Abstract

Coherent ultraviolet light has many uses, for example, in the study of molecular species relevant in biology and chemistry. Very few, if any, laser materials offer ultraviolet transparency along with damage-free operation at high-photon energies and laser power. Here we report efficient generation of narrowband deep and vacuum ultraviolet light using hydrogen-filled hollow-core photonic crystal fiber. Pumping above the stimulated Raman threshold at 532 nm, coherent molecular vibrations are excited in the gas, permitting thresholdless wavelength conversion in the ultraviolet with efficiencies close to 60%. The system is uniquely pressure tunable, allows spatial structuring of the out-coupled radiation, and shows excellent performance in the vacuum ultraviolet. As the underlying scattering process is effectively linear, our approach can also in principle operate at the single-photon level, when all other alternatives are extremely inefficient.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

The majority of molecular species relevant in biology, photochemistry, and medicine, such as proteins and their building blocks the amino-acids [1], have narrowband outer-shell electronic transitions in the vacuum (VUV) and deep ultraviolet (DUV), i.e., from 100nm to 300nm. Spectroscopy at these wavelengths requires tunable, compact, and spectrally narrow UV light sources. Excimer lasers provide direct UV lasing transitions but are fixed wavelength and inefficient and deliver poor beam quality. Although sum-frequency generation in nonlinear crystals provides a common alternative [2], to be efficient and tunable, it requires stringent phase matching over a broad range of wavelengths (almost impossible to realize in collinear geometries) along with high pump intensities and good spatial overlap between the interacting fields. Moreover, the wavelength tunability of such systems is in general restricted because very few, if any, nonlinear crystals provide low dispersion, high transparency, and resistance to photo-induced damage in the DUV–VUV. Although these issues have to some degree been addressed by exploiting nonlinear interactions in gas cells [36], these techniques often require the use of ultrashort laser pulses with high peak intensities to generate broadband spectrally uniform UV light and to compensate for the relatively short interaction lengths. Although using gas-filled wide-bore capillaries relaxes these requirements [7], this requires low gas pressures to achieve phase matching in parametric interactions. Furthermore, to the best of our knowledge, most approaches reported in the literature are not suitable for generation or efficient frequency conversion of spectrally narrow DUV–VUV signals with high spectral power density.

Gas-filled hollow-core photonic crystal fiber (HC-PCF), that guides light by anti-resonant reflection, has emerged as a promising alternative that is free from these restrictions. In addition to providing guidance from the VUV to the mid-infrared [8,9], these fibers offer ultralong light–matter interaction lengths in a hollow channel only few tens of micrometers wide, together with pressure-tunable dispersion [9]. This reduces the threshold for stimulated Raman scattering (SRS) by orders of magnitude [10], paving the way for multi-octave Raman combs [11] reaching into the VUV [12], and broadband frequency conversion in the near infrared [13].

In this Letter, we report efficient thresholdless frequency conversion of arbitrary, narrowband DUV signals in hydrogen [1214], which has the highest Raman gain and frequency shift (125THz for the Q(1) vibrational transition) of any gas and is transparent down to the VUV. We used a 40-cm-long kagomé-type HC-PCF (“kagomé-PCF”) with a core 22μm in diameter. When gas filled, the fiber was pumped with 3.2ns pulses at 532 nm, resulting via SRS in generation of a noise-seeded Stokes signal at 683 nm (note that rotational SRS can be disregarded; see Supplement 1). The beat-note created by these two optical fields drives a coherence wave (Cw) of molecular oscillations that, within their coherence lifetime, can be used for thresholdless phase-matched frequency up- or down-conversion of narrowband UV pulses of different modal content and frequency. This is possible because of the special frequency dependence of the propagation constant of the modes guided in gas-filled kagomé-PCF.

