Abstract

Current optical communication systems operating at the 1.55 μm wavelength band may not be able to continually satisfy the growing demand on data capacity within the next few years. Opening a new spectral window around the 2 μm wavelength with recently developed hollow-core photonic bandgap fiber and a thulium-doped fiber amplifier is a promising solution to increase transmission capacity due to the low-loss and wide-bandwidth properties of these components at this wavelength band. However, as a key component, the performance of current high-speed photodetectors at the 2 μm wavelength is still not comparable with those at the 1.55 μm wavelength band, which chokes the feasibility of the new spectral window. In this work, we demonstrate, for the first time to our knowledge, a high-speed uni-traveling carrier photodiode for 2 μm applications with InGaAs/GaAsSb type-II multiple quantum wells as the absorption region, which is lattice-matched to InP. The devices have the responsivity of 0.07 A/W at 2 μm wavelength, and the device with a 10 μm diameter shows a 3 dB bandwidth of 25 GHz at 3V bias voltage. To the best of our knowledge, this device is the fastest photodiode among all group III-V and group IV photodetectors working in the 2 μm wavelength range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Due to the exponentially increasing volume of internet traffic, today’s optical communication systems are rapidly approaching their capacity limit [1,2]. This “capacity crunch” provides an impetus for developing next-generation optical communication systems. A new spectral window at the 2 μm wavelength is a promising solution to increase the system capacity due to the availability of low-loss (0.2 dB/km) hollow-core photonic bandgap fiber (HC-PBGF) and the high-bandwidth (from 1810 to 2050 nm) thulium-doped fiber amplifier (TDFA) at 2 μm wavelength [3,4]. Studies on 2 μm optical components and system architecture have shown the promising potential of this new spectral window [57]. An eight-channel wavelength-division multiplexing transmission system with 100 Gbit/s data capacity has been demonstrated at the 2 μm band [6].

A high-speed photodetector is one of the key components of the optical communication system, and among various figures of merit, bandwidth is most commonly used for a high-speed-device benchmark. At the 2 μm wavelength band, high-speed photodiodes have been demonstrated with In-rich InGaAs on InP [5,711], InGaAsSb on GaSb [12], GeSn/Ge on Si [13,14], and defect-mediated Si [15]. In0.53Ga0.47As on InP, which cuts off at 1.7 μm, is the most widely used absorption material for high-speed application due to its high carrier mobility. For 2 μm operation, In-rich InGaAs has to be used to extend thecutoff wavelength. Ye et al. demonstrated a 10 GHz bandwidth photodiode with In0.7Ga0.3As as an absorption layer [11]. Joshi et al. achieved a 16 GHz bandwidth using a In0.72Ga0.28As absorber [9]. A partially depleted photodiode with a Ga0.8In0.2As0.16Sb0.84 absorber on GaSb has achieved a 3 dB bandwidth of 6 GHz [12]. On the other hand, a GeSn/Ge quantum well grown on Si shows a benefit for integration with other silicon devices, and a Ge0.92Sn0.08/Ge photodiode with a 10 GHz bandwidth has been reported [14]. By inserting lattice defects, a silicon-on-insulator photodiode can also operate at the 2 μm wavelength, and a 15 GHz bandwidth can be achieved [15]. However, the performance of these devices is sensitive to the crystal quality, making them inconvenient for practical application.

Short-wavelength infrared (SWIR) photodetectors using InGaAs/GaAsSb type-II multiple quantum wells (MQWs) on the InP substrate as an absorber have been demonstrated and well-studied recently [1619]. The devices enjoy the advantage of lattice-matched property on InP, and show low dark current and high detectivity at room temperature. The crystal quality of the MQW structure can be ensured since it is lattice-matched to InP and the growth technique of InP material system is mature. A PIN-based high-speed photodiode with InGaAs/GaAsSb MQWs for 2 μm operation has achieved a 3 dB bandwidth in the range of 3.5 GHz to 10 GHz, which is mainly limited by the slow transport of an optical-generated hole in the absorption region [2022].

To further improve the bandwidth, a uni-traveling carrier photodiode (UTC-PD) with a type-II MQW absorber was proposed and theoretically investigated in our previous work [23]. A UTC-PD based on a InGaAs/InP material system has been demonstrated with hundreds of gigahertz bandwidth at a 1.55 μm wavelength band for high-speed application [2427]. In the UTC-PD structure, the optical-generated carriers are excited in the undepleted p-type absorption layer, and only electrons are injected into the InP drift layers; thus, the effective carrier transit time is shorter than that of the PIN structure with the proper design.

In this work, we demonstrate the normal-incident InGaAs/GaAsSb MQW UTC-PDs at the 2 μm wavelength band with a 3 dB bandwidth of 25 GHz and bit rate of 30 Gbit/s. To the best of our knowledge, this is the highest bandwidth and bit rate demonstrated at the 2 μm wavelength band. By analyzing the RF performance of the devices with different diameters, it is found that the 3 dB bandwidth performance can be further improved by optimizing the fabrication process.

