Abstract

In the far-infrared spectrum between 20 and 60 μm, the free-electron laser (FEL) is the only wavelength-tunable coherent radiation source capable of generating kilowatt to megawatt peak powers with a linewidth of the order of 1%. Here, we report the detection of >70kW radiation power at about 52 μm in a <94ps pulse width from a KTiOPO4 (KTP) off-axis terahertz (THz) parametric oscillator at room temperature, when pumping it with 11.9 mJ energy in a 450 ps pulse from a single-frequency Nd:YAG laser and seeding it with a 14 μJ, 40-GHz-linewidth Stokes pulse from a synchronously pumped KTP parametric generator. When limiting the radiation to a linewidth of 8×104, we measured >45kW radiation power for the far-infrared radiation. With 63% coupling efficiency of the silicon prism atop the KTP crystal, the measured >70 and >45kW far-infrared radiation correspond to >111 and >71kW powers extracted from the KTP crystal of the seeded off-axis THz parametric oscillator. The radiation source accomplished in this work has great potential to become a tabletop and economical alternative for the bulky and expensive far-infrared FELs in national facilities.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Infrared radiation covers a wavelength range from roughly 0.7 to 1000 μm. Usually, the whole range is further divided into near-infrared, mid-infrared, far-infrared, and terahertz-wave (THz) regions. Loosely speaking, the far-infrared spectrum is located in a wavelength range between 20 and 60 μm or a frequency range between 5 and 15 THz. Far-infrared and THz radiation are increasingly important for imaging, spectroscopy, and communications [14]. High-power THz radiation is also desirable for high-field applications, such as particle acceleration [5] and nonlinear dynamics [6]. Solid-state and semiconductor lasers are known to generate coherent radiation in the visible and mid-infrared spectra. In the far-infrared spectrum, the free-electron laser (FEL) is the only source capable of generating kilowatt (kW) to megawatt (MW) coherent radiation with a linewidth of less than a few percent [7,8].

In recent years, optically based THz-wave sources are also been emerging quickly. Ultra-fast laser pumped air plasma, optical rectification, and photoconductive antennas can generate kW–MW broadband radiation containing spectral energies extended into the far-infrared regime [911]. Difference frequency generation (DFG) of two lasers in a nonlinear optical material is known to generate coherent radiation in both the low- and high-THz spectra. A recent work based on DFG has reported broadly tunable infrared radiation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate (DAST) with a maximum output power of about 100 W at 18.9 THz [12]. To achieve high output power, cascading DFG in periodically poled lithium niobate has generated 1–2 kW radiation at 0.5 THz [13]. There appears a far-infrared gap between 5 and 15 THz where optically based kW-level narrow-line radiation sources are much less developed [1].

Stimulated polariton scattering (SPS) in some polar materials is known to generate coherent THz-wave radiation at room temperature [14]. In SPS, lattice vibration of the nonlinear material can greatly enhance the parametric gain for generating THz-wave radiation. Indeed, SPS in lithium niobate (LN) has been proven useful for generating tens of kW coherent radiation between 1 and 3 THz [15]. Recently, the so-called off-axis THz parametric oscillator (OTPO), which shows unprecedented parametric gain and bandwidth by zigzagging a resonating THz wave in the pump region, has extended the SPS gain of LN toward the edge of 5 THz [16]. For radiation generation in the high-THz frequency or far-infrared spectrum, the KTP-family crystals, including KTiOPO4 (KTP), KTiOAsO4, and RbTiOPO4, are being tested for tunable radiation between 1 and 13 THz [1720]. Compared with LN, KTP has higher laser damage resistance and a larger figure of merit for THz parametric generation [21]. To achieve high-power THz-wave radiation from KTP, a Stokes-pulse-injected THz-wave parametric generator (TPG) following a THz parametric oscillator (TPO) was used to boost the output power of the TPO by a factor of 7 [22]. Recently, a surface-emitting KTP ring resonator pumped by 210 mJ energy from a Q-switched Nd:YAG laser has generated a peak radiation power of a few hundred watts at 5.7 THz [20]. The aforementioned KTP TPO, while resonating the redshifted signal wave, usually needs a long pump pulse to establish resonance in the cavity. Unfortunately, the long laser pulse makes the TPO crystal susceptible to laser damage and limits the peak power of the THz radiation generation. Recently, sub-nanosecond (ns) pulse lasers have been successful in pumping high-power THz parametric amplifiers [15,23] with less concern on laser-induced material damage. Since an OTPO, having a much smaller cavity length, does not require a long pump pulse, in this work, we employed a sub-ns laser as the pump to a narrow-line Stokes-seeded OTPO to accomplish high-power transform-limited radiation at 5.7 THz. The generated peak power is more than 2 orders of magnitude higher than the best record previously reported for THz-wave generation from KTP [20] and is comparable to that generated from some FEL user facilities [24,25].

2. EXPERIMENTAL SETUP

Figure 1 illustrates the pump and crystal configurations used in our experiment. Figure 1(a) is the phase matching diagram of the SPS in KTP, wherein, for the maximum gain at 5.7 THz [17], the SPS generates redshifted Stokes waves and THz waves with their wave vectors ks± and kT± propagating at ±2.3° and ±61.5°, respectively, from the pump beam on the crystallographic xy plane. All the mixing waves are polarized along the z direction. Figure 1(b) shows the configuration of a TPG using a z-cut slab crystal, wherein the THz-wave components walking away from the pump region at ±61.5° are usually absorbed in the crystal. A typical measure to save and couple out one component of the THz waves is to adopt an off-center pumping scheme, in which the pump beam is aligned next to one y surface of the crystal, as shown in the figure. The refractive index of KTP is 4.1 at 5.7 THz, and the corresponding critical angle of total internal reflection is 14.1° at the crystal–air interface [26,27]. To couple out the THz wave at an incident angle of 90°61.5°=28.5° on the y surface, one can cut a wedge on the crystal [28] or install a silicon prism [29] at the end of the crystal. It has been shown that, in a highly absorptive nonlinear crystal, the THz wave can still grow continuously until pump depletion as long as it is kept in the pump regime [30]. Figure 1(c) depicts a so-invented OTPO using a y-cut KTP crystal, wherein the THz wave propagates along a zigzag path in a pump-filled region via total internal reflection between the two y surfaces of the crystal. Unlike a waveguide, the OTPO has an optical path much longer than the THz wavelength between successive reflections. Therefore, waveguide dispersion does not show up to strongly modify the phase matching condition for the nonlinear frequency mixing process. In addition, the two total-internal-reflection surfaces form a so-called off-axis resonator [16] for the THz wave, in which the standing-wave condition along y defines the longitudinal modes of the resonator.

 figure: Fig. 1.