Such dispersion curves are displayed in Fig. 1(a) for the fundamental Gaussian-like mode of the kagomé-PCF filled with 4 bar and 5.3 bar hydrogen (see Supplement 1). The arrows mark the Cw four vectors, the vertical projection being the Raman frequency shift and the horizontal projection the Cw wavevector βCw=βPβS, where βP and βS are the propagation constants of the pump and Stokes modes. This Cw can be used for thresholdless up-shifting of a DUV mixing pulse at 266 nm (propagation constant βPm) to its anti-Stokes band (239 nm, propagation constant βASm) and to greatly lower the threshold for down-shifting to the Stokes band (299 nm, propagation constant βSm), provided the dephasing rates given by ΔϑAS=|βASmβPmβCw| and ΔϑS=|βPmβSmβCw| are such that the dephasing lengths π/ΔϑAS and π/ΔϑS are longer than the fiber length.

 

Fig. 1. (a) Dispersion curves for the fundamental mode of the kagomé-PCF filled with H2 at two different pressures. For simplicity, we neglect the dispersive effect of loss bands caused by the resonant coupling between the core mode and modes in the glass walls surrounding the core. The subtle features of the curves are magnified by plotting frequency against (βrefβ), where βref is a linear function of frequency, chosen such that (βrefβ) is zero at 1650 THz. The arrows represent the coherence waves excited by the beating of the green pump and its Stokes band at 683 nm. (b) Scanning electron micrographs of the kagomé-PCF microstructure.

Download Full Size | PPT Slide | PDF

Figure 1(a) shows that these dephasing rates can be made vanishingly small (i.e., Δϑi0) for collinear generation of anti-Stokes and Stokes signals at 4 bar and 5.3 bar, illustrating the exquisite pressure tunability of these conversion processes. Scanning electron microscopy of the fiber cross section [Fig. 1(b)] revealed that the core-wall thickness was 96nm, resulting in a loss-inducing anti-crossing [15] at 225±5nm. Away from this loss band, the fiber has low loss and spectrally flat dispersion. The 22 μm core diameter ensures that a dispersion landscape optimal for in-fiber SRS dynamics in the UV is achieved at pressures well above 1 bar, something that is impossible to achieve in wide-bore capillaries or bulk gas cells [57], although other schemes involving nonlinear dynamics in noble gases pumped by ultrashort pulses might perform optimally at higher pressures [16].

The experimental setup is sketched in Fig. 2(a). The linearly polarized pump pulses and DUV mixing pulses (duration 3ns) were co-launched into the fundamental mode of the fiber (see Supplement 1 for further details). The mixing pulse energy was kept well below the SRS threshold, ensuring that the dynamics were driven purely by the pre-existing molecular coherence. Since we operated in the “transient” SRS regime [17], the molecular coherence built up under the pump pulse envelope and featured a typical lifetime of 1ns in H2 at low pressure. As a result, the efficiency could be optimized by tuning the mixing pulse delay; a value of 1ns was optimal. The gas pressure was regulated in fine steps (50mbar) and the generated UV bands spatially separated using a prism. This facilitated background-free identification of the wavelengths of the individual Raman lines (using an intensity-calibrated silicon CCD spectrometer) as well as measurement of their individual powers with a calibrated photodiode.

 

Fig. 2. (a) Schematic of the experimental setup. DM, dichroic mirror. (b) Dispersed spectra cast on a screen for three different cases: mixing signal only (upper); green pump only (middle) along with its Raman bands; and co-launched mixing signal and green pump (lower). The spectral sidebands originating from the green pump and the mixing signal, both indicated along with their wavelengths in nanometers obtained using a calibrated spectrometer, are easily distinguishable.

Download Full Size | PPT Slide | PDF

Figure 2(b) shows the spectrum of the dual comb when 27μJ pump pulse energy and 70nJ DUV pulse energy were launched into the fiber filled with 6 bar of H2. With the 532 nm light blocked, no Raman sidebands of the mixing signal were observed, as expected [see Fig. 2(b)]. The mixing beam energy was chosen so that all the bands could be detected with the equipment available. The technique should, however, work down to the single-photon limit since the underlying UV scattering process is effectively linear, i.e., energy independent, as we will discuss below.

