Abstract

Confining light in open structures is a long-sought goal in nanophotonics and cavity quantum electrodynamics. Embedded eigenstates provide infinite lifetime despite the presence of available leakage channels, but in linear time-invariant systems they cannot be excited from the outside, due to reciprocity. Here, we investigate how atomic nonlinearities may support single-photon embedded eigenstates, which can be populated by a multi-photon excitation followed by internal relaxation. We calculate the system dynamics and show that photon trapping, as well as the reverse release process, can be achieved with arbitrarily high efficiencies. We also discuss the impact of loss, and a path toward the experimental verification of these concepts.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Trapping light for times much longer than dissipative and dephasing timescales is essential to enhance light–matter interactions and to create high-fidelity storage of quantum states. Light confinement is conventionally achieved by suppressing unwanted radiation channels, e.g., with mirrors or photonic bandgap materials. However, radiation loss is never totally suppressed in conventional open cavities. Moreover, due to reciprocity, an idealized lossless cavity is necessarily decoupled from the outside, thus making it impossible to inject energy or to detect its internal state. Reciprocity, thus, prevents realizing linear time-invariant systems that can both efficiently collect and perfectly confine light.

Recently, there has been a significant interest in embedded eigenstates (EEs) [1], i.e., optical states in open resonators that are ideally confined despite the presence of available radiation channels. Several mechanisms to form EEs have been discussed [211], and their existence has been demonstrated in waveguides [4,5,7,9], photonic crystal slabs [6,12], and 3D nanostructures [8]. Despite their fundamentally interesting physics, EEs in linear systems are limited by reciprocity: ideal confinement implies that energy cannot be injected from the outside. A possible solution is to consider Kerr nonlinearities [10,13,14], such that the EE existence is dynamically triggered by the excitation, trapping part of the impinging radiation. However, the weakness of classical nonlinearities implies large optical powers and inherent inefficiencies, which hinders the application of these concepts for quantum information and low-power optoelectronics.

Here, we propose and investigate the possibility of creating and exciting EEs in coupled cavity–atom systems. Due to atomic nonlinearities, these EEs can host only a single photon. The system is therefore “transparent” upon single-photon excitation, but it can absorb multi-photon excitations, populating the EE. We show that upon two-photon excitation, the trapping process, whereby one photon is trapped in the EE and the other is re-emitted, occurs with arbitrarily high efficiencies upon suitable control of the pulse shape. Due to time invariance, the inverse process is also possible: a stored excitation can be released on-demand upon single-photon excitation. Even considering realistic losses, the proposed mechanism allows storing photons for times much longer than those obtainable with a single cavity, while preserving the excitation rate. Our protocol can be used to realize optical memories, and to achieve on-demand storing and release of single photons [15].

2. MODEL

A. Linear Resonators

A general condition to induce EEs in coupled systems has been introduced by Friedrich and Wintgen [1]. Following their scheme, we first consider a classical system [Fig. 1(a)] formed by two optical cavities resonating at frequencies ω1 and ω2, mutually coupled with rate J. The cavities interact with a single-mode waveguide with coupling strengths V1 and V2, respectively, such that Γ1,22πV1,22/vg are the amplitude decay rates into the waveguide [16,17], and vg is the group velocity. We assume that within the spectral range of interest, the waveguide has a linear dispersion, and V1/2 do not depend on frequency. The two-cavity system supports two coupled eigenmodes that, due to the presence of the waveguide, are lossy. However, when the destructive interference condition

(ω1ω2)V1V2=J(V12V22)
is satisfied, one of the coupled modes becomes lossless [1], realizing an EE, while the amplitude decay rate of the other (bright) mode is Γ(Γ1+Γ2)/2 (see Supplement 1 for details). We note that light trapping based on destructive interference between cavities coupled to a waveguide was also investigated in Ref.  [18]. Reciprocity dictates that this EE cannot be excited: when a quasi-monochromatic pulse [Fig. 1(b), blue shade], centered at the EE frequency, impinges on the system (set at the condition 1), it creates transient cavity fields (solid lines) that quickly vanish, showing no energy stored into the EE. Classical nonlinearities (such as the Kerr effect) inside the cavities may overcome this constraint [13,14], but at the price of high intensities and inefficiencies.

 

Fig. 1. Embedded eigenstates due to destructive interference in classical and quantum systems. (a) Two optical cavities are mutually coupled and interact with a single-mode waveguide. An EE is supported when Eq. (1) holds. (b) Time evolution of the cavity intensities (red and green lines), upon a Gaussian pulse excitation (blue shaded area). Parameters: ω2=0.96ω1, V1=0.1vgω1, V2=0.5V1. (c) Same as in (a), but with cavity 1 replaced by a two-level system. (d) Time evolution of the average cavity population (red line), atom occupation probability (green line), and EE occupation probability (black dashed line) upon a coherent pulsed excitation containing average photon numbers N=1,2 and 4. System and pulse parameters are the same as (b), with 1A and 1C.

Download Full Size | PPT Slide | PDF

B. Adding Atomic Nonlinearities

Rather than inserting a classical nonlinearity into the cavity, we instead assume that one resonator is nonlinear at the few-photon level, as in the case of natural or artificial atoms. We thus replace cavity 1 with a two-level atom, and the system parameters are re-labeled accordingly [Fig. 1(c)] (similar effects are obtained by replacing both cavities with atoms; see Supplement 1). We assume that the cavity and atom couple to each other at rate J, and they interact with the waveguide at the same location x=0. A nonzero cavity–atom separation would introduce an additional waveguide-mediated coupling; in this case, an EE can be obtained when Eq. (1) holds and the atom–cavity distance is properly chosen (see Supplement 1 for details). The existence of these bound states in pairs of atoms embedded in waveguides has been recently discussed [19,20], but their trapping and release dynamics were not investigated. We note that mixed atomic–photonic bound states can also arise when a waveguide with a bandgap is coupled to an atom whose emission frequency lies within the bandgap [21]. These bound states originate from the exponentially decaying field in the waveguide, they can host multiple excitations, and they are not embedded because their frequency lies outside of the continuum of propagating mode. Their physics is therefore fundamentally different from the EEs considered here in this work.

