1292 (2008).
[Crossref]

Li, Q.

M. Ha, J. H. Kim, M. You, Q. Li, C. Fan, and J. M. Nam, “Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures,” Chem. Rev. 119, 12208–12278 (2019).
[Crossref]

Li, S.

Y. T. Chan, S. Li, C. N. Moorefield, P. Wang, C. D. Shreiner, and G. R. Newkome, “Self-assembly, disassembly, and reassembly of gold nanorods mediated by Bis(terpyridine)-metal connectivity,” Chem. Eur. J. 16, 4164–4168 (2010).
[Crossref]

Li, W.

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9, 485–490 (2009).
[Crossref]

Li, X.

X. Li, J. Cao, L. Yang, M. Wei, X. Liu, Q. Liu, Y. Hong, Y. Zhou, and J. Yang, “One-pot synthesis of ZnS nanowires/Cu7S4 nanoparticles/reduced graphene oxide nanocomposites for supercapacitor and photocatalysis applications,” Dalton. Trans. 48, 2442–2454 (2019).
[Crossref]

Li, Z.

Z. Zhu, W. Liu, Z. Li, B. Han, Y. Zhou, Y. Gao, and Z. Tang, “Manipulation of collective optical activity in one-dimensional plasmonic assembly,” ACS Nano 6, 2326–2332 (2012).
[Crossref]

Lin, F.

Z. Liu, M. Jiang, Y. Hu, F. Lin, B. Shen, X. Zhu, and Z. Fang, “Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures,” Opto-Electron. Adv. 1, 18000701 (2018).
[Crossref]

Lin, H. Q.

S. J. Ding, H. Zhang, D. J. Yang, Y. H. Qiu, F. Nan, Z. J. Yang, J. Wang, Q. Q. Wang, and H. Q. Lin, “Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups,” Nano Lett. 19, 2005–2011 (2019).
[Crossref]

Lin, M.

J. Huang, Y. Zhu, M. Lin, Q. Wang, L. Zhao, Y. Yang, K. X. Yao, and Y. Han, “Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy,” J. Am. Chem. Soc. 135, 8552–8561 (2013).
[Crossref]

Lin, Y.

Q. Zhang, L. Han, H. Jing, D. A. Blom, Y. Lin, H. L. Xin, and H. Wang, “Facet control of gold nanorods,” ACS Nano 10, 2960–2974 (2016).
[Crossref]

Liu, A. C. Y.

J. A. Lloyd, S. H. Ng, A. C. Y. Liu, Y. Zhu, W. Chao, T. Coenen, J. Etheridge, D. E. Gómez, and U. Bach, “Plasmonic nanolenses: electrostatic self-assembly of hierarchical nanoparticle trimers and their response to optical and electron beam stimuli,” ACS Nano 11, 1604–1612 (2017).
[Crossref]

Liu, B.

W. Zhang, J. Liu, W. Niu, H. Yan, X. Lu, and B. Liu, “Tip-selective growth of silver on gold nanostars for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10, 14850–14856 (2018).
[Crossref]

Liu, C.

J. Huang, Y. Zhu, C. Liu, Z. Shi, A. Fratalocchi, and Y. Han, “Unravelling thiol’s role in directing asymmetric growth of Au nanorod-Au nanoparticle dimers,” Nano Lett. 16, 617–623 (2016).
[Crossref]

J. Huang, C. Liu, Y. Zhu, S. Masala, E. Alarousu, Y. Han, and A. Fratalocchi, “Harnessing structural darkness in the visible and infrared wavelengths for a new source of light,” Nat. Nanotechnol. 11, 60–66 (2016).
[Crossref]

Liu, H.

J. Qiu, M. Xie, Z. Lyu, K. D. Gilroy, H. Liu, and Y. Xia, “General approach to the synthesis of heterodimers of metal nanoparticles through site-selected protection and growth,” Nano Lett. 19, 6703–6708 (2019).
[Crossref]

H. Liu, Y. Xu, Y. Qin, W. Sanderson, D. Crowley, C. H. Turner, and Y. Bao, “Ligand-directed formation of gold tetrapod nanostructures,” J. Phys. Chem. C 117, 17143–17150 (2013).
[Crossref]

Liu, J.

W. Zhang, J. Liu, W. Niu, H. Yan, X. Lu, and B. Liu, “Tip-selective growth of silver on gold nanostars for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10, 14850–14856 (2018).
[Crossref]

Liu, L.

L. Zhang, H. J. Jang, S. Yoo, S. Cho, J. H. Won, L. Liu, and S. Park, “Synthesis of octahedral gold tip-blobbed nanoparticles and their dielectric sensing properties,” Nanotechnology 29, 375602 (2018).
[Crossref]

Liu, N.

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral plasmonic hydrogen sensors,” Small 14, 1702990 (2018).
[Crossref]

Liu, Q.

X. Li, J. Cao, L. Yang, M. Wei, X. Liu, Q. Liu, Y. Hong, Y. Zhou, and J. Yang, “One-pot synthesis of ZnS nanowires/Cu7S4 nanoparticles/reduced graphene oxide nanocomposites for supercapacitor and photocatalysis applications,” Dalton. Trans. 48, 2442–2454 (2019).
[Crossref]

Liu, W.

Z. Zhu, W. Liu, Z. Li, B. Han, Y. Zhou, Y. Gao, and Z. Tang, “Manipulation of collective optical activity in one-dimensional plasmonic assembly,” ACS Nano 6, 2326–2332 (2012).
[Crossref]

Liu, X.

X. Li, J. Cao, L. Yang, M. Wei, X. Liu, Q. Liu, Y. Hong, Y. Zhou, and J. Yang, “One-pot synthesis of ZnS nanowires/Cu7S4 nanoparticles/reduced graphene oxide nanocomposites for supercapacitor and photocatalysis applications,” Dalton. Trans. 48, 2442–2454 (2019).
[Crossref]

Liu, Z.

Z. Liu, M. Jiang, Y. Hu, F. Lin, B. Shen, X. Zhu, and Z. Fang, “Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures,” Opto-Electron. Adv. 1, 18000701 (2018).
[Crossref]

Liz-Marzan, L. M.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. Garcia de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Liz-Marzán, L. M.

J. Pérez-Juste, L. M. Liz-Marzán, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric-field-directed growth of gold nanorods in aqueous surfactant solutions,” Adv. Funct. Mater. 14, 571–579 (2004).
[Crossref]

Lloyd, J. A.

J. A. Lloyd, S. H. Ng, A. C. Y. Liu, Y. Zhu, W. Chao, T. Coenen, J. Etheridge, D. E. Gómez, and U. Bach, “Plasmonic nanolenses: electrostatic self-assembly of hierarchical nanoparticle trimers and their response to optical and electron beam stimuli,” ACS Nano 11, 1604–1612 (2017).
[Crossref]

Lu, X.

W. Zhang, J. Liu, W. Niu, H. Yan, X. Lu, and B. Liu, “Tip-selective growth of silver on gold nanostars for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10, 14850–14856 (2018).
[Crossref]

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9, 485–490 (2009).
[Crossref]

Luong, M. H.

F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13, 2285–2291 (2018).
[Crossref]

Lyu, Z.

J. Qiu, M. Xie, Z. Lyu, K. D. Gilroy, H. Liu, and Y. Xia, “General approach to the synthesis of heterodimers of metal nanoparticles through site-selected protection and growth,” Nano Lett. 19, 6703–6708 (2019).
[Crossref]

MacDonald, K. F.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. Garcia de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Makitalo, J.

R. Czaplicki, J. Makitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15, 530–534 (2015).
[Crossref]

Mao, F.

F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13, 2285–2291 (2018).
[Crossref]

Marchenko, A. A.

S. V. Snegir, P. Yu, F. Maurel, O. L. Kapitanchuk, A. A. Marchenko, and E. Lacaze, “Switching at the nanoscale: light- and STM-tip-induced switch of a thiolated diarylethene self-assembly on Au(111),” Langmuir 30, 13556–13563 (2014).
[Crossref]

Mark, A. F.