In the following, we use Mm to denote the energy in the m-th sideband of the mixing signal at the fiber output (m<0 for Stokes bands) and Pm the energy in the m-th sideband of the green pump at the fiber output. Figure 3(a) shows the pressure dependence of the overall conversion efficiency to the Mm sidebands, quantified by ηM=(1M0/M00)×100%, where M00 is the out-coupled energy of the mixing signal with the green pump light switched off. Note that, apart from the energy-independent fiber loss, the only mechanism responsible for the depletion of the mixing signal in the presence of pump light is the generation of further frequency-shifted mixing sidebands Mm via SRS. The launched pump energy was 10μJ, and the energy of the 266 nm pulse alone, measured at the fiber output, was 100nJ. Several local maxima in ηM are apparent in Fig. 3(a), reaching peak values greater than 45%. We attribute the complex pressure dependence of ηM, which is particularly noticeable at higher pump energies (see Supplement 1), to several factors. First, phase matching to M1 and M1 is satisfied at different pressures [see Fig. 1(a)]. Second, the scattering process is enhanced at higher pressures through increased Raman gain [18]. Finally, as the Raman gain increases, the first-order sidebands become stronger, resulting in conversion to higher-order sidebands. Moreover, higher pump energies resulted in higher conversion efficiencies; in the experiment, we obtained ηM60% for 27μJ of green pump energy (see Fig. 4). All these results are corroborated by numerical solutions of multimode Maxwell–Bloch equations [13] displayed in Fig. 3(a) lower (see Supplement 1 for details).

 

Fig. 3. (a) Experimental (upper) and numerically simulated (lower) pressure dependence of (a) overall conversion efficiency to sidebands, ηM, and (b) M1 (239 nm) and M1 (299 nm). The inset in the lower part of (b) shows the fundamental and HOM content of the M1 and M1 signals at low pressure. The simulations suggest that the mixing signal was launched in a mixture of modes, since the best agreement with the experiments was obtained by considering an initial 70% content of the fundamental mode and 30% content of the two-lobed HOM.

Download Full Size | PPT Slide | PDF

 

Fig. 4. Conversion efficiency of the 266 nm mixing beam at four different pressures for increasing green pump energies. Although the maximum attainable efficiency was not reached (i.e., the curves are not yet saturated), experimental values around 60% can readily be achieved at the highest pump energies. The slight drop in efficiency observed at moderate energies is likely to be caused by the complex phase relationship between the coherence waves and the interacting UV signals, which leads to dynamical exchange of energy between the mixing pulse and its sidebands during propagation along the fiber (see Fig. S3 in Supplement 1 for an example).

Download Full Size | PPT Slide | PDF

The pressure dependence of the M1 and M1 signals, normalized to their peak values, is shown in Fig. 3(b). There is remarkably good agreement between theory and experiment. Figure 1(a) shows that both M1 and M1 peak close to their predicted phase-matching pressures (the double-humped structure around 5.3 bar in M1 arises from the dynamics of the conversion process). When M1 is highest, M1 is very weak and vice-versa, demonstrating full selectivity of the direction of energy exchange between M0 and the coherence wave. The dips in signal at 3.5bar for M1 and 6 bar for M1 are caused by conversion to the next-order sidebands M2 (218 nm) and M2 (342 nm) (see Supplement 1).

The weak signals measured at low gas pressure originate from the presence of higher-order modes (HOMs), as seen in the simulations [inset in Fig. 3(b)] and confirmed by the far-field images in Fig. 5(a). These frequency-shifted HOMs result from some HOM content in the mixing signal M00, together with efficient phase-matched transitions to ultraviolet HOMs via intramodal coherence waves [Fig. 5(b)]. Since the UV wavelength conversion is mode selective, it can be tailored to generate specific DUV-VUV beam profiles for different applications.

 

Fig. 5. (a) Far-field transverse intensity profiles of the M1 and M1 beams, showing their emergence in the fundamental (right) and two-lobed or ring-like HOM (left). The numbers beside the pictures mark the corresponding pressures in Fig. 3(b). (b) Dispersion curves for the fundamental mode and HOM when filled with 2.9 bar of H2. At this pressure, phase matching occurs between the M0 and M1 signals, both being in the HOM.

