Abstract

The absence of the single-photon nonlinearity has been a major roadblock in developing quantum photonic circuits at optical frequencies. In this paper, we demonstrate a periodically poled thin film lithium niobate microring resonator (PPLNMR) that reaches 5,000,000%/W second-harmonic conversion efficiency—almost 20-fold enhancement over the state-of-the-art—by accessing its largest ${\chi ^{(2)}}$ tensor component ${d_{33}}$ via quasi-phase matching. The corresponding single-photon coupling rate $g\!/\!2\pi$ is estimated to be 1.2 MHz, which is an important milestone as it approaches the dissipation rate $\kappa\! /\!2\pi$ of best-available lithium niobate microresonators developed in the community. Using a figure of merit defined as $g/\kappa$, our device reaches a single-photon nonlinear anharmonicity approaching 1%. We show that, by further scaling of the device, it is possible to improve the single-photon anharmonicity to a regime where photon blockade effect can be manifested.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Quantum photonic integrated circuits have received growing interests since such platforms offer the stability and integrability toward solid-state quantum applications [16]. By encoding quantum information into the optical photons, the quantum information processing, quantum communication, and quantum metrology would benefit from the merits of the bosonic carriers, including the high propagation velocity, long propagation distance, and infinite-dimensional Hilbert spaces. Microwave photons could be processed by superconducting quantum circuits, where high-fidelity quantum operations approaching error-correction thresholds are achieved by the lossless nonlinearity inherent to Josephson effect [7,8]. However, at optical frequencies, the absence of the single-photon nonlinearity hinders the quest for the deterministic single-photon sources and further high-fidelity photonic quantum gates, which are two main building blocks for the scalable quantum circuits [913]. While the photon–photon interactions required to realize quantum gate can be mediated through light–matter interaction with atomic or atom-like solid-state emitters, routes to scaling such systems remain challenging [1416].

Leveraging the small mode volume and enhanced photon–photon interaction in high quality factor (Q) optical microcavities [17], as well as the inherent material nonlinearity [18], several schemes based on the microcavity made by the materials with second-order (${\chi ^{(2)}}$) nonlinearity have been theoretically proposed to allow the indistinguishable single-photon state, as well as the deterministic photon–photon gates via photon blockade effect by harnessing the single-photon nonlinear anharmonicity [1923] and thereby bringing in-sight scalable quantum photonic computing. Lithium niobate (LN) has recently risen to the forefront of integrated quantum photonics circuits due to its intrinsic strong optical nonlinearity, electro-optic effect, and experimentally demonstrated ultra-low-loss nanophotonics platform for scaling. In this paper, we describe a 20-fold enhancement over state-of-the-art devices in second-harmonic generation (SHG) [24,25] with the thin film periodically poled LN microring resonators (PPLNMRs) by leveraging its largest ${\chi ^{(2)}}$ tensor element ${d_{33}}$ for quasi-phase matching. This exceptionally high nonlinearity translates to a vacuum photon–photon coupling strength $g\!/2\pi$ of 1.2 MHz, which is an important milestone as it approaches the dissipation rate $\kappa$ of best-available LN microresonators [26]. Currently, the trade-off between mode confinement and optical loss limits our device to a figure of merit (FOM) single-photon anharmonicity, defined as $g/\kappa$, at ${10^{- 2}}$. Upon further scaling of microresonators, it is possible to improve this FOM by an order of magnitude, making it feasible to realize the photon blockade effect in certain specifically designed device configuration.

 

Fig. 1. (a) Photon blockade effect due to ${\chi ^{(2)}}$ single-photon nonlinear anharmonicity in a doubly resonant cavity based on PPLNMR. (b) The schematic energy level diagram of a PPLNMR with single-photon nonlinearity. The anharmonicity of the nonlinear system is determined by the energy level splitting relative to their widths.

Download Full Size | PPT Slide | PDF

 

Fig. 2. (a) Effective refractive indices of the TM fundamental and SH modes, where the criterion for the type-0, first-order QPM between mode $a$ at 1560 nm and mode $b$ at 780 nm with a poling period $\Lambda = 2.95$ µm is indicated by the vertical, double-headed arrow. The upper insets show the simulated profiles (amplitude of the vertical electric-field component) of the mode $a$ and $b$ while the lower inset depicts the schematic cross section of a z-cut PPLNMR with a radius of 70 µm. (b) Optical image of the etched microring with radial poling electrodes and its zoomed view around the waveguide-microring coupling region. (c) PFM phase scan over a small portion of a PPLNMR, revealing the alternate ferroelectric domain structures and a duty cycle close to 50%. (d) False-color SEM image of a deplicate PPLNMR etched in HF and its zoomed view (e) reveal a high-fidelity perodic poling along the whole microring. Dark purple, inverted domains; light purple, uninverted domains.

Download Full Size | PPT Slide | PDF

Single-photon anharmonicity is appealing for quantum photonics applications. As an example, Fig. 1 illustrates a conceptual photon blockade device leveraging single-photon-level ${\chi ^{(2)}}$ nonlinearity based on a PPLNMR, which could generate single photons with sub-Poissonian quantum statistics from a classical laser input. Photons with carrier frequency ${\omega _a}$ (blue) travel in a waveguide and couple to the cavity mode $a$ with a dissipation rate ${\kappa _a}$. With the fulfillment of certain phase-matching conditions for the degenerate three-wave mixing, a significant nonlinear coupling strength $g$ between mode $a$ and mode $b$ (with a frequency of ${\omega _b} = 2{\omega _a}$) could be obtained, and thereby a frequency conversion from ${\omega _a}$ to ${\omega _b}$ is feasible. For example, the highly efficient SHG between mode $a$ in the telecom band and mode $b$ in the near-visible band has been experimentally demonstrated in a PPLNMR [24]. The system Hamiltonian of such PPLNMR device reads
$$\hat H/\hbar = {\omega _a}{\hat a^\dagger}\hat a + {\omega _b}{\hat b^\dagger}\hat b + g(({\hat a^\dagger}{)^2}\hat b + {\hat a^2}{\hat b^\dagger}).$$

Here, $\hat a$ and $\hat b$ represent the bosonic operators, and $g$ denotes the vacuum nonlinear photon–photon interaction strength between mode $a$ and $b$. Considering only a few excitations, the system energy levels can be written as $|mn\rangle = |m{\rangle _a} \otimes |n{\rangle _b}$ in the Fock state basis, with $m,n \in {\mathbb Z}$. When the single-photon nonlinearity is realized, i.e., the coupling strength exceeds the dissipation rate, the state $|20\rangle$ strongly couples to $|01\rangle$, and new eigenstates $(|20\rangle \pm |01\rangle)/\sqrt 2$ with a frequency splitting of $2\sqrt 2 g$ are produced [Fig. 1(b)]. The induced anharmonicity of energy levels gives rise to the photon blockade effect as illustrated in Fig. 1(a), where the pump mode energy level with photon number $N \ge 2$ is no longer resonant with the cavity, and thereby the two-excitation state would be inhibited if the detuning $\sqrt 2 g$ is comparable or larger than the energy linewidth ${\kappa _a}$, as indicated by the blue dashed arrow in Fig. 1(b). Hence, we introduce the dimensionless FOM quantifying the anharmonicity of the intracavity Fock states at the single-photon level, ${\rm FOM} = g\!/\!{\kappa _a}$. The larger the FOM is, the better performance it has in single-photon generation. Alternatively, the FOM also indicates the number of quantum gate operations on single photons before significant fidelity loss due to the photon dissipation to environment.

2. OPTIMIZATION OF COUPLING STRENGTH $g$

Based on the above discussion, a larger coupling strength $g$ is always demanding to realize single-photon anharmonicity, since the mode dissipation rates are mostly restricted by the material and fabrication technique in practices. In a microring resonator, the photon–photon coupling strength $g$ is determined by the material ${\chi ^{(2)}}$ coefficient, modal overlap factor $\gamma$, and the mode volume $V$ through the relation $g \propto {\chi ^{(2)}}\gamma /\sqrt V$. According to Ref. [24], the PPLNMR is employed for high ${\chi ^{(2)}}$ coefficient and phase-matching condition, and a SHG efficiency of $250,\! 000\%$ was achieved. Here, a significant improvement of $g$ is demonstrated by solving two practical challenges: the utilization of largest nonlinear term ${d_{33}}$ of the z-cut LN thin film and the high-fidelity radial poling of the microring.

First, since the optic axis of z-cut LN lies vertically, to employ its ${d_{33}}$ term, we design for phase matching between the fundamental quasi-transverse magnetic (TM) mode $a$ at 1560 nm and second-harmonic (SH) mode $b$ at 780 nm, as shown in Fig. 2(a). The lower inset depicts the schematic cross section of a partially etched z-cut LN microring with a radius of 70 µm. The fabrication of the z-cut air-cladded LN microrings is detailed in Ref. [27]. The lowest-order SH mode is favorable due to the lower scattering loss and larger modal overlap factor. The simulated profiles (amplitude of the vertical electric-field component) for the fundamental TM0 and SH TM0 modes are presented in the upper insets of Fig. 2. Due to their large refractive index difference, the momentum conservation could only be satisfied via quasi-phase matching with a poling period of $\Lambda = {\lambda _a}/2({n_b} - {n_a}) = 2.95\; \unicode{x00B5}{\rm m}$ as indicated by the double-headed black arrow in Fig. 2(a). Consequently, an optimized $g/2\pi$ is calculated to be 1.78 MHz according to Eq. (2) in Ref. [24].