H. H. Jeong, M. C. Adams, J. P. Gunther, M. Alarcon-Correa, I. Kim, E. Choi, C. Miksch, A. F. Mark, A. G. Mark, and P. Fischer, “Arrays of plasmonic nanoparticle dimers with defined nanogap spacers,” ACS Nano 13, 11453–11459 (2019).
[Crossref]

Mark, A. G.

H. H. Jeong, M. C. Adams, J. P. Gunther, M. Alarcon-Correa, I. Kim, E. Choi, C. Miksch, A. F. Mark, A. G. Mark, and P. Fischer, “Arrays of plasmonic nanoparticle dimers with defined nanogap spacers,” ACS Nano 13, 11453–11459 (2019).
[Crossref]

Masala, S.

J. Huang, C. Liu, Y. Zhu, S. Masala, E. Alarousu, Y. Han, and A. Fratalocchi, “Harnessing structural darkness in the visible and infrared wavelengths for a new source of light,” Nat. Nanotechnol. 11, 60–66 (2016).
[Crossref]

Matuschek, M.

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral plasmonic hydrogen sensors,” Small 14, 1702990 (2018).
[Crossref]

Maurel, F.

S. V. Snegir, P. Yu, F. Maurel, O. L. Kapitanchuk, A. A. Marchenko, and E. Lacaze, “Switching at the nanoscale: light- and STM-tip-induced switch of a thiolated diarylethene self-assembly on Au(111),” Langmuir 30, 13556–13563 (2014).
[Crossref]

Miao, D.

G. Su, D. Miao, Y. Yu, M. Zhou, P. Jiao, X. Cao, B. Yan, and H. Zhu, “Mesoporous silica-coated gold nanostars with drug payload for combined chemo-photothermal cancer therapy,” J. Drug. Target. 27, 201–210 (2019).
[Crossref]

Midgley, P. A.

S. J. Barrow, S. M. Collins, D. Rossouw, A. M. Funston, G. A. Botton, P. A. Midgley, and P. Mulvaney, “Electron energy loss spectroscopy investigation into symmetry in gold trimer and tetramer plasmonic nanoparticle structures,” ACS Nano 10, 8552–8563 (2016).
[Crossref]

Mikkelsen, M. H.

J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. 18, 668–678 (2019).
[Crossref]

Miksch, C.

H. H. Jeong, M. C. Adams, J. P. Gunther, M. Alarcon-Correa, I. Kim, E. Choi, C. Miksch, A. F. Mark, A. G. Mark, and P. Fischer, “Arrays of plasmonic nanoparticle dimers with defined nanogap spacers,” ACS Nano 13, 11453–11459 (2019).
[Crossref]

Moorefield, C. N.

Y. T. Chan, S. Li, C. N. Moorefield, P. Wang, C. D. Shreiner, and G. R. Newkome, “Self-assembly, disassembly, and reassembly of gold nanorods mediated by Bis(terpyridine)-metal connectivity,” Chem. Eur. J. 16, 4164–4168 (2010).
[Crossref]

Mulvaney, P.

S. J. Barrow, S. M. Collins, D. Rossouw, A. M. Funston, G. A. Botton, P. A. Midgley, and P. Mulvaney, “Electron energy loss spectroscopy investigation into symmetry in gold trimer and tetramer plasmonic nanoparticle structures,” ACS Nano 10, 8552–8563 (2016).
[Crossref]

S. J. Barrow, D. Rossouw, A. M. Funston, G. A. Botton, and P. Mulvaney, “Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy,” Nano Lett. 14, 3799–3808 (2014).
[Crossref]

J. Pérez-Juste, L. M. Liz-Marzán, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric-field-directed growth of gold nanorods in aqueous surfactant solutions,” Adv. Funct. Mater. 14, 571–579 (2004).
[Crossref]

Murata, M.

B. H. Jun, M. Murata, E. Hahm, and L. P. Lee, “Synthesis method of asymmetric gold particles,” Sci. Rep. 7, 2921 (2017).
[Crossref]

Murphy, C. J.

B. E. Janicek, J. G. Hinman, J. J. Hinman, S. H. Bae, M. Wu, J. Turner, H. H. Chang, E. Park, R. Lawless, K. S. Suslick, C. J. Murphy, and P. Y. Huang, “Quantitative imaging of organic ligand density on anisotropic inorganic nanocrystals,” Nano lett. 19, 6308–6314 (2019).
[Crossref]

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
[Crossref]

Myroshnychenko, V.

V. Myroshnychenko, N. Nishio, F. J. Garcia de Abajo, J. Forstner, and N. Yamamoto, “Unveiling and imaging degenerate states in plasmonic nanoparticles with nanometer resolution,” ACS Nano 12, 8436–8446 (2018).
[Crossref]

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. Garcia de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Nair, N. R.

S. L. Smitha, K. G. Gopchandran, N. R. Nair, K. M. Nampoothiri, and T. R. Ravindran, “SERS and antibacterial active green synthesized gold nanoparticles,” Plasmonics 7, 515–524 (2012).
[Crossref]

Nam, J. M.

M. Ha, J. H. Kim, M. You, Q. Li, C. Fan, and J. M. Nam, “Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures,” Chem. Rev. 119, 12208–12278 (2019).
[Crossref]

J. E. Park, J. Kim, and J. M. Nam, “Emerging plasmonic nanostructures for controlling and enhancing photoluminescence,” Chem. Sci. 8,4696–4704 (2017).
[Crossref]

Nampoothiri, K. M.

S. L. Smitha, K. G. Gopchandran, N. R. Nair, K. M. Nampoothiri, and T. R. Ravindran, “SERS and antibacterial active green synthesized gold nanoparticles,” Plasmonics 7, 515–524 (2012).
[Crossref]

Nan, F.

S. J. Ding, H. Zhang, D. J. Yang, Y. H. Qiu, F. Nan, Z. J. Yang, J. Wang, Q. Q. Wang, and H. Q. Lin, “Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups,” Nano Lett. 19, 2005–2011 (2019).
[Crossref]

Nelayah, J.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. Garcia de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Nesterov, M.

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral plasmonic hydrogen sensors,” Small 14, 1702990 (2018).
[Crossref]

Neubrech, F.

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral plasmonic hydrogen sensors,” Small 14, 1702990 (2018).
[Crossref]

Newkome, G. R.

Y. T. Chan, S. Li, C. N. Moorefield, P. Wang, C. D. Shreiner, and G. R. Newkome, “Self-assembly, disassembly, and reassembly of gold nanorods mediated by Bis(terpyridine)-metal connectivity,” Chem. Eur. J. 16, 4164–4168 (2010).
[Crossref]

Ng, S. H.

J. A. Lloyd, S. H. Ng, A. C. Y. Liu, Y. Zhu, W. Chao, T. Coenen, J. Etheridge, D. E. Gómez, and U. Bach, “Plasmonic nanolenses: electrostatic self-assembly of hierarchical nanoparticle trimers and their response to optical and electron beam stimuli,” ACS Nano 11, 1604–1612 (2017).
[Crossref]

Nguyen, C. T.

F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13, 2285–2291 (2018).
[Crossref]

Ni, W.

Z. Sun, W. Ni, Z. Yang, X. Kou, L. Li, and J. Wang, “pH-controlled reversible assembly and disassembly of gold nanorods,” Small 4, 1287–1292 (2008).
[Crossref]

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2, 677–686 (2008).
[Crossref]

Nishio, N.

V. Myroshnychenko, N. Nishio, F. J. Garcia de Abajo, J. Forstner, and N. Yamamoto, “Unveiling and imaging degenerate states in plasmonic nanoparticles with nanometer resolution,” ACS Nano 12, 8436–8446 (2018).
[Crossref]

Niu, W.

W. Zhang, J. Liu, W. Niu, H. Yan, X. Lu, and B. Liu, “Tip-selective growth of silver on gold nanostars for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10, 14850–14856 (2018).
[Crossref]

Orendorff, C. J.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
[Crossref]

Ouyang, M.