Fig. 1. (a) Phase matching diagram of the stimulated polariton scattering in KTP. In the crystallographic xy plane, an infrared pump wave scatters off redshifted Stokes and THz waves at ±2.3° and ±61.5°, respectively, for the maximum gain at 5.7 THz. (b) An off-center pumped THz parametric generator using a z-cut crystal, wherein the THz-wave component incident on the crystal–air interface is coupled out via, for instance, a silicon prism, and the other component walking away from the pump region is quickly absorbed by the crystal. (c) A THz off-axis parametric oscillator using a y-cut crystal, wherein the THz wave is confined to the pump-filled gain region until pump depletion via total internal reflection between the y surfaces.

Download Full Size | PPT Slide | PDF

Figure 2 shows the experimental setup of our KTP OTPO seeded by a spectrally filtered Stokes wave from a KTP TPG. The pump laser is a passively Q-switched, single-frequency Nd:YAG microchip laser followed by a four-pass diode-pumped Nd:YAG amplifier. The laser amplifier generates maximum laser pulse energy of 20 mJ, when seeded by 50 μJ energy at 1064 nm in a 450 ps laser pulse. We split the amplified laser pulse into two parts, one for pumping the KTP TPG to generate a seeding Stokes wave and the other delayed one for pumping the Stokes injected KTP OTPO. The TPG is installed with a 1-mm-thick, 30-mm-long z-cut KTP crystal, pumped by a 2.6 mJ pulse from the Nd:YAG amplifier. We focused the pump pulse to a 0.3 mm waist radius at the center of the z-cut crystal. The TPG generates a broadband Stokes pulse between 1085.8 and 1086.6 nm. A half-meter grating monochromator (CVI DK-480 with a 1200 grooves/mm grating) selects a narrow spectral component of the generated Stokes pulse to seed the subsequent OTPO. For instance, with 10 and 100 μm slit openings, the linewidths of the transmitted Stokes signals are 4 and 40 GHz, respectively, according to the specification of the monochromator. The seeding Stokes energy was 14 μJ at 1086.2 nm, when the slit opening was 100 μm. The OTPO, pumped by a delayed pulse from the laser amplifier, is installed with a 1-mm-thick, 30-mm-long y-cut KTP crystal. To increase the energy throughput, we use an elliptical beam to pump the 1-mm-thick KTP crystal. At the center of the crystal, the pump beam has a minor radius of 0.6 mm along y and a major radius of 2.2 mm along z. The highest pump intensity in our OTPO was 1.5GW/cm2. The end faces of both KTP crystals were optically polished and uncoated. The THz radiation is coupled out from the OTPO crystal by using a silicon prism (PR-HRFZ-SI-L10-H5-T4.9, PHLUXi) atop one of the downstream y surfaces of the KTP crystal. To ensure optical contact at the crystal interface, the silicon prism was cleaned carefully and pressed against the y-surface of the KTP crystal until interference fringes were observed under white-light illumination. Therefore, the air gap at the crystal interface is a small fraction of the far-infrared radiation wavelength. By using two off-axis parabolic gold mirrors (2% surface loss at 5.7 THz), we collected and focused the THz radiation into a calibrated pyroelectric detector (THZ-I-BNC, Gentec) behind a THz filter (28.6% transmittance at 5.7 THz, LPF14.3-24, TYDEX). The THz-wave absorption and the Fresnel loss associated with the silicon prism are estimated to be 6% and 33%, respectively, based on the vendor-supplied material data. The coupling efficiency of the silicon prism is therefore 63%.

 figure: Fig. 2.

Fig. 2. Experimental setup of the KTP OTPO seeded by a spectrally filtered Stokes wave from a KTP TPG. An amplified passively Q-switched Nd:YAG laser synchronously pumps both the OTPO and TPG. The THz wave is coupled out from the OTPO by using a silicon prism and measured by a pyroelectric detector. HWP, half-wave plate; PBS, polarization beam splitter; LPF, THz low-pass filter.

Download Full Size | PPT Slide | PDF

The wavelength tuning range of KTP is determined by the gain spectrum of the SPS process, given by [31,32]

g(ωT)=αT(ωT)2cosϕ(ωT){1+16cosϕ(ωT)[Γ(ωT)αT(ωT)]21},
where the subscripts p, s, and T denote parameters relevant to the pump, Stokes (or signal), and THz waves, respectively; ω is the angular frequency; ϕ61.5° is the angle between the 5.7 THz and pump waves; α is the absorption coefficient; and Γ(ωT)=2ωsωTIp/ε0npnsnTc03deff is the parametric gain coefficient with Ip the pump intensity, ε0 the vacuum permittivity, n the refractive index, c0 the vacuum speed of light, and deff the effective nonlinear coefficient. By using the material parameters for KTP [26,27,33], we summarize in Fig. 3(a) the effective nonlinear coefficient deff, αT, and g versus THz frequency and the corresponding Stokes wavelength with a 1.5GW/cm2 pump intensity. The dark lines are stop bands at the transverse optical phonon modes of KTP. Compared with LN, KTP has a smaller deff, and similarly strong absorption for a THz wave, but can be phase matched at higher THz frequencies. Although the THz SPS in KTP is discretely tunable between 3 and 13 THz, we focus in this work on the generation of high-power THz radiation near the strongest SPS at 5.77 THz. The corresponding Stokes wavelength is 1086.2 nm for a pump wavelength at 1064 nm. Figure 3(b) shows the Stokes spectra of the TPG and the unseeded OTPO with internal pump energy of 2.4 and 13.7 mJ, respectively. As expected, the two spectra are peaked at about 1086.1 nm, but have a 0.2 nm separation. The small spectral separation results from the different pump intensities in the two crystals, as the SPS gain spectrum in Eq. (1) is a function of pump intensity. In the following, we filter a narrow part of the energy in the TPG’s Stokes spectrum to seed the OTPO and generate high-power THz-wave radiation in the OTPO gain bandwidth.

 figure: Fig. 3.

Fig. 3. (a) Effective nonlinear coefficient deff, THz-wave absorption coefficient αT, and SPS gain coefficient g of KTP versus THz frequency and corresponding Stokes wavelength. Compared with LN, KTP has a smaller nonlinear coefficient, a comparably strong absorption coefficient, but can be phase-matched at higher THz frequencies. The peak SPS gain occurs at 5.77 THz with a corresponding Stokes wavelength at 1086.2 nm for a pump wavelength at 1064 nm. The dark lines are stop bands at the transverse optical phonon modes of KTP. (b) The Stokes spectra of the TPG and unseeded OTPO pumped by 2.4 and 13.7 mJ pulse energies at 1064 nm. The slight shift of the two spectral peaks results from different pump intensities in the two KTP crystals.