2. DEVICE STRUCTURE AND FABRICATION

The epilayer structure of the photodiode is shown in Fig. 1(a). All layers are lattice-matched to the InP substrate. The structure was grown on semi-insulating double-side-polished InP substrate by a molecular beam epitaxy (MBE) system. The epitaxial growth began with a 200 nm n+ InP layer, 20 nm n+ InGaAs layer, and 900 nm n+ InP layer. The 100 nm n-doped InP layer with a doping concentration of 1×1018cm3 was then grown to reduce Si diffusion into the 400 nm intrinsic InP drift layer. The absorption layer consists of 180 nm graded doped 3 nm/3 nm In0.53Ga0.47As/GaAs0.50Sb0.50 MQWs, which is expected to have fast response speed while maintaining a cutoff wavelength larger than 2 μm, according to our simulation [23]. Following the MQW layers is the 30 nm p-doped large bandgap AlGaAsSb electron blocking layer to prevent the diffusing of electrons in the absorption layer towards the p-doped InGaAs contact layer on the top. Room-temperature photoluminescence (PL) of the epitaxial layers was conducted by using the 532 nm wavelength laser as the excitation source and a Fourier transform infrared (FTIR) spectrometer with an In-rich InGaAs detector. Two peaks can be identified in Fig. 1(b), indicating the good crystal quality of the material. The peak at 2.1 μm corresponds to the transition between the ground states in InGaAs and GaAsSb quantum well layers, respectively, and the second peak at 1.75 μm may correspond to the emission from the electron ground state to light hole state, as shown in Fig. 1(d).

 

Fig. 1. (a) Epitaxial structure of the type-II MQW UTC photodiode. (b) Photoluminescence measurement result of the epitaxial structure. (c) Schematic diagram of the fabricated device. (d) Band diagram of the MQW absorber. The wave functions and potential transitions are shown. The wave functions are calculated by a kp method, and the two transitions correspond to the peaks at 2.1 μm and 1.75 μm in the photoluminescence spectrum.

Download Full Size | PPT Slide | PDF

After the material growth, the epitaxial structure was processed into double-mesa structures, as shown in Fig. 1(c). A set of mesa devices with different diameters was formed by standard photolithography and a wet-etching process. A 150 μm pitch ground–signal–ground (GSG) coplanar waveguide (CPW) pad with an air-bridge structure was electroplated for high-frequency measurement. The substrate is backside-polished to support backside illumination with no antireflection coating.

3. MEASUREMENT RESULT

A. Electrical Characteristics

The dark current voltage (I-V) curves of the photodiodes at room temperature are shown in Fig. 2. The dark current value at 3V is 3.02 nA, 3.88 nA, and 5.82 nA for the photodiodes with diameters of 10 μm, 20 μm, and 40 μm, respectively, which are lower than the In-rich InGaAs photodiodes [5,711]. Figure 3 shows the capacitance-voltage (C-V) curves. The device is fully depleted at 1V, and the capacitance at 3V is 60.6 fF, 154.0 fF, and 432.6 fF for the 10 μm, 20 μm, and 40 μm diameter photodiodes, respectively. Parasitic capacitance of 49.6 fF was found based on the linear fitting of capacitance versus device area, as shown in Fig. 4, which indicates that optimization is needed for future fabrication processes. The origin of the parasitic capacitance is explained in detail in Supplement 1.

 

Fig. 2. Dark current characteristics for three devices with different diameters at room temperature.

Download Full Size | PPT Slide | PDF

 

Fig. 3. Measured capacitance versus reverse bias for three devices with different diameters at room temperature.

Download Full Size | PPT Slide | PDF

 

Fig. 4. Capacitance of devices at 3V bias. The fitting result indicates a parasitic capacitance of 49.6 fF.

Download Full Size | PPT Slide | PDF

B. Responsivity

The top-illuminated responsivity spectrum was measured using an FTIR spectrometer. A standard blackbody radiation source at 700°C was used to calibrate the responsivity. As shown in Fig. 5, the 100% cutoff wavelength is around 2.25 μm, and the responsivity is 0.07 A/W at 2 μm wavelength and reverse bias (larger than 1V). Considering the 180 nm thickness of the absorption layer, the equivalent absorption coefficient of the absorption layer is about 3600cm1, which is higher than the simulation value of 2000cm1 in [22].

 

Fig. 5. Responsivity spectrum at various bias voltages. The inset shows the responsivity at 2 μm wavelength.

Download Full Size | PPT Slide | PDF

C. Bandwidth

The 3 dB bandwidth was measured by a heterodyne setup with two beams of laser light at a wavelength of 2004 nm coupled together, which generates an intensity-modulated light with a frequency from hundreds of megahertz to more than 30 GHz. The modulated light was amplified, and then it illuminated the devices from backside. The details of the measurement setup are shown in Fig S2 of Supplement 1.

Figure 6 shows the frequency response of a 10 μm diameter photodiode at different bias voltages. The 3 dB bandwidth increases slightly while reverse bias increases. The highest 3 dB bandwidth of 25 GHz can be achieved at 4V bias. Theoretically, the 3 dB bandwidth of the photodiode is often limited by transit time and RC time, as expressed by the equation

f3dB=(1fT2+1fRC2)1,
where f3dB is the total 3 dB bandwidth, fT is the transit time limit bandwidth, and fRC is the RC limit bandwidth. Recall that in the C-V measurement results shown in Fig. 4, the junction capacitance is almost constant once fully depleted (larger than 1V reverse bias). As a result, the small increase in the 3 dB bandwidth should be caused by the enhancement in the transit process. When large bias is applied, the depletion region will extend to the absorption region and accelerate the carrier transport in the absorption region. The bandwidth might be further improved by increasing the bias voltage, but that may cause a reliability issue and permanent breakdown failure of the device.

 

Fig. 6. Frequency response of a 10 μm photodiode at various bias voltages. The photocurrent is set to 1 mA. The inset shows the 3 dB bandwidth at different bias voltages.