L. Weng, H. Zhang, A. O. Govorov, and M. Ouyang, “Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis,” Nat. Commun. 5, 4792 (2014).
[Crossref]

Ozaki, Y.

Y. Wang, W. Ji, H. Sui, Y. Kitahama, W. Ruan, Y. Ozaki, and B. Zhao, “Exploring the effect of intermolecular H-bonding: a study on charge-transfer contribution to surface-enhanced Raman scattering of p-mercaptobenzoic acid,” J. Phys. Chem. C 118, 10191–10197 (2014).
[Crossref]

Park, E.

B. E. Janicek, J. G. Hinman, J. J. Hinman, S. H. Bae, M. Wu, J. Turner, H. H. Chang, E. Park, R. Lawless, K. S. Suslick, C. J. Murphy, and P. Y. Huang, “Quantitative imaging of organic ligand density on anisotropic inorganic nanocrystals,” Nano lett. 19, 6308–6314 (2019).
[Crossref]

Park, J. E.

J. E. Park, J. Kim, and J. M. Nam, “Emerging plasmonic nanostructures for controlling and enhancing photoluminescence,” Chem. Sci. 8,4696–4704 (2017).
[Crossref]

Park, S.

L. Zhang, H. J. Jang, S. Yoo, S. Cho, J. H. Won, L. Liu, and S. Park, “Synthesis of octahedral gold tip-blobbed nanoparticles and their dielectric sensing properties,” Nanotechnology 29, 375602 (2018).
[Crossref]

Pastoriza-Santos, I.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. Garcia de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Peng, Y.

K. Sohn, F. Kim, K. C. Pradel, J. Wu, Y. Peng, F. Zhou, and J. Huang, “Construction of evolutionary tree for morphological engineering of nanoparticles,” ACS Nano 3, 2191–2198 (2009).
[Crossref]

Pérez-Juste, J.

J. Pérez-Juste, L. M. Liz-Marzán, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric-field-directed growth of gold nanorods in aqueous surfactant solutions,” Adv. Funct. Mater. 14, 571–579 (2004).
[Crossref]

Polman, A.

A. Polman, M. Kociak, and F. J. Garcia de Abajo, “Electron-beam spectroscopy for nanophotonics,” Nat. Mater. 18, 1158–1171 (2019).
[Crossref]

Pradel, K. C.

K. Sohn, F. Kim, K. C. Pradel, J. Wu, Y. Peng, F. Zhou, and J. Huang, “Construction of evolutionary tree for morphological engineering of nanoparticles,” ACS Nano 3, 2191–2198 (2009).
[Crossref]

Qin, F.

X. Zhu, H. Jia, X.-M. Zhu, S. Cheng, X. Zhuo, F. Qin, Z. Yang, and J. Wang, “Selective Pd deposition on Au nanobipyramids and Pd site-dependent plasmonic photocatalytic activity,” Adv. Funct. Mater. 27, 1700016 (2017).
[Crossref]

Qin, Y.

H. Liu, Y. Xu, Y. Qin, W. Sanderson, D. Crowley, C. H. Turner, and Y. Bao, “Ligand-directed formation of gold tetrapod nanostructures,” J. Phys. Chem. C 117, 17143–17150 (2013).
[Crossref]

Qiu, J.

J. Qiu, M. Xie, Z. Lyu, K. D. Gilroy, H. Liu, and Y. Xia, “General approach to the synthesis of heterodimers of metal nanoparticles through site-selected protection and growth,” Nano Lett. 19, 6703–6708 (2019).
[Crossref]

Qiu, Y. H.

S. J. Ding, H. Zhang, D. J. Yang, Y. H. Qiu, F. Nan, Z. J. Yang, J. Wang, Q. Q. Wang, and H. Q. Lin, “Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups,” Nano Lett. 19, 2005–2011 (2019).
[Crossref]

Ravindran, T. R.

S. L. Smitha, K. G. Gopchandran, N. R. Nair, K. M. Nampoothiri, and T. R. Ravindran, “SERS and antibacterial active green synthesized gold nanoparticles,” Plasmonics 7, 515–524 (2012).
[Crossref]

Rodriguez-Fernandez, J.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. Garcia de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Ross, B. M.

L. Y. Wu, B. M. Ross, S. Hong, and L. P. Lee, “Bioinspired nanocorals with decoupled cellular targeting and sensing functionality,” Small 6, 503–507 (2010).
[Crossref]

Rossouw, D.

S. J. Barrow, S. M. Collins, D. Rossouw, A. M. Funston, G. A. Botton, P. A. Midgley, and P. Mulvaney, “Electron energy loss spectroscopy investigation into symmetry in gold trimer and tetramer plasmonic nanoparticle structures,” ACS Nano 10, 8552–8563 (2016).
[Crossref]

S. J. Barrow, D. Rossouw, A. M. Funston, G. A. Botton, and P. Mulvaney, “Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy,” Nano Lett. 14, 3799–3808 (2014).
[Crossref]

Ruan, W.

Y. Wang, W. Ji, H. Sui, Y. Kitahama, W. Ruan, Y. Ozaki, and B. Zhao, “Exploring the effect of intermolecular H-bonding: a study on charge-transfer contribution to surface-enhanced Raman scattering of p-mercaptobenzoic acid,” J. Phys. Chem. C 118, 10191–10197 (2014).
[Crossref]

Sanderson, W.

H. Liu, Y. Xu, Y. Qin, W. Sanderson, D. Crowley, C. H. Turner, and Y. Bao, “Ligand-directed formation of gold tetrapod nanostructures,” J. Phys. Chem. C 117, 17143–17150 (2013).
[Crossref]

Sau, T. K.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
[Crossref]

Schnell, M.

P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat. Commun. 3, 684 (2012).
[Crossref]

Shen, B.

Z. Liu, M. Jiang, Y. Hu, F. Lin, B. Shen, X. Zhu, and Z. Fang, “Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures,” Opto-Electron. Adv. 1, 18000701 (2018).
[Crossref]

Shi, Z.

J. Huang, Y. Zhu, C. Liu, Z. Shi, A. Fratalocchi, and Y. Han, “Unravelling thiol’s role in directing asymmetric growth of Au nanorod-Au nanoparticle dimers,” Nano Lett. 16, 617–623 (2016).
[Crossref]

Shreiner, C. D.

Y. T. Chan, S. Li, C. N. Moorefield, P. Wang, C. D. Shreiner, and G. R. Newkome, “Self-assembly, disassembly, and reassembly of gold nanorods mediated by Bis(terpyridine)-metal connectivity,” Chem. Eur. J. 16, 4164–4168 (2010).
[Crossref]

Siikanen, R.

R. Czaplicki, J. Makitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15, 530–534 (2015).
[Crossref]

Singh, D. P.

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral plasmonic hydrogen sensors,” Small 14, 1702990 (2018).
[Crossref]

Smith, D. R.

J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. 18, 668–678 (2019).
[Crossref]

Smitha, S. L.

S. L. Smitha, K. G. Gopchandran, N. R. Nair, K. M. Nampoothiri, and T. R. Ravindran, “SERS and antibacterial active green synthesized gold nanoparticles,” Plasmonics 7, 515–524 (2012).
[Crossref]

Snegir, S. V.

S. V. Snegir, P. Yu, F. Maurel, O. L. Kapitanchuk, A. A. Marchenko, and E. Lacaze, “Switching at the nanoscale: light- and STM-tip-induced switch of a thiolated diarylethene self-assembly on Au(111),” Langmuir 30, 13556–13563 (2014).
[Crossref]

Sohn, K.

K. Sohn, F. Kim, K. C. Pradel, J. Wu, Y. Peng, F. Zhou, and J. Huang, “Construction of evolutionary tree for morphological engineering of nanoparticles,” ACS Nano 3, 2191–2198 (2009).
[Crossref]

Stephan, O.

M. Kociak and O. Stephan, “Mapping plasmons at the nanometer scale in an electron microscope,” Chem. Soc. Rev. 43, 3865–3883 (2014).
[Crossref]

Stockman, M. I.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref]

Su, G.