Download Full Size | PPT Slide | PDF

3. THz-WAVE GENERATION

We first perform the THz-wave generation from the OTPO by using the Stokes seed at the spectral peak of the TPG. Figure 4(a) shows the measured pyroelectric-detector signal with an average peak amplitude of 0.72 V (red curve), when the pulse energies in the Stokes seed and pump were 14 μJ and 11.9 mJ, respectively. The slit opening of the monochromator filter was 100 μm for this measurement. According to the vendor-supplied calibration curves for the pyroelectric detector, the low-pass filter, and the two parabolic gold mirrors, the 0.72 V corresponds to a THz-wave pulse energy of 6.6 μJ at 5.7 THz. We took two steps to verify that the measured signal in our pyroelectric detector was indeed the generated THz radiation from the seeded OTPO. First of all, we want to rule out any scattered optical energy entering the pyroelectric detector to create a false signal. Both glass and LN are known to transmit optical signals near 1 μm and absorb THz-wave radiation at 5.7 THz. When we inserted either a 0.15-mm-thick microscope cover glass or a 0.5-mm-thick LN wafer in front of the pyroelectric detector, the pyroelectric-detector signal returned to the zero line, as shown by the blue curve in the figure. Therefore, the measured signal in the pyroelectric detector cannot be a scattered pump or Stokes pulse. As our second step to verify the pyroelectric-detector signal, we self-built a scanning Fabry–Perot interferometer by using two parallel wire meshes to measure the wavelength of the THz radiation [23]. The metallic wire mesh contains 45μm×45μm periodic square apertures with a 63.5 μm pitch and a 54% filling factor. The reflectance of the wire mesh at 5.76 THz was measured to be 0.26. Figure 4(b) shows the signal measured by the pyroelectric detector after the scanning Fabry–Perot interferometer, clearly indicating a periodicity of 26 μm in the interferogram or a corresponding wavelength of 52 μm for the generated THz-wave radiation. The amplitude fluctuation in the interferogram is mostly from the current and temperature drift of the diode-pumped laser amplifier during a 2 h scanning period of time.

 figure: Fig. 4.

Fig. 4. (a) Measured THz-radiation pulse (red curve) by our pyroelectric detector. The 0.72 V signal amplitude (average value) corresponds to a THz pulse energy of 6.6 μJ, according to the vendor-supplied calibrations for the detector, the low-pass filter, and the parabolic gold mirrors. When we inserted a 0.15-mm-thick glass or a 0.5-mm-thick LN, which strongly absorbs radiation at 5.7 THz while it transmits laser near 1 μm, in front of the pyroelectric detector, the detector signal returns to the zero line (blue curve). (b) Wavelength measurement (blue circle) by using a self-built scanning Fabry–Perot (F-P) interferometer consisting of two metallic wire meshes. The periodicity of the interferogram indicates a THz radiation wavelength of 52 μm.

Download Full Size | PPT Slide | PDF

To calculate the peak power of the THz radiation, it is necessary to know both the THz-wave pulse energy and pulse width. In the following, we performed DFG of the THz wave and the pump as a means to deduce the THz pulse width, as shown in Fig. 5(a). We again derived a synchronized pump pulse from the four-pass amplifier, mixed it with the generated THz-wave pulse from the OTPO in another KTP crystal, and detect the DFG pulse near 1 μm by using a fast photodetector (UPD-35-IR2-P, ALPHALAS, 10 GHz bandwidth) connected to a 11 GHz bandwidth oscilloscope (SDA 11000, LeCroy). In a three-wave nonlinear mixing process, without pump depletion, the photon flux of the phase-matched Stokes wave from the well-known coupled-wave model is given by [30]

ϕs=ϕTexp(αT2L)Γ2|g/2|2|sinh(g2L)|2,
where ϕ is the photon flux of the mixing waves and L is the gain length in the crystal. In Eq. (2), the square of the parametric gain coefficient is proportional to the pump photon flux, or Γ2ϕp. In the low gain limit, 2Γ/αT1 or gαT/2, the photon fluxes of the mixing waves have the following proportionality:
ϕsϕTϕp.
With an assumed Gaussian pulse shape for all the input pulses, ϕ=ϕ0exp[4ln(2)t2/Δt2], where Δt is the full width of the pulse at half-maximum (FWHM width) and ϕ0 is an arbitrary amplitude. The generated signal pulse width Δts is related to the input pump and THz pulse widths through the relationship
1Δts2=1ΔtT2+1Δtp2.
In our pulse-measurement experiment, the DFG crystal was a 30-mm-long, 3-mm-thick y-cut KTP crystal. The THz-wave radiation is injected into the DFG KTP crystal via another same-specification silicon-prism coupler. We split 1.5 mJ pulse energy from the four-pass Nd:YAG amplifier as a synchronized pump to the DFG crystal. The pump in the DFG crystal was also an elliptical beam with major and minor waist radii of 1.1 and 0.21 mm, respectively, at the center of the crystal. Under our experimental condition, Γ=13cm1 and αT=264cm1 for KTP at 5.7 THz, the ratio 2Γ/αT=0.11 justifies the use of Eq. (4) for our pulse width calculation. In the fast photodetector, the measured pulse widths for the Stokes and pump waves are 92 and 450 ps, respectively, as shown in Fig. 5(b). Substituting Δts=92ps and Δtp=450ps into Eq. (4), we obtain ΔtT=94ps for the THz-wave pulse width, which is fairly close to the previously reported value for THz-wave generation from sub-ns laser-pumped LN [15]. In our case, the actual THz-wave pulse width could be shorter than 94 ps, because the time constant of the photodetector-and-oscilloscope system was not de-convolved from the measured DFG pulse width. For what follows, we simply used ΔtT=94ps to calculate the peak powers of the far-infrared radiation generated from our experiments. The values from such calculations can be considered the low-bound peak powers of the radiation. However, in the final section, we will provide a correction factor deduced from a measured system response time to scale up the conservatively calculated peak powers.

 figure: Fig. 5.

Fig. 5. (a) Experimental setup of the THz DFG for characterizing the THz-wave pulse width. (b) The measured signal (Stokes) pulse profile (red curve) in comparison with the pump pulse (black curve). The FWHM widths of the signal and pump pulses measured by the fast photodetector are 92 and 450 ps, respectively. The THz-wave pulse width calculated from Eq. (4) is <94ps.