Download Full Size | PPT Slide | PDF

To demonstrate that the conversion process is thresholdless, we recorded ηM as a function of M00 at 4 bar [see Fig. 6(a)], revealing that ηM is almost independent of M00, and that the scattering is effectively linear. This means that the system should in theory be efficient down to the single-photon limit. In practice, the lowest values of M00 that could be measured in the experiments were 5nJ, limited by the detector sensitivity. At high DUV energies, however, the process becomes nonlinear because the mixing beam starts to generate its own molecular coherence via SRS.

 

Fig. 6. (a) Overall sideband conversion efficiency ηM plotted against mixing pulse energy (logarithmic scale) for a launched green energy of 12.6 μJ. (b) Pressure dependence of the M3 signal (199 nm) and (c) M4 signal (184 nm). The launched green energy was 29μJ and M001.4μJ. The far-field spatial profiles of the mixing beam sidebands are shown in the insets.

Download Full Size | PPT Slide | PDF

As suggested above, the unique guiding properties of gas-filled kagomé-PCF means that frequency conversion will also work in the VUV. Figures 6(b) and 6(c) show the pressure dependence of the M3 (199 nm) and M4 (184 nm) signals. At 2.9bar pressure, the M3 signal reaches 94nJ [see Fig. 6(b)], corresponding to a conversion efficiency of 6.6% from the M00 signal. It is likely that the efficiency can be further increased by optimizing the system—far from a trivial task, given the onset of the M4 signal [lower peak in Fig. 6(c)] and the complex spatio-temporal evolution of the coherence at high pump energies. For example, we found that by reducing the launched pump energy to 20μJ, the conversion efficiency to the M3 signal rose to 9.2% (see Supplement 1). At 2.4bar, 8nJ of VUV light were generated in the M4 sideband at 184 nm, corresponding to 0.6% conversion efficiency [see Fig. 6(c)]. It is remarkable that, apart from the low-pressure region in Fig. 6(b), the modal selectivity of the system makes it possible to generate VUV radiation in a pure fundamental mode with a smooth Gaussian-like profile [see insets in Figs. 6(b) and 6(c)], something that was not possible in previous work on noise-seeded Raman combs [12].

In conclusion, long-lived molecular coherence excited in the gas-filled core of a HC-PCF enables highly efficient, pressure-tunable frequency conversion of arbitrary signals in the DUV and VUV. The modal content of the DUV–VUV sidebands can be controlled to a great degree, making it possible to generate both Gaussian-like and spatially structured beams. We anticipate that, with further improvements in the DUV–VUV performance of broadband HC-PCFs, a family of compact, coherent UV light sources with broad discrete spectra will emerge, and might constitute a viable complementary route to other established approaches based on femtosecond laser technology for applications in, for example, generation of arbitrary waveforms [19], tailored attosecond pulse trains [20], and UV frequency combs [21].

 

See Supplement 1 for supporting content.

REFERENCES

1. M. T. Neves-Petersen, G. P. Gajula, and S. B. Petersen, “UV light effects on proteins: from photochemistry to nanomedicine,” in Molecular Photochemistry, S. Saha, ed. (IntechOpen, 2012).

2. H. Xuan, H. Igarashi, S. Ito, C. Qu, Z. Zhao, and Y. Kobayashi, Appl. Sci. 8, 233 (2018). [CrossRef]  

3. L. Bergé and S. Skupin, Opt. Lett. 33, 750 (2008). [CrossRef]  

4. F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010). [CrossRef]  

5. Y. Mori and T. Imasaka, Appl. Sci. 8, 784 (2018). [CrossRef]  

6. D. Vu, T. N. Nguyen, and T. Imasaka, Opt. Laser Technol. 88, 184 (2017). [CrossRef]  

7. C. G. Durfee III, S. Backus, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 22, 1565 (1997). [CrossRef]  

8. C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, Adv. Opt. Photon. 9, 504 (2017). [CrossRef]  

9. P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014). [CrossRef]  

10. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002). [CrossRef]  

11. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007). [CrossRef]  

12. M. K. Mridha, D. Novoa, S. T. Bauerschmidt, A. Abdolvand, and P. St. J. Russell, Opt. Lett. 41, 2811 (2016). [CrossRef]  