G. Su, D. Miao, Y. Yu, M. Zhou, P. Jiao, X. Cao, B. Yan, and H. Zhu, “Mesoporous silica-coated gold nanostars with drug payload for combined chemo-photothermal cancer therapy,” J. Drug. Target. 27, 201–210 (2019).
[Crossref]

Sui, H.

Y. Wang, W. Ji, H. Sui, Y. Kitahama, W. Ruan, Y. Ozaki, and B. Zhao, “Exploring the effect of intermolecular H-bonding: a study on charge-transfer contribution to surface-enhanced Raman scattering of p-mercaptobenzoic acid,” J. Phys. Chem. C 118, 10191–10197 (2014).
[Crossref]

Sun, H.

Y. Feng, J. He, H. Wang, Y. Y. Tay, H. Sun, L. Zhu, and H. Chen, “An unconventional role of ligand in continuously tuning of metal-metal interfacial strain,” J. Am. Chem. Soc. 134, 2004–2007 (2012).
[Crossref]

Sun, Z.

X. Kou, Z. Sun, Z. Yang, H. Chen, and J. Wang, “Curvature-directed assembly of gold nanocubes, nanobranches, and nanospheres,” Langmuir 25, 1692–1698 (2009).
[Crossref]

Z. Sun, W. Ni, Z. Yang, X. Kou, L. Li, and J. Wang, “pH-controlled reversible assembly and disassembly of gold nanorods,” Small 4, 1287–1292 (2008).
[Crossref]

Suslick, K. S.

B. E. Janicek, J. G. Hinman, J. J. Hinman, S. H. Bae, M. Wu, J. Turner, H. H. Chang, E. Park, R. Lawless, K. S. Suslick, C. J. Murphy, and P. Y. Huang, “Quantitative imaging of organic ligand density on anisotropic inorganic nanocrystals,” Nano lett. 19, 6308–6314 (2019).
[Crossref]

Tang, Z.

Z. Zhu, W. Liu, Z. Li, B. Han, Y. Zhou, Y. Gao, and Z. Tang, “Manipulation of collective optical activity in one-dimensional plasmonic assembly,” ACS Nano 6, 2326–2332 (2012).
[Crossref]

Tay, Y. Y.

Y. Feng, J. He, H. Wang, Y. Y. Tay, H. Sun, L. Zhu, and H. Chen, “An unconventional role of ligand in continuously tuning of metal-metal interfacial strain,” J. Am. Chem. Soc. 134, 2004–2007 (2012).
[Crossref]

Teo, W. S.

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints,” ACS Nano 4, 3087–3094 (2010).
[Crossref]

Thomas, K. G.

J. Kumar and K. G. Thomas, “Surface-enhanced Raman spectroscopy: investigations at the nanorod edges and dimer junctions,” J. Phys. Chem. Lett. 2, 610–615 (2011).
[Crossref]

K. G. Thomas, S. Barazzouk, B. I. Ipe, S. T. S. Joseph, and P. V. Kamat, “Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods,” J. Phys. Chem. B. 108, 13066–13068 (2004).
[Crossref]

Tong, Q. C.

F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13, 2285–2291 (2018).
[Crossref]

Turner, C. H.

H. Liu, Y. Xu, Y. Qin, W. Sanderson, D. Crowley, C. H. Turner, and Y. Bao, “Ligand-directed formation of gold tetrapod nanostructures,” J. Phys. Chem. C 117, 17143–17150 (2013).
[Crossref]

Turner, J.

B. E. Janicek, J. G. Hinman, J. J. Hinman, S. H. Bae, M. Wu, J. Turner, H. H. Chang, E. Park, R. Lawless, K. S. Suslick, C. J. Murphy, and P. Y. Huang, “Quantitative imaging of organic ligand density on anisotropic inorganic nanocrystals,” Nano lett. 19, 6308–6314 (2019).
[Crossref]

Wang, H.

Q. Zhang, L. Han, H. Jing, D. A. Blom, Y. Lin, H. L. Xin, and H. Wang, “Facet control of gold nanorods,” ACS Nano 10, 2960–2974 (2016).
[Crossref]

Y. Feng, J. He, H. Wang, Y. Y. Tay, H. Sun, L. Zhu, and H. Chen, “An unconventional role of ligand in continuously tuning of metal-metal interfacial strain,” J. Am. Chem. Soc. 134, 2004–2007 (2012).
[Crossref]

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints,” ACS Nano 4, 3087–3094 (2010).
[Crossref]

Wang, J.

S. J. Ding, H. Zhang, D. J. Yang, Y. H. Qiu, F. Nan, Z. J. Yang, J. Wang, Q. Q. Wang, and H. Q. Lin, “Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups,” Nano Lett. 19, 2005–2011 (2019).
[Crossref]

X. Zhu, H. Jia, X.-M. Zhu, S. Cheng, X. Zhuo, F. Qin, Z. Yang, and J. Wang, “Selective Pd deposition on Au nanobipyramids and Pd site-dependent plasmonic photocatalytic activity,” Adv. Funct. Mater. 27, 1700016 (2017).
[Crossref]

X. Kou, Z. Sun, Z. Yang, H. Chen, and J. Wang, “Curvature-directed assembly of gold nanocubes, nanobranches, and nanospheres,” Langmuir 25, 1692–1698 (2009).
[Crossref]

Z. Sun, W. Ni, Z. Yang, X. Kou, L. Li, and J. Wang, “pH-controlled reversible assembly and disassembly of gold nanorods,” Small 4, 1287–1292 (2008).
[Crossref]

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2, 677–686 (2008).
[Crossref]

Wang, P.

Y. T. Chan, S. Li, C. N. Moorefield, P. Wang, C. D. Shreiner, and G. R. Newkome, “Self-assembly, disassembly, and reassembly of gold nanorods mediated by Bis(terpyridine)-metal connectivity,” Chem. Eur. J. 16, 4164–4168 (2010).
[Crossref]

Wang, Q.

J. Huang, Y. Zhu, M. Lin, Q. Wang, L. Zhao, Y. Yang, K. X. Yao, and Y. Han, “Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy,” J. Am. Chem. Soc. 135, 8552–8561 (2013).
[Crossref]

Wang, Q. Q.

S. J. Ding, H. Zhang, D. J. Yang, Y. H. Qiu, F. Nan, Z. J. Yang, J. Wang, Q. Q. Wang, and H. Q. Lin, “Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups,” Nano Lett. 19, 2005–2011 (2019).
[Crossref]

Wang, Y.

Y. Wang, W. Ji, H. Sui, Y. Kitahama, W. Ruan, Y. Ozaki, and B. Zhao, “Exploring the effect of intermolecular H-bonding: a study on charge-transfer contribution to surface-enhanced Raman scattering of p-mercaptobenzoic acid,” J. Phys. Chem. C 118, 10191–10197 (2014).
[Crossref]

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints,” ACS Nano 4, 3087–3094 (2010).
[Crossref]

Wei, M.

X. Li, J. Cao, L. Yang, M. Wei, X. Liu, Q. Liu, Y. Hong, Y. Zhou, and J. Yang, “One-pot synthesis of ZnS nanowires/Cu7S4 nanoparticles/reduced graphene oxide nanocomposites for supercapacitor and photocatalysis applications,” Dalton. Trans. 48, 2442–2454 (2019).
[Crossref]

Weiss, T.

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral plasmonic hydrogen sensors,” Small 14, 1702990 (2018).
[Crossref]

Weng, G. J.

J. J. Li, C. Wu, J. Zhao, G. J. Weng, J. Zhu, and J. W. Zhao, “Synthesis and SERS activity of super-multibranched AuAg nanostructure via silver coating-induced aggregation of nanostars,” Spectrochim. Acta. A 204, 380–387 (2018).
[Crossref]

Weng, L.

L. Weng, H. Zhang, A. O. Govorov, and M. Ouyang, “Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis,” Nat. Commun. 5, 4792 (2014).
[Crossref]

Won, J. H.