The Hamiltonian of the system in Fig. 1(c) reads (=1)

H^=H^AC++dkωkc^kc^k++dk[c^k(Vca^+VAσ^)+h.c.],
where H^AC=ωCa^a^+ωAσ^+σ^+J(a^σ^++h.c.) is the standard Jaynes–Cummings Hamiltonian, ωC (ωA) is the frequency of the cavity (atom), a^ is the annihilation operator of the cavity, σ^± are the Pauli operators describing the two-level atom, and c^k annihilates a waveguide mode with wavevector k and frequency ωk. Since H^ preserves the total number of excitations N, we can separately study the dynamics for each value of N. An N-excitation EE exists if H^ has an eigenstate |ΨEE(N) entirely localized in the atom–cavity system, i.e., |ΨEE(N)=C(N)|N,g+A(N)|N1,e, where |m,σ denotes the state with m cavity photons and the atom excited (σ=e) or in the ground (σ=g) state. Enforcing that |ΨEE(N) satisfies the Schrodinger equation leads to the condition VCNC(N)|N1,g+VAA(N)|N1,g+VCN1A(N)|N2,e=0, which, for VC,VA0, can be satisfied only for N=1 and VCC(N)+VAA(N)=0 [which is equivalent to Eq. (1); see Supplement 1]. The atom–cavity system in Fig. 1(c) supports therefore a single-photon EE, |ΨEE(1)(VCσ^+VAa^)|0,g, with frequency ωEE(1), and a bright single-photon state |ΨB(1)(VAσ^++VCa^)|0,g with frequency ωB(1) and amplitude decay rate Γ2π(VA2+VC2)/2vg; however, no EE exists for N>1, in strong contrast with the case of two linear cavities [Figs. 1(a) and 1(b)]. In particular, in the two-excitation sector, both EEs are lossy but, when Eq. (1) is met, one of them with frequency ωB(2) has a decay rate comparable to Γ, while the other one, at frequency ωD(2), has a much smaller decay rate. A strongly nonlinear behavior on input power is therefore obtained: a single impinging photon at the EE frequency cannot excite the system, while a multi-photon excitation populates one or more higher-energy bright states. These states decay into single-excitation states through internal relaxation, populating the EE. This phenomenon bears analogy to dark states in Lambda-type atoms obtained by finely tuning two control lasers [22]. Here, however, the EE existence depends only on the atom–cavity detuning and coupling strengths, and it does not require external control fields to trap radiation.

We verified the trapping behavior by applying input–output theory [23] to the Hamiltonian (2), and recasting the problem into a master equation for the density matrix of the atom–cavity system:

ρ˙=i[H^AC+H^in,ρ]+LρL{LL,ρ},
where we defined the input Hamiltonian
H^in=2πvg[(VAσ^+VCa^)(CR,IN(t)+CL,IN(t))+h.c.]
and the Lindblad superoperator L=4π/vg(VAa^+VCσ^). CR/L,IN(t) are the time-dependent amplitudes of the right- and left-propagating input beams, assumed in a coherent state (additional details of the derivation are provided in Supplement 1, Section F). We calculated the system response upon coherent pulsed excitations with average photon number N [24]. In order to compare quantum and classical scenarios, the parameters in Figs. 1(c) and 1(d) are consistent with Figs. 1(a) and 1(b) (1A, 2C). Figure 1(d) shows the dynamics for three different N: after short transients created by the pulse, cavity and atom populations initially decay until a steady state is reached where the energy is trapped in the EE (black dashed line) and the occupation probabilities satisfy VCC(1)+VAA(1)=0.

3. TRAPPING AND RELEASE OF SINGLE PHOTONS

We now verify that the EE excitation can occur for non-classical excitations, and at the single-photon level. In particular, we consider the trapping process where two photons impinge on the system and one gets trapped in the EE. We apply real-space formulation to the waveguide Hamiltonian (vg=1) [16,25]

H^=H^AC+H^WG+2πdxδ(x){[c^R(x)+c^L(x)](Vca^+VAσ^)+h.c.},
where c^R/L(x) annihilates a right[left]-propagating waveguide photon at position x, and H^WG=idx[c^R(x)xc^R(x)c^L(x)xc^L(x)]. We introduce even (“e”) and odd (“o”) waveguide modes [16], c^e/o(x)[c^R(x)±c^L(x)]/2, and discard the presence of the odd mode, as it does not interact with the rest of the system. The most general two-photon state of the system is |ψ=[dx1dx2χ(x1,x2)c^e(x1)c^e(x2)/2+dx(ϕA(x)σ^++ϕC(x)a^)c^e(x)+EACa^σ^++E2C(a^)2/2]|0,g, where χ(x1,x2) is the probability amplitude of having two photons in the waveguide at positions x1 and x2, ϕA(x) [ϕC(x)] is the probability amplitude of having one excitation in the atom [cavity] and one photon in the waveguide at x, and EAC (E2C) is the probability amplitude of having one excitation in the cavity and one in the atom (two excitations in the cavity). In the two-photon sector, the trapping of one excitation in the EE is described by |ΨEE,x(VCσ^+VAa^)c^e(x)|0,g, i.e., an excited single-photon EE and a second photon at position x in the waveguide. The EE occupation probability, therefore, reads PEE(t)=dx|VCϕA(x,t)VAϕC(x,t)|2/(VA2+VC2). We numerically calculated the system dynamics upon a two-photon initial state |ψ(t=0)=dx1dx2χIN(x1,x2)c^e(x1)c^e(x2)|0,g/2, where χIN(x1,x2)0 only for x1,x2<0. We initially focus on a Gaussian input defined by χIN(x1,x2)[fA(x1)fB(x2)+fB(x1)fA(x2)], where fα(x)exp[(xxα)2/2σα2]·exp[ikαx]. The system is set in the EE condition [Fig. 1(d)] and the impinging photons are in the same state (xA=xB=5/Γ, σσA=σB, kkA=kB) and resonant with the bright single-photon mode (k=ωB(1)). In Fig. 2(a), we plot PEE(t), along with the occupation probabilities that a single excitation is either in the atom or the cavity [PA(t) and PC(t), respectively], that atom and cavity contain both one excitation [PAC(t)|EAC(t)|2], and that the cavity is doubly excited [P2C(t)|E2C(t)|2]. At t=5/Γ, the two-photon packet reaches the atom–cavity system, and excites single- and two-excitation states. After a short transient, the system reaches steady state with nonzero populations and PEE0.5. Thus, even with simple pulse shapes, photon trapping occurs with relatively high probability. As shown in Figs. 2(c) and 2(d), the EE excitation probability PEE(t) sensitively depends on the ratio VC/VA and on the bandwidth and carrier frequency of the two-photon pulse: for the parameters considered here, PEE(t) is maximized for VC/VA0.5 [Fig. 2(c)]. If ωAωC, the value of J set by Eq. (1) diverges as VC/VA1, thus invalidating the Jaynes–Cummings model. We therefore removed from Fig. 2(c) the region where J>0.1(ωC+ωA)/2 (black stripes). The dependence of the EE final population with k [Fig. 2(d)] confirms that the system is excited mainly through the single- and two-photon bright modes [black lines in Fig. 2(d)]. Moreover, PEE(t) is maximized when σ is comparable to the decay rate of the bright single-photon mode Γ (also similar to the decay rate of the two-photon bright mode [see Supplement 1]). This corresponds to conjugate matching, based on which a radiative state is optimally excited when the pulse duration is equal to the state lifetime [26]. We note that for VCVA, the lifetime of the bright modes is approximately equal to the one of the atom; photons with ideal width σ1/Γ (though not with Gaussian shape) can therefore be readily generated via spontaneous emission of additional atoms coupled to the waveguide.