 

Fig. 3. (a) Photography of the measurement stage with input/output fiber coupling to the PPLNMR chip. The chip sits on an aluminum sample holder affixed to a feedback-controlled heater with a tuning range from 25 to 200°C. (b) Illustration of the experimental setup with a false-color SEM image of the PPLNMR device. IR, infrared; Nvis, near-visible; FPC, fiber polarization controller; WDM, wavelength-division multiplexer; PD, photodetector. (c)–(d) Transmission spectra of the corresponding fundamental TM0 and near-visible TM0 modes for SHG and their extracted Q values. (e) Spectra of the pump resonance and corresponding SH response measured at an optimized temperature. (f) ${P_{b,{\rm out}}}$- and ${\eta _{{\rm norm}}} - {P_{a,{\rm in}}}$ relations are plotted with the blue dots and orange triangles, respectively. Quadratic relation is fitted (blue solid line) at the low power regime and a normalized conversion efficiency ${\eta _{{\rm norm}}}$ of $5,\! 000,\! 000 \pm 1,\! 200,\! 000 \% /{\rm W}$ is calculated, while the deviation of quadratic dependence and decay of ${\eta _{{\rm norm}}}$ are observed at the high power regime due to the intrinsic photorefractive effect.

Download Full Size | PPT Slide | PDF

Second, for the implementation of quasi-phase matching, the poling electrodes with a tooth width of 750 nm are deposited on top of the etched LN microring, as shown in Fig. 2(b). The tooth width is designed to be smaller than $\Lambda /2$ to allow for the inevitable lateral domain broadening and ensure a duty cycle of ${\sim}50\%$. The periodic ferroelectric domain inversion is then enabled by keeping the silicon substrate as the electrical ground while applying several 600 V, 250 ms pulses at an elevated temperature, as elaborated in Ref. [24]. After removing the electrodes, piezoresponse force microscopy (PFM) is utilized as a non-destructive way to visualize the alternate domain inversion as presented in Fig. 2(c), where the dark regions correspond to the inverted domains and a duty cycle close to 50% is achieved. Moreover, the difference in etch rates between the poled and unpoled regions of z-cut LN in hydrofluoric acid (HF) allows us to examine the poling quality along the whole microring under a scanning electron microscope (SEM). Figures 2(d) and 2(e) are the false-color SEM images of a PPLNMR mock-up etched in HF, which implies a high-fidelity periodic poling along the microring. A period of ${\sim} 2.95 \; \unicode{x00B5} {\rm m}$ and a duty cycle of  ${\sim} 50 \%$ are confirmed.

3. CHARACTERIZATION OF $g$

The SHG measurement is implemented to verify the nonlinear coupling strength $g$ of the fabricated PPLNMR device. With a pump field near the fundamental frequency, the system can be described by the Hamiltonian,

$$\begin{array}{*{20}{l}}{\hat H/\hbar}& = {{\omega _a}{{\hat a}^\dagger}\hat a + {\omega _b}{{\hat b}^\dagger}\hat b + g(({{\hat a}^\dagger}{)^2}\hat b + {{\hat a}^2}{{\hat b}^\dagger})}\\&\quad + {i{\epsilon _p}(- \hat a{e^{i{\omega _p}t}} + {{\hat a}^\dagger}{e^{- i{\omega _p}t}}),}\end{array}$$
where ${\epsilon _p} = \sqrt {2{\kappa _{a,1}}{P_{a,{\rm in}}}/\hbar {\omega _p}}$ is the input pump strength, ${P_{a,{\rm in}}}$ is the on-chip pump power, and ${\kappa _{a,1}}$ denotes the external dissipation rate of the mode $a$. At the steady state, the on-chip transmission of the pump laser and the output power of the SH signal are derived as
$${P_{a,{\rm out}}} = \frac{{\delta _a^2 + {{({\kappa _{a,0}} - {\kappa _{a,1}})}^2}}}{{\delta _a^2 + \kappa _a^2}}{P_{a,{\rm in}}},$$
$${P_{b,{\rm out}}} = \frac{{{g^2}P_{a,{\rm in}}^2{\omega _b}}}{{\hbar {\omega _p}^2}}\frac{{2{\kappa _{b,1}}}}{{\delta _b^2 + \kappa _b^2}}{\left(\frac{{2{\kappa _{a,1}}}}{{\delta _a^2 + \kappa _a^2}}\right)^2},$$
where ${\kappa _1}$, ${\kappa _0}$, and $\kappa$ are, respectively, the external, intrinsic, and total dissipation rates of the cavity mode with $\kappa = {\kappa _1} + {\kappa _0}$. ${\delta _a} = {\omega _a} - {\omega _p}$ (${\delta _b} = {\omega _b} - 2{\omega _p}$) is the detuning for mode $a(b)$. The normalized SHG efficiency is given by ${\eta _{{\rm norm}}} = {P_{b,{\rm out}}}\!/\!P_{a,{\rm in}}^2$. Based on the measured ${\kappa _{a(b)}}$ and ${\kappa _{a(b),1}}$, the coupling rate $g$ could be fitted from the experimental SH response according to Eq. (4).

For the experimental setup, the chip is mounted on an aluminum holder, whose temperature could be globally tuned with an attached resistive heater [Fig. 3(a)]. The devices are optically addressed using lensed optical fibers. As shown in Fig. 3(b), we selectively turn on the telecom and near-visible light sources for the optical Q measurements of the fundamental and SH modes, while only the telecom laser is swept for the SHG measurement. Figure 3(c) presents the measured transmission spectrum of the fundamental mode around 199 THz for the subsequent SHG, which exhibits an intrinsic and loaded Q of $1.8 \times {10^6}$ and $5.4 \times {10^5}$, respectively. Likewise, the intrinsic and loaded Q factors for the corresponding SH mode are measured to be $5.8 \times {10^5}$ and $4.5 \times {10^5}$ as indicated in Fig. 3(d). Hence, the intrinsic dissipation rates of the fundamental and SH modes are calculated to be ${\kappa _{a,0}}/2\pi = {\omega _a}/4\pi {Q_{a,0}} = 55.4\;{\rm MHz} $ and ${\kappa _{b,0}}/2\pi = 343.8\;{\rm MHz} $, which correspond to propagation losses of 0.23 dB/cm and 1.44 dB/cm at the telecom and near-visible bands, respectively. Based on the calibrated insertion loss of 8.5 and 10.0 dB/facet for the respective fundamental and SH modes, Fig. 3(e) highlights the measured pump transmission and corresponding SH response at an optimal temperature, showing that a maximum on-chip SHG power of 55.6 nW is obtained with an on-chip pump power of 1.05 µW. The shaded region corresponds to an on-chip power variation induced by a coupling fluctuation of 5% and 15% for the respective fundamental and SH modes, and thereby an on-chip normalized SHG efficiency ${\eta _{{\rm norm}}}$ is estimated to be $5,\!000,\!000 \% /{\rm W}$ with an uncertainty of $1,\!200,\!000 \% /{\rm W}$.

The theoretical pump transmission and SHG output power based on Eqs. (3) and (4) are also plotted with the solid black lines in Fig. 3(e), where a nonlinear coupling strength $g\!/\!2\pi$ of 1.2 MHz is consequently fitted. The discrepancy between the measured $g\!/\!2\pi$ and the theoretically predicted value of 1.78 MHz is possibly due to nonuniformity inherent to nanofabrication at different azimuthal angles of the microring [28] as well as random duty cycle errors due to the intrinsic defects in the single-crystalline LN thin film [24,29], as implied in the SEM image of the selectively etched PPLNMR mock-up with HF acid [Fig. 2(d)]. Moreover, the power-dependence of the SHG power (blue dots) and the on-chip efficiency (orange triangles) are plotted in Fig. 3(f), where a linear-fitted slope of 1.92 justifies a quadratic dependence of SHG power on the pump power as predicted by Eq. (4) and an ${\eta _{{\rm norm}}}$ of 5,000,000 %/W is confirmed in the low power regime (${P_{a,{\rm in}}} \lt 10 \; \unicode{x00B5}{\rm W}$). The deviation of the quadratic dependence and degradation of ${\eta _{{\rm norm}}}$ with the increasing pump power are probably attributed to the increasing frequency mismatch between the mode $a$ and $b$ induced by the accumulating photorefractive (PR) effect [30]. Such PR damage remains challenging for a broad class of thin film LN devices, including frequency converters and modulators [24,31,32], and will be investigated carefully in the future. As we are focusing on the nonlinearity at the single-quanta limit, the degraded device performance in the high power regime will not be a limiting factor for our device. The above experimental demonstration justifies the simultaneously optimized $g\!/\!2\pi$ of 1.2 MHz and ${\kappa _a}/2\pi$ of 184.6 MHz via the record-high normalized SHG efficiency and highlights the potential of PPLNMR to play a key role in future quantum photonics applications.

4. DISCUSSION AND OUTLOOK

The present PPLNMR device exhibits a state-of-the-art single-photon anharmonicity FOM of $0.7 \times {10^{- 2}}$ in comparison with that of the aluminum nitride (AlN) [3335], gallium arsenide (GaAs) [36], gallium nitride (GaN) [37], gallium phosphide (GaP) [38], and silicon carbon (SiC) [39] integrated ${\chi ^{(2)}}$ cavities, as indicated in Fig. 4(a). By simply designing the external coupling to the under-coupled condition, the internal FOM ($g\!/\!{\kappa _{a,0}}$) of our device has already reached 0.02. The photonic crystal (PhC) provides another choice for high FOM by taking the advantage over the coupling rate $g$ due to its ultra-small mode volume (${\sim}{(\lambda /n)^3}$), which is around 3 orders of magnitude smaller than that of the typical microrings. However, there are trade-offs in its relatively higher dissipation rate as the device is scaled down and also the difficulty in designing the simultaneous bandgap in fundamental and SH wavebands [4043].