Download Full Size | PPT Slide | PDF

Figure 6 shows the measured peak power and energy of the THz radiation as a function of the pump energy. With 14 μJ and 11.9 mJ in the Stokes and pump pulses, respectively, we measured 6.6 μJ radiation energy at 5.7 THz when the slit opening of the grating spectral filter was 100 μm. Given the <94ps THz-wave pulse width, the peak power of the detected THz wave is >70kW. With 63% coupling efficiency of the silicon prism, the seeded OTPO has emitted a peak radiation power of >111kW into the silicon prism. The high THz peak power is attributable to the well overlapped mixing waves and thus high parametric gain in the OTPO, the elliptical pump beam and thus the high energy throughput, and large seeding power of the Stokes wave. Both the well overlapped mixing waves and the elliptical pump beam avoid the quick saturation of the THz wave from generating high-order Stokes waves. Previously the demonstrated Stokes-seeded THz parametric amplifiers mostly adopted continuous-wave seed sources, which would at most provide a watt-level seed power in the crystal. In our case, the seeding Stokes pulse carries a kW power, which helps the fast buildup of the THz-wave radiation in the OTPO. Without the seeding Stokes wave, the THz output energy was only 30 nJ at 12.8 mJ pump energy (green diamond in the figure), which is a factor of 217 smaller than that with the 14 μJ seeding Stokes wave. For a slit opening of 20 μm, we transmitted 5 μJ seeding Stokes energy into the OTPO and measured 5.9 μJ in the THz-wave pulse with 13.7- mJ pump energy. The corresponding peak power of the THz radiation is >63kW for a pulse width <94ps.

 figure: Fig. 6.

Fig. 6. Measured peak power and energy of THz-wave radiation as a function of pump energy for the OTPO. With 14 and 5 μJ energy in the seeding Stokes pulses through the 100 and 20 μm slits, the measured THz pulse energies are 6.6 μJ with a 11.9 mJ pump and 5.9 μJ with a 13.7 mJ pump at 5.7 THz, respectively. Given the 63% coupling efficiency of the silicon prism and the <94psTHz pulse width, the peak far-infrared power emitted from the seeded OTPO into the silicon prism is >111kW.

Download Full Size | PPT Slide | PDF

From the frequency rule of nonlinear frequency mixing, the linewidth of the THz-wave radiation can be determined from the linewidth of the pump and the Stokes waves. Since the pump laser is an amplified single-frequency microchip laser, the linewidth of the output THz wave is primarily determined by the linewidth of the seeding Stokes wave. The time–bandwidth product for a transform-limited Gaussian pulse is 0.44 [34]. With a pulse width of 94 ps, the transform-limited linewidth for the THz wave at 5.7 THz is 4.7 GHz, which corresponds to a slit opening of 12 μm for the monochromator. Figure 7 shows the measured pulse energy at 5.7 THz versus the slit opening subject to a constant pump energy of 13.7 mJ. For the cases with slit opening >30μm, the THz-wave output saturates, because the high-gain OTPO quickly depletes the pump with a small seed energy. When the slit opening was set to 10 μm, the measured pulse energy and peak power of the radiation were 4.2 μJ and >45kW, expected to have a transform-limited linewidth of 8×104 at 5.7 THz for a pulse width of 94 ps.

 figure: Fig. 7.

Fig. 7. Measured pulse energy of the radiation at 5.7 THz versus slit opening at a constant pump energy of 13.7 mJ. The high parametric gain in the OTPO results in quick saturation of the output THz-wave radiation for slit openings >30μm. With a slit opening of 10 μm, the measured pulse energy and peak power are 4.2 μJ and >45kW, respectively, expected to have a transform-limited linewidth of 8×104 at 5.7 THz for an estimated pulse width of 94 ps.

Download Full Size | PPT Slide | PDF

In our setup, the grating monochromator permits wavelength selection on the Stokes seed and thus wavelength tuning on the generated THz radiation. Figure 8 shows the measured peak power and energy of the THz radiation versus the seeding Stokes wavelength for slit openings of 20 and 100 μm. The pump energy to the OTPO was kept at 13.7 mJ for all the measurements. The tuning range is about 150 GHz. Without varying the experimental conditions of the TPG, we tuned the frequency of the output radiation for about 0.15 THz. The maximum THz pulse energy occurs at 5.7 THz, coinciding with the spectral peak of the Stokes spectrum of the OTPO in Fig. 3(b). With 7 μJ seeding energy transmitting through a 100 μm slit, we measured 5.5 μJ pulse energy or >59kW peak power at 5.7 THz. With 1.4 μJ seeding energy transmitting through a 20 μm slit, we measured 3.9 μJ pulse energy or >41kW peak power for the THz radiation. As can be seen from the error bars in this figure, this set of data has better energy stability. The peak energy and power in this figure are slightly different from those in Fig. 6, because the pump mode was slightly different when we tried to achieve a better stability for the output THz waves in this measurement. With 63% coupling efficiency of the prism coupler, the measured >59 and 41 kW powers in the pyroelectric detector correspond to >94 and 65 kW powers emitted from the seeded OTPO. Spectral tuning is not a focus of this work. To achieve broader wavelength tuning, one could in principle adjust the angle between the pump and Stokes waves in the crystal, while properly select the seeding Stokes wavelength from the monochromator.

 figure: Fig. 8.

Fig. 8. Measured THz tuning curve versus seeding Stokes wavelength for 20 (blue circle) and 100 μm (red square) slit openings. When varying the seeding Stokes wavelength, we kept the experimental conditions of the TPG and OTPO unchanged. The tuning range of the generated THz radiation is about 150 GHz.

Download Full Size | PPT Slide | PDF

4. DISCUSSION AND CONCLUSION

We have reported narrow-line high-power far-infrared radiation from a pulse seeded OTPO using KTP as the gain crystal. An OTPO is a high-gain and yet low-Q resonator that is used in this work as an excellent broadband amplifier to produce high-power THz-wave radiation. In our setup, we first derived a spectrally filtered Stokes pulse from a KTP TPG and seeded it into a KTP OTPO pumped by a synchronized pulse to generate narrow-line high-power THz-wave radiation. With a 7 μJ seed energy in a 40-GHz-linewidth Stokes pulse, we measured >70kW peak power at 5.7 THz in a <94ps pulse width when pumping the KTP OTPO with 11.9 mJ pulse energy at 1064 nm in a 450 ps pulse width. When limiting the seeding Stokes linewidth to 4 GHz, we measured >45kW radiation at 5.7 THz with the same pump condition. Since the pump is an amplified single-frequency passively Q-switched laser, we expect the linewidth of the THz-wave radiation is comparable to that of the seeding Stokes wave. With the 4 GHz linewidth of the seeding Stokes, the measured >45kW THz-wave radiation would have a transform-limited linewidth of 0.08% in the 94 ps pulse width, which is superior to that of almost all the existing far-infrared FELs [35]. With 63% coupling efficiency of the silicon prism atop the KTP crystal, the measured >70 and 45 kW narrow-line far-infrared radiation in our pyroelectric detector corresponds to >111 and 71 kW powers extracted from the KTP crystal into the silicon prism. The maximum value of the optical-to-far-infrared radiation efficiency is 0.055%. Such a tabletop high-brightness far-infrared radiation source has great potential to compete with that generated from a bulky and expensive FEL.