 

Fig. 2. (a) Trapping process: a two-photon Gaussian state impinges on the system, partially exciting the EE. The curves show the occupation probability of the different 1- and 2-excitation states of the atom-cavity system (see text for details). (b) Release process: a single-photon Gaussian state impinges on the excited EE. System parameters in (a), (b) are as in Fig. 1(d), and σ=1/Γ, k=ωB(1). (c), (d) Excitation probability of the EE for t+ versus (c) VC/VA and σ (for k=ωB(1)) and (d) k and σ (for VC/VA=0.5). All other parameters are as in (a), (b). The black horizontal stripe in (c) corresponds to the values of VC/VA that result in J>0.1(ωA+ωC)/2. Horizontal lines in (d) indicate the frequencies of single- and two-excitation states.

Download Full Size | PPT Slide | PDF

Due to the system linearity for fixed excitation number, a trapped photon can be released by time reversal. Here, the initial state is |ψ(t=0)=dxF(x)c^e(x)|ΨEE(1), i.e., the EE is excited and a single-photon wave packet, described by F(x)[F(x>0)=0], impinges on the system. Figure 2(b) shows the system evolution when F(x) is a Gaussian pulse [same parameters as in Fig. 2(a)]. After the single-photon pulse (not shown) reaches the system at t=5/Γ, the energy stored in the EE is released almost completely, with a residual PEE<0.05.

Much higher efficiencies in the trapping process are obtained with different two-photon pulse shapes. An optimal two-photon pulse can be calculated by inspecting the (inverse) release process, again invoking time reversal: if a single-photon pulse Fopt(x), impinging on an excited EE, produces a final state with only two propagating photons [i.e., only χ(x1,x2)0 for t+], this two-photon state ensures unitary trapping efficiency when used as input. While this condition cannot be satisfied exactly by any Fopt(x) (see Supplement 1 for further details), it can be satisfied with an accuracy arbitrarily close to unity using, e.g., Gaussian pulses with increasing spatial widths. For example, when Fopt(x)exp[(xx0)2/2σ2+iωB(1)x] with σ=5/Γ, after the release process, we obtain PEE<0.03. The corresponding final two-photon state [Fig. 3(a), already mirrored across the origin] is now used as input for the trapping process in Fig. 3(b). The EE population reaches PEE(t)0.98, indicating a very high probability of single-photon trapping. Differently from the two-photon Gaussian state, the optimized χIN(x1,x2) [Fig. 3(a)] is squeezed along x1=x2; spatial bunching of the two photons is therefore beneficial to increase the EE excitation efficiency. A spatially bunched two-photon input state can be realized via, e.g., spontaneous parametric down-conversion [27] or by modifying the photon statistics of a classical beam with atoms [28].

 

Fig. 3. (a) Two-photon final state obtained when the EE is released by a single-photon Gaussian packet (see text for details). (b) Evolution of the cavity–atom system when the state in (a) is used as the initial two-photon state. The curves show the occupation probability of the different 1- and 2-excitation states of the atom–cavity system. Note that PAC(t) and P2C(t) have been rescaled by a factor 3.

Download Full Size | PPT Slide | PDF

4. REALISTIC IMPLEMENTATIONS OF THE PROPOSED CONCEPT

Any realistic implementation of this concept will be affected by additional losses, which prevent infinite confinement. However, as long as the atom and cavity decay rates into the waveguide (ΓA,C2πVA,C2/vg) are much larger than the additional decay rates ΓA,C, the EE can store an excitation for much longer than for isolated cavities or atoms. As an example, we compare [Fig. 4(a)] the two-photon excitation dynamics of the cavity–atom system (set at the EE condition) and a single cavity with same values of ΓC and ΓC (we neglect ΓA, since usually ΓAΓC). The excitation trapped in the EE (solid lines) has now a finite lifetime that decreases as ΓC increases, but if ΓCΓC, the decay rate is much smaller than the decay rate of a single cavity (dashed lines), which is dominated by ΓC. The excitation rates are instead almost the same in the two cases.

 

Fig. 4. (a) Cavity population upon two-photon Gaussian excitation for the atom–cavity system set in the EE condition (solid lines) and for a single cavity (dashed lines). In both cases, the cavity has an additional decay rate ΓC. The system and excitation parameters are as in Fig. 2(a). (b) A different implementation based on two coupled cavities and atom that support two single-photon EEs. (c) Dynamics of the system shown in (b), set in the EE condition (6), for a coherent pulsed excitation with average photon number N=2. Red and green lines show the average number of photons in each cavity, while the blue and black lines show the occupation probability of the atom and the two EEs. Parameters are as in Fig. 1(b), and J=0.003ω1, ωA=ω1.

Download Full Size | PPT Slide | PDF

So far, we have assumed that atom and cavity couple to each other and to the waveguide. This may be experimentally challenging, since, to have a relevant atom–cavity interaction, the atom is typically placed inside the cavity, which makes the atom–waveguide direct interaction weak. However, this mechanism can be extended to multi-atom or multi-cavity systems, which may be easier to implement. For example, by replacing also the second cavity by another (displaced or co-located) atom, a similar single-photon EE is obtained (see Supplement 1 for details). Another example is shown in Fig. 4(b): two interacting cavities couple to a waveguide [similar to Fig. 1(a)], and one cavity interacts with one atom at a rate g. With a similar analysis, we find that this system supports two single-photon EEs when the parameters satisfy

(ω1ω2)V1V2=J(V12V22)+V12V2g2V2J+V1(ωAω2).
As confirmed by numerical calculations of a coherent excitation [Fig. 4(c), parameters in caption], also this structure traps radiation in the EEs. In general, both EEs [black lines in Fig. 4(c)] are excited in the trapping process, but the system and pulse parameters can be tuned to trap radiation preferentially in one of them. As strong and controllable cavity–waveguide and cavity–atom couplings have been already demonstrated in many platforms [2933], we expect this alternative 2-cavity-1-atom platform to be feasible with the current technology.