13. S. T. Bauerschmidt, D. Novoa, A. Abdolvand, and P. St. J. Russell, Optica 2, 536 (2015). [CrossRef]  

14. K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, Phys. Rev. Lett. 79, 209 (1997). [CrossRef]  

15. J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993). [CrossRef]  

16. F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010). [CrossRef]  

17. P. Hosseini, D. Novoa, A. Abdolvand, and P. St. J. Russell, Phys. Rev. Lett. 119, 253903 (2017). [CrossRef]  

18. W. K. Bischel and M. J. Dyer, J. Opt. Soc. Am. B 3, 677 (1986). [CrossRef]  

19. H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011). [CrossRef]  

20. K. Yoshii, J. K. Anthony, and M. Katsuragawa, Light: Sci. Appl. 2, e58 (2013). [CrossRef]  

21. G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. M. T. Neves-Petersen, G. P. Gajula, and S. B. Petersen, “UV light effects on proteins: from photochemistry to nanomedicine,” in Molecular Photochemistry, S. Saha, ed. (IntechOpen, 2012).
  2. H. Xuan, H. Igarashi, S. Ito, C. Qu, Z. Zhao, and Y. Kobayashi, Appl. Sci. 8, 233 (2018).
    [Crossref]
  3. L. Bergé and S. Skupin, Opt. Lett. 33, 750 (2008).
    [Crossref]
  4. F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
    [Crossref]
  5. Y. Mori and T. Imasaka, Appl. Sci. 8, 784 (2018).
    [Crossref]
  6. D. Vu, T. N. Nguyen, and T. Imasaka, Opt. Laser Technol. 88, 184 (2017).
    [Crossref]
  7. C. G. Durfee, S. Backus, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 22, 1565 (1997).
    [Crossref]
  8. C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, Adv. Opt. Photon. 9, 504 (2017).
    [Crossref]
  9. P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
    [Crossref]
  10. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
    [Crossref]
  11. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
    [Crossref]
  12. M. K. Mridha, D. Novoa, S. T. Bauerschmidt, A. Abdolvand, and P. St. J. Russell, Opt. Lett. 41, 2811 (2016).
    [Crossref]
  13. S. T. Bauerschmidt, D. Novoa, A. Abdolvand, and P. St. J. Russell, Optica 2, 536 (2015).
    [Crossref]
  14. K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, Phys. Rev. Lett. 79, 209 (1997).
    [Crossref]
  15. J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
    [Crossref]
  16. F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
    [Crossref]
  17. P. Hosseini, D. Novoa, A. Abdolvand, and P. St. J. Russell, Phys. Rev. Lett. 119, 253903 (2017).
    [Crossref]
  18. W. K. Bischel and M. J. Dyer, J. Opt. Soc. Am. B 3, 677 (1986).
    [Crossref]
  19. H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
    [Crossref]
  20. K. Yoshii, J. K. Anthony, and M. Katsuragawa, Light: Sci. Appl. 2, e58 (2013).
    [Crossref]
  21. G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
    [Crossref]

2018 (3)

H. Xuan, H. Igarashi, S. Ito, C. Qu, Z. Zhao, and Y. Kobayashi, Appl. Sci. 8, 233 (2018).
[Crossref]

Y. Mori and T. Imasaka, Appl. Sci. 8, 784 (2018).
[Crossref]

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
[Crossref]

2017 (3)

D. Vu, T. N. Nguyen, and T. Imasaka, Opt. Laser Technol. 88, 184 (2017).
[Crossref]

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, Adv. Opt. Photon. 9, 504 (2017).
[Crossref]

P. Hosseini, D. Novoa, A. Abdolvand, and P. St. J. Russell, Phys. Rev. Lett. 119, 253903 (2017).
[Crossref]

2016 (1)

2015 (1)

2014 (1)

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

2013 (1)

K. Yoshii, J. K. Anthony, and M. Katsuragawa, Light: Sci. Appl. 2, e58 (2013).
[Crossref]

2011 (1)

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

2010 (2)

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
[Crossref]

2008 (1)

2007 (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[Crossref]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[Crossref]

1997 (2)

C. G. Durfee, S. Backus, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 22, 1565 (1997).
[Crossref]

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, Phys. Rev. Lett. 79, 209 (1997).
[Crossref]

1993 (1)

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[Crossref]

1986 (1)

Abdolvand, A.