L. Zhang, H. J. Jang, S. Yoo, S. Cho, J. H. Won, L. Liu, and S. Park, “Synthesis of octahedral gold tip-blobbed nanoparticles and their dielectric sensing properties,” Nanotechnology 29, 375602 (2018).
[Crossref]

Wu, C.

J. J. Li, C. Wu, J. Zhao, G. J. Weng, J. Zhu, and J. W. Zhao, “Synthesis and SERS activity of super-multibranched AuAg nanostructure via silver coating-induced aggregation of nanostars,” Spectrochim. Acta. A 204, 380–387 (2018).
[Crossref]

Wu, J.

K. Sohn, F. Kim, K. C. Pradel, J. Wu, Y. Peng, F. Zhou, and J. Huang, “Construction of evolutionary tree for morphological engineering of nanoparticles,” ACS Nano 3, 2191–2198 (2009).
[Crossref]

Wu, L. Y.

L. Y. Wu, B. M. Ross, S. Hong, and L. P. Lee, “Bioinspired nanocorals with decoupled cellular targeting and sensing functionality,” Small 6, 503–507 (2010).
[Crossref]

Wu, M.

B. E. Janicek, J. G. Hinman, J. J. Hinman, S. H. Bae, M. Wu, J. Turner, H. H. Chang, E. Park, R. Lawless, K. S. Suslick, C. J. Murphy, and P. Y. Huang, “Quantitative imaging of organic ligand density on anisotropic inorganic nanocrystals,” Nano lett. 19, 6308–6314 (2019).
[Crossref]

Wu, T.

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints,” ACS Nano 4, 3087–3094 (2010).
[Crossref]

Xia, Y.

J. Qiu, M. Xie, Z. Lyu, K. D. Gilroy, H. Liu, and Y. Xia, “General approach to the synthesis of heterodimers of metal nanoparticles through site-selected protection and growth,” Nano Lett. 19, 6703–6708 (2019).
[Crossref]

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9, 485–490 (2009).
[Crossref]

Xie, M.

J. Qiu, M. Xie, Z. Lyu, K. D. Gilroy, H. Liu, and Y. Xia, “General approach to the synthesis of heterodimers of metal nanoparticles through site-selected protection and growth,” Nano Lett. 19, 6703–6708 (2019).
[Crossref]

Xin, H. L.

Q. Zhang, L. Han, H. Jing, D. A. Blom, Y. Lin, H. L. Xin, and H. Wang, “Facet control of gold nanorods,” ACS Nano 10, 2960–2974 (2016).
[Crossref]

Xiong, B.

J. Cheng, L. Ge, B. Xiong, and Y. He, “Investigation of pH effect on gold nanorod synthesis,” J. Chin. Chem. Soc. 58, 822–827 (2011).
[Crossref]

Xu, Y.

H. Liu, Y. Xu, Y. Qin, W. Sanderson, D. Crowley, C. H. Turner, and Y. Bao, “Ligand-directed formation of gold tetrapod nanostructures,” J. Phys. Chem. C 117, 17143–17150 (2013).
[Crossref]

Yamamoto, N.

V. Myroshnychenko, N. Nishio, F. J. Garcia de Abajo, J. Forstner, and N. Yamamoto, “Unveiling and imaging degenerate states in plasmonic nanoparticles with nanometer resolution,” ACS Nano 12, 8436–8446 (2018).
[Crossref]

Yan, B.

G. Su, D. Miao, Y. Yu, M. Zhou, P. Jiao, X. Cao, B. Yan, and H. Zhu, “Mesoporous silica-coated gold nanostars with drug payload for combined chemo-photothermal cancer therapy,” J. Drug. Target. 27, 201–210 (2019).
[Crossref]

Yan, H.

W. Zhang, J. Liu, W. Niu, H. Yan, X. Lu, and B. Liu, “Tip-selective growth of silver on gold nanostars for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10, 14850–14856 (2018).
[Crossref]

Yang, D. J.

S. J. Ding, H. Zhang, D. J. Yang, Y. H. Qiu, F. Nan, Z. J. Yang, J. Wang, Q. Q. Wang, and H. Q. Lin, “Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups,” Nano Lett. 19, 2005–2011 (2019).
[Crossref]

Yang, J.

X. Li, J. Cao, L. Yang, M. Wei, X. Liu, Q. Liu, Y. Hong, Y. Zhou, and J. Yang, “One-pot synthesis of ZnS nanowires/Cu7S4 nanoparticles/reduced graphene oxide nanocomposites for supercapacitor and photocatalysis applications,” Dalton. Trans. 48, 2442–2454 (2019).
[Crossref]

Yang, L.

X. Li, J. Cao, L. Yang, M. Wei, X. Liu, Q. Liu, Y. Hong, Y. Zhou, and J. Yang, “One-pot synthesis of ZnS nanowires/Cu7S4 nanoparticles/reduced graphene oxide nanocomposites for supercapacitor and photocatalysis applications,” Dalton. Trans. 48, 2442–2454 (2019).
[Crossref]

Yang, Y.

J. Huang, Y. Zhu, M. Lin, Q. Wang, L. Zhao, Y. Yang, K. X. Yao, and Y. Han, “Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy,” J. Am. Chem. Soc. 135, 8552–8561 (2013).
[Crossref]

Yang, Z.

X. Zhu, H. Jia, X.-M. Zhu, S. Cheng, X. Zhuo, F. Qin, Z. Yang, and J. Wang, “Selective Pd deposition on Au nanobipyramids and Pd site-dependent plasmonic photocatalytic activity,” Adv. Funct. Mater. 27, 1700016 (2017).
[Crossref]

X. Kou, Z. Sun, Z. Yang, H. Chen, and J. Wang, “Curvature-directed assembly of gold nanocubes, nanobranches, and nanospheres,” Langmuir 25, 1692–1698 (2009).
[Crossref]

Z. Sun, W. Ni, Z. Yang, X. Kou, L. Li, and J. Wang, “pH-controlled reversible assembly and disassembly of gold nanorods,” Small 4, 1287–1292 (2008).
[Crossref]

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2, 677–686 (2008).
[Crossref]

Yang, Z. J.

S. J. Ding, H. Zhang, D. J. Yang, Y. H. Qiu, F. Nan, Z. J. Yang, J. Wang, Q. Q. Wang, and H. Q. Lin, “Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups,” Nano Lett. 19, 2005–2011 (2019).
[Crossref]

Yao, K. X.

J. Huang, Y. Zhu, M. Lin, Q. Wang, L. Zhao, Y. Yang, K. X. Yao, and Y. Han, “Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy,” J. Am. Chem. Soc. 135, 8552–8561 (2013).
[Crossref]

Yoo, S.

L. Zhang, H. J. Jang, S. Yoo, S. Cho, J. H. Won, L. Liu, and S. Park, “Synthesis of octahedral gold tip-blobbed nanoparticles and their dielectric sensing properties,” Nanotechnology 29, 375602 (2018).
[Crossref]

Yoon, S.

D. Lee and S. Yoon, “Gold nanocube–nanosphere dimers: preparation, plasmon coupling, and surface-enhanced Raman scattering,” J. Phys. Chem. C 119, 7873–7882 (2015).
[Crossref]

You, M.

M. Ha, J. H. Kim, M. You, Q. Li, C. Fan, and J. M. Nam, “Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures,” Chem. Rev. 119, 12208–12278 (2019).
[Crossref]

Yu, P.

S. V. Snegir, P. Yu, F. Maurel, O. L. Kapitanchuk, A. A. Marchenko, and E. Lacaze, “Switching at the nanoscale: light- and STM-tip-induced switch of a thiolated diarylethene self-assembly on Au(111),” Langmuir 30, 13556–13563 (2014).
[Crossref]

Yu, Y.

G. Su, D. Miao, Y. Yu, M. Zhou, P. Jiao, X. Cao, B. Yan, and H. Zhu, “Mesoporous silica-coated gold nanostars with drug payload for combined chemo-photothermal cancer therapy,” J. Drug. Target. 27, 201–210 (2019).
[Crossref]

Zhang, H.