The experimental realization of this concept will require good control of the system parameters and small non-radiative decay rates. An ideal platform is constituted by superconducting circuits: recent experiments showed that superconducting qubits and radio-frequency cavities can couple to transmission lines with VA/C(0.01/0.05)vgωA/C (similar to those assumed here) and non-radiative decay rates ΓC/ΓC0.1, and their frequency can be largely tuned by controlling the flux bias [30,31]. Moreover, their lumped nature allows to easily engineer the cavity–atom coupling and, importantly, to ensure that cavity and atom couple to the same point of the waveguide. Storage and release of single photons have been recently demonstrated with superconducting qubits [34]. There, however, the storage and release requires a dynamical control of the coupling elements with properly timed external pulses. The stored excitation decays in time due to the additional unwanted losses, similar to the case shown in Fig. 4(a). We note that, while a specific implementation will constrain the parameter ranges, Eq. (1) offers great flexibility: low values of J, e.g., can be counterbalanced by reducing ωAωC. The requirement ΓA/CΓA/C has been demonstrated also in photonic crystal waveguides interfaced with cavities [29] and solid state [32] or natural [33] atoms. These platforms, however, offer less flexibility in terms of parameter tuning, and may be more suitable for the case of two distant resonators where J=0 (see details in Supplement 1). Moreover, we emphasize that, even when the parameters cannot be exactly matched to obtain a true EE [Eqs. (1) and (6)], one can still exploit this effect to create dark modes with very small decay rates, that can nonetheless be excited at a fast decay rate due to the atomic nonlinearity. The effect of parameter mismatch will therefore be similar to the presence of additional loss [Fig. 4(a)].

The proposed approach allows trapping single photons in an ideally lossless state, and releasing them on-demand. Due to the dependence of VC (VA) on the mutual polarization of the waveguide field and cavity field (atom dipole), the mechanism can be used to conditionally trap photons based on their polarization. Moreover, it can be used to realize an on-demand source of a single photon, with precisely controlled release time [15]. It offers several advantages compared to other storage protocols involving atom–cavity systems [3436]: it does not require external control beams [34] or feedback mechanisms, and it uses a simple two-level system prepared in its ground state, rather than three- [35] or multi- [36] level systems prepared in particular superposition states.

5. CONCLUSION

To conclude, we proposed and theoretically investigated the excitation and release of single-photon EEs based on atomic nonlinearities. We demonstrated that the trapping of a single photon upon a two-photon excitation can occur with arbitrarily high efficiencies if the shape of the impinging pulse is suitably tailored. Even considering realistic losses [2933], the proposed mechanism allows storing single photons for times much longer than the time needed to excite the EE, in contrast with single-cavity or single-atom configurations. The principle is extendable to experimentally feasible systems composed of, for example, two cavities with one of them containing the atom. These findings open exciting opportunities for quantum communications and computing, as well as for attojoule optoelectronic systems.

Note: after submission of this article, we became aware of a related scheme by Calajó et al. [37], where the excitation of an embedded EE in a pair of atoms or in a single atom in front of a mirror is investigated.

Funding

Air Force Office of Scientific Research (AFOSR) (MURI FA9550-17-1-0002); Simons Foundation.

Acknowledgment

M.C. was partially supported by a Rubicon postdoctoral fellowship by The Netherlands Organization for Scientific Research (NWO).

 

See Supplement 1 for supporting content.

REFERENCES

1. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mat. 1, 16048 (2016). [CrossRef]  

2. H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32, 3231–3242 (1985). [CrossRef]  

3. E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B 78, 075105 (2008). [CrossRef]  

4. Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011). [CrossRef]  

5. S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013). [CrossRef]  

6. C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013). [CrossRef]  

7. G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013). [CrossRef]  

8. F. Monticone and A. Alu, “Embedded photonic eigenvalues in 3d nanostructures,” Phys. Rev. Lett. 112, 213903 (2014). [CrossRef]  

9. S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015). [CrossRef]  

10. S. Lannebère and M. G. Silveirinha, “Optical meta-atom for localization of light with quantized energy,” Nat. Commun. 6, 8766 (2015). [CrossRef]  

11. P. Fong and C. Law, “Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array,” Phys. Rev. A 96, 023842 (2017). [CrossRef]  

12. A. Doeleman, H. M. Monticone, F. den Hollander, W. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018). [CrossRef]  

13. E. N. Bulgakov and A. F. Sadreev, “Robust bound state in the continuum in a nonlinear microcavity embedded in a photonic crystal waveguide,” Opt. Lett. 39, 5212–5215 (2014). [CrossRef]  

14. E. Bulgakov, K. Pichugin, and A. Sadreev, “All-optical light storage in bound states in the continuum and release by demand,” Opt. Express 23, 22520–22531 (2015). [CrossRef]  

15. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009). [CrossRef]  

16. J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009). [CrossRef]  

17. D. Roy, C. M. Wilson, and O. Firstenberg, “Colloquium: strongly interacting photons in one-dimensional continuum,” Rev. Mod. Phys. 89, 021001 (2017). [CrossRef]  

18. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004). [CrossRef]  

19. P. Facchi, M. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94, 043839 (2016). [CrossRef]  

20. Y.-L. L. Fang and H. U. Baranger, “Multiple emitters in a waveguide: nonreciprocity and correlated photons at perfect elastic transmission,” Phys. Rev. A 96, 013842 (2017). [CrossRef]  

21. T. Shi, Y.-H. Wu, A. González-Tudela, and J. I. Cirac, “Bound states in boson impurity models,” Phys. Rev. X 6, 021027 (2016). [CrossRef]  

22. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]  

23. S. Fan, Ş. E. Kocabaş, and J.-T. Shen, “Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010). [CrossRef]  

24. J. Johansson, P. Nation, and F. Nori, “Qutip: an open-source python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012). [CrossRef]  

25. J.-T. Shen and S. Fan, “Strongly correlated multiparticle transport in one dimension through a quantum impurity,” Phys. Rev. A 76, 062709 (2007). [CrossRef]  

26. E. Rephaeli, J. T. Shen, and S. Fan, “Full inversion of a two-level atom with a single-photon pulse in one-dimensional geometries,” Phys. Rev. A 82, 033804 (2010). [CrossRef]  

27. F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011). [CrossRef]  

28. Y.-L. L. Fang, H. Zheng, and H. U. Baranger, “One-dimensional waveguide coupled to multiple qubits: photon-photon correlations,” EPJ Quantum Technol. 1, 3 (2014). [CrossRef]  

29. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovi, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007). [CrossRef]  

30. A. F. Van Loo, A. Fedorov, K. Lalumire, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013). [CrossRef]  

31. J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014). [CrossRef]  

32. M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014). [CrossRef]  

33. T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuleti, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014). [CrossRef]  

34. Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013). [CrossRef]  

35. N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015). [CrossRef]  

36. N. Trautmann and G. Alber, “Dissipation-enabled efficient excitation transfer from a single photon to a single quantum emitter,” Phys. Rev. A 93, 053807 (2016). [CrossRef]  