 

Fig. 4. (a) Coupling rate $g$ and dissipation rate ${\kappa _a}$ as well as the corresponding single-photon nonlinear anharmonicity FOM demonstrated in various integrated ${\chi ^{(2)}}$ photonics platforms, including AlN [35], GaAs [36], ${\rm GaN}$ [37], poly-AlN [33], PPLN [24] µrings, and ${\rm GaP}$ [38], ${\rm SiC}$ [39] PhCs. Note: $g$ values for GaAs, GaN, GaP, and SiC are estimated from the representative data based on the assumptions that both fundamental and SH modes are critical-coupled and ${\kappa _b} = 2{\kappa _a}$ when the ${\kappa _b}$ is not given. (b) Dependence of the second-order correlation ${g^{(2)}}(0)$ upon $g\!/\!{\kappa _a}$ for the fundamental photons in the cavity. The inset depicts a photonic molecule design using two coupled PPLNMRs, allowing a controllable linear coupling strength $J$ between the two fundamental modes. For a $J/{\kappa _a}$ of 15, unconventional photon blockade occurs on condition that $g\!/\!{\kappa _a}$ reaches ${10^{- 1}}$.

Download Full Size | PPT Slide | PDF

We note that although the strong coupling condition for photon blockade is not met by the current device, a FOM smaller than unity still promises emitter-free quantum effect in photonic integrated circuits by employing the mechanism of unconventional photon blockade [4446]. By designing an interferometer in the Fock state space with an ancillary cavity mode, quantum states of deep sub-Poisson statistics have been demonstrated in quantum dot cavity quantum electrodynamics [47] and superconducting resonator [48]. Likewise, we propose that, by introducing another microring resonator and realizing a PPLNMR photonic molecule [49], single photons could be generated from a coherent laser input. The interaction in such PPLNMR photonic molecule can be written as ${\hat H_{{\rm int}}}/\hbar = g(\hat a_1^{{\dagger ^2}}{\hat b_1} + \hat a_1^2\hat b_1^\dagger) + g(\hat a_2^{{\dagger ^2}}{\hat b_2} + \hat a_2^2\hat b_2^\dagger) + J(\hat a_1^\dagger {\hat a_2} + \hat a_2^\dagger {\hat a_1}),$ where ${\hat a_{1,2}}$ (${\hat b_{1,2}}$) represents the respective fundamental (SH) modes in two adjacent microrings. ${\hat a_1}$ and ${\hat a_2}$ are coupled with a linear coupling rate $J$, which is controlled by the gap between two microrings. The second-order correlation of the intracavity fundamental field is defined as ${g^{(2)}} = \langle a_1^\dagger a_1^\dagger {a_1}{a_1}\rangle /{\langle a_1^\dagger {a_1}\rangle ^2}$, provided that $J\!/\!{\kappa _a} = 15$ (which is achievable and has been demonstrated in Ref. [49]), whose dependence on $g\!/\!{\kappa _a}$ is numerically investigated and plotted in Fig. 4(b). Accordingly, by further increasing coupling strength $g$ with a reduced microring radius of 40 µm while maintaining low dissipation rate ${\kappa _a}$ with a Q of 5 million through an optimized fabrication flow [26,5052], $g\!/\!2\pi$ of 2.35 MHz and ${\kappa _a}/2\pi$ of 19.2 MHz could be envisioned, which contributes to a FOM of 0.12 and enables the pronounced photon antibunching.

5. CONCLUSION

In conclusion, we have presented the optimization of ${\chi ^{(2)}}$ photon–photon coupling strength toward single-photon nonlinearity in a PPLNMR. Utilizing its largest ${\chi ^{(2)}}$ tensor element ${d_{33}}$, and implementing a high-fidelity radial poling with a period of 2.95 µm in an etched z-cut LN microring, a new-record normalized SH conversion efficiency of 5,000,000%/W is demonstrated. Meanwhile, the single-photon coupling rate $g\!/\!2\pi$ is estimated to be 1.2 MHz, and thereby a state-of-the-art single-photon anharmonicity FOM of $0.7 \times {10^{- 2}}$ is obtained. With 1 order of magnitude improvement, we theoretically propose a PPLNMR photonic molecule device configuration that allows for the remarkable single-photon filtration via unconventional photon blockade effect and paves the way for emitter-free, room-temperature quantum photonic applications, such as quantum light sources, photon–photon quantum gate, and quantum metrology.

Funding

U.S. Department of Energy (DE-SC0019406); National Science Foundation (EFMA-1640959); David and Lucile Packard Foundation (2009-34719).

Acknowledgment

The facilities used for device fabrication were supported by the Yale SEAS cleanroom and Yale Institute for Nanoscience and Quantum Engineering. The authors thank Dr. Michael Rooks, Dr. Yong Sun, Sean Rinehart, and Kelly Woods for assistance in device fabrication.

Disclosures

The authors declare no conflicts of interest.

REFERENCES

1. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009). [CrossRef]  

2. A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221 (2009). [CrossRef]  

3. A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012). [CrossRef]  

4. S. Takeda and A. Furusawa, “Toward large-scale fault-tolerant universal photonic quantum computing,” APL Photon. 4, 060902 (2019). [CrossRef]  

5. J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2019). [CrossRef]  

6. A. W. Elshaari, W. Pernice, K. Srinivasan, O. Benson, and V. Zwiller, “Hybrid integrated quantum photonic circuits,” Nat. Photonics 14, 285–298 (2020). [CrossRef]  

7. S. M. Girvin, “Circuit QED: superconducting qubits coupled to microwave photons,” in Quantum Machines: Measurement and Control of Engineered Quantum Systems (Les Houches Summer School, Session XCVI), M. Devoret, B. Huard, R. Schoelkopf, and L. F. Cugliandolo, eds. (Oxford University, 2014), pp. 113–255.

8. G. Wendin, “Quantum information processing with superconducting circuits: a review,” Rep. Prog. Phys. 80, 106001 (2017). [CrossRef]  

9. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007). [CrossRef]  

10. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008). [CrossRef]  

11. A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011). [CrossRef]  

12. S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016). [CrossRef]  

13. L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light Sci. Appl. 6, e17100 (2017). [CrossRef]  

14. I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016). [CrossRef]  

15. D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12, 516–527 (2018). [CrossRef]  

16. T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014). [CrossRef]  

17. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef]  

18. R. W. Boyd, Nonlinear Optics (Academic, 2019).

19. W. T. M. Irvine, K. Hennessy, and D. Bouwmeester, “Strong coupling between single photons in semiconductor microcavities,” Phys. Rev. Lett. 96, 057405 (2006). [CrossRef]  

20. A. Majumdar and D. Gerace, “Single-photon blockade in doubly resonant nanocavities with second-order nonlinearity,” Phys. Rev. B 87, 235319 (2013). [CrossRef]  

21. M. Heuck, K. Jacobs, and D. R. Englund, “Controlled-phase gate using dynamically coupled cavities and optical nonlinearities,” Phys. Rev. Lett. 124, 160501 (2020). [CrossRef]  

22. M. Li, Y.-L. Zhang, H. X. Tang, C.-H. Dong, G.-C. Guo, and C.-L. Zou, “Photon-photon quantum phase gate in a photonic molecule with χ2 nonlinearity,” Phys. Rev. Appl. 13, 044013 (2020). [CrossRef]  

23. S. Krastanov, M. Heuck, J. H. Shapiro, P. Narang, D. R. Englund, and K. Jacobs, “Room-temperature photonic logical qubits via second-order nonlinearities,” arXiv:2002.07193 (2020).

24. J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, “Periodically poled thin film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W,” Optica 6, 1455–1460 (2019). [CrossRef]  

25. J.-Y. Chen, Z.-H. Ma, Y. M. Sua, Z. Li, C. Tang, and Y.-P. Huang, “Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings,” Optica 6, 1244–1245 (2019). [CrossRef]  

26. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017). [CrossRef]  

27. J. Lu, J. B. Surya, X. Liu, Y. Xu, and H. X. Tang, “Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides,” Opt. Lett. 44, 1492–1495 (2019). [CrossRef]  

28. R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019). [CrossRef]  

29. M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]  

30. Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32, 1806452 (2020). [CrossRef]  

31. T. P. McKenna, J. D. Witmer, R. N. Patel, W. Jiang, R. Van Laer, P. Arrangoiz-Arriola, E. A. Wollack, J. F. Herrmann, and A. H. Safavi-Naeini, “Cryogenic microwave-to-optical conversion using a triply-resonant lithium niobate on sapphire transducer,” arXiv:2005.00897 (2020).

32. J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar, “Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction,” arXiv:2005.00939 (2020).