Download Full Size | PPT Slide | PDF

Figure 7 shows the frequency response of the 10 μm photodiode at different photocurrents. The 3 dB bandwidth is almost the same (around 25 GHz at 3V) when the photocurrent increases from 1 mA to 10 mA, and no obvious saturation can be found.

 

Fig. 7. Frequency response of a 10 μm photodiode at different photocurrents. The bias voltage is 3V.

Download Full Size | PPT Slide | PDF

Figure 8 shows the frequency response of three photodiodes with different diameters. The 3 dB bandwidths of the 40 μm, 20 μm, and 10 μm devices are 5 GHz, 15 GHz, and 25 GHz, respectively. The smaller photodiode has smaller junction capacitance, leading to a larger RC limit bandwidth, while the transit limit bandwidth remains the same. Thus, the strong bandwidth dependency on diameter indicates that the 3 dB bandwidth of the devices is dominated by the RC limit. To verify the RC limit, we measured the S-parameters and fitted the parameters with an equivalent circuit model, as shown in Fig. 9(a). The fitting curves are shown in Figs. 9(b), 9(c), and 9(d). The extracted model parameters are listed in Table 1. Then, the theoretical RC limit frequency response can be calculated using the equivalent model, as shown in Fig. 9(e). The RC limit bandwidths of the 40 μm, 20 μm, and 10 μm devices are 7.7 GHz, 18.9 GHz, and 41.4 GHz, respectively. Applying Eq. (1), a rough estimation of the transit time limit bandwidth for the 10 μm diameter photodiode is about 31 GHz. As shown in Fig. 4, a parasitic capacitance of 49.6 fF exists in our devices, and so the 3 dB bandwidth of the devices can be further improved by reducing the parasitic capacitance. Figure 10 reviews the 3 dB bandwidth of high-speed photodetectors operating at the 2 μm wavelength in recent years. With proper design, the InGaAs/GaAsSb MQWs UTC-PD can achieve better bandwidth performance than other devices.

 

Fig. 8. Frequency response of photodiodes with different diameters. The bias voltage is 3V, and the photocurrent is 1 mA.

Download Full Size | PPT Slide | PDF

 

Fig. 9. (a) Equivalent circuit model used in parameter fitting. Cj is the junction capacitance, Rs is the series resistance (resistance of the ohm contacts and the CPW pads), Ls is the inductance of the CPW pads, and Rj is the junction resistance, which is hundreds of megaohms and can be regarded as open circuit. The measured and fitting curves of S11 of (b) 10 μm, (c) 20 μm, and (d) 40 μm photodiodes at 3V bias (the blue curve is the measured data while the red curve is the fitting curve). (e) Calculated RC limit frequency response using the fitting results.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Fitting Parameters

 

Fig. 10. Review of the 3 dB bandwidth of high-speed photodiodes operating at 2 μm wavelength reported in recent years.

Download Full Size | PPT Slide | PDF

Figure 11 shows the eye diagram of a 10 μm photodiode biased at 3V and operating at a 20 Gbit/s, 25 Gbit/s, and 30 Gbit/s data rate. The 128 bits 2^15–1 pseudo-random binary sequence (PRBS) sequences were generated as the data source to drive a 2 μm wavelength Mach–Zehnder modulator, which modulates the optical signal coming from a 2004 nm wavelength single-frequency fiber laser with a modulation depth of 0.25. The optical power illuminating the photodiode is about 7 mW. The output of the photodiode was amplified by a +23dB microwave amplifier and then displayed on the real-time sampling oscilloscope. A clear eye pattern is demonstrated at a 30 Gbit/s data rate, which indicates the devices can be used at a 2 μm optical communications system.

 

Fig. 11. Eye pattern of a 10 μm photodiode at 20 Gbit/s, 25 Gbit/s, and 30 Gbit/s.

Download Full Size | PPT Slide | PDF

D. Saturation Power

For some applications, such as microwave photonics, the high-speed photodetector works in high-power mode, and the saturation power is another important figure of merit. When the photocurrent is high, a large number of electrons exists in the depletion region, and the electrical field in the depletion region might collapse due to the space charge effect. This limits the carrier sweeping out process, causing a saturation in output power. Figures 12 and 13 show the relationship between the output power and the photocurrent. In this measurement, lasers of 1.55 μm wavelength were used as the optical source due to the power limitation of the 2 μm optical amplifier. Notice that the saturation characteristics should be the same for 1.55 μm and 2 μm input, since the carrier transports in the depletion region are identical. The ideal output power of a photodetector can be calculated by

Pideal=m12Ip2RL,
where Ip is the photocurrent, RL is the load resistance, and m is the modulation depth, which is almost 1 in our measurement. The compression in the figures is the difference between the actual output power and the ideal output power. The 1 dB compression point is defined as the point that the compression drops 1 dB compared to its maximal value, and it describes the power handling ability of the devices. Table 2 lists the 1 dB compression point of 10 μm and 20 μm devices at different bias voltage. The saturation power increases with the increase of the bias voltage, since the stronger electrical field can endure more space charge effect. One way to further improve the saturation power is to use charge-compensated doping in the depletion region [28]. With proper design, the ionized dopant charges will neutralize the charges of the optical-generated carriers, thus avoiding the collapse of the electrical field and making the device suitable for high-power operation.

 

Fig. 12. Output RF power and compression versus photocurrent for a 10 μm photodiode at 25 GHz and at different bias voltages. The gray dashed line shows the ideal output power.