37. G. Calajó, Y.-L. L. Fang, H. U. Baranger, and F. Ciccarello, “Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback,” Phys. Rev. Lett. 122, 073601 (2019). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mat. 1, 16048 (2016).
    [Crossref]
  2. H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32, 3231–3242 (1985).
    [Crossref]
  3. E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B 78, 075105 (2008).
    [Crossref]
  4. Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
    [Crossref]
  5. S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
    [Crossref]
  6. C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
    [Crossref]
  7. G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
    [Crossref]
  8. F. Monticone and A. Alu, “Embedded photonic eigenvalues in 3d nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
    [Crossref]
  9. S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
    [Crossref]
  10. S. Lannebère and M. G. Silveirinha, “Optical meta-atom for localization of light with quantized energy,” Nat. Commun. 6, 8766 (2015).
    [Crossref]
  11. P. Fong and C. Law, “Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array,” Phys. Rev. A 96, 023842 (2017).
    [Crossref]
  12. A. Doeleman, H. M. Monticone, F. den Hollander, W. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
    [Crossref]
  13. E. N. Bulgakov and A. F. Sadreev, “Robust bound state in the continuum in a nonlinear microcavity embedded in a photonic crystal waveguide,” Opt. Lett. 39, 5212–5215 (2014).
    [Crossref]
  14. E. Bulgakov, K. Pichugin, and A. Sadreev, “All-optical light storage in bound states in the continuum and release by demand,” Opt. Express 23, 22520–22531 (2015).
    [Crossref]
  15. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
    [Crossref]
  16. J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
    [Crossref]
  17. D. Roy, C. M. Wilson, and O. Firstenberg, “Colloquium: strongly interacting photons in one-dimensional continuum,” Rev. Mod. Phys. 89, 021001 (2017).
    [Crossref]
  18. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
    [Crossref]
  19. P. Facchi, M. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94, 043839 (2016).
    [Crossref]
  20. Y.-L. L. Fang and H. U. Baranger, “Multiple emitters in a waveguide: nonreciprocity and correlated photons at perfect elastic transmission,” Phys. Rev. A 96, 013842 (2017).
    [Crossref]
  21. T. Shi, Y.-H. Wu, A. González-Tudela, and J. I. Cirac, “Bound states in boson impurity models,” Phys. Rev. X 6, 021027 (2016).
    [Crossref]
  22. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [Crossref]
  23. S. Fan, Ş. E. Kocabaş, and J.-T. Shen, “Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010).
    [Crossref]
  24. J. Johansson, P. Nation, and F. Nori, “Qutip: an open-source python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012).
    [Crossref]
  25. J.-T. Shen and S. Fan, “Strongly correlated multiparticle transport in one dimension through a quantum impurity,” Phys. Rev. A 76, 062709 (2007).
    [Crossref]
  26. E. Rephaeli, J. T. Shen, and S. Fan, “Full inversion of a two-level atom with a single-photon pulse in one-dimensional geometries,” Phys. Rev. A 82, 033804 (2010).
    [Crossref]
  27. F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011).
    [Crossref]
  28. Y.-L. L. Fang, H. Zheng, and H. U. Baranger, “One-dimensional waveguide coupled to multiple qubits: photon-photon correlations,” EPJ Quantum Technol. 1, 3 (2014).
    [Crossref]
  29. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovi, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
    [Crossref]
  30. A. F. Van Loo, A. Fedorov, K. Lalumire, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
    [Crossref]
  31. J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
    [Crossref]
  32. M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
    [Crossref]
  33. T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuleti, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
    [Crossref]
  34. Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
    [Crossref]
  35. N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
    [Crossref]
  36. N. Trautmann and G. Alber, “Dissipation-enabled efficient excitation transfer from a single photon to a single quantum emitter,” Phys. Rev. A 93, 053807 (2016).
    [Crossref]
  37. G. Calajó, Y.-L. L. Fang, H. U. Baranger, and F. Ciccarello, “Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback,” Phys. Rev. Lett. 122, 073601 (2019).
    [Crossref]

2019 (1)

G. Calajó, Y.-L. L. Fang, H. U. Baranger, and F. Ciccarello, “Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback,” Phys. Rev. Lett. 122, 073601 (2019).
[Crossref]

2018 (1)

A. Doeleman, H. M. Monticone, F. den Hollander, W. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

2017 (3)

P. Fong and C. Law, “Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array,” Phys. Rev. A 96, 023842 (2017).
[Crossref]

D. Roy, C. M. Wilson, and O. Firstenberg, “Colloquium: strongly interacting photons in one-dimensional continuum,” Rev. Mod. Phys. 89, 021001 (2017).
[Crossref]

Y.-L. L. Fang and H. U. Baranger, “Multiple emitters in a waveguide: nonreciprocity and correlated photons at perfect elastic transmission,” Phys. Rev. A 96, 013842 (2017).
[Crossref]

2016 (4)

T. Shi, Y.-H. Wu, A. González-Tudela, and J. I. Cirac, “Bound states in boson impurity models,” Phys. Rev. X 6, 021027 (2016).
[Crossref]

P. Facchi, M. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94, 043839 (2016).
[Crossref]

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mat. 1, 16048 (2016).
[Crossref]

N. Trautmann and G. Alber, “Dissipation-enabled efficient excitation transfer from a single photon to a single quantum emitter,” Phys. Rev. A 93, 053807 (2016).
[Crossref]

2015 (4)

S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
[Crossref]

S. Lannebère and M. G. Silveirinha, “Optical meta-atom for localization of light with quantized energy,” Nat. Commun. 6, 8766 (2015).
[Crossref]

E. Bulgakov, K. Pichugin, and A. Sadreev, “All-optical light storage in bound states in the continuum and release by demand,” Opt. Express 23, 22520–22531 (2015).
[Crossref]

N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
[Crossref]

2014 (6)

Y.-L. L. Fang, H. Zheng, and H. U. Baranger, “One-dimensional waveguide coupled to multiple qubits: photon-photon correlations,” EPJ Quantum Technol. 1, 3 (2014).
[Crossref]

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuleti, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

F. Monticone and A. Alu, “Embedded photonic eigenvalues in 3d nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Robust bound state in the continuum in a nonlinear microcavity embedded in a photonic crystal waveguide,” Opt. Lett. 39, 5212–5215 (2014).
[Crossref]

2013 (5)

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref]

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

A. F. Van Loo, A. Fedorov, K. Lalumire, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

2012 (1)

J. Johansson, P. Nation, and F. Nori, “Qutip: an open-source python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012).
[Crossref]

2011 (2)

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011).
[Crossref]

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

2010 (2)

E. Rephaeli, J. T. Shen, and S. Fan, “Full inversion of a two-level atom with a single-photon pulse in one-dimensional geometries,” Phys. Rev. A 82, 033804 (2010).
[Crossref]

S. Fan, Ş. E. Kocabaş, and J.-T. Shen, “Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010).
[Crossref]

2009 (2)

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[Crossref]

2008 (1)

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B 78, 075105 (2008).
[Crossref]

2007 (2)

J.-T. Shen and S. Fan, “Strongly correlated multiparticle transport in one dimension through a quantum impurity,” Phys. Rev. A 76, 062709 (2007).
[Crossref]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovi, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[Crossref]

2005 (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

2004 (1)

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

1985 (1)

H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32, 3231–3242 (1985).
[Crossref]

Alber, G.