33. X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016). [CrossRef]  

34. J. B. Surya, X. Guo, C.-L. Zou, and H. X. Tang, “Control of second-harmonic generation in doubly resonant aluminum nitride microrings to address rubidium two-photon clock transition,” Opt. Lett. 43, 2696–2699 (2018). [CrossRef]  

35. A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018). [CrossRef]  

36. L. Chang, A. Boes, P. Pintus, J. D. Peters, M. Kennedy, X.-W. Guo, N. Volet, S.-P. Yu, S. B. Papp, and J. E. Bowers, “Strong frequency conversion in heterogeneously integrated GaAs resonators,” APL Photon. 4, 036103 (2019). [CrossRef]  

37. I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. De Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016). [CrossRef]  

38. K. Rivoire, Z. Lin, F. Hatami, W. Ted Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow CW pump power,” Opt. Express 17, 22609–22615 (2009). [CrossRef]  

39. S. Yamada, B.-S. Song, S. Jeon, J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity,” Opt. Lett. 39, 1768–1771 (2014). [CrossRef]  

40. K. Rivoire, S. Buckley, and J. Vučkovič, “Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion,” Opt. Express 19, 22198–22207 (2011). [CrossRef]  

41. S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, and J. Vučković, “Multimode nanobeam cavities for nonlinear optics: high quality resonances separated by an octave,” Opt. Express 22, 26498–26509 (2014). [CrossRef]  

42. M. Minkov and V. Savona, “Optimizing doubly resonant photonic crystal cavity modes for second harmonic generation,” Proc. SPIE 9127, 91270C (2014). [CrossRef]  

43. Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3, 233–238 (2016). [CrossRef]  

44. T. C. H. Liew and V. Savona, “Single photons from coupled quantum modes,” Phys. Rev. Lett. 104, 183601 (2010). [CrossRef]  

45. H. Flayac and V. Savona, “Unconventional photon blockade,” Phys. Rev. A 96, 053810 (2017). [CrossRef]  

46. D. Gerace and V. Savona, “Unconventional photon blockade in doubly resonant microcavities with second-order nonlinearity,” Phys. Rev. A 89, 031803 (2014). [CrossRef]  

47. H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121, 043601 (2018). [CrossRef]  

48. C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121, 043602 (2018). [CrossRef]  

49. M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, T. Ren, S. Fan, and M. Lončar, “Electronically programmable photonic molecule,” Nat. Photonics 13, 36–40 (2019). [CrossRef]  

50. X. Ji, F. A. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017). [CrossRef]  

51. J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, and Y. Cheng, “Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator,” Nanomaterials 9, 1218 (2019). [CrossRef]  

52. J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” arXiv:2005.13949 (2020).

References

  • View by:
  • |
  • |
  • |

  1. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
    [Crossref]
  2. A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221 (2009).
    [Crossref]
  3. A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
    [Crossref]
  4. S. Takeda and A. Furusawa, “Toward large-scale fault-tolerant universal photonic quantum computing,” APL Photon. 4, 060902 (2019).
    [Crossref]
  5. J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2019).
    [Crossref]
  6. A. W. Elshaari, W. Pernice, K. Srinivasan, O. Benson, and V. Zwiller, “Hybrid integrated quantum photonic circuits,” Nat. Photonics 14, 285–298 (2020).
    [Crossref]
  7. S. M. Girvin, “Circuit QED: superconducting qubits coupled to microwave photons,” in Quantum Machines: Measurement and Control of Engineered Quantum Systems (Les Houches Summer School, Session XCVI), M. Devoret, B. Huard, R. Schoelkopf, and L. F. Cugliandolo, eds. (Oxford University, 2014), pp. 113–255.
  8. G. Wendin, “Quantum information processing with superconducting circuits: a review,” Rep. Prog. Phys. 80, 106001 (2017).
    [Crossref]
  9. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
    [Crossref]
  10. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
    [Crossref]
  11. A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
    [Crossref]
  12. S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
    [Crossref]
  13. L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light Sci. Appl. 6, e17100 (2017).
    [Crossref]
  14. I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
    [Crossref]
  15. D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12, 516–527 (2018).
    [Crossref]
  16. T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
    [Crossref]
  17. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref]
  18. R. W. Boyd, Nonlinear Optics (Academic, 2019).
  19. W. T. M. Irvine, K. Hennessy, and D. Bouwmeester, “Strong coupling between single photons in semiconductor microcavities,” Phys. Rev. Lett. 96, 057405 (2006).
    [Crossref]
  20. A. Majumdar and D. Gerace, “Single-photon blockade in doubly resonant nanocavities with second-order nonlinearity,” Phys. Rev. B 87, 235319 (2013).
    [Crossref]
  21. M. Heuck, K. Jacobs, and D. R. Englund, “Controlled-phase gate using dynamically coupled cavities and optical nonlinearities,” Phys. Rev. Lett. 124, 160501 (2020).
    [Crossref]
  22. M. Li, Y.-L. Zhang, H. X. Tang, C.-H. Dong, G.-C. Guo, and C.-L. Zou, “Photon-photon quantum phase gate in a photonic molecule with χ2 nonlinearity,” Phys. Rev. Appl. 13, 044013 (2020).
    [Crossref]
  23. S. Krastanov, M. Heuck, J. H. Shapiro, P. Narang, D. R. Englund, and K. Jacobs, “Room-temperature photonic logical qubits via second-order nonlinearities,” arXiv:2002.07193 (2020).
  24. J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, “Periodically poled thin film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W,” Optica 6, 1455–1460 (2019).
    [Crossref]
  25. J.-Y. Chen, Z.-H. Ma, Y. M. Sua, Z. Li, C. Tang, and Y.-P. Huang, “Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings,” Optica 6, 1244–1245 (2019).
    [Crossref]
  26. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
    [Crossref]
  27. J. Lu, J. B. Surya, X. Liu, Y. Xu, and H. X. Tang, “Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides,” Opt. Lett. 44, 1492–1495 (2019).
    [Crossref]
  28. R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
    [Crossref]
  29. M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [Crossref]
  30. Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32, 1806452 (2020).
    [Crossref]
  31. T. P. McKenna, J. D. Witmer, R. N. Patel, W. Jiang, R. Van Laer, P. Arrangoiz-Arriola, E. A. Wollack, J. F. Herrmann, and A. H. Safavi-Naeini, “Cryogenic microwave-to-optical conversion using a triply-resonant lithium niobate on sapphire transducer,” arXiv:2005.00897 (2020).
  32. J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar, “Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction,” arXiv:2005.00939 (2020).
  33. X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
    [Crossref]
  34. J. B. Surya, X. Guo, C.-L. Zou, and H. X. Tang, “Control of second-harmonic generation in doubly resonant aluminum nitride microrings to address rubidium two-photon clock transition,” Opt. Lett. 43, 2696–2699 (2018).
    [Crossref]
  35. A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
    [Crossref]
  36. L. Chang, A. Boes, P. Pintus, J. D. Peters, M. Kennedy, X.-W. Guo, N. Volet, S.-P. Yu, S. B. Papp, and J. E. Bowers, “Strong frequency conversion in heterogeneously integrated GaAs resonators,” APL Photon. 4, 036103 (2019).
    [Crossref]
  37. I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. De Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
    [Crossref]
  38. K. Rivoire, Z. Lin, F. Hatami, W. Ted Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow CW pump power,” Opt. Express 17, 22609–22615 (2009).
    [Crossref]
  39. S. Yamada, B.-S. Song, S. Jeon, J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity,” Opt. Lett. 39, 1768–1771 (2014).
    [Crossref]
  40. K. Rivoire, S. Buckley, and J. Vučkovič, “Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion,” Opt. Express 19, 22198–22207 (2011).
    [Crossref]
  41. S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, and J. Vučković, “Multimode nanobeam cavities for nonlinear optics: high quality resonances separated by an octave,” Opt. Express 22, 26498–26509 (2014).
    [Crossref]
  42. M. Minkov and V. Savona, “Optimizing doubly resonant photonic crystal cavity modes for second harmonic generation,” Proc. SPIE 9127, 91270C (2014).
    [Crossref]
  43. Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3, 233–238 (2016).
    [Crossref]
  44. T. C. H. Liew and V. Savona, “Single photons from coupled quantum modes,” Phys. Rev. Lett. 104, 183601 (2010).
    [Crossref]
  45. H. Flayac and V. Savona, “Unconventional photon blockade,” Phys. Rev. A 96, 053810 (2017).
    [Crossref]
  46. D. Gerace and V. Savona, “Unconventional photon blockade in doubly resonant microcavities with second-order nonlinearity,” Phys. Rev. A 89, 031803 (2014).
    [Crossref]
  47. H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121, 043601 (2018).
    [Crossref]
  48. C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121, 043602 (2018).
    [Crossref]
  49. M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, T. Ren, S. Fan, and M. Lončar, “Electronically programmable photonic molecule,” Nat. Photonics 13, 36–40 (2019).
    [Crossref]
  50. X. Ji, F. A. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
    [Crossref]
  51. J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, and Y. Cheng, “Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator,” Nanomaterials 9, 1218 (2019).
    [Crossref]
  52. J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” arXiv:2005.13949 (2020).

2020 (4)

A. W. Elshaari, W. Pernice, K. Srinivasan, O. Benson, and V. Zwiller, “Hybrid integrated quantum photonic circuits,” Nat. Photonics 14, 285–298 (2020).
[Crossref]

M. Heuck, K. Jacobs, and D. R. Englund, “Controlled-phase gate using dynamically coupled cavities and optical nonlinearities,” Phys. Rev. Lett. 124, 160501 (2020).
[Crossref]

M. Li, Y.-L. Zhang, H. X. Tang, C.-H. Dong, G.-C. Guo, and C.-L. Zou, “Photon-photon quantum phase gate in a photonic molecule with χ2 nonlinearity,” Phys. Rev. Appl. 13, 044013 (2020).
[Crossref]

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32, 1806452 (2020).
[Crossref]

2019 (9)

J. Lu, J. B. Surya, X. Liu, Y. Xu, and H. X. Tang, “Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides,” Opt. Lett. 44, 1492–1495 (2019).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, “Periodically poled thin film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W,” Optica 6, 1455–1460 (2019).
[Crossref]

J.-Y. Chen, Z.-H. Ma, Y. M. Sua, Z. Li, C. Tang, and Y.-P. Huang, “Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings,” Optica 6, 1244–1245 (2019).
[Crossref]

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. Kennedy, X.-W. Guo, N. Volet, S.-P. Yu, S. B. Papp, and J. E. Bowers, “Strong frequency conversion in heterogeneously integrated GaAs resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

S. Takeda and A. Furusawa, “Toward large-scale fault-tolerant universal photonic quantum computing,” APL Photon. 4, 060902 (2019).
[Crossref]