Download Full Size | PPT Slide | PDF

 

Fig. 13. Output RF power and compression versus photocurrent for a 20 μm photodiode at 15 GHz and at different bias voltages. The gray dashed line shows the ideal output power.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 2. 1 dB Compression Points

4. CONCLUSION

In this work, we have reported a high-speed photodiode working at the 2 μm wavelength based on InGaAs/GaAsSb type-II MQWs with uni-traveling carrier design. The InGaAs/GaAsSb type-II MQW absorber cuts off at 2.25 μm, and the responsivity is 0.07 A/W at 2 μm. The 3 dB bandwidths at 2 μm are 25 GHz, 15 GHz, and 5 GHz for photodiodes with 10 μm, 20 μm, and 40 μm diameter, respectively. A clear eye pattern can be observed at 30 Gb/s for the 10 μm photodiode. Analysis shows that the bandwidth of the current device can still be improved with further reduction of the parasitic capacitance by optimizing the fabrication process. The excellent high-speed performance of this device paves the way towards more promising feasibility of a new spectral window at the 2 μm wavelength.

Funding

Shanghai Sailing Program (17YF1429300); ShanghaiTech University startup funding (F-0203-16-002).

 

See Supplement 1 for supporting content.

REFERENCES

1. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28, 423–433 (2010). [CrossRef]  

2. D. J. Richardson, “Filling the light pipe,” Science 330, 327–328 (2010). [CrossRef]  

3. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005). [CrossRef]  

4. Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050 nm window,” Opt. Express 21, 26450–26455 (2013). [CrossRef]  

5. B. Corbett, M. R. Gleeson, N. Ye, C. Robert, H. Yang, H. Zhang, N. M. Suibhne, and F. C. G. Gunning, “InP-based active and passive components for communication systems at 2 μm,” J. Lightwave Technol. 33, 971–975 (2014). [CrossRef]  

6. H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015). [CrossRef]  

7. F. C. Garcia Gunning, N. Kavanagh, E. Russell, R. Sheehan, J. O’Callaghan, and B. Corbett, “Key enabling technologies for optical communications at 2000 nm,” Appl. Opt. 57, E64–E70 (2018). [CrossRef]  

8. A. Joshi and D. Becker, “High-speed low-noise p-i-n InGaAs photoreceiver at 2-μm wavelength,” IEEE Photon. Technol. Lett. 20, 551–553 (2008). [CrossRef]  

9. A. Joshi and S. Datta, “High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE 8353, 83533D (2012). [CrossRef]  

10. H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013). [CrossRef]  

11. N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2 μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015). [CrossRef]  

12. J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5-μm wavelength,” IEEE Trans. Electron Devices 63, 2796–2801 (2016). [CrossRef]  

13. Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S.-Y. Lee, W.-K. Loke, S.-F. Yoon, and Y.-C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25, 15818–15827 (2017). [CrossRef]  

14. S. Xu, W. Wang, Y.-C. Huang, Y. Dong, S. Masudy-Panah, H. Wang, X. Gong, and Y.-C. Yeo, “High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300 mm Si substrate,” Opt. Express 27, 5798–5813 (2019). [CrossRef]  

15. J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015). [CrossRef]  

16. B. Chen, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE J. Quantum Electron. 30, 399–402 (2011).

17. B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photon. Technol. Lett. 23, 218–220 (2011). [CrossRef]  

18. B. Chen and A. L. Holmes, “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38, 2750–2753 (2013). [CrossRef]  

19. B. Chen, W. Y. Jiang, and A. L. Holmes Jr., “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44, 103–109 (2012). [CrossRef]  

20. B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE Photon. Technol. Lett. 30, 399–402 (2018). [CrossRef]  

21. Y. Chen, X. Zhao, J. Huang, Z. Deng, C. Cao, Q. Gong, and B. Chen, “Dynamic model and bandwidth characterization of InGaAs/GaAsSb type-II quantum wells PIN photodiodes,” Opt. Express 26, 35034–35045 (2018). [CrossRef]  

22. B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb type-II quantum wells and 10-GHz bandwidth at 2 μm wavelength,” J. Lightwave Technol. 36, 4981–4987 (2018). [CrossRef]  

23. Y. Chen and B. Chen, “Design of InP-based high-speed photodiode for 2-μm wavelength application,” IEEE J. Quantum Electron. 55, 1–8 (2019). [CrossRef]  

24. J. M. Wun, Y. W. Wang, and J. W. Shi, “Ultrafast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24, 1–7 (2018). [CrossRef]  

25. C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. Van Dijk, and A. J. Seeds, “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018). [CrossRef]  

26. A. Beling, X. Xie, and J. C. Campbell, “High-power, high-linearity photodiodes,” Optica 3, 328–338 (2016). [CrossRef]  