S. J. Ding, H. Zhang, D. J. Yang, Y. H. Qiu, F. Nan, Z. J. Yang, J. Wang, Q. Q. Wang, and H. Q. Lin, “Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups,” Nano Lett. 19, 2005–2011 (2019).
[Crossref]

L. Weng, H. Zhang, A. O. Govorov, and M. Ouyang, “Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis,” Nat. Commun. 5, 4792 (2014).
[Crossref]

Zhang, L.

L. Zhang, H. J. Jang, S. Yoo, S. Cho, J. H. Won, L. Liu, and S. Park, “Synthesis of octahedral gold tip-blobbed nanoparticles and their dielectric sensing properties,” Nanotechnology 29, 375602 (2018).
[Crossref]

Zhang, Q.

Q. Zhang, L. Han, H. Jing, D. A. Blom, Y. Lin, H. L. Xin, and H. Wang, “Facet control of gold nanorods,” ACS Nano 10, 2960–2974 (2016).
[Crossref]

Zhang, W.

W. Zhang, J. Liu, W. Niu, H. Yan, X. Lu, and B. Liu, “Tip-selective growth of silver on gold nanostars for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10, 14850–14856 (2018).
[Crossref]

Zhao, B.

Y. Wang, W. Ji, H. Sui, Y. Kitahama, W. Ruan, Y. Ozaki, and B. Zhao, “Exploring the effect of intermolecular H-bonding: a study on charge-transfer contribution to surface-enhanced Raman scattering of p-mercaptobenzoic acid,” J. Phys. Chem. C 118, 10191–10197 (2014).
[Crossref]

Zhao, J.

J. J. Li, C. Wu, J. Zhao, G. J. Weng, J. Zhu, and J. W. Zhao, “Synthesis and SERS activity of super-multibranched AuAg nanostructure via silver coating-induced aggregation of nanostars,” Spectrochim. Acta. A 204, 380–387 (2018).
[Crossref]

Zhao, J. W.

J. J. Li, C. Wu, J. Zhao, G. J. Weng, J. Zhu, and J. W. Zhao, “Synthesis and SERS activity of super-multibranched AuAg nanostructure via silver coating-induced aggregation of nanostars,” Spectrochim. Acta. A 204, 380–387 (2018).
[Crossref]

Zhao, L.

J. Huang, Y. Zhu, M. Lin, Q. Wang, L. Zhao, Y. Yang, K. X. Yao, and Y. Han, “Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy,” J. Am. Chem. Soc. 135, 8552–8561 (2013).
[Crossref]

Zheludev, N. I.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. Garcia de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Zhou, F.

K. Sohn, F. Kim, K. C. Pradel, J. Wu, Y. Peng, F. Zhou, and J. Huang, “Construction of evolutionary tree for morphological engineering of nanoparticles,” ACS Nano 3, 2191–2198 (2009).
[Crossref]

Zhou, M.

G. Su, D. Miao, Y. Yu, M. Zhou, P. Jiao, X. Cao, B. Yan, and H. Zhu, “Mesoporous silica-coated gold nanostars with drug payload for combined chemo-photothermal cancer therapy,” J. Drug. Target. 27, 201–210 (2019).
[Crossref]

Zhou, Y.

X. Li, J. Cao, L. Yang, M. Wei, X. Liu, Q. Liu, Y. Hong, Y. Zhou, and J. Yang, “One-pot synthesis of ZnS nanowires/Cu7S4 nanoparticles/reduced graphene oxide nanocomposites for supercapacitor and photocatalysis applications,” Dalton. Trans. 48, 2442–2454 (2019).
[Crossref]

Z. Zhu, W. Liu, Z. Li, B. Han, Y. Zhou, Y. Gao, and Z. Tang, “Manipulation of collective optical activity in one-dimensional plasmonic assembly,” ACS Nano 6, 2326–2332 (2012).
[Crossref]

Zhu, H.

G. Su, D. Miao, Y. Yu, M. Zhou, P. Jiao, X. Cao, B. Yan, and H. Zhu, “Mesoporous silica-coated gold nanostars with drug payload for combined chemo-photothermal cancer therapy,” J. Drug. Target. 27, 201–210 (2019).
[Crossref]

Zhu, J.

J. J. Li, C. Wu, J. Zhao, G. J. Weng, J. Zhu, and J. W. Zhao, “Synthesis and SERS activity of super-multibranched AuAg nanostructure via silver coating-induced aggregation of nanostars,” Spectrochim. Acta. A 204, 380–387 (2018).
[Crossref]

Zhu, L.

Y. Feng, J. He, H. Wang, Y. Y. Tay, H. Sun, L. Zhu, and H. Chen, “An unconventional role of ligand in continuously tuning of metal-metal interfacial strain,” J. Am. Chem. Soc. 134, 2004–2007 (2012).
[Crossref]

Zhu, X.

Z. Liu, M. Jiang, Y. Hu, F. Lin, B. Shen, X. Zhu, and Z. Fang, “Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures,” Opto-Electron. Adv. 1, 18000701 (2018).
[Crossref]

X. Zhu, H. Jia, X.-M. Zhu, S. Cheng, X. Zhuo, F. Qin, Z. Yang, and J. Wang, “Selective Pd deposition on Au nanobipyramids and Pd site-dependent plasmonic photocatalytic activity,” Adv. Funct. Mater. 27, 1700016 (2017).
[Crossref]

Zhu, X.-M.

X. Zhu, H. Jia, X.-M. Zhu, S. Cheng, X. Zhuo, F. Qin, Z. Yang, and J. Wang, “Selective Pd deposition on Au nanobipyramids and Pd site-dependent plasmonic photocatalytic activity,” Adv. Funct. Mater. 27, 1700016 (2017).
[Crossref]

Zhu, Y.

J. A. Lloyd, S. H. Ng, A. C. Y. Liu, Y. Zhu, W. Chao, T. Coenen, J. Etheridge, D. E. Gómez, and U. Bach, “Plasmonic nanolenses: electrostatic self-assembly of hierarchical nanoparticle trimers and their response to optical and electron beam stimuli,” ACS Nano 11, 1604–1612 (2017).
[Crossref]

J. Huang, Y. Zhu, C. Liu, Z. Shi, A. Fratalocchi, and Y. Han, “Unravelling thiol’s role in directing asymmetric growth of Au nanorod-Au nanoparticle dimers,” Nano Lett. 16, 617–623 (2016).
[Crossref]

J. Huang, C. Liu, Y. Zhu, S. Masala, E. Alarousu, Y. Han, and A. Fratalocchi, “Harnessing structural darkness in the visible and infrared wavelengths for a new source of light,” Nat. Nanotechnol. 11, 60–66 (2016).
[Crossref]

J. Huang, Y. Zhu, M. Lin, Q. Wang, L. Zhao, Y. Yang, K. X. Yao, and Y. Han, “Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy,” J. Am. Chem. Soc. 135, 8552–8561 (2013).
[Crossref]

Zhu, Z.

Z. Zhu, W. Liu, Z. Li, B. Han, Y. Zhou, Y. Gao, and Z. Tang, “Manipulation of collective optical activity in one-dimensional plasmonic assembly,” ACS Nano 6, 2326–2332 (2012).
[Crossref]

Zhuo, X.