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2019).
[Crossref]

M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, T. Ren, S. Fan, and M. Lončar, “Electronically programmable photonic molecule,” Nat. Photonics 13, 36–40 (2019).
[Crossref]

J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, and Y. Cheng, “Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator,” Nanomaterials 9, 1218 (2019).
[Crossref]

2018 (5)

H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121, 043601 (2018).
[Crossref]

C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121, 043602 (2018).
[Crossref]

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12, 516–527 (2018).
[Crossref]

J. B. Surya, X. Guo, C.-L. Zou, and H. X. Tang, “Control of second-harmonic generation in doubly resonant aluminum nitride microrings to address rubidium two-photon clock transition,” Opt. Lett. 43, 2696–2699 (2018).
[Crossref]

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

2017 (5)

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light Sci. Appl. 6, e17100 (2017).
[Crossref]

G. Wendin, “Quantum information processing with superconducting circuits: a review,” Rep. Prog. Phys. 80, 106001 (2017).
[Crossref]

X. Ji, F. A. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
[Crossref]

H. Flayac and V. Savona, “Unconventional photon blockade,” Phys. Rev. A 96, 053810 (2017).
[Crossref]

2016 (5)

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3, 233–238 (2016).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
[Crossref]

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. De Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref]

2014 (5)

S. Yamada, B.-S. Song, S. Jeon, J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity,” Opt. Lett. 39, 1768–1771 (2014).
[Crossref]

S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, and J. Vučković, “Multimode nanobeam cavities for nonlinear optics: high quality resonances separated by an octave,” Opt. Express 22, 26498–26509 (2014).
[Crossref]

M. Minkov and V. Savona, “Optimizing doubly resonant photonic crystal cavity modes for second harmonic generation,” Proc. SPIE 9127, 91270C (2014).
[Crossref]

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

D. Gerace and V. Savona, “Unconventional photon blockade in doubly resonant microcavities with second-order nonlinearity,” Phys. Rev. A 89, 031803 (2014).
[Crossref]

2013 (1)

A. Majumdar and D. Gerace, “Single-photon blockade in doubly resonant nanocavities with second-order nonlinearity,” Phys. Rev. B 87, 235319 (2013).
[Crossref]

2012 (1)

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
[Crossref]

2011 (2)

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

K. Rivoire, S. Buckley, and J. Vučkovič, “Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion,” Opt. Express 19, 22198–22207 (2011).
[Crossref]

2010 (1)

T. C. H. Liew and V. Savona, “Single photons from coupled quantum modes,” Phys. Rev. Lett. 104, 183601 (2010).
[Crossref]

2009 (3)

K. Rivoire, Z. Lin, F. Hatami, W. Ted Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow CW pump power,” Opt. Express 17, 22609–22615 (2009).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221 (2009).
[Crossref]

2008 (1)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

2007 (1)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

2006 (1)

W. T. M. Irvine, K. Hennessy, and D. Bouwmeester, “Strong coupling between single photons in semiconductor microcavities,” Phys. Rev. Lett. 96, 057405 (2006).
[Crossref]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

1992 (1)

M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Aharonovich, I.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

Aiello, G.

C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121, 043602 (2018).
[Crossref]

Aprili, M.

C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121, 043602 (2018).
[Crossref]

Arrangoiz-Arriola, P.

T. P. McKenna, J. D. Witmer, R. N. Patel, W. Jiang, R. Van Laer, P. Arrangoiz-Arriola, E. A. Wollack, J. F. Herrmann, and A. H. Safavi-Naeini, “Cryogenic microwave-to-optical conversion using a triply-resonant lithium niobate on sapphire transducer,” arXiv:2005.00897 (2020).

Asano, T.

Aspuru-Guzik, A.

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
[Crossref]

Awschalom, D. D.

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12, 516–527 (2018).
[Crossref]

Bajoni, D.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light Sci. Appl. 6, e17100 (2017).
[Crossref]

Barbosa, F. A.

Benson, O.

A. W. Elshaari, W. Pernice, K. Srinivasan, O. Benson, and V. Zwiller, “Hybrid integrated quantum photonic circuits,” Nat. Photonics 14, 285–298 (2020).
[Crossref]

Berggren, K. K.

J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar, “Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction,” arXiv:2005.00939 (2020).

Biermann, K.

Bo, F.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32, 1806452 (2020).
[Crossref]

Boes, A.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. Kennedy, X.-W. Guo, N. Volet, S.-P. Yu, S. B. Papp, and J. E. Bowers, “Strong frequency conversion in heterogeneously integrated GaAs resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

Bongioanni, I.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Boucaud, P.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. De Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref]

Bouwmeester, D.

H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121, 043601 (2018).
[Crossref]

W. T. M. Irvine, K. Hennessy, and D. Bouwmeester, “Strong coupling between single photons in semiconductor microcavities,” Phys. Rev. Lett. 96, 057405 (2006).
[Crossref]

Bowers, J. E.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. Kennedy, X.-W. Guo, N. Volet, S.-P. Yu, S. B. Papp, and J. E. Bowers, “Strong frequency conversion in heterogeneously integrated GaAs resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121, 043601 (2018).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2019).

Brimont, C.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. De Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref]

Bruch, A. W.

J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, “Periodically poled thin film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W,” Optica 6, 1455–1460 (2019).
[Crossref]

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

Bryant, A.

Buckley, S.

Byer, R. L.

M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Cardenas, J.

Caspani, L.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light Sci. Appl. 6, e17100 (2017).
[Crossref]

Chang, L.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. Kennedy, X.-W. Guo, N. Volet, S.-P. Yu, S. B. Papp, and J. E. Bowers, “Strong frequency conversion in heterogeneously integrated GaAs resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

Checoury, X.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. De Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref]

Chen, J.-Y.

Cheng, R.

Cheng, Y.

J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, and Y. Cheng, “Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator,” Nanomaterials 9, 1218 (2019).
[Crossref]

Colangelo, M.

J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar, “Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction,” arXiv:2005.00939 (2020).

Crespi, A.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

de Leon, N. P.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

De Micheli, M.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. De Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref]

Dong, C.-H.

M. Li, Y.-L. Zhang, H. X. Tang, C.-H. Dong, G.-C. Guo, and C.-L. Zou, “Photon-photon quantum phase gate in a photonic molecule with χ2 nonlinearity,” Phys. Rev. Appl. 13, 044013 (2020).
[Crossref]

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Duboz, J. Y.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. De Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref]

Dutt, A.

Eggleton, B. J.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light Sci. Appl. 6, e17100 (2017).
[Crossref]

El Kurdi, M.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. De Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref]

Elshaari, A. W.

A. W. Elshaari, W. Pernice, K. Srinivasan, O. Benson, and V. Zwiller, “Hybrid integrated quantum photonic circuits,” Nat. Photonics 14, 285–298 (2020).
[Crossref]

Engelsen, N. J.

J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” arXiv:2005.13949 (2020).

Englund, D.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

Englund, D. R.

M. Heuck, K. Jacobs, and D. R. Englund, “Controlled-phase gate using dynamically coupled cavities and optical nonlinearities,” Phys. Rev. Lett. 124, 160501 (2020).
[Crossref]

S. Krastanov, M. Heuck, J. H. Shapiro, P. Narang, D. R. Englund, and K. Jacobs, “Room-temperature photonic logical qubits via second-order nonlinearities,” arXiv:2002.07193 (2020).

Estève, J.

C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121, 043602 (2018).
[Crossref]

Fan, S.

M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, T. Ren, S. Fan, and M. Lončar, “Electronically programmable photonic molecule,” Nat. Photonics 13, 36–40 (2019).
[Crossref]

Fang, Z.

J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, and Y. Cheng, “Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator,” Nanomaterials 9, 1218 (2019).
[Crossref]

Féchant, M.

C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121, 043602 (2018).
[Crossref]

Fejer, M. M.

M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Ferrari, S.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Flayac, H.

H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121, 043601 (2018).
[Crossref]

H. Flayac and V. Savona, “Unconventional photon blockade,” Phys. Rev. A 96, 053810 (2017).
[Crossref]

Frey, J. A.

H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121, 043601 (2018).
[Crossref]

Furusawa, A.

S. Takeda and A. Furusawa, “Toward large-scale fault-tolerant universal photonic quantum computing,” APL Photon. 4, 060902 (2019).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Gabelli, J.

C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121, 043602 (2018).
[Crossref]

Gaeta, A. L.

Galli, M.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light Sci. Appl. 6, e17100 (2017).
[Crossref]

Gao, R.

J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, and Y. Cheng, “Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator,” Nanomaterials 9, 1218 (2019).
[Crossref]

Gayral, B.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. De Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref]

Gerace, D.

D. Gerace and V. Savona, “Unconventional photon blockade in doubly resonant microcavities with second-order nonlinearity,” Phys. Rev. A 89, 031803 (2014).
[Crossref]

A. Majumdar and D. Gerace, “Single-photon blockade in doubly resonant nanocavities with second-order nonlinearity,” Phys. Rev. B 87, 235319 (2013).
[Crossref]

Girvin, S. M.

S. M. Girvin, “Circuit QED: superconducting qubits coupled to microwave photons,” in Quantum Machines: Measurement and Control of Engineered Quantum Systems (Les Houches Summer School, Session XCVI), M. Devoret, B. Huard, R. Schoelkopf, and L. F. Cugliandolo, eds. (Oxford University, 2014), pp. 113–255.

Gol’tsman, G.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Gong, Z.

J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, “Periodically poled thin film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W,” Optica 6, 1455–1460 (2019).
[Crossref]

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

Gossard, A. C.