N. Trautmann and G. Alber, “Dissipation-enabled efficient excitation transfer from a single photon to a single quantum emitter,” Phys. Rev. A 93, 053807 (2016).
[Crossref]

Allman, M. S.

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

Alu, A.

F. Monticone and A. Alu, “Embedded photonic eigenvalues in 3d nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
[Crossref]

Alù, W.

A. Doeleman, H. M. Monticone, F. den Hollander, W. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

Andersson, E.

S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
[Crossref]

Arcari, M.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Aumentado, J.

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

Baranger, H. U.

G. Calajó, Y.-L. L. Fang, H. U. Baranger, and F. Ciccarello, “Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback,” Phys. Rev. Lett. 122, 073601 (2019).
[Crossref]

Y.-L. L. Fang and H. U. Baranger, “Multiple emitters in a waveguide: nonreciprocity and correlated photons at perfect elastic transmission,” Phys. Rev. A 96, 013842 (2017).
[Crossref]

Y.-L. L. Fang, H. Zheng, and H. U. Baranger, “One-dimensional waveguide coupled to multiple qubits: photon-photon correlations,” EPJ Quantum Technol. 1, 3 (2014).
[Crossref]

Barends, R.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Blais, A.

A. F. Van Loo, A. Fedorov, K. Lalumire, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

Boitier, F.

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011).
[Crossref]

Bulgakov, E.

Bulgakov, E. N.

E. N. Bulgakov and A. F. Sadreev, “Robust bound state in the continuum in a nonlinear microcavity embedded in a photonic crystal waveguide,” Opt. Lett. 39, 5212–5215 (2014).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B 78, 075105 (2008).
[Crossref]

Calajó, G.

G. Calajó, Y.-L. L. Fang, H. U. Baranger, and F. Ciccarello, “Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback,” Phys. Rev. Lett. 122, 073601 (2019).
[Crossref]

Chen, Y.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Choudhury, D.

S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
[Crossref]

Chua, S.-L.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Cicak, K.

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

Ciccarello, F.

G. Calajó, Y.-L. L. Fang, H. U. Baranger, and F. Ciccarello, “Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback,” Phys. Rev. Lett. 122, 073601 (2019).
[Crossref]

Cirac, J. I.

T. Shi, Y.-H. Wu, A. González-Tudela, and J. I. Cirac, “Bound states in boson impurity models,” Phys. Rev. X 6, 021027 (2016).
[Crossref]

Cleland, A. N.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Corrielli, G.

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref]

Crespi, A.

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref]

Da Silva, F.

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

de Leon, N. P.

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuleti, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Delaye, P.

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011).
[Crossref]

Della Valle, G.

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref]

den Hollander, F.

A. Doeleman, H. M. Monticone, F. den Hollander, W. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

Doeleman, A.

A. Doeleman, H. M. Monticone, F. den Hollander, W. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

Dreisow, F.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Dubreuil, N.

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011).
[Crossref]

Englund, D.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovi, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[Crossref]

Fabre, C.

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011).
[Crossref]

Facchi, P.

P. Facchi, M. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94, 043839 (2016).
[Crossref]

Fan, S.

E. Rephaeli, J. T. Shen, and S. Fan, “Full inversion of a two-level atom with a single-photon pulse in one-dimensional geometries,” Phys. Rev. A 82, 033804 (2010).
[Crossref]

S. Fan, Ş. E. Kocabaş, and J.-T. Shen, “Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010).
[Crossref]

J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[Crossref]

J.-T. Shen and S. Fan, “Strongly correlated multiparticle transport in one dimension through a quantum impurity,” Phys. Rev. A 76, 062709 (2007).
[Crossref]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Fang, Y.-L. L.

G. Calajó, Y.-L. L. Fang, H. U. Baranger, and F. Ciccarello, “Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback,” Phys. Rev. Lett. 122, 073601 (2019).
[Crossref]

Y.-L. L. Fang and H. U. Baranger, “Multiple emitters in a waveguide: nonreciprocity and correlated photons at perfect elastic transmission,” Phys. Rev. A 96, 013842 (2017).
[Crossref]

Y.-L. L. Fang, H. Zheng, and H. U. Baranger, “One-dimensional waveguide coupled to multiple qubits: photon-photon correlations,” EPJ Quantum Technol. 1, 3 (2014).
[Crossref]

Faraon, A.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovi, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[Crossref]

Fedorov, A.

A. F. Van Loo, A. Fedorov, K. Lalumire, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

Firstenberg, O.

D. Roy, C. M. Wilson, and O. Firstenberg, “Colloquium: strongly interacting photons in one-dimensional continuum,” Rev. Mod. Phys. 89, 021001 (2017).
[Crossref]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Fong, P.

P. Fong and C. Law, “Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array,” Phys. Rev. A 96, 023842 (2017).
[Crossref]

Friedrich, H.

H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32, 3231–3242 (1985).
[Crossref]

Fushman, I.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovi, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[Crossref]

Godard, A.

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011).
[Crossref]

Goldman, N.

S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
[Crossref]

González-Tudela, A.

T. Shi, Y.-H. Wu, A. González-Tudela, and J. I. Cirac, “Bound states in boson impurity models,” Phys. Rev. X 6, 021027 (2016).
[Crossref]

Hansen, S. L.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Hberg, P.

S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
[Crossref]

Heinrich, M.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Hsu, C. W.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mat. 1, 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Javadi, A.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mat. 1, 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Johansson, J.

J. Johansson, P. Nation, and F. Nori, “Qutip: an open-source python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012).
[Crossref]

Johnson, S. G.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Kalb, N.

N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
[Crossref]

Keil, R.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Kelly, J.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Kim, M.

P. Facchi, M. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94, 043839 (2016).
[Crossref]

Kivshar, Y. S.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Kocabas, S. E.

S. Fan, Ş. E. Kocabaş, and J.-T. Shen, “Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010).
[Crossref]

Koenderink, A. F.

A. Doeleman, H. M. Monticone, F. den Hollander, W. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

Korotkov, A. N.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Lalumire, K.

A. F. Van Loo, A. Fedorov, K. Lalumire, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

Lannebère, S.

S. Lannebère and M. G. Silveirinha, “Optical meta-atom for localization of light with quantized energy,” Nat. Commun. 6, 8766 (2015).
[Crossref]

Law, C.

P. Fong and C. Law, “Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array,” Phys. Rev. A 96, 023842 (2017).
[Crossref]

Lecocq, F.

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

Lee, E. H.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Lee, J.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Liu, J.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Liu, L.

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuleti, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Lodahl, P.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Longhi, S.

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref]

Lucero, E.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Lukin, M. D.

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuleti, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Lvovsky, A. I.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Mahmoodian, S.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Mariantoni, M.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Martinis, J. M.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Megrant, A.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Miroshnichenko, A. E.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Monticone, F.