27. T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014). [CrossRef]  

28. N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28, 423–433 (2010).
    [Crossref]
  2. D. J. Richardson, “Filling the light pipe,” Science 330, 327–328 (2010).
    [Crossref]
  3. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
    [Crossref]
  4. Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050  nm window,” Opt. Express 21, 26450–26455 (2013).
    [Crossref]
  5. B. Corbett, M. R. Gleeson, N. Ye, C. Robert, H. Yang, H. Zhang, N. M. Suibhne, and F. C. G. Gunning, “InP-based active and passive components for communication systems at 2  μm,” J. Lightwave Technol. 33, 971–975 (2014).
    [Crossref]
  6. H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
    [Crossref]
  7. F. C. Garcia Gunning, N. Kavanagh, E. Russell, R. Sheehan, J. O’Callaghan, and B. Corbett, “Key enabling technologies for optical communications at 2000  nm,” Appl. Opt. 57, E64–E70 (2018).
    [Crossref]
  8. A. Joshi and D. Becker, “High-speed low-noise p-i-n InGaAs photoreceiver at 2-μm wavelength,” IEEE Photon. Technol. Lett. 20, 551–553 (2008).
    [Crossref]
  9. A. Joshi and S. Datta, “High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE 8353, 83533D (2012).
    [Crossref]
  10. H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
    [Crossref]
  11. N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
    [Crossref]
  12. J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5-μm wavelength,” IEEE Trans. Electron Devices 63, 2796–2801 (2016).
    [Crossref]
  13. Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S.-Y. Lee, W.-K. Loke, S.-F. Yoon, and Y.-C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25, 15818–15827 (2017).
    [Crossref]
  14. S. Xu, W. Wang, Y.-C. Huang, Y. Dong, S. Masudy-Panah, H. Wang, X. Gong, and Y.-C. Yeo, “High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300  mm Si substrate,” Opt. Express 27, 5798–5813 (2019).
    [Crossref]
  15. J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
    [Crossref]
  16. B. Chen, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE J. Quantum Electron. 30, 399–402 (2011).
  17. B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photon. Technol. Lett. 23, 218–220 (2011).
    [Crossref]
  18. B. Chen and A. L. Holmes, “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38, 2750–2753 (2013).
    [Crossref]
  19. B. Chen, W. Y. Jiang, and A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44, 103–109 (2012).
    [Crossref]
  20. B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE Photon. Technol. Lett. 30, 399–402 (2018).
    [Crossref]
  21. Y. Chen, X. Zhao, J. Huang, Z. Deng, C. Cao, Q. Gong, and B. Chen, “Dynamic model and bandwidth characterization of InGaAs/GaAsSb type-II quantum wells PIN photodiodes,” Opt. Express 26, 35034–35045 (2018).
    [Crossref]
  22. B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb type-II quantum wells and 10-GHz bandwidth at 2  μm wavelength,” J. Lightwave Technol. 36, 4981–4987 (2018).
    [Crossref]
  23. Y. Chen and B. Chen, “Design of InP-based high-speed photodiode for 2-μm wavelength application,” IEEE J. Quantum Electron. 55, 1–8 (2019).
    [Crossref]
  24. J. M. Wun, Y. W. Wang, and J. W. Shi, “Ultrafast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24, 1–7 (2018).
    [Crossref]
  25. C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. Van Dijk, and A. J. Seeds, “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018).
    [Crossref]
  26. A. Beling, X. Xie, and J. C. Campbell, “High-power, high-linearity photodiodes,” Optica 3, 328–338 (2016).
    [Crossref]
  27. T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
    [Crossref]
  28. N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
    [Crossref]

2019 (2)

2018 (6)

J. M. Wun, Y. W. Wang, and J. W. Shi, “Ultrafast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24, 1–7 (2018).
[Crossref]

C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. Van Dijk, and A. J. Seeds, “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018).
[Crossref]

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE Photon. Technol. Lett. 30, 399–402 (2018).
[Crossref]

Y. Chen, X. Zhao, J. Huang, Z. Deng, C. Cao, Q. Gong, and B. Chen, “Dynamic model and bandwidth characterization of InGaAs/GaAsSb type-II quantum wells PIN photodiodes,” Opt. Express 26, 35034–35045 (2018).
[Crossref]

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb type-II quantum wells and 10-GHz bandwidth at 2  μm wavelength,” J. Lightwave Technol. 36, 4981–4987 (2018).
[Crossref]

F. C. Garcia Gunning, N. Kavanagh, E. Russell, R. Sheehan, J. O’Callaghan, and B. Corbett, “Key enabling technologies for optical communications at 2000  nm,” Appl. Opt. 57, E64–E70 (2018).
[Crossref]

2017 (1)

2016 (2)

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5-μm wavelength,” IEEE Trans. Electron Devices 63, 2796–2801 (2016).
[Crossref]

A. Beling, X. Xie, and J. C. Campbell, “High-power, high-linearity photodiodes,” Optica 3, 328–338 (2016).
[Crossref]

2015 (3)

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

2014 (2)

B. Corbett, M. R. Gleeson, N. Ye, C. Robert, H. Yang, H. Zhang, N. M. Suibhne, and F. C. G. Gunning, “InP-based active and passive components for communication systems at 2  μm,” J. Lightwave Technol. 33, 971–975 (2014).
[Crossref]

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
[Crossref]

2013 (3)

2012 (2)

A. Joshi and S. Datta, “High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE 8353, 83533D (2012).
[Crossref]

B. Chen, W. Y. Jiang, and A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44, 103–109 (2012).
[Crossref]

2011 (2)

B. Chen, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE J. Quantum Electron. 30, 399–402 (2011).

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photon. Technol. Lett. 23, 218–220 (2011).
[Crossref]

2010 (2)

2008 (1)

A. Joshi and D. Becker, “High-speed low-noise p-i-n InGaAs photoreceiver at 2-μm wavelength,” IEEE Photon. Technol. Lett. 20, 551–553 (2008).
[Crossref]

2005 (1)

2004 (1)

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Ackert, J. J.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Addamane, S.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE Photon. Technol. Lett. 30, 399–402 (2018).
[Crossref]

Addamane, S. J.

Alam, S. U.

Balakrishnan, G.

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb type-II quantum wells and 10-GHz bandwidth at 2  μm wavelength,” J. Lightwave Technol. 36, 4981–4987 (2018).
[Crossref]

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE Photon. Technol. Lett. 30, 399–402 (2018).
[Crossref]

Becker, D.