H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121, 043601 (2018).
[Crossref]

Gromovyi, M.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. De Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref]

Guillet, T.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. De Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref]

Guo, G.-C.

M. Li, Y.-L. Zhang, H. X. Tang, C.-H. Dong, G.-C. Guo, and C.-L. Zou, “Photon-photon quantum phase gate in a photonic molecule with χ2 nonlinearity,” Phys. Rev. Appl. 13, 044013 (2020).
[Crossref]

Guo, X.

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

J. B. Surya, X. Guo, C.-L. Zou, and H. X. Tang, “Control of second-harmonic generation in doubly resonant aluminum nitride microrings to address rubidium two-photon clock transition,” Opt. Lett. 43, 2696–2699 (2018).
[Crossref]

X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
[Crossref]

Guo, X.-W.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. Kennedy, X.-W. Guo, N. Volet, S.-P. Yu, S. B. Papp, and J. E. Bowers, “Strong frequency conversion in heterogeneously integrated GaAs resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

Hanson, R.

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12, 516–527 (2018).
[Crossref]

Hatami, F.

He, J.

J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” arXiv:2005.13949 (2020).

He, Y.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

Hennessy, K.

W. T. M. Irvine, K. Hennessy, and D. Bouwmeester, “Strong coupling between single photons in semiconductor microcavities,” Phys. Rev. Lett. 96, 057405 (2006).
[Crossref]

Hennrich, F.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Herrmann, J. F.

T. P. McKenna, J. D. Witmer, R. N. Patel, W. Jiang, R. Van Laer, P. Arrangoiz-Arriola, E. A. Wollack, J. F. Herrmann, and A. H. Safavi-Naeini, “Cryogenic microwave-to-optical conversion using a triply-resonant lithium niobate on sapphire transducer,” arXiv:2005.00897 (2020).

Heuck, M.

M. Heuck, K. Jacobs, and D. R. Englund, “Controlled-phase gate using dynamically coupled cavities and optical nonlinearities,” Phys. Rev. Lett. 124, 160501 (2020).
[Crossref]

S. Krastanov, M. Heuck, J. H. Shapiro, P. Narang, D. R. Englund, and K. Jacobs, “Room-temperature photonic logical qubits via second-order nonlinearities,” arXiv:2002.07193 (2020).

Holzgrafe, J.

J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar, “Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction,” arXiv:2005.00939 (2020).

Hu, Y.

M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, T. Ren, S. Fan, and M. Lončar, “Electronically programmable photonic molecule,” Nat. Photonics 13, 36–40 (2019).
[Crossref]

J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar, “Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction,” arXiv:2005.00939 (2020).

Huang, G.

J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” arXiv:2005.13949 (2020).

Huang, Y.-P.

Irvine, W. T. M.

W. T. M. Irvine, K. Hennessy, and D. Bouwmeester, “Strong coupling between single photons in semiconductor microcavities,” Phys. Rev. Lett. 96, 057405 (2006).
[Crossref]

Jacobs, K.

M. Heuck, K. Jacobs, and D. R. Englund, “Controlled-phase gate using dynamically coupled cavities and optical nonlinearities,” Phys. Rev. Lett. 124, 160501 (2020).
[Crossref]

S. Krastanov, M. Heuck, J. H. Shapiro, P. Narang, D. R. Englund, and K. Jacobs, “Room-temperature photonic logical qubits via second-order nonlinearities,” arXiv:2002.07193 (2020).

Jeon, S.

Ji, X.

Jiang, W.

T. P. McKenna, J. D. Witmer, R. N. Patel, W. Jiang, R. Van Laer, P. Arrangoiz-Arriola, E. A. Wollack, J. F. Herrmann, and A. H. Safavi-Naeini, “Cryogenic microwave-to-optical conversion using a triply-resonant lithium niobate on sapphire transducer,” arXiv:2005.00897 (2020).

Johnson, S. G.

Jundt, D. H.

M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Jung, H.

X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
[Crossref]

Kahl, O.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Kappes, M. M.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Kennedy, M.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. Kennedy, X.-W. Guo, N. Volet, S.-P. Yu, S. B. Papp, and J. E. Bowers, “Strong frequency conversion in heterogeneously integrated GaAs resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

Khasminskaya, S.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Kippenberg, T. J.

J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” arXiv:2005.13949 (2020).

Kok, P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Kong, Y.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32, 1806452 (2020).
[Crossref]

Korneev, A.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Kovalyuk, V.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Krastanov, S.

S. Krastanov, M. Heuck, J. H. Shapiro, P. Narang, D. R. Englund, and K. Jacobs, “Room-temperature photonic logical qubits via second-order nonlinearities,” arXiv:2002.07193 (2020).

Krupke, R.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Laing, A.

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2019).
[Crossref]

Li, M.

M. Li, Y.-L. Zhang, H. X. Tang, C.-H. Dong, G.-C. Guo, and C.-L. Zou, “Photon-photon quantum phase gate in a photonic molecule with χ2 nonlinearity,” Phys. Rev. Appl. 13, 044013 (2020).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

Li, Z.

Liang, H.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

Liang, X.

Liew, T. C. H.

T. C. H. Liew and V. Savona, “Single photons from coupled quantum modes,” Phys. Rev. Lett. 104, 183601 (2010).
[Crossref]

Lin, J.

J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, and Y. Cheng, “Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator,” Nanomaterials 9, 1218 (2019).
[Crossref]

Lin, Q.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

Lin, Z.

Ling, J.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

Lipson, M.

Liscidini, M.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light Sci. Appl. 6, e17100 (2017).
[Crossref]

Liu, H.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32, 1806452 (2020).
[Crossref]

Liu, J.

J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” arXiv:2005.13949 (2020).

Liu, L. R.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Liu, T.

J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” arXiv:2005.13949 (2020).

Liu, X.

Löffler, W.

H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121, 043601 (2018).
[Crossref]

Loncar, M.

M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, T. Ren, S. Fan, and M. Lončar, “Electronically programmable photonic molecule,” Nat. Photonics 13, 36–40 (2019).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

Z. Lin, X. Liang, M. Lončar, S. G. Johnson, and A. W. Rodriguez, “Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization,” Optica 3, 233–238 (2016).
[Crossref]

J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar, “Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction,” arXiv:2005.00939 (2020).

Lu, J.

Lukin, M. D.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Luo, R.

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

Ma, Z.-H.

Magel, G.

M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Majumdar, A.

A. Majumdar and D. Gerace, “Single-photon blockade in doubly resonant nanocavities with second-order nonlinearity,” Phys. Rev. B 87, 235319 (2013).
[Crossref]

Mataloni, P.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Matthews, J. C. F.

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221 (2009).
[Crossref]

McKenna, T. P.

T. P. McKenna, J. D. Witmer, R. N. Patel, W. Jiang, R. Van Laer, P. Arrangoiz-Arriola, E. A. Wollack, J. F. Herrmann, and A. H. Safavi-Naeini, “Cryogenic microwave-to-optical conversion using a triply-resonant lithium niobate on sapphire transducer,” arXiv:2005.00897 (2020).

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Minkov, M.

M. Minkov and V. Savona, “Optimizing doubly resonant photonic crystal cavity modes for second harmonic generation,” Proc. SPIE 9127, 91270C (2014).
[Crossref]

Morandotti, R.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light Sci. Appl. 6, e17100 (2017).
[Crossref]

Morvan, A.

C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121, 043602 (2018).
[Crossref]

Moss, D. J.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light Sci. Appl. 6, e17100 (2017).
[Crossref]

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Narang, P.

S. Krastanov, M. Heuck, J. H. Shapiro, P. Narang, D. R. Englund, and K. Jacobs, “Room-temperature photonic logical qubits via second-order nonlinearities,” arXiv:2002.07193 (2020).

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Noda, S.

Norman, J.

H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121, 043601 (2018).
[Crossref]

O’Brien, J. L.

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221 (2009).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

Okawachi, Y.

Osellame, R.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Papp, S. B.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. Kennedy, X.-W. Guo, N. Volet, S.-P. Yu, S. B. Papp, and J. E. Bowers, “Strong frequency conversion in heterogeneously integrated GaAs resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

Patel, R. N.

T. P. McKenna, J. D. Witmer, R. N. Patel, W. Jiang, R. Van Laer, P. Arrangoiz-Arriola, E. A. Wollack, J. F. Herrmann, and A. H. Safavi-Naeini, “Cryogenic microwave-to-optical conversion using a triply-resonant lithium niobate on sapphire transducer,” arXiv:2005.00897 (2020).

Pernice, W.

A. W. Elshaari, W. Pernice, K. Srinivasan, O. Benson, and V. Zwiller, “Hybrid integrated quantum photonic circuits,” Nat. Photonics 14, 285–298 (2020).
[Crossref]

Pernice, W. H.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Peters, J. D.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. Kennedy, X.-W. Guo, N. Volet, S.-P. Yu, S. B. Papp, and J. E. Bowers, “Strong frequency conversion in heterogeneously integrated GaAs resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

Petykiewicz, J.

Pintus, P.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. Kennedy, X.-W. Guo, N. Volet, S.-P. Yu, S. B. Papp, and J. E. Bowers, “Strong frequency conversion in heterogeneously integrated GaAs resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

Politi, A.

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221 (2009).
[Crossref]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

Pyatkov, F.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Radulaski, M.

Raja, A. S.

J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” arXiv:2005.13949 (2020).

Ralph, T. C.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Ramponi, R.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Rarity, J. G.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

Rath, P.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Ren, T.

M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, T. Ren, S. Fan, and M. Lončar, “Electronically programmable photonic molecule,” Nat. Photonics 13, 36–40 (2019).
[Crossref]

Rivoire, K.

Roberts, S. P.