P. Hosseini, D. Novoa, A. Abdolvand, and P. St. J. Russell, Phys. Rev. Lett. 119, 253903 (2017).
[Crossref]

M. K. Mridha, D. Novoa, S. T. Bauerschmidt, A. Abdolvand, and P. St. J. Russell, Opt. Lett. 41, 2811 (2016).
[Crossref]

S. T. Bauerschmidt, D. Novoa, A. Abdolvand, and P. St. J. Russell, Optica 2, 536 (2015).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Anthony, J. K.

K. Yoshii, J. K. Anthony, and M. Katsuragawa, Light: Sci. Appl. 2, e58 (2013).
[Crossref]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[Crossref]

Archambault, J. L.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[Crossref]

Azzeer, A. M.

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
[Crossref]

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

Backus, S.

Bauerschmidt, S. T.

Benabid, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[Crossref]

Benko, C.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
[Crossref]

Bergé, L.

Bischel, W. K.

Black, R. J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[Crossref]

Bures, J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[Crossref]

Chan, H.-S.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

Chang, W.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Corwin, K. L.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
[Crossref]

Couny, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[Crossref]

Dörre, N.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
[Crossref]

Durfee, C. G.

Dyer, M. J.

Fiess, M.

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

Gajula, G. P.

M. T. Neves-Petersen, G. P. Gajula, and S. B. Petersen, “UV light effects on proteins: from photochemistry to nanomedicine,” in Molecular Photochemistry, S. Saha, ed. (IntechOpen, 2012).

Goulielmakis, E.

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
[Crossref]

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

Graf, U.

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
[Crossref]

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

Hakuta, K.

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, Phys. Rev. Lett. 79, 209 (1997).
[Crossref]

Heyl, C. M.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
[Crossref]

Hölzer, P.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Hosseini, P.

P. Hosseini, D. Novoa, A. Abdolvand, and P. St. J. Russell, Phys. Rev. Lett. 119, 253903 (2017).
[Crossref]

Hsieh, Z.-M.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

Hu, J.

Igarashi, H.

H. Xuan, H. Igarashi, S. Ito, C. Qu, Z. Zhao, and Y. Kobayashi, Appl. Sci. 8, 233 (2018).
[Crossref]

Imasaka, T.

Y. Mori and T. Imasaka, Appl. Sci. 8, 784 (2018).
[Crossref]

D. Vu, T. N. Nguyen, and T. Imasaka, Opt. Laser Technol. 88, 184 (2017).
[Crossref]

Ito, S.

H. Xuan, H. Igarashi, S. Ito, C. Qu, Z. Zhao, and Y. Kobayashi, Appl. Sci. 8, 233 (2018).
[Crossref]

Kapteyn, H. C.

Karpowicz, N.

Katsuragawa, M.

K. Yoshii, J. K. Anthony, and M. Katsuragawa, Light: Sci. Appl. 2, e58 (2013).
[Crossref]

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, Phys. Rev. Lett. 79, 209 (1997).
[Crossref]

Kienberger, R.

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
[Crossref]

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[Crossref]

Kobayashi, Y.

H. Xuan, H. Igarashi, S. Ito, C. Qu, Z. Zhao, and Y. Kobayashi, Appl. Sci. 8, 233 (2018).
[Crossref]

Krausz, F.

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
[Crossref]

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

Kung, A. H.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

Lacroix, S.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[Crossref]

Lai, C.-J.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

Lee, C.-K.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

Li, J. Z.

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, Phys. Rev. Lett. 79, 209 (1997).
[Crossref]

Liang, W.-H.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[Crossref]

Menyuk, C. R.

Mori, Y.

Y. Mori and T. Imasaka, Appl. Sci. 8, 784 (2018).
[Crossref]

Mridha, M. K.

Murnane, M. M.

Neves-Petersen, M. T.