X. Zhu, H. Jia, X.-M. Zhu, S. Cheng, X. Zhuo, F. Qin, Z. Yang, and J. Wang, “Selective Pd deposition on Au nanobipyramids and Pd site-dependent plasmonic photocatalytic activity,” Adv. Funct. Mater. 27, 1700016 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (1)

W. Zhang, J. Liu, W. Niu, H. Yan, X. Lu, and B. Liu, “Tip-selective growth of silver on gold nanostars for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10, 14850–14856 (2018).
[Crossref]

ACS Nano (9)

V. Myroshnychenko, N. Nishio, F. J. Garcia de Abajo, J. Forstner, and N. Yamamoto, “Unveiling and imaging degenerate states in plasmonic nanoparticles with nanometer resolution,” ACS Nano 12, 8436–8446 (2018).
[Crossref]

H. H. Jeong, M. C. Adams, J. P. Gunther, M. Alarcon-Correa, I. Kim, E. Choi, C. Miksch, A. F. Mark, A. G. Mark, and P. Fischer, “Arrays of plasmonic nanoparticle dimers with defined nanogap spacers,” ACS Nano 13, 11453–11459 (2019).
[Crossref]

S. J. Barrow, S. M. Collins, D. Rossouw, A. M. Funston, G. A. Botton, P. A. Midgley, and P. Mulvaney, “Electron energy loss spectroscopy investigation into symmetry in gold trimer and tetramer plasmonic nanoparticle structures,” ACS Nano 10, 8552–8563 (2016).
[Crossref]

J. A. Lloyd, S. H. Ng, A. C. Y. Liu, Y. Zhu, W. Chao, T. Coenen, J. Etheridge, D. E. Gómez, and U. Bach, “Plasmonic nanolenses: electrostatic self-assembly of hierarchical nanoparticle trimers and their response to optical and electron beam stimuli,” ACS Nano 11, 1604–1612 (2017).
[Crossref]

T. Chen, H. Wang, G. Chen, Y. Wang, Y. Feng, W. S. Teo, T. Wu, and H. Chen, “Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints,” ACS Nano 4, 3087–3094 (2010).
[Crossref]

K. Sohn, F. Kim, K. C. Pradel, J. Wu, Y. Peng, F. Zhou, and J. Huang, “Construction of evolutionary tree for morphological engineering of nanoparticles,” ACS Nano 3, 2191–2198 (2009).
[Crossref]

Q. Zhang, L. Han, H. Jing, D. A. Blom, Y. Lin, H. L. Xin, and H. Wang, “Facet control of gold nanorods,” ACS Nano 10, 2960–2974 (2016).
[Crossref]

Z. Zhu, W. Liu, Z. Li, B. Han, Y. Zhou, Y. Gao, and Z. Tang, “Manipulation of collective optical activity in one-dimensional plasmonic assembly,” ACS Nano 6, 2326–2332 (2012).
[Crossref]

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano 2, 677–686 (2008).
[Crossref]

Adv. Funct. Mater. (2)

J. Pérez-Juste, L. M. Liz-Marzán, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric-field-directed growth of gold nanorods in aqueous surfactant solutions,” Adv. Funct. Mater. 14, 571–579 (2004).
[Crossref]

X. Zhu, H. Jia, X.-M. Zhu, S. Cheng, X. Zhuo, F. Qin, Z. Yang, and J. Wang, “Selective Pd deposition on Au nanobipyramids and Pd site-dependent plasmonic photocatalytic activity,” Adv. Funct. Mater. 27, 1700016 (2017).
[Crossref]

Anal. Chem. (1)

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77, 3261–3266 (2005).
[Crossref]

Chem. Eur. J. (1)

Y. T. Chan, S. Li, C. N. Moorefield, P. Wang, C. D. Shreiner, and G. R. Newkome, “Self-assembly, disassembly, and reassembly of gold nanorods mediated by Bis(terpyridine)-metal connectivity,” Chem. Eur. J. 16, 4164–4168 (2010).
[Crossref]

Chem. Rev. (1)

M. Ha, J. H. Kim, M. You, Q. Li, C. Fan, and J. M. Nam, “Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures,” Chem. Rev. 119, 12208–12278 (2019).
[Crossref]

Chem. Sci. (1)

J. E. Park, J. Kim, and J. M. Nam, “Emerging plasmonic nanostructures for controlling and enhancing photoluminescence,” Chem. Sci. 8,4696–4704 (2017).
[Crossref]

Chem. Soc. Rev. (1)

M. Kociak and O. Stephan, “Mapping plasmons at the nanometer scale in an electron microscope,” Chem. Soc. Rev. 43, 3865–3883 (2014).
[Crossref]

Dalton. Trans. (1)

X. Li, J. Cao, L. Yang, M. Wei, X. Liu, Q. Liu, Y. Hong, Y. Zhou, and J. Yang, “One-pot synthesis of ZnS nanowires/Cu7S4 nanoparticles/reduced graphene oxide nanocomposites for supercapacitor and photocatalysis applications,” Dalton. Trans. 48, 2442–2454 (2019).
[Crossref]

J. Am. Chem. Soc. (2)

J. Huang, Y. Zhu, M. Lin, Q. Wang, L. Zhao, Y. Yang, K. X. Yao, and Y. Han, “Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy,” J. Am. Chem. Soc. 135, 8552–8561 (2013).
[Crossref]

Y. Feng, J. He, H. Wang, Y. Y. Tay, H. Sun, L. Zhu, and H. Chen, “An unconventional role of ligand in continuously tuning of metal-metal interfacial strain,” J. Am. Chem. Soc. 134, 2004–2007 (2012).
[Crossref]

J. Chin. Chem. Soc. (1)

J. Cheng, L. Ge, B. Xiong, and Y. He, “Investigation of pH effect on gold nanorod synthesis,” J. Chin. Chem. Soc. 58, 822–827 (2011).
[Crossref]

J. Drug. Target. (1)

G. Su, D. Miao, Y. Yu, M. Zhou, P. Jiao, X. Cao, B. Yan, and H. Zhu, “Mesoporous silica-coated gold nanostars with drug payload for combined chemo-photothermal cancer therapy,” J. Drug. Target. 27, 201–210 (2019).
[Crossref]

J. Phys. Chem. B. (1)

K. G. Thomas, S. Barazzouk, B. I. Ipe, S. T. S. Joseph, and P. V. Kamat, “Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods,” J. Phys. Chem. B. 108, 13066–13068 (2004).
[Crossref]

J. Phys. Chem. C (3)

H. Liu, Y. Xu, Y. Qin, W. Sanderson, D. Crowley, C. H. Turner, and Y. Bao, “Ligand-directed formation of gold tetrapod nanostructures,” J. Phys. Chem. C 117, 17143–17150 (2013).
[Crossref]

D. Lee and S. Yoon, “Gold nanocube–nanosphere dimers: preparation, plasmon coupling, and surface-enhanced Raman scattering,” J. Phys. Chem. C 119, 7873–7882 (2015).
[Crossref]

Y. Wang, W. Ji, H. Sui, Y. Kitahama, W. Ruan, Y. Ozaki, and B. Zhao, “Exploring the effect of intermolecular H-bonding: a study on charge-transfer contribution to surface-enhanced Raman scattering of p-mercaptobenzoic acid,” J. Phys. Chem. C 118, 10191–10197 (2014).
[Crossref]

J. Phys. Chem. Lett. (1)

J. Kumar and K. G. Thomas, “Surface-enhanced Raman spectroscopy: investigations at the nanorod edges and dimer junctions,” J. Phys. Chem. Lett. 2, 610–615 (2011).
[Crossref]

Langmuir (2)

X. Kou, Z. Sun, Z. Yang, H. Chen, and J. Wang, “Curvature-directed assembly of gold nanocubes, nanobranches, and nanospheres,” Langmuir 25, 1692–1698 (2009).
[Crossref]

S. V. Snegir, P. Yu, F. Maurel, O. L. Kapitanchuk, A. A. Marchenko, and E. Lacaze, “Switching at the nanoscale: light- and STM-tip-induced switch of a thiolated diarylethene self-assembly on Au(111),” Langmuir 30, 13556–13563 (2014).
[Crossref]

Nano lett. (8)

B. E. Janicek, J. G. Hinman, J. J. Hinman, S. H. Bae, M. Wu, J. Turner, H. H. Chang, E. Park, R. Lawless, K. S. Suslick, C. J. Murphy, and P. Y. Huang, “Quantitative imaging of organic ligand density on anisotropic inorganic nanocrystals,” Nano lett. 19, 6308–6314 (2019).
[Crossref]

J. Qiu, M. Xie, Z. Lyu, K. D. Gilroy, H. Liu, and Y. Xia, “General approach to the synthesis of heterodimers of metal nanoparticles through site-selected protection and growth,” Nano Lett. 19, 6703–6708 (2019).
[Crossref]