Rockstuhl, C.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Rodriguez, A. W.

Roland, I.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. De Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref]

Rupp, R.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32, 1806452 (2020).
[Crossref]

Safavi-Naeini, A. H.

T. P. McKenna, J. D. Witmer, R. N. Patel, W. Jiang, R. Van Laer, P. Arrangoiz-Arriola, E. A. Wollack, J. F. Herrmann, and A. H. Safavi-Naeini, “Cryogenic microwave-to-optical conversion using a triply-resonant lithium niobate on sapphire transducer,” arXiv:2005.00897 (2020).

Sansoni, L.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Sauvage, S.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. De Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref]

Savona, V.

H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121, 043601 (2018).
[Crossref]

H. Flayac and V. Savona, “Unconventional photon blockade,” Phys. Rev. A 96, 053810 (2017).
[Crossref]

D. Gerace and V. Savona, “Unconventional photon blockade in doubly resonant microcavities with second-order nonlinearity,” Phys. Rev. A 89, 031803 (2014).
[Crossref]

M. Minkov and V. Savona, “Optimizing doubly resonant photonic crystal cavity modes for second harmonic generation,” Proc. SPIE 9127, 91270C (2014).
[Crossref]

T. C. H. Liew and V. Savona, “Single photons from coupled quantum modes,” Phys. Rev. Lett. 104, 183601 (2010).
[Crossref]

Sciarrino, F.

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2019).
[Crossref]

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Semond, F.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. De Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref]

Shams-Ansari, A.

M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, T. Ren, S. Fan, and M. Lončar, “Electronically programmable photonic molecule,” Nat. Photonics 13, 36–40 (2019).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar, “Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction,” arXiv:2005.00939 (2020).

Shapiro, J. H.

S. Krastanov, M. Heuck, J. H. Shapiro, P. Narang, D. R. Englund, and K. Jacobs, “Room-temperature photonic logical qubits via second-order nonlinearities,” arXiv:2002.07193 (2020).

Sinclair, N.

J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar, “Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction,” arXiv:2005.00939 (2020).

Slowik, K.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Snijders, H. J.

H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121, 043601 (2018).
[Crossref]

Song, B.-S.

Srinivasan, K.

A. W. Elshaari, W. Pernice, K. Srinivasan, O. Benson, and V. Zwiller, “Hybrid integrated quantum photonic circuits,” Nat. Photonics 14, 285–298 (2020).
[Crossref]

Sua, Y. M.

Surya, J. B.

Takeda, S.

S. Takeda and A. Furusawa, “Toward large-scale fault-tolerant universal photonic quantum computing,” APL Photon. 4, 060902 (2019).
[Crossref]

Tanaka, Y.

Tang, C.

Tang, H. X.

M. Li, Y.-L. Zhang, H. X. Tang, C.-H. Dong, G.-C. Guo, and C.-L. Zou, “Photon-photon quantum phase gate in a photonic molecule with χ2 nonlinearity,” Phys. Rev. Appl. 13, 044013 (2020).
[Crossref]

J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, and H. X. Tang, “Periodically poled thin film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W,” Optica 6, 1455–1460 (2019).
[Crossref]

J. Lu, J. B. Surya, X. Liu, Y. Xu, and H. X. Tang, “Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides,” Opt. Lett. 44, 1492–1495 (2019).
[Crossref]

J. B. Surya, X. Guo, C.-L. Zou, and H. X. Tang, “Control of second-harmonic generation in doubly resonant aluminum nitride microrings to address rubidium two-photon clock transition,” Opt. Lett. 43, 2696–2699 (2018).
[Crossref]

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
[Crossref]

Ted Masselink, W.

Thompson, J. D.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Thompson, M. G.

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2019).
[Crossref]

Tiecke, T. G.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Toth, M.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

Upham, J.

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

Vallone, G.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

van Exter, M. P.

H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121, 043601 (2018).
[Crossref]

Van Laer, R.

T. P. McKenna, J. D. Witmer, R. N. Patel, W. Jiang, R. Van Laer, P. Arrangoiz-Arriola, E. A. Wollack, J. F. Herrmann, and A. H. Safavi-Naeini, “Cryogenic microwave-to-optical conversion using a triply-resonant lithium niobate on sapphire transducer,” arXiv:2005.00897 (2020).

Vaneph, C.

C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121, 043602 (2018).
[Crossref]

Vetter, A.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

Volet, N.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. Kennedy, X.-W. Guo, N. Volet, S.-P. Yu, S. B. Papp, and J. E. Bowers, “Strong frequency conversion in heterogeneously integrated GaAs resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

Vuckovic, J.

Vuletic, V.

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Walther, P.

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
[Crossref]

Wang, C.

M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, T. Ren, S. Fan, and M. Lončar, “Electronically programmable photonic molecule,” Nat. Photonics 13, 36–40 (2019).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

Wang, J.

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2019).
[Crossref]

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

Wang, M.

J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, and Y. Cheng, “Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator,” Nanomaterials 9, 1218 (2019).
[Crossref]

Wang, R. N.

J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” arXiv:2005.13949 (2020).

Wang, W.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32, 1806452 (2020).
[Crossref]

Wendin, G.

G. Wendin, “Quantum information processing with superconducting circuits: a review,” Rep. Prog. Phys. 80, 106001 (2017).
[Crossref]

Witmer, J. D.

T. P. McKenna, J. D. Witmer, R. N. Patel, W. Jiang, R. Van Laer, P. Arrangoiz-Arriola, E. A. Wollack, J. F. Herrmann, and A. H. Safavi-Naeini, “Cryogenic microwave-to-optical conversion using a triply-resonant lithium niobate on sapphire transducer,” arXiv:2005.00897 (2020).

Wollack, E. A.

T. P. McKenna, J. D. Witmer, R. N. Patel, W. Jiang, R. Van Laer, P. Arrangoiz-Arriola, E. A. Wollack, J. F. Herrmann, and A. H. Safavi-Naeini, “Cryogenic microwave-to-optical conversion using a triply-resonant lithium niobate on sapphire transducer,” arXiv:2005.00897 (2020).

Wrachtrup, J.

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12, 516–527 (2018).
[Crossref]

Wu, R.

J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, and Y. Cheng, “Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator,” Nanomaterials 9, 1218 (2019).
[Crossref]

Xiong, C.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light Sci. Appl. 6, e17100 (2017).
[Crossref]

Xu, J.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32, 1806452 (2020).
[Crossref]

Xu, Y.

Yamada, S.

Yan, J.

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

Yu, S.-P.

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. Kennedy, X.-W. Guo, N. Volet, S.-P. Yu, S. B. Papp, and J. E. Bowers, “Strong frequency conversion in heterogeneously integrated GaAs resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

Zeng, Y.

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. De Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref]

Zhang, G.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32, 1806452 (2020).
[Crossref]

Zhang, J.

J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, and Y. Cheng, “Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator,” Nanomaterials 9, 1218 (2019).
[Crossref]

Zhang, J. L.

Zhang, L.

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

Zhang, M.

M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, T. Ren, S. Fan, and M. Lončar, “Electronically programmable photonic molecule,” Nat. Photonics 13, 36–40 (2019).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar, “Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction,” arXiv:2005.00939 (2020).

Zhang, Y.-L.

M. Li, Y.-L. Zhang, H. X. Tang, C.-H. Dong, G.-C. Guo, and C.-L. Zou, “Photon-photon quantum phase gate in a photonic molecule with χ2 nonlinearity,” Phys. Rev. Appl. 13, 044013 (2020).
[Crossref]

Zheng, D.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32, 1806452 (2020).
[Crossref]

Zhou, B. B.

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12, 516–527 (2018).
[Crossref]

Zhou, J.

J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, and Y. Cheng, “Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator,” Nanomaterials 9, 1218 (2019).
[Crossref]

Zhu, D.

J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar, “Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction,” arXiv:2005.00939 (2020).

Zou, C. L.

X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
[Crossref]

Zou, C.-L.

M. Li, Y.-L. Zhang, H. X. Tang, C.-H. Dong, G.-C. Guo, and C.-L. Zou, “Photon-photon quantum phase gate in a photonic molecule with χ2 nonlinearity,” Phys. Rev. Appl. 13, 044013 (2020).
[Crossref]

J. B. Surya, X. Guo, C.-L. Zou, and H. X. Tang, “Control of second-harmonic generation in doubly resonant aluminum nitride microrings to address rubidium two-photon clock transition,” Opt. Lett. 43, 2696–2699 (2018).
[Crossref]

Zwiller, V.