F. Monticone and A. Alu, “Embedded photonic eigenvalues in 3d nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
[Crossref]

Monticone, H. M.

A. Doeleman, H. M. Monticone, F. den Hollander, W. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

Mukherjee, S.

S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
[Crossref]

Nation, P.

J. Johansson, P. Nation, and F. Nori, “Qutip: an open-source python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012).
[Crossref]

Neill, C.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Nolte, S.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Nori, F.

J. Johansson, P. Nation, and F. Nori, “Qutip: an open-source python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012).
[Crossref]

O’Malley, P.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Osellame, R.

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref]

Pascazio, S.

P. Facchi, M. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94, 043839 (2016).
[Crossref]

Peleg, O.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Pepe, F. V.

P. Facchi, M. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94, 043839 (2016).
[Crossref]

Pichugin, K.

Plotnik, Y.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Pomarico, D.

P. Facchi, M. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94, 043839 (2016).
[Crossref]

Reiserer, A.

N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
[Crossref]

Rempe, G.

N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
[Crossref]

Rephaeli, E.

E. Rephaeli, J. T. Shen, and S. Fan, “Full inversion of a two-level atom with a single-photon pulse in one-dimensional geometries,” Phys. Rev. A 82, 033804 (2010).
[Crossref]

Ritter, S.

N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
[Crossref]

Rosencher, E.

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011).
[Crossref]

Roy, D.

D. Roy, C. M. Wilson, and O. Firstenberg, “Colloquium: strongly interacting photons in one-dimensional continuum,” Rev. Mod. Phys. 89, 021001 (2017).
[Crossref]

Sadreev, A.

Sadreev, A. F.

E. N. Bulgakov and A. F. Sadreev, “Robust bound state in the continuum in a nonlinear microcavity embedded in a photonic crystal waveguide,” Opt. Lett. 39, 5212–5215 (2014).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B 78, 075105 (2008).
[Crossref]

Sanders, B. C.

A. F. Van Loo, A. Fedorov, K. Lalumire, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Sank, D.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Segev, M.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Shen, J. T.

E. Rephaeli, J. T. Shen, and S. Fan, “Full inversion of a two-level atom with a single-photon pulse in one-dimensional geometries,” Phys. Rev. A 82, 033804 (2010).
[Crossref]

Shen, J.-T.

S. Fan, Ş. E. Kocabaş, and J.-T. Shen, “Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010).
[Crossref]

J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[Crossref]

J.-T. Shen and S. Fan, “Strongly correlated multiparticle transport in one dimension through a quantum impurity,” Phys. Rev. A 76, 062709 (2007).
[Crossref]

Shi, T.

T. Shi, Y.-H. Wu, A. González-Tudela, and J. I. Cirac, “Bound states in boson impurity models,” Phys. Rev. X 6, 021027 (2016).
[Crossref]

Silveirinha, M. G.

S. Lannebère and M. G. Silveirinha, “Optical meta-atom for localization of light with quantized energy,” Nat. Commun. 6, 8766 (2015).
[Crossref]

Simmonds, R. W.

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

Sirois, A.

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

Sllner, I.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Soljacic, M.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mat. 1, 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Song, J. D.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Spracklen, A.

S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
[Crossref]

Stobbe, S.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Stone, A. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mat. 1, 16048 (2016).
[Crossref]

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Sukhorukov, A. A.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Szameit, A.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

Teufel, J.

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

Thompson, J. D.

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuleti, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Thomson, R. R.

S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
[Crossref]

Thyrrestrup, H.

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Tiecke, T.

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuleti, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Tittel, W.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Trautmann, N.

N. Trautmann and G. Alber, “Dissipation-enabled efficient excitation transfer from a single photon to a single quantum emitter,” Phys. Rev. A 93, 053807 (2016).
[Crossref]

Tufarelli, T.

P. Facchi, M. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94, 043839 (2016).
[Crossref]

Tünnermann, A.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Vainsencher, A.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Van Loo, A. F.

A. F. Van Loo, A. Fedorov, K. Lalumire, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

Vukovi, J.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovi, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[Crossref]

Vuleti, V.

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuleti, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Waks, E.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovi, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[Crossref]

Wallraff, A.

A. F. Van Loo, A. Fedorov, K. Lalumire, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

Wang, Z.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Weimann, S.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Wenner, J.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

White, T.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Whittaker, J. D.

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

Wilson, C. M.

D. Roy, C. M. Wilson, and O. Firstenberg, “Colloquium: strongly interacting photons in one-dimensional continuum,” Rev. Mod. Phys. 89, 021001 (2017).
[Crossref]

Wintgen, D.

H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32, 3231–3242 (1985).
[Crossref]

Wu, Y.-H.

T. Shi, Y.-H. Wu, A. González-Tudela, and J. I. Cirac, “Bound states in boson impurity models,” Phys. Rev. X 6, 021027 (2016).
[Crossref]

Xu, Y.

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

Yanik, M. F.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

Yin, Y.

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

Zhen, B.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mat. 1, 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

Zheng, H.

Y.-L. L. Fang, H. Zheng, and H. U. Baranger, “One-dimensional waveguide coupled to multiple qubits: photon-photon correlations,” EPJ Quantum Technol. 1, 3 (2014).
[Crossref]

Appl. Phys. Lett. (1)

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vukovi, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90, 073102 (2007).
[Crossref]

Comput. Phys. Commun. (1)

J. Johansson, P. Nation, and F. Nori, “Qutip: an open-source python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012).
[Crossref]

EPJ Quantum Technol. (1)

Y.-L. L. Fang, H. Zheng, and H. U. Baranger, “One-dimensional waveguide coupled to multiple qubits: photon-photon correlations,” EPJ Quantum Technol. 1, 3 (2014).
[Crossref]

Nat. Commun. (2)

F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011).
[Crossref]

S. Lannebère and M. G. Silveirinha, “Optical meta-atom for localization of light with quantized energy,” Nat. Commun. 6, 8766 (2015).
[Crossref]

Nat. Photonics (2)

A. Doeleman, H. M. Monticone, F. den Hollander, W. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397–401 (2018).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Nat. Rev. Mat. (1)

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mat. 1, 16048 (2016).
[Crossref]

Nature (2)

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref]

T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuleti, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241–244 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (9)

P. Fong and C. Law, “Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array,” Phys. Rev. A 96, 023842 (2017).
[Crossref]

J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[Crossref]

H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32, 3231–3242 (1985).
[Crossref]

N. Trautmann and G. Alber, “Dissipation-enabled efficient excitation transfer from a single photon to a single quantum emitter,” Phys. Rev. A 93, 053807 (2016).
[Crossref]

S. Fan, Ş. E. Kocabaş, and J.-T. Shen, “Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit,” Phys. Rev. A 82, 063821 (2010).
[Crossref]