M. T. Neves-Petersen, G. P. Gajula, and S. B. Petersen, “UV light effects on proteins: from photochemistry to nanomedicine,” in Molecular Photochemistry, S. Saha, ed. (IntechOpen, 2012).

Nguyen, T. N.

D. Vu, T. N. Nguyen, and T. Imasaka, Opt. Laser Technol. 88, 184 (2017).
[Crossref]

Novoa, D.

Pan, R.-P.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

Peng, L.-H.

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

Petersen, S. B.

M. T. Neves-Petersen, G. P. Gajula, and S. B. Petersen, “UV light effects on proteins: from photochemistry to nanomedicine,” in Molecular Photochemistry, S. Saha, ed. (IntechOpen, 2012).

Porat, G.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
[Crossref]

Qu, C.

H. Xuan, H. Igarashi, S. Ito, C. Qu, Z. Zhao, and Y. Kobayashi, Appl. Sci. 8, 233 (2018).
[Crossref]

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[Crossref]

Reiter, F.

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
[Crossref]

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[Crossref]

Russell, P. St. J.

P. Hosseini, D. Novoa, A. Abdolvand, and P. St. J. Russell, Phys. Rev. Lett. 119, 253903 (2017).
[Crossref]

M. K. Mridha, D. Novoa, S. T. Bauerschmidt, A. Abdolvand, and P. St. J. Russell, Opt. Lett. 41, 2811 (2016).
[Crossref]

S. T. Bauerschmidt, D. Novoa, A. Abdolvand, and P. St. J. Russell, Optica 2, 536 (2015).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[Crossref]

Schoun, S. B.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
[Crossref]

Schroeder, H.

Schultze, M.

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
[Crossref]

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

Schweinberger, W.

F. Reiter, U. Graf, M. Schultze, W. Schweinberger, H. Schroeder, N. Karpowicz, A. M. Azzeer, R. Kienberger, F. Krausz, and E. Goulielmakis, Opt. Lett. 35, 2248 (2010).
[Crossref]

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

Serebryannikov, E. E.

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

Skupin, S.

Suzuki, M.

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, Phys. Rev. Lett. 79, 209 (1997).
[Crossref]

Travers, J. C.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Vu, D.

D. Vu, T. N. Nguyen, and T. Imasaka, Opt. Laser Technol. 88, 184 (2017).
[Crossref]

Wei, C.

Weiblen, R. J.

Xuan, H.

H. Xuan, H. Igarashi, S. Ito, C. Qu, Z. Zhao, and Y. Kobayashi, Appl. Sci. 8, 233 (2018).
[Crossref]

Ye, J.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
[Crossref]

Yoshii, K.

K. Yoshii, J. K. Anthony, and M. Katsuragawa, Light: Sci. Appl. 2, e58 (2013).
[Crossref]

Zhao, Z.

H. Xuan, H. Igarashi, S. Ito, C. Qu, Z. Zhao, and Y. Kobayashi, Appl. Sci. 8, 233 (2018).
[Crossref]

Zheltikov, A. M.

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Sci. (2)

H. Xuan, H. Igarashi, S. Ito, C. Qu, Z. Zhao, and Y. Kobayashi, Appl. Sci. 8, 233 (2018).
[Crossref]

Y. Mori and T. Imasaka, Appl. Sci. 8, 784 (2018).
[Crossref]

J. Lightwave Technol. (1)

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, J. Lightwave Technol. 11, 416 (1993).
[Crossref]

J. Opt. Soc. Am. B (1)

Light: Sci. Appl. (1)

K. Yoshii, J. K. Anthony, and M. Katsuragawa, Light: Sci. Appl. 2, e58 (2013).
[Crossref]

Nat. Photonics (2)

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dörre, K. L. Corwin, and J. Ye, Nat. Photonics 12, 387 (2018).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Opt. Laser Technol. (1)

D. Vu, T. N. Nguyen, and T. Imasaka, Opt. Laser Technol. 88, 184 (2017).
[Crossref]

Opt. Lett. (4)

Optica (1)

Phys. Rev. Lett. (3)