The calculation of the far-infrared peak power depends on the measured radiation pulse width. As noted previously, adopting ΔtT=94ps for calculation gives the lower bound of the peak powers for the generated far-infrared radiation. To better estimate the actual radiation pulse width from the measured DFG pulse width, we have tried to measure the impulse response of the photodetector-and-oscilloscope system by illuminating the photodetector with a 200 fs Ti:sapphire laser pulse and recording a 76 ps pulse width on the oscilloscope screen. Assuming a linear system and deconvolving the system time constant from the measured DFG and pump pulse widths, we inferred the Stokes and pump pulse widths from the calculations Δts=(922762)1/2=52ps and Δtp=(4502762)1/2=444ps, respectively, which together give a THz-wave pulse width of about 52 ps from Eq. (4). This shortened THz-wave pulse width is likely to be a result of the interplay between the high parametric gain [36] and strong pulse walkoff in the OTPO crystal. The group velocity mismatch between the optical and THz waves is about 76 ps/cm in KTP, given the optical and THz refractive indices of 1.83 and 4.1, respectively. If the 52 ps pulse width is adopted for peak-power calculations, all the aforementioned peak-power values are multiplied by a factor of 94/52=1.8. For instance, the maximum peak power of the generated far-infrared radiation with 100 μm slit opening becomes 126 kW at the pyroelectric detector, and that of the transform-limited radiation with 10 μm slit opening becomes 81 kW at the detector. The maximum THz-wave power extracted from the KTP OTPO crystal to the prism coupler would be 200 kW. In general, it is not straightforward to directly measure a 100psmany-cycle far-infrared pulse at room temperature. To determine the exact pulse width of the far-infrared radiation remains a task in the next effort. Nevertheless, we have unambiguously coupled out a narrow-line far-infrared radiation at 52 μm with a maximum peak power between 70 and 126 kW from the Stokes-seed OTPO.

A typical far-infrared FEL, mostly driven by picosecond electron bunches and operated in vacuum, is capable of generating peak radiation powers between kW and multi-MW. While keeping a constant pump intensity on the OTPO crystal, one could further scale up the peak power of the far-infrared radiation by using higher pump and seed powers in larger crystals. Currently, a tabletop, sub-ns pump laser producing >2J pulse energy (>100 times our pump energy) is commercially available. Cryogenic cooling of the nonlinear crystal can also reduce the THz absorption and increase the output power from KTP [37]. Increasing the peak radiation power from the seeded OTPO by another 2 orders of magnitude appears feasible in the near future. Currently, the pulse rate of the THz output is limited to the 100 Hz repetition rate in our diode-pumped Nd:YAG laser amplifier. To achieve a high average power for the THz output, one could in principle increase the pump pulse rate by 100–1000 times with current laser technologies.

There could be several ways to simplify the two-stage configuration in this work into a single-stage one. For instance, one could employ a carrier-envelope-phase (CEP) stabilized mode-locked laser [38] with 100ps pulse width to synchronously pump [39] an OTPO crystal with a cavity resonating the Stokes pulse. This doubly resonant OTPO is expected to have an ultra-low threshold with CEP stability. The pulse rate of the output THz wave can be in the range of 100MHz, which is the same as that of the mode-locked pump laser and comparable to that of an FEL driven by a quasi-CW beam from a superconducting electron accelerator. FEL pulses are built up from independent electron bunches. An FEL is therefore unlikely to have a similar stability of the proposed CEP-stabilized, doubly resonant OTPO.

Broad wavelength tuning of the THz wave, although not a topic of this paper, is achievable by rotating both the seed TPG and OTPO crystals in the xy plane relative to the pump axis. With more than 10 THz SPS bandwidth in the KTP-family crystals [20,40], the radiation technique presented in this work can nicely bridge the far-infrared gap between the THz and mid-infrared radiation spectra.

Funding

Ministry of Science and Technology, Taiwan (MOST) (104-2923-E-007-001-MY4, 105-2112-M-007-021-MY3).

Acknowledgment

The authors appreciate helpful discussions with Tsong-Dong Wang of the Chung-San Institute of Science and Technology, Taiwan, Gang Zhao of Peking University, China, and F. Laurell of the Royal Institute of Technology, Sweden. The authors would like to thank Chia-Hsiang Chen of the National Synchrotron Radiation Research Center, Taiwan, for assisting the pulse width measurement. We acknowledge support in the form of several KTP crystals from two companies, Guilin Bairay Photoelectric Technology (http://www.brxtal.com) and Crystal-T (http://crystalt.ru/en). During the submission of this paper, Richard H. Pantell, the Ph.D. supervisor of Yen-Chieh Huang and the first person who employed SPS for THz-wave generation [14], died on March 26. Huang would like to dedicate this paper to him for his guidance and support over many years.

REFERENCES

1. S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017). [CrossRef]  

2. K. Murate and K. Kawase, “Perspective: terahertz wave parametric generator and its applications,” J. Appl. Phys. 124, 160901 (2018). [CrossRef]  

3. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10, 371–379 (2016). [CrossRef]  

4. B. N. Murdin, “Far-infrared free-electron lasers and their applications,” Contemp. Phys. 50, 391–406 (2009). [CrossRef]  

5. E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015). [CrossRef]  

6. T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013). [CrossRef]  

7. G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015). [CrossRef]  

8. W. J. van der Zande, R. T. Jongma, L. van der Meer, and B. Redlich, “FELIX facility: free electron laser light sources from 0.2 to 75 THz,” in 38st International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2013).