A. Joshi and D. Becker, “High-speed low-noise p-i-n InGaAs photoreceiver at 2-μm wavelength,” IEEE Photon. Technol. Lett. 20, 551–553 (2008).
[Crossref]

Beling, A.

Birks, T. A.

Bowers, J. E.

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5-μm wavelength,” IEEE Trans. Electron Devices 63, 2796–2801 (2016).
[Crossref]

Brien, P. O.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

Callaghan, J. O.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

Campbell, J. C.

A. Beling, X. Xie, and J. C. Campbell, “High-power, high-linearity photodiodes,” Optica 3, 328–338 (2016).
[Crossref]

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Cao, C.

Chen, B.

Y. Chen and B. Chen, “Design of InP-based high-speed photodiode for 2-μm wavelength application,” IEEE J. Quantum Electron. 55, 1–8 (2019).
[Crossref]

Y. Chen, X. Zhao, J. Huang, Z. Deng, C. Cao, Q. Gong, and B. Chen, “Dynamic model and bandwidth characterization of InGaAs/GaAsSb type-II quantum wells PIN photodiodes,” Opt. Express 26, 35034–35045 (2018).
[Crossref]

B. Chen and A. L. Holmes, “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38, 2750–2753 (2013).
[Crossref]

B. Chen, W. Y. Jiang, and A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44, 103–109 (2012).
[Crossref]

B. Chen, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE J. Quantum Electron. 30, 399–402 (2011).

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photon. Technol. Lett. 23, 218–220 (2011).
[Crossref]

Chen, Y.

Chen, Y. H.

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5-μm wavelength,” IEEE Trans. Electron Devices 63, 2796–2801 (2016).
[Crossref]

Collins, S.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

Corbett, B.

F. C. Garcia Gunning, N. Kavanagh, E. Russell, R. Sheehan, J. O’Callaghan, and B. Corbett, “Key enabling technologies for optical communications at 2000  nm,” Appl. Opt. 57, E64–E70 (2018).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

B. Corbett, M. R. Gleeson, N. Ye, C. Robert, H. Yang, H. Zhang, N. M. Suibhne, and F. C. G. Gunning, “InP-based active and passive components for communication systems at 2  μm,” J. Lightwave Technol. 33, 971–975 (2014).
[Crossref]

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

Cotter, D.

Couny, F.

Daniel, J. M. O.

Datta, S.

A. Joshi and S. Datta, “High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE 8353, 83533D (2012).
[Crossref]

Demiguel, S.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Deng, Z.

Dong, Y.

Ellis, A. D.

Farr, L.

Garcia Gunning, F. C.

Gleeson, M.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

Gleeson, M. R.

Gocalinska, A.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

Gong, Q.

Gong, X.

Graham, C.

C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. Van Dijk, and A. J. Seeds, “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018).
[Crossref]

Grüner-Nielsen, L.

Gunning, F.

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

Gunning, F. C. G.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

B. Corbett, M. R. Gleeson, N. Ye, C. Robert, H. Yang, H. Zhang, N. M. Suibhne, and F. C. G. Gunning, “InP-based active and passive components for communication systems at 2  μm,” J. Lightwave Technol. 33, 971–975 (2014).
[Crossref]

Guo, X.

Han, W.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

Hayes, J. R.

Heidt, A. M.

Holmes, A.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE Photon. Technol. Lett. 30, 399–402 (2018).
[Crossref]

Holmes, A. L.

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb type-II quantum wells and 10-GHz bandwidth at 2  μm wavelength,” J. Lightwave Technol. 36, 4981–4987 (2018).
[Crossref]

B. Chen and A. L. Holmes, “InP-based short-wave infrared and midwave infrared photodiodes using a novel type-II strain-compensated quantum well absorption region,” Opt. Lett. 38, 2750–2753 (2013).
[Crossref]

B. Chen, W. Y. Jiang, and A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44, 103–109 (2012).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photon. Technol. Lett. 23, 218–220 (2011).
[Crossref]

Huang, J.

Huang, Y.-C.

Ishibashi, T.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
[Crossref]

Isshiki, T. D.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Ito, H.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
[Crossref]

Jessop, P. E.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Jiang, W. Y.

B. Chen, W. Y. Jiang, and A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44, 103–109 (2012).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photon. Technol. Lett. 23, 218–220 (2011).
[Crossref]

Joshi, A.

A. Joshi and S. Datta, “High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE 8353, 83533D (2012).
[Crossref]

A. Joshi and D. Becker, “High-speed low-noise p-i-n InGaAs photoreceiver at 2-μm wavelength,” IEEE Photon. Technol. Lett. 20, 551–553 (2008).
[Crossref]

Jung, Y.

Kavanagh, N.

Kelly, B.

Kinsey, G. S.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Knight, J. C.

Knights, A. P.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Lee, S.-Y.

Lei, D.

Li, N.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Li, X.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Li, Z.

Loke, W.-K.

MacSuibhne, N.

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

Mangan, B. J.

Mashanovich, G. Z.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Mason, M. W.

Masudy-Panah, S.

Muramoto, Y.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
[Crossref]

Natrella, M.

C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. Van Dijk, and A. J. Seeds, “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018).
[Crossref]

Nudds, N.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

O’Brien, P.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

O’Callaghan, J.

F. C. Garcia Gunning, N. Kavanagh, E. Russell, R. Sheehan, J. O’Callaghan, and B. Corbett, “Key enabling technologies for optical communications at 2000  nm,” Appl. Opt. 57, E64–E70 (2018).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

O’Carroll, J.