J. Huang, Y. Zhu, C. Liu, Z. Shi, A. Fratalocchi, and Y. Han, “Unravelling thiol’s role in directing asymmetric growth of Au nanorod-Au nanoparticle dimers,” Nano Lett. 16, 617–623 (2016).
[Crossref]

S. J. Barrow, D. Rossouw, A. M. Funston, G. A. Botton, and P. Mulvaney, “Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy,” Nano Lett. 14, 3799–3808 (2014).
[Crossref]

S. J. Ding, H. Zhang, D. J. Yang, Y. H. Qiu, F. Nan, Z. J. Yang, J. Wang, Q. Q. Wang, and H. Q. Lin, “Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups,” Nano Lett. 19, 2005–2011 (2019).
[Crossref]

R. Czaplicki, J. Makitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15, 530–534 (2015).
[Crossref]

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. Garcia de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering,” Nano Lett. 9, 485–490 (2009).
[Crossref]

Nanotechnology (1)

L. Zhang, H. J. Jang, S. Yoo, S. Cho, J. H. Won, L. Liu, and S. Park, “Synthesis of octahedral gold tip-blobbed nanoparticles and their dielectric sensing properties,” Nanotechnology 29, 375602 (2018).
[Crossref]

Nat. Commun. (2)

L. Weng, H. Zhang, A. O. Govorov, and M. Ouyang, “Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis,” Nat. Commun. 5, 4792 (2014).
[Crossref]

P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat. Commun. 3, 684 (2012).
[Crossref]

Nat. Mater. (2)

A. Polman, M. Kociak, and F. J. Garcia de Abajo, “Electron-beam spectroscopy for nanophotonics,” Nat. Mater. 18, 1158–1171 (2019).
[Crossref]

J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. 18, 668–678 (2019).
[Crossref]

Nat. Nanotechnol. (1)

J. Huang, C. Liu, Y. Zhu, S. Masala, E. Alarousu, Y. Han, and A. Fratalocchi, “Harnessing structural darkness in the visible and infrared wavelengths for a new source of light,” Nat. Nanotechnol. 11, 60–66 (2016).
[Crossref]

Opto-Electron. Adv. (1)

Z. Liu, M. Jiang, Y. Hu, F. Lin, B. Shen, X. Zhu, and Z. Fang, “Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures,” Opto-Electron. Adv. 1, 18000701 (2018).
[Crossref]

Phys. Rev. Lett. (1)

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref]

Plasmonics (2)

F. Mao, A. Davis, Q. C. Tong, M. H. Luong, C. T. Nguyen, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of gold nanostructures: application to data storage and color nanoprinting,” Plasmonics 13, 2285–2291 (2018).
[Crossref]

S. L. Smitha, K. G. Gopchandran, N. R. Nair, K. M. Nampoothiri, and T. R. Ravindran, “SERS and antibacterial active green synthesized gold nanoparticles,” Plasmonics 7, 515–524 (2012).
[Crossref]

Rev. Mod. Phys. (2)

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
[Crossref]

T. J. Davis and D. E. Gómez, “Colloquium: an algebraic model of localized surface plasmons and their interactions,” Rev. Mod. Phys. 89, 011003 (2017).
[Crossref]

Sci. Rep. (1)

B. H. Jun, M. Murata, E. Hahm, and L. P. Lee, “Synthesis method of asymmetric gold particles,” Sci. Rep. 7, 2921 (2017).
[Crossref]

Small (3)

L. Y. Wu, B. M. Ross, S. Hong, and L. P. Lee, “Bioinspired nanocorals with decoupled cellular targeting and sensing functionality,” Small 6, 503–507 (2010).
[Crossref]

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral plasmonic hydrogen sensors,” Small 14, 1702990 (2018).
[Crossref]

Z. Sun, W. Ni, Z. Yang, X. Kou, L. Li, and J. Wang, “pH-controlled reversible assembly and disassembly of gold nanorods,” Small 4, 1287–1292 (2008).
[Crossref]

Spectrochim. Acta. A (1)

J. J. Li, C. Wu, J. Zhao, G. J. Weng, J. Zhu, and J. W. Zhao, “Synthesis and SERS activity of super-multibranched AuAg nanostructure via silver coating-induced aggregation of nanostars,” Spectrochim. Acta. A 204, 380–387 (2018).
[Crossref]

Other (1)

T. Coenen, “Angle-resolved cathodoluminescence nanoscopy,” Ph.D. dissertation (University of Amsterdam, 2014).

Supplementary Material (1)

NameDescription
» Supplement 1       Breaking Plasmonic Symmetry through the Asymmetric Growth of Gold Nanorods

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (A) Synthetic scheme for asymmetric growth of Au nanorods, where CTAB is cetyltrimethylammonium bromide and 4-MBA is 4-mercaptobenzoic acid; (B) TEM images of Au nanorods (left) and nanomatchsticks (right); (C) size distribution (particle length and diameter) of nanorod seeds (green) and nanomatchsticks (blue); (D) statistical analysis of shape distribution in synthesized nanomatchsticks, counted from TEM pictures across ${\gt}\;{600}$ individual nanostructures (Fig. S1); scale bars, 100 nm.
Fig. 2.
Fig. 2. HTEM image of the nanomatchsticks and fast Fourier transform (FFT) patterns of the region shown in each panel, respectively; lattice fringes with the same orientation extend from the spherical cap into the body of the rod.
Fig. 3.
Fig. 3. (A) Shape distribution of nanostructured products synthesized using different surfactant/thiol ratio, where ${\rm NT} = {\rm means}$ no thiol; (B) size distribution (particle length and cap diameter) of nanomatchsticks synthesized from different rod seeds: aspect ratios 5.2 (red), 5.6 (blue), and 6 (yellow); (C) size distribution of nanomatchsticks synthesized from the same rod seeds (green) and increasing [${{\rm HAuCl}_4}$]: 90 µM (blue), 180 µM (yellow), 270 µM (red).
Fig. 4.
Fig. 4. (A) Normalized absorption spectra for synthesized Au nanomatchsticks and rod seeds with aspect ratios 5.2 (blue), 5.6 (green), and 6 (red); darker lines correspond to the initial nanorod absorption spectrum and lighter lines to nanomatchsticks; insets, representative TEM images with size distributions. The average diameter of the nanomatchstick’s head was ${13} {\pm} {2}\;{\rm nm}$ for each aspect ratio. (B) Normalized absorption spectra of Au nanomatchsticks with different cap diameters; position of the transverse LSPR (in nanometers) plotted as a function of measured cap diameter; (C) localized surface plasmon eigenmodes and corresponding dipole moment (arbitrary units) of a theoretical nanomatchstick (width 10 nm, length 56 nm, and cap diameter 20 nm): (1) longitudinal dipole moment, (2)–(3) doubly degenerate transverse moment. Color scale indicates surface charge; (4) calculated spectrum of the absorption cross section; scale bars, 50 nm.
Fig. 5.
Fig. 5. (A) and (B) Hyperspectral CL spectroscopy for rods and matchstick, respectively; CL maps from the spectral regions 430–550 nm and 750–980 nm, respectively; (C) TEM survey images of a single Au nanorod and Au matchsticks and the EELS maps of their longitudinal (1.1–1.7 eV) and transverse (1.7–2.7 eV) plasmon modes. Scale bars correspond to 20 nm. (D) Eigenmode hybridization diagram; the diagram shows the hybridization of two dipoles corresponding to a sphere and the longitudinal mode of a rod. This results in two new, bright eigenmodes that exhibit asymmetric surface charge distributions.
Fig. 6.
Fig. 6. (A) Representative SEM images of Au nanorods (orange) and nanomatchsticks (blue) used as SERS substrate; (B) representative spectra of 4-aminothiophenol bound to a substrate comprising bare silicon (green), nanorods (orange), and nanomatchsticks (blue). Samples were irradiated at 785 nm, 290 mW; scale bars, 50 nm.