A. W. Elshaari, W. Pernice, K. Srinivasan, O. Benson, and V. Zwiller, “Hybrid integrated quantum photonic circuits,” Nat. Photonics 14, 285–298 (2020).
[Crossref]

Adv. Mater. (1)

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices,” Adv. Mater. 32, 1806452 (2020).
[Crossref]

APL Photon. (2)

L. Chang, A. Boes, P. Pintus, J. D. Peters, M. Kennedy, X.-W. Guo, N. Volet, S.-P. Yu, S. B. Papp, and J. E. Bowers, “Strong frequency conversion in heterogeneously integrated GaAs resonators,” APL Photon. 4, 036103 (2019).
[Crossref]

S. Takeda and A. Furusawa, “Toward large-scale fault-tolerant universal photonic quantum computing,” APL Photon. 4, 060902 (2019).
[Crossref]

Appl. Phys. Lett. (1)

A. W. Bruch, X. Liu, X. Guo, J. B. Surya, Z. Gong, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators,” Appl. Phys. Lett. 113, 131102 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[Crossref]

Light Sci. Appl. (1)

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light Sci. Appl. 6, e17100 (2017).
[Crossref]

Nanomaterials (1)

J. Zhang, Z. Fang, J. Lin, J. Zhou, M. Wang, R. Wu, R. Gao, and Y. Cheng, “Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator,” Nanomaterials 9, 1218 (2019).
[Crossref]

Nat. Commun. (1)

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2, 566 (2011).
[Crossref]

Nat. Photonics (7)

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photonics 10, 727–732 (2016).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B. Zhou, “Quantum technologies with optically interfaced solid-state spins,” Nat. Photonics 12, 516–527 (2018).
[Crossref]

J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” Nat. Photonics 14, 273–284 (2019).
[Crossref]

A. W. Elshaari, W. Pernice, K. Srinivasan, O. Benson, and V. Zwiller, “Hybrid integrated quantum photonic circuits,” Nat. Photonics 14, 285–298 (2020).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, T. Ren, S. Fan, and M. Lončar, “Electronically programmable photonic molecule,” Nat. Photonics 13, 36–40 (2019).
[Crossref]

Nat. Phys. (1)

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
[Crossref]

Nature (2)

T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Optica (5)

Phys. Rev. A (2)

H. Flayac and V. Savona, “Unconventional photon blockade,” Phys. Rev. A 96, 053810 (2017).
[Crossref]

D. Gerace and V. Savona, “Unconventional photon blockade in doubly resonant microcavities with second-order nonlinearity,” Phys. Rev. A 89, 031803 (2014).
[Crossref]

Phys. Rev. Appl. (2)

R. Luo, Y. He, H. Liang, M. Li, J. Ling, and Q. Lin, “Optical parametric generation in a lithium niobate microring with modal phase matching,” Phys. Rev. Appl. 11, 034026 (2019).
[Crossref]

M. Li, Y.-L. Zhang, H. X. Tang, C.-H. Dong, G.-C. Guo, and C.-L. Zou, “Photon-photon quantum phase gate in a photonic molecule with χ2 nonlinearity,” Phys. Rev. Appl. 13, 044013 (2020).
[Crossref]

Phys. Rev. B (1)

A. Majumdar and D. Gerace, “Single-photon blockade in doubly resonant nanocavities with second-order nonlinearity,” Phys. Rev. B 87, 235319 (2013).
[Crossref]

Phys. Rev. Lett. (6)

M. Heuck, K. Jacobs, and D. R. Englund, “Controlled-phase gate using dynamically coupled cavities and optical nonlinearities,” Phys. Rev. Lett. 124, 160501 (2020).
[Crossref]

X. Guo, C. L. Zou, H. Jung, and H. X. Tang, “On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes,” Phys. Rev. Lett. 117, 123902 (2016).
[Crossref]

W. T. M. Irvine, K. Hennessy, and D. Bouwmeester, “Strong coupling between single photons in semiconductor microcavities,” Phys. Rev. Lett. 96, 057405 (2006).
[Crossref]

H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, and W. Löffler, “Observation of the unconventional photon blockade,” Phys. Rev. Lett. 121, 043601 (2018).
[Crossref]

C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the unconventional photon blockade in the microwave domain,” Phys. Rev. Lett. 121, 043602 (2018).
[Crossref]

T. C. H. Liew and V. Savona, “Single photons from coupled quantum modes,” Phys. Rev. Lett. 104, 183601 (2010).
[Crossref]

Proc. SPIE (1)

M. Minkov and V. Savona, “Optimizing doubly resonant photonic crystal cavity modes for second harmonic generation,” Proc. SPIE 9127, 91270C (2014).
[Crossref]

Rep. Prog. Phys. (1)

G. Wendin, “Quantum information processing with superconducting circuits: a review,” Rep. Prog. Phys. 80, 106001 (2017).
[Crossref]

Rev. Mod. Phys. (1)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Sci. Rep. (1)

I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. De Micheli, X. Checoury, and P. Boucaud, “Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks,” Sci. Rep. 6, 34191 (2016).
[Crossref]

Science (2)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[Crossref]

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s quantum factoring algorithm on a photonic chip,” Science 325, 1221 (2009).
[Crossref]

Other (6)

S. M. Girvin, “Circuit QED: superconducting qubits coupled to microwave photons,” in Quantum Machines: Measurement and Control of Engineered Quantum Systems (Les Houches Summer School, Session XCVI), M. Devoret, B. Huard, R. Schoelkopf, and L. F. Cugliandolo, eds. (Oxford University, 2014), pp. 113–255.

R. W. Boyd, Nonlinear Optics (Academic, 2019).

T. P. McKenna, J. D. Witmer, R. N. Patel, W. Jiang, R. Van Laer, P. Arrangoiz-Arriola, E. A. Wollack, J. F. Herrmann, and A. H. Safavi-Naeini, “Cryogenic microwave-to-optical conversion using a triply-resonant lithium niobate on sapphire transducer,” arXiv:2005.00897 (2020).

J. Holzgrafe, N. Sinclair, D. Zhu, A. Shams-Ansari, M. Colangelo, Y. Hu, M. Zhang, K. K. Berggren, and M. Lončar, “Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction,” arXiv:2005.00939 (2020).

S. Krastanov, M. Heuck, J. H. Shapiro, P. Narang, D. R. Englund, and K. Jacobs, “Room-temperature photonic logical qubits via second-order nonlinearities,” arXiv:2002.07193 (2020).

J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits,” arXiv:2005.13949 (2020).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Photon blockade effect due to ${\chi ^{(2)}}$ single-photon nonlinear anharmonicity in a doubly resonant cavity based on PPLNMR. (b) The schematic energy level diagram of a PPLNMR with single-photon nonlinearity. The anharmonicity of the nonlinear system is determined by the energy level splitting relative to their widths.
Fig. 2.
Fig. 2. (a) Effective refractive indices of the TM fundamental and SH modes, where the criterion for the type-0, first-order QPM between mode $a$ at 1560 nm and mode $b$ at 780 nm with a poling period $\Lambda = 2.95$ µm is indicated by the vertical, double-headed arrow. The upper insets show the simulated profiles (amplitude of the vertical electric-field component) of the mode $a$ and $b$ while the lower inset depicts the schematic cross section of a z-cut PPLNMR with a radius of 70 µm. (b) Optical image of the etched microring with radial poling electrodes and its zoomed view around the waveguide-microring coupling region. (c) PFM phase scan over a small portion of a PPLNMR, revealing the alternate ferroelectric domain structures and a duty cycle close to 50%. (d) False-color SEM image of a deplicate PPLNMR etched in HF and its zoomed view (e) reveal a high-fidelity perodic poling along the whole microring. Dark purple, inverted domains; light purple, uninverted domains.
Fig. 3.
Fig. 3. (a) Photography of the measurement stage with input/output fiber coupling to the PPLNMR chip. The chip sits on an aluminum sample holder affixed to a feedback-controlled heater with a tuning range from 25 to 200°C. (b) Illustration of the experimental setup with a false-color SEM image of the PPLNMR device. IR, infrared; Nvis, near-visible; FPC, fiber polarization controller; WDM, wavelength-division multiplexer; PD, photodetector. (c)–(d) Transmission spectra of the corresponding fundamental TM0 and near-visible TM0 modes for SHG and their extracted Q values. (e) Spectra of the pump resonance and corresponding SH response measured at an optimized temperature. (f) ${P_{b,{\rm out}}}$- and ${\eta _{{\rm norm}}} - {P_{a,{\rm in}}}$ relations are plotted with the blue dots and orange triangles, respectively. Quadratic relation is fitted (blue solid line) at the low power regime and a normalized conversion efficiency ${\eta _{{\rm norm}}}$ of $5,\! 000,\! 000 \pm 1,\! 200,\! 000 \% /{\rm W}$ is calculated, while the deviation of quadratic dependence and decay of ${\eta _{{\rm norm}}}$ are observed at the high power regime due to the intrinsic photorefractive effect.
Fig. 4.
Fig. 4. (a) Coupling rate $g$ and dissipation rate ${\kappa _a}$ as well as the corresponding single-photon nonlinear anharmonicity FOM demonstrated in various integrated ${\chi ^{(2)}}$ photonics platforms, including AlN [35], GaAs [36], ${\rm GaN}$ [37], poly-AlN [33], PPLN [24] µrings, and ${\rm GaP}$ [38], ${\rm SiC}$ [39] PhCs. Note: $g$ values for GaAs, GaN, GaP, and SiC are estimated from the representative data based on the assumptions that both fundamental and SH modes are critical-coupled and ${\kappa _b} = 2{\kappa _a}$ when the ${\kappa _b}$ is not given. (b) Dependence of the second-order correlation ${g^{(2)}}(0)$ upon $g\!/\!{\kappa _a}$ for the fundamental photons in the cavity. The inset depicts a photonic molecule design using two coupled PPLNMRs, allowing a controllable linear coupling strength $J$ between the two fundamental modes. For a $J/{\kappa _a}$ of 15, unconventional photon blockade occurs on condition that $g\!/\!{\kappa _a}$ reaches ${10^{- 1}}$.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H ^ / = ω a a ^ a ^ + ω b b ^ b ^ + g ( ( a ^ ) 2 b ^ + a ^ 2 b ^ ) .
H ^ / = ω a a ^ a ^ + ω b b ^ b ^ + g ( ( a ^ ) 2 b ^ + a ^ 2 b ^ ) + i ϵ p ( a ^ e i ω p t + a ^ e i ω p t ) ,
P a , o u t = δ a 2 + ( κ a , 0 κ a , 1 ) 2 δ a 2 + κ a 2 P a , i n ,
P b , o u t = g 2 P a , i n 2 ω b ω p 2 2 κ b , 1 δ b 2 + κ b 2 ( 2 κ a , 1 δ a 2 + κ a 2 ) 2 ,