9. K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008). [CrossRef]  

10. C. Vicario, A. V. Ovchinnikov, S. I. Ashitkov, M. B. Agranat, V. E. Fortov, and C. P. Hauri, “Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg2SiO4 laser,” Opt. Lett. 39, 6632–6635 (2014). [CrossRef]  

11. N. M. Burford and M. O. El-Shenawee, “Review of terahertz photoconductive antenna technology,” Opt. Eng. 56, 010901 (2017). [CrossRef]  

12. Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124, 16 (2018). [CrossRef]  

13. M. Hemmer, G. Cirmi, K. Ravi, F. Reichert, F. Ahr, L. Zapata, O. D. Mücke, A.-L. Calendron, H. Çankaya, D. Schimpf, N. H. Matlis, and F. X. Kärtner, “Cascaded interactions mediated by terahertz radiation,” Opt. Express 26, 12536–12546 (2018). [CrossRef]  

14. M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26, 418–421 (1975). [CrossRef]  

15. S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014). [CrossRef]  

16. Y. C. Chiu, T. D. Wang, P. C. Wang, and Y. C. Huang, “Off-axis terahertz parametric oscillator,” J. Opt. Soc. Am. B 36, 42–47 (2019). [CrossRef]  

17. W. Wang, Z. Cong, X. Chen, X. Zhang, Z. Qin, G. Tang, N. Li, C. Wang, and Q. Lu, “Terahertz parametric oscillator based on KTiOPO4 crystal,” Opt. Lett. 39, 3706–3709 (2014). [CrossRef]  

18. W. Wang, Z. Cong, Z. Liu, X. Zhang, Z. Qin, G. Tang, N. Li, Y. Zhang, and Q. Lu, “THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal,” Opt. Express 22, 17092–17098 (2014). [CrossRef]  

19. T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, “Tunable 3–6 THz polariton laser exceeding 0.1 mW average output power based on crystalline RbTiOPO4,” IEEE J. Sel. Top. Quantum Electron. 24, 5100806 (2018). [CrossRef]  

20. Y. Wang, Y. Ren, D. Xu, L. Tang, Y. He, C. Song, L. Chen, C. Li, C. Yan, and J. Yao, “Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal,” Chin. Phys. B 27, 114213 (2018). [CrossRef]  

21. M. H. Wu, Y. C. Chiu, T. D. Wang, G. Zhao, A. Zukauskas, F. Laurell, and Y. C. Huang, “Terahertz parametric generation and amplification from potassium titanyl phosphate in comparison with lithium niobate and lithium tantalate,” Opt. Express 24, 25964–25973 (2016). [CrossRef]  

22. G. Tang, Z. Cong, Z. Qin, X. Zhang, W. Wang, D. Wu, N. Li, Q. Fu, Q. Lu, and S. Zhang, “Energy scaling of terahertz-wave parametric sources,” Opt. Express 23, 4144–4152 (2015). [CrossRef]  

23. T. D. Wang, S. T. Lin, Y. Y. Lin, A. C. Chiang, and Y. C. Huang, “Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate,” Opt. Express 16, 6471–6478 (2008). [CrossRef]  

24. Y. U. Jeong, S. H. Park, B. C. Lee, and H. J. Cha, “Compact terahertz free-electron laser as a users facility,” in 3rd Asia Particle Accelerator Conference, Gyeongju, South Korea, 2004, pp. 759–761.

25. G. Ramian, “The new UCSB free-electron lasers,” Nucl. Instrum. Meth. Phys. Res. A 318, 225–229 (1992). [CrossRef]  

26. G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988). [CrossRef]  

27. K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. 41, 5040–5044 (2002). [CrossRef]  

28. A. C. Chiang, T. D. Wang, Y. Y. Lin, S. T. Lin, H. H. Lee, Y. C. Huang, and Y. H. Chen, “Enhanced terahertz-wave parametric generation and oscillation in lithium niobate waveguides at terahertz frequencies,” Opt. Lett. 30, 3392–3394 (2005). [CrossRef]  

29. K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a THz-wave parametric oscillator,” Appl. Opt. 40, 1423–1426 (2001). [CrossRef]  

30. T. D. Wang, Y. C. Huang, M. Y. Chuang, Y. H. Lin, C. H. Lee, Y. Y. Lin, F. Y. Lin, and G. K. Kitaeva, “Long-range parametric amplification of THz wave with absorption loss exceeding parametric gain,” Opt. Express 21, 2452–2462 (2013). [CrossRef]  

31. S. S. Sussman, Tunable Light Scattering from Transverse Optical Modes in Lithium Niobate (Stanford University, 1970).

32. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 34, R1–R14 (2001). [CrossRef]  

33. H. Jang, G. Strömqvist, V. Pasiskevicius, and C. Canalias, “Control of forward stimulated polariton scattering in periodically-poled KTP crystals,” Opt. Express 21, 27277–27283 (2013). [CrossRef]  

34. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

35. J. M. Klopf, “Table of IR/THz FELs worldwide,” https://www.hzdr.de/db/Cms?pNid=471.

36. Y. C. Chiu, Y. C. Huang, and C. H. Chen, “Parametric laser pulse shortening,” Opt. Lett. 39, 4792–4795 (2014). [CrossRef]  

37. J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24, 202–204 (1999). [CrossRef]  

38. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef]  

39. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36, 2275–2277 (2011). [CrossRef]  