Onat, B. M.

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photon. Technol. Lett. 23, 218–220 (2011).
[Crossref]

Pavarelli, N.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

Peacock, A. C.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Pelucchi, E.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

Peters, F. H.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

Petrovich, M. N.

Phelan, R.

Poletti, F.

Reed, G. T.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Renaud, C. C.

C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. Van Dijk, and A. J. Seeds, “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018).
[Crossref]

Richardson, D. J.

Robert, C.

Roberts, P. J.

Russell, E.

Russell, P. St.J.

Sabert, H.

Sandoghchi, S. R.

Seddon, J.

C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. Van Dijk, and A. J. Seeds, “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018).
[Crossref]

Seeds, A. J.

C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. Van Dijk, and A. J. Seeds, “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018).
[Crossref]

Sheehan, R.

Shen, L.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Shi, J. W.

J. M. Wun, Y. W. Wang, and J. W. Shi, “Ultrafast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24, 1–7 (2018).
[Crossref]

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5-μm wavelength,” IEEE Trans. Electron Devices 63, 2796–2801 (2016).
[Crossref]

Simakov, N.

Stephens, R.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE Photon. Technol. Lett. 30, 399–402 (2018).
[Crossref]

Sudharsansan, R.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Suibhne, N. M.

Thomson, D. J.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Tomlinson, A.

Tossoun, B.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE Photon. Technol. Lett. 30, 399–402 (2018).
[Crossref]

B. Tossoun, J. Zang, S. J. Addamane, G. Balakrishnan, A. L. Holmes, and A. Beling, “InP-based waveguide-integrated photodiodes with InGaAs/GaAsSb type-II quantum wells and 10-GHz bandwidth at 2  μm wavelength,” J. Lightwave Technol. 36, 4981–4987 (2018).
[Crossref]

Tulchins, D. A.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Van Dijk, F.

C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. Van Dijk, and A. J. Seeds, “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018).
[Crossref]

Wang, H.

Wang, W.

Wang, X.

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

Wang, Y.

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE Photon. Technol. Lett. 30, 399–402 (2018).
[Crossref]

Wang, Y. W.

J. M. Wun, Y. W. Wang, and J. W. Shi, “Ultrafast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24, 1–7 (2018).
[Crossref]

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5-μm wavelength,” IEEE Trans. Electron Devices 63, 2796–2801 (2016).
[Crossref]

Wheeler, N. V.

Williams, D. P.

Williams, K. J.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Wooler, J. P.

Wun, J. M.

J. M. Wun, Y. W. Wang, and J. W. Shi, “Ultrafast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24, 1–7 (2018).
[Crossref]

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5-μm wavelength,” IEEE Trans. Electron Devices 63, 2796–2801 (2016).
[Crossref]

Xie, X.

Xu, S.

Yang, H.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

B. Corbett, M. R. Gleeson, N. Ye, C. Robert, H. Yang, H. Zhang, N. M. Suibhne, and F. C. G. Gunning, “InP-based active and passive components for communication systems at 2  μm,” J. Lightwave Technol. 33, 971–975 (2014).
[Crossref]

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

Ye, N.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

B. Corbett, M. R. Gleeson, N. Ye, C. Robert, H. Yang, H. Zhang, N. M. Suibhne, and F. C. G. Gunning, “InP-based active and passive components for communication systems at 2  μm,” J. Lightwave Technol. 33, 971–975 (2014).
[Crossref]

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

Yeo, Y.-C.

Yoon, S.-F.

Yoshimatsu, T.

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
[Crossref]

Yuan, J.

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photon. Technol. Lett. 23, 218–220 (2011).
[Crossref]

Zang, J.

Zhang, H.

Zhang, H. Y.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

Zhao, J.

Zhao, X.

Zheng, X.

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

H. Yang, B. Kelly, W. Han, F. Gunning, B. Corbett, R. Phelan, J. O’Carroll, H. Yang, F. H. Peters, X. Wang, N. Nudds, P. O’Brien, N. Ye, and N. MacSuibhne, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000nm wavelength systems,” Electron. Lett. 49, 281–282 (2013).
[Crossref]

IEEE J. Quantum Electron. (2)

B. Chen, “SWIR/MWIR InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE J. Quantum Electron. 30, 399–402 (2011).

Y. Chen and B. Chen, “Design of InP-based high-speed photodiode for 2-μm wavelength application,” IEEE J. Quantum Electron. 55, 1–8 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

J. M. Wun, Y. W. Wang, and J. W. Shi, “Ultrafast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24, 1–7 (2018).
[Crossref]

C. C. Renaud, M. Natrella, C. Graham, J. Seddon, F. Van Dijk, and A. J. Seeds, “Antenna integrated THz uni-traveling carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron. 24, 1–11 (2018).
[Crossref]

T. Ishibashi, Y. Muramoto, T. Yoshimatsu, and H. Ito, “Unitraveling-carrier photodiodes for terahertz applications,” IEEE J. Sel. Top. Quantum Electron. 20, 79–88 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (5)

N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchins, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Technol. Lett. 16, 864–866 (2004).
[Crossref]