J.-T. Shen and S. Fan, “Strongly correlated multiparticle transport in one dimension through a quantum impurity,” Phys. Rev. A 76, 062709 (2007).
[Crossref]

E. Rephaeli, J. T. Shen, and S. Fan, “Full inversion of a two-level atom with a single-photon pulse in one-dimensional geometries,” Phys. Rev. A 82, 033804 (2010).
[Crossref]

P. Facchi, M. Kim, S. Pascazio, F. V. Pepe, D. Pomarico, and T. Tufarelli, “Bound states and entanglement generation in waveguide quantum electrodynamics,” Phys. Rev. A 94, 043839 (2016).
[Crossref]

Y.-L. L. Fang and H. U. Baranger, “Multiple emitters in a waveguide: nonreciprocity and correlated photons at perfect elastic transmission,” Phys. Rev. A 96, 013842 (2017).
[Crossref]

Phys. Rev. B (2)

J. D. Whittaker, F. Da Silva, M. S. Allman, F. Lecocq, K. Cicak, A. Sirois, J. Teufel, J. Aumentado, and R. W. Simmonds, “Tunable-cavity QED with phase qubits,” Phys. Rev. B 90, 024513 (2014).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B 78, 075105 (2008).
[Crossref]

Phys. Rev. Lett. (10)

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref]

S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013).
[Crossref]

G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, “Observation of surface states with algebraic localization,” Phys. Rev. Lett. 111, 220403 (2013).
[Crossref]

F. Monticone and A. Alu, “Embedded photonic eigenvalues in 3d nanostructures,” Phys. Rev. Lett. 112, 213903 (2014).
[Crossref]

S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Hberg, E. Andersson, and R. R. Thomson, “Observation of a localized flat-band state in a photonic LIEB lattice,” Phys. Rev. Lett. 114, 245504 (2015).
[Crossref]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[Crossref]

M. Arcari, I. Sllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

G. Calajó, Y.-L. L. Fang, H. U. Baranger, and F. Ciccarello, “Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback,” Phys. Rev. Lett. 122, 073601 (2019).
[Crossref]

Y. Yin, Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states,” Phys. Rev. Lett. 110, 107001 (2013).
[Crossref]

N. Kalb, A. Reiserer, S. Ritter, and G. Rempe, “Heralded storage of a photonic quantum bit in a single atom,” Phys. Rev. Lett. 114, 220501 (2015).
[Crossref]

Phys. Rev. X (1)

T. Shi, Y.-H. Wu, A. González-Tudela, and J. I. Cirac, “Bound states in boson impurity models,” Phys. Rev. X 6, 021027 (2016).
[Crossref]

Rev. Mod. Phys. (2)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

D. Roy, C. M. Wilson, and O. Firstenberg, “Colloquium: strongly interacting photons in one-dimensional continuum,” Rev. Mod. Phys. 89, 021001 (2017).
[Crossref]

Science (1)

A. F. Van Loo, A. Fedorov, K. Lalumire, B. C. Sanders, A. Blais, and A. Wallraff, “Photon-mediated interactions between distant artificial atoms,” Science 342, 1494–1496 (2013).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1       Supplement 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Embedded eigenstates due to destructive interference in classical and quantum systems. (a) Two optical cavities are mutually coupled and interact with a single-mode waveguide. An EE is supported when Eq. (1) holds. (b) Time evolution of the cavity intensities (red and green lines), upon a Gaussian pulse excitation (blue shaded area). Parameters: ω 2 = 0.96 ω 1 , V 1 = 0.1 v g ω 1 , V 2 = 0.5 V 1 . (c) Same as in (a), but with cavity 1 replaced by a two-level system. (d) Time evolution of the average cavity population (red line), atom occupation probability (green line), and EE occupation probability (black dashed line) upon a coherent pulsed excitation containing average photon numbers N = 1 , 2 and 4. System and pulse parameters are the same as (b), with 1 A and 1 C .
Fig. 2.
Fig. 2. (a) Trapping process: a two-photon Gaussian state impinges on the system, partially exciting the EE. The curves show the occupation probability of the different 1- and 2-excitation states of the atom-cavity system (see text for details). (b) Release process: a single-photon Gaussian state impinges on the excited EE. System parameters in (a), (b) are as in Fig. 1(d), and σ = 1 / Γ , k = ω B ( 1 ) . (c), (d) Excitation probability of the EE for t + versus (c)  V C / V A and σ (for k = ω B ( 1 ) ) and (d)  k and σ (for V C / V A = 0.5 ). All other parameters are as in (a), (b). The black horizontal stripe in (c) corresponds to the values of V C / V A that result in J > 0.1 ( ω A + ω C ) / 2 . Horizontal lines in (d) indicate the frequencies of single- and two-excitation states.
Fig. 3.
Fig. 3. (a) Two-photon final state obtained when the EE is released by a single-photon Gaussian packet (see text for details). (b) Evolution of the cavity–atom system when the state in (a) is used as the initial two-photon state. The curves show the occupation probability of the different 1- and 2-excitation states of the atom–cavity system. Note that P A C ( t ) and P 2 C ( t ) have been rescaled by a factor 3.
Fig. 4.
Fig. 4. (a) Cavity population upon two-photon Gaussian excitation for the atom–cavity system set in the EE condition (solid lines) and for a single cavity (dashed lines). In both cases, the cavity has an additional decay rate Γ C . The system and excitation parameters are as in Fig. 2(a). (b) A different implementation based on two coupled cavities and atom that support two single-photon EEs. (c) Dynamics of the system shown in (b), set in the EE condition (6), for a coherent pulsed excitation with average photon number N = 2. Red and green lines show the average number of photons in each cavity, while the blue and black lines show the occupation probability of the atom and the two EEs. Parameters are as in Fig. 1(b), and J = 0.003 ω 1 , ω A = ω 1 .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( ω 1 ω 2 ) V 1 V 2 = J ( V 1 2 V 2 2 )
H ^ = H ^ A C + + d k ω k c ^ k c ^ k + + d k [ c ^ k ( V c a ^ + V A σ ^ ) + h.c. ] ,
ρ ˙ = i [ H ^ A C + H ^ i n , ρ ] + L ρ L { L L , ρ } ,
H ^ i n = 2 π v g [ ( V A σ ^ + V C a ^ ) ( C R , I N ( t ) + C L , I N ( t ) ) + h.c. ]
H ^ = H ^ A C + H ^ WG + 2 π d x δ ( x ) { [ c ^ R ( x ) + c ^ L ( x ) ] ( V c a ^ + V A σ ^ ) + h.c. } ,
( ω 1 ω 2 ) V 1 V 2 = J ( V 1 2 V 2 2 ) + V 1 2 V 2 g 2 V 2 J + V 1 ( ω A ω 2 ) .

Metrics