40. C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108, 011007 (2016). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
    [Crossref]
  2. K. Murate and K. Kawase, “Perspective: terahertz wave parametric generator and its applications,” J. Appl. Phys. 124, 160901 (2018).
    [Crossref]
  3. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10, 371–379 (2016).
    [Crossref]
  4. B. N. Murdin, “Far-infrared free-electron lasers and their applications,” Contemp. Phys. 50, 391–406 (2009).
    [Crossref]
  5. E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
    [Crossref]
  6. T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).
    [Crossref]
  7. G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
    [Crossref]
  8. W. J. van der Zande, R. T. Jongma, L. van der Meer, and B. Redlich, “FELIX facility: free electron laser light sources from 0.2 to 75  THz,” in 38st International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2013).
  9. K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
    [Crossref]
  10. C. Vicario, A. V. Ovchinnikov, S. I. Ashitkov, M. B. Agranat, V. E. Fortov, and C. P. Hauri, “Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg2SiO4 laser,” Opt. Lett. 39, 6632–6635 (2014).
    [Crossref]
  11. N. M. Burford and M. O. El-Shenawee, “Review of terahertz photoconductive antenna technology,” Opt. Eng. 56, 010901 (2017).
    [Crossref]
  12. Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124, 16 (2018).
    [Crossref]
  13. M. Hemmer, G. Cirmi, K. Ravi, F. Reichert, F. Ahr, L. Zapata, O. D. Mücke, A.-L. Calendron, H. Çankaya, D. Schimpf, N. H. Matlis, and F. X. Kärtner, “Cascaded interactions mediated by terahertz radiation,” Opt. Express 26, 12536–12546 (2018).
    [Crossref]
  14. M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26, 418–421 (1975).
    [Crossref]
  15. S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
    [Crossref]
  16. Y. C. Chiu, T. D. Wang, P. C. Wang, and Y. C. Huang, “Off-axis terahertz parametric oscillator,” J. Opt. Soc. Am. B 36, 42–47 (2019).
    [Crossref]
  17. W. Wang, Z. Cong, X. Chen, X. Zhang, Z. Qin, G. Tang, N. Li, C. Wang, and Q. Lu, “Terahertz parametric oscillator based on KTiOPO4 crystal,” Opt. Lett. 39, 3706–3709 (2014).
    [Crossref]
  18. W. Wang, Z. Cong, Z. Liu, X. Zhang, Z. Qin, G. Tang, N. Li, Y. Zhang, and Q. Lu, “THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal,” Opt. Express 22, 17092–17098 (2014).
    [Crossref]
  19. T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, “Tunable 3–6  THz polariton laser exceeding 0.1  mW average output power based on crystalline RbTiOPO4,” IEEE J. Sel. Top. Quantum Electron. 24, 5100806 (2018).
    [Crossref]
  20. Y. Wang, Y. Ren, D. Xu, L. Tang, Y. He, C. Song, L. Chen, C. Li, C. Yan, and J. Yao, “Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal,” Chin. Phys. B 27, 114213 (2018).
    [Crossref]
  21. M. H. Wu, Y. C. Chiu, T. D. Wang, G. Zhao, A. Zukauskas, F. Laurell, and Y. C. Huang, “Terahertz parametric generation and amplification from potassium titanyl phosphate in comparison with lithium niobate and lithium tantalate,” Opt. Express 24, 25964–25973 (2016).
    [Crossref]
  22. G. Tang, Z. Cong, Z. Qin, X. Zhang, W. Wang, D. Wu, N. Li, Q. Fu, Q. Lu, and S. Zhang, “Energy scaling of terahertz-wave parametric sources,” Opt. Express 23, 4144–4152 (2015).
    [Crossref]
  23. T. D. Wang, S. T. Lin, Y. Y. Lin, A. C. Chiang, and Y. C. Huang, “Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate,” Opt. Express 16, 6471–6478 (2008).
    [Crossref]
  24. Y. U. Jeong, S. H. Park, B. C. Lee, and H. J. Cha, “Compact terahertz free-electron laser as a users facility,” in 3rd Asia Particle Accelerator Conference, Gyeongju, South Korea, 2004, pp. 759–761.
  25. G. Ramian, “The new UCSB free-electron lasers,” Nucl. Instrum. Meth. Phys. Res. A 318, 225–229 (1992).
    [Crossref]
  26. G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
    [Crossref]
  27. K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. 41, 5040–5044 (2002).
    [Crossref]
  28. A. C. Chiang, T. D. Wang, Y. Y. Lin, S. T. Lin, H. H. Lee, Y. C. Huang, and Y. H. Chen, “Enhanced terahertz-wave parametric generation and oscillation in lithium niobate waveguides at terahertz frequencies,” Opt. Lett. 30, 3392–3394 (2005).
    [Crossref]
  29. K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a THz-wave parametric oscillator,” Appl. Opt. 40, 1423–1426 (2001).
    [Crossref]
  30. T. D. Wang, Y. C. Huang, M. Y. Chuang, Y. H. Lin, C. H. Lee, Y. Y. Lin, F. Y. Lin, and G. K. Kitaeva, “Long-range parametric amplification of THz wave with absorption loss exceeding parametric gain,” Opt. Express 21, 2452–2462 (2013).
    [Crossref]
  31. S. S. Sussman, Tunable Light Scattering from Transverse Optical Modes in Lithium Niobate (Stanford University, 1970).
  32. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 34, R1–R14 (2001).
    [Crossref]
  33. H. Jang, G. Strömqvist, V. Pasiskevicius, and C. Canalias, “Control of forward stimulated polariton scattering in periodically-poled KTP crystals,” Opt. Express 21, 27277–27283 (2013).
    [Crossref]
  34. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  35. J. M. Klopf, “Table of IR/THz FELs worldwide,” https://www.hzdr.de/db/Cms?pNid=471 .
  36. Y. C. Chiu, Y. C. Huang, and C. H. Chen, “Parametric laser pulse shortening,” Opt. Lett. 39, 4792–4795 (2014).
    [Crossref]
  37. J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24, 202–204 (1999).
    [Crossref]
  38. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [Crossref]
  39. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4–5.4  μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36, 2275–2277 (2011).
    [Crossref]
  40. C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108, 011007 (2016).
    [Crossref]

2019 (1)

2018 (5)

K. Murate and K. Kawase, “Perspective: terahertz wave parametric generator and its applications,” J. Appl. Phys. 124, 160901 (2018).
[Crossref]

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124, 16 (2018).
[Crossref]

M. Hemmer, G. Cirmi, K. Ravi, F. Reichert, F. Ahr, L. Zapata, O. D. Mücke, A.-L. Calendron, H. Çankaya, D. Schimpf, N. H. Matlis, and F. X. Kärtner, “Cascaded interactions mediated by terahertz radiation,” Opt. Express 26, 12536–12546 (2018).
[Crossref]

T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, “Tunable 3–6  THz polariton laser exceeding 0.1  mW average output power based on crystalline RbTiOPO4,” IEEE J. Sel. Top. Quantum Electron. 24, 5100806 (2018).
[Crossref]

Y. Wang, Y. Ren, D. Xu, L. Tang, Y. He, C. Song, L. Chen, C. Li, C. Yan, and J. Yao, “Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal,” Chin. Phys. B 27, 114213 (2018).
[Crossref]

2017 (2)

N. M. Burford and M. O. El-Shenawee, “Review of terahertz photoconductive antenna technology,” Opt. Eng. 56, 010901 (2017).
[Crossref]

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

2016 (3)

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10, 371–379 (2016).
[Crossref]

M. H. Wu, Y. C. Chiu, T. D. Wang, G. Zhao, A. Zukauskas, F. Laurell, and Y. C. Huang, “Terahertz parametric generation and amplification from potassium titanyl phosphate in comparison with lithium niobate and lithium tantalate,” Opt. Express 24, 25964–25973 (2016).
[Crossref]

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108, 011007 (2016).
[Crossref]

2015 (3)

G. Tang, Z. Cong, Z. Qin, X. Zhang, W. Wang, D. Wu, N. Li, Q. Fu, Q. Lu, and S. Zhang, “Energy scaling of terahertz-wave parametric sources,” Opt. Express 23, 4144–4152 (2015).
[Crossref]

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref]

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

2014 (5)

2013 (3)

2011 (1)

2009 (1)

B. N. Murdin, “Far-infrared free-electron lasers and their applications,” Contemp. Phys. 50, 391–406 (2009).
[Crossref]

2008 (2)

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

T. D. Wang, S. T. Lin, Y. Y. Lin, A. C. Chiang, and Y. C. Huang, “Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate,” Opt. Express 16, 6471–6478 (2008).
[Crossref]

2005 (1)

2002 (1)

2001 (2)

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

1999 (1)

1992 (1)

G. Ramian, “The new UCSB free-electron lasers,” Nucl. Instrum. Meth. Phys. Res. A 318, 225–229 (1992).
[Crossref]

1988 (1)

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[Crossref]

1975 (1)

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26, 418–421 (1975).
[Crossref]

Agranat, M. B.