B. Tossoun, R. Stephens, Y. Wang, S. Addamane, G. Balakrishnan, A. Holmes, and A. Beling, “High-speed InP-based p-i-n photodiodes with InGaAs/GaAsSb type-II quantum wells,” IEEE Photon. Technol. Lett. 30, 399–402 (2018).
[Crossref]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, “Demonstration of a room-temperature InP-based photodetector operating beyond 3 μm,” IEEE Photon. Technol. Lett. 23, 218–220 (2011).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Y. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, E. Pelucchi, P. O’Brien, F. C. G. Gunning, F. H. Peters, B. Corbett, J. O. Callaghan, W. Han, N. Nudds, S. Collins, E. Pelucchi, P. O. Brien, F. C. G. Gunning, F. H. Peters, and B. Corbett, “InGaAs surface normal photodiode for 2  μm optical communication systems,” IEEE Photon. Technol. Lett. 4, 1469–1472 (2015).
[Crossref]

A. Joshi and D. Becker, “High-speed low-noise p-i-n InGaAs photoreceiver at 2-μm wavelength,” IEEE Photon. Technol. Lett. 20, 551–553 (2008).
[Crossref]

IEEE Trans. Electron Devices (1)

J. M. Wun, Y. W. Wang, Y. H. Chen, J. E. Bowers, and J. W. Shi, “GaSb-based p-i-n photodiodes with partially depleted absorbers for high-speed and high-power performance at 2.5-μm wavelength,” IEEE Trans. Electron Devices 63, 2796–2801 (2016).
[Crossref]

J. Lightwave Technol. (3)

Nat. Photonics (1)

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Opt. Express (6)

Y. Chen, X. Zhao, J. Huang, Z. Deng, C. Cao, Q. Gong, and B. Chen, “Dynamic model and bandwidth characterization of InGaAs/GaAsSb type-II quantum wells PIN photodiodes,” Opt. Express 26, 35034–35045 (2018).
[Crossref]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref]

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050  nm window,” Opt. Express 21, 26450–26455 (2013).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100  Gbit/s WDM transmission at 2  μm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23, 4946–4951 (2015).
[Crossref]

Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S.-Y. Lee, W.-K. Loke, S.-F. Yoon, and Y.-C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25, 15818–15827 (2017).
[Crossref]

S. Xu, W. Wang, Y.-C. Huang, Y. Dong, S. Masudy-Panah, H. Wang, X. Gong, and Y.-C. Yeo, “High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300  mm Si substrate,” Opt. Express 27, 5798–5813 (2019).
[Crossref]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

B. Chen, W. Y. Jiang, and A. L. Holmes, “Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes,” Opt. Quantum Electron. 44, 103–109 (2012).
[Crossref]

Optica (1)

Proc. SPIE (1)

A. Joshi and S. Datta, “High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE 8353, 83533D (2012).
[Crossref]

Science (1)

D. J. Richardson, “Filling the light pipe,” Science 330, 327–328 (2010).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1       Parasitic capacitance analysis and measurement setup

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. (a) Epitaxial structure of the type-II MQW UTC photodiode. (b) Photoluminescence measurement result of the epitaxial structure. (c) Schematic diagram of the fabricated device. (d) Band diagram of the MQW absorber. The wave functions and potential transitions are shown. The wave functions are calculated by a kp method, and the two transitions correspond to the peaks at 2.1 μm and 1.75 μm in the photoluminescence spectrum.
Fig. 2.
Fig. 2. Dark current characteristics for three devices with different diameters at room temperature.
Fig. 3.
Fig. 3. Measured capacitance versus reverse bias for three devices with different diameters at room temperature.
Fig. 4.
Fig. 4. Capacitance of devices at 3V bias. The fitting result indicates a parasitic capacitance of 49.6 fF.
Fig. 5.
Fig. 5. Responsivity spectrum at various bias voltages. The inset shows the responsivity at 2 μm wavelength.
Fig. 6.
Fig. 6. Frequency response of a 10 μm photodiode at various bias voltages. The photocurrent is set to 1 mA. The inset shows the 3 dB bandwidth at different bias voltages.
Fig. 7.
Fig. 7. Frequency response of a 10 μm photodiode at different photocurrents. The bias voltage is 3V.
Fig. 8.
Fig. 8. Frequency response of photodiodes with different diameters. The bias voltage is 3V, and the photocurrent is 1 mA.
Fig. 9.
Fig. 9. (a) Equivalent circuit model used in parameter fitting. Cj is the junction capacitance, Rs is the series resistance (resistance of the ohm contacts and the CPW pads), Ls is the inductance of the CPW pads, and Rj is the junction resistance, which is hundreds of megaohms and can be regarded as open circuit. The measured and fitting curves of S11 of (b) 10 μm, (c) 20 μm, and (d) 40 μm photodiodes at 3V bias (the blue curve is the measured data while the red curve is the fitting curve). (e) Calculated RC limit frequency response using the fitting results.
Fig. 10.
Fig. 10. Review of the 3 dB bandwidth of high-speed photodiodes operating at 2 μm wavelength reported in recent years.
Fig. 11.
Fig. 11. Eye pattern of a 10 μm photodiode at 20 Gbit/s, 25 Gbit/s, and 30 Gbit/s.
Fig. 12.
Fig. 12. Output RF power and compression versus photocurrent for a 10 μm photodiode at 25 GHz and at different bias voltages. The gray dashed line shows the ideal output power.
Fig. 13.
Fig. 13. Output RF power and compression versus photocurrent for a 20 μm photodiode at 15 GHz and at different bias voltages. The gray dashed line shows the ideal output power.

Tables (2)

Tables Icon

Table 1. Fitting Parameters

Tables Icon

Table 2. 1 dB Compression Points

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f3dB=(1fT2+1fRC2)1,
Pideal=m12Ip2RL,

Metrics