K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, Phys. Rev. Lett. 79, 209 (1997).
[Crossref]

F. Reiter, U. Graf, E. E. Serebryannikov, W. Schweinberger, M. Fiess, M. Schultze, A. M. Azzeer, R. Kienberger, F. Krausz, A. M. Zheltikov, and E. Goulielmakis, Phys. Rev. Lett. 105, 243902 (2010).
[Crossref]

P. Hosseini, D. Novoa, A. Abdolvand, and P. St. J. Russell, Phys. Rev. Lett. 119, 253903 (2017).
[Crossref]

Science (3)

H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, Science 331, 1165 (2011).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[Crossref]

Other (1)

M. T. Neves-Petersen, G. P. Gajula, and S. B. Petersen, “UV light effects on proteins: from photochemistry to nanomedicine,” in Molecular Photochemistry, S. Saha, ed. (IntechOpen, 2012).

Supplementary Material (1)

NameDescription
» Supplement 1       It includes further details on the experimental set-up, the dispersion in kagome-PCF, the numerical simulations, the influence of the pump energy on the UV conversion efficiency and finite-element modelling of the kagome-PCF

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Dispersion curves for the fundamental mode of the kagomé-PCF filled with H 2 at two different pressures. For simplicity, we neglect the dispersive effect of loss bands caused by the resonant coupling between the core mode and modes in the glass walls surrounding the core. The subtle features of the curves are magnified by plotting frequency against ( β ref β ), where β ref is a linear function of frequency, chosen such that ( β ref β ) is zero at 1650 THz. The arrows represent the coherence waves excited by the beating of the green pump and its Stokes band at 683 nm. (b) Scanning electron micrographs of the kagomé-PCF microstructure.
Fig. 2.
Fig. 2. (a) Schematic of the experimental setup. DM, dichroic mirror. (b) Dispersed spectra cast on a screen for three different cases: mixing signal only (upper); green pump only (middle) along with its Raman bands; and co-launched mixing signal and green pump (lower). The spectral sidebands originating from the green pump and the mixing signal, both indicated along with their wavelengths in nanometers obtained using a calibrated spectrometer, are easily distinguishable.
Fig. 3.
Fig. 3. (a) Experimental (upper) and numerically simulated (lower) pressure dependence of (a) overall conversion efficiency to sidebands, η M , and (b)  M 1 (239 nm) and M 1 (299 nm). The inset in the lower part of (b) shows the fundamental and HOM content of the M 1 and M 1 signals at low pressure. The simulations suggest that the mixing signal was launched in a mixture of modes, since the best agreement with the experiments was obtained by considering an initial 70% content of the fundamental mode and 30% content of the two-lobed HOM.
Fig. 4.
Fig. 4. Conversion efficiency of the 266 nm mixing beam at four different pressures for increasing green pump energies. Although the maximum attainable efficiency was not reached (i.e., the curves are not yet saturated), experimental values around 60 % can readily be achieved at the highest pump energies. The slight drop in efficiency observed at moderate energies is likely to be caused by the complex phase relationship between the coherence waves and the interacting UV signals, which leads to dynamical exchange of energy between the mixing pulse and its sidebands during propagation along the fiber (see Fig. S3 in Supplement 1 for an example).
Fig. 5.
Fig. 5. (a) Far-field transverse intensity profiles of the M 1 and M 1 beams, showing their emergence in the fundamental (right) and two-lobed or ring-like HOM (left). The numbers beside the pictures mark the corresponding pressures in Fig. 3(b). (b) Dispersion curves for the fundamental mode and HOM when filled with 2.9 bar of H 2 . At this pressure, phase matching occurs between the M 0 and M 1 signals, both being in the HOM.
Fig. 6.
Fig. 6. (a) Overall sideband conversion efficiency η M plotted against mixing pulse energy (logarithmic scale) for a launched green energy of 12.6 μJ. (b) Pressure dependence of the M 3 signal (199 nm) and (c)  M 4 signal (184 nm). The launched green energy was 29 μJ and M 00 1.4 μJ . The far-field spatial profiles of the mixing beam sidebands are shown in the insets.

Metrics