Ahr, F.

Appleby, R.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Ashitkov, S. I.

Bagryanskaya, E. G.

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

Booske, J.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Brehat, F.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[Crossref]

Burford, N. M.

N. M. Burford and M. O. El-Shenawee, “Review of terahertz photoconductive antenna technology,” Opt. Eng. 56, 010901 (2017).
[Crossref]

Calendron, A.-L.

Canalias, C.

Çankaya, H.

Carabatos-Nedelec, C.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[Crossref]

Castro-Camus, E.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Cha, H. J.

Y. U. Jeong, S. H. Park, B. C. Lee, and H. J. Cha, “Compact terahertz free-electron laser as a users facility,” in 3rd Asia Particle Accelerator Conference, Gyeongju, South Korea, 2004, pp. 759–761.

Chen, C. H.

Chen, L.

Y. Wang, Y. Ren, D. Xu, L. Tang, Y. He, C. Song, L. Chen, C. Li, C. Yan, and J. Yao, “Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal,” Chin. Phys. B 27, 114213 (2018).
[Crossref]

Chen, X.

Chen, Y. H.

Chesnokov, E. N.

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

Chiang, A. C.

Chiu, Y. C.

Choporova, Y. Y.

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

Chuang, M. Y.

Cirmi, G.

Clarke, R.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Cocker, T. L.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Cong, Z.

Cooper, K. B.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Cumming, D. R. S.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Cunningham, J. E.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Davies, A. G.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Dhillon, S. S.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Duan, P.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108, 011007 (2016).
[Crossref]

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10, 371–379 (2016).
[Crossref]

Ellison, B.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

El-Shenawee, M. O.

N. M. Burford and M. O. El-Shenawee, “Review of terahertz photoconductive antenna technology,” Opt. Eng. 56, 010901 (2017).
[Crossref]

Escorcia-Carranza, I.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Fallahi, A.

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref]

Feng, H.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124, 16 (2018).
[Crossref]

Feng, J.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124, 16 (2018).
[Crossref]

Fice, M.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Fleming, R. N.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26, 418–421 (1975).
[Crossref]

Fontana, M. D.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[Crossref]

Fortov, V. E.

Fu, Q.

Gensch, M.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Gerasimov, V. V.

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

Getmanov, Y. V.

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

Glownia, J. H.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

Goldsmith, P.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Grant, J.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Hauri, C. P.

Hayashi, S.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref]

He, Y.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124, 16 (2018).
[Crossref]

Y. Wang, Y. Ren, D. Xu, L. Tang, Y. He, C. Song, L. Chen, C. Li, C. Yan, and J. Yao, “Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal,” Chin. Phys. B 27, 114213 (2018).
[Crossref]

Hemmer, M.

Hoffmann, M. C.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Hong, K. H.

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref]

Huang, W. R.

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref]

Huang, Y. C.

Huber, R.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Huggard, P. G.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Imai, K.

Ito, H.

Jang, H.

Jeong, Y. U.

Y. U. Jeong, S. H. Park, B. C. Lee, and H. J. Cha, “Compact terahertz free-electron laser as a users facility,” in 3rd Asia Particle Accelerator Conference, Gyeongju, South Korea, 2004, pp. 759–761.

Johnston, M. B.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Jongma, R. T.

W. J. van der Zande, R. T. Jongma, L. van der Meer, and B. Redlich, “FELIX facility: free electron laser light sources from 0.2 to 75  THz,” in 38st International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2013).

Kampfrath, T.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).
[Crossref]

Kärtner, F. X.

M. Hemmer, G. Cirmi, K. Ravi, F. Reichert, F. Ahr, L. Zapata, O. D. Mücke, A.-L. Calendron, H. Çankaya, D. Schimpf, N. H. Matlis, and F. X. Kärtner, “Cascaded interactions mediated by terahertz radiation,” Opt. Express 26, 12536–12546 (2018).
[Crossref]

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref]

Kato, K.

Kawase, K.

K. Murate and K. Kawase, “Perspective: terahertz wave parametric generator and its applications,” J. Appl. Phys. 124, 160901 (2018).
[Crossref]

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a THz-wave parametric oscillator,” Appl. Opt. 40, 1423–1426 (2001).
[Crossref]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 34, R1–R14 (2001).
[Crossref]

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24, 202–204 (1999).
[Crossref]

Kim, K. Y.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

Kiselev, S. L.

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

Kitaeva, G. K.

Knyazev, B. A.

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

Koch, M.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Konishi, K.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Korter, T. M.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Krozer, V.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Kubarev, V. V.

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

Kugel, G. E.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[Crossref]

Kulipanov, G. N.

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

Kuwata-Gonokami, M.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Laurell, F.

Lee, A. J.

T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, “Tunable 3–6  THz polariton laser exceeding 0.1  mW average output power based on crystalline RbTiOPO4,” IEEE J. Sel. Top. Quantum Electron. 24, 5100806 (2018).
[Crossref]

Lee, B. C.

Y. U. Jeong, S. H. Park, B. C. Lee, and H. J. Cha, “Compact terahertz free-electron laser as a users facility,” in 3rd Asia Particle Accelerator Conference, Gyeongju, South Korea, 2004, pp. 759–761.

Lee, C. H.

Lee, H. H.

Li, C.

Y. Wang, Y. Ren, D. Xu, L. Tang, Y. He, C. Song, L. Chen, C. Li, C. Yan, and J. Yao, “Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal,” Chin. Phys. B 27, 114213 (2018).
[Crossref]

Li, N.

Lin, F. Y.

Lin, S. T.

Lin, Y. H.

Lin, Y. Y.

Linfield, E. H.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Liu, H.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124, 16 (2018).
[Crossref]

Liu, P.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108, 011007 (2016).
[Crossref]

Liu, Z.

Lu, Q.

Lucyszyn, S.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Mangin, J.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[Crossref]

Markelz, A. G.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Marnier, G.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[Crossref]

Matlis, N. H.

Miller, R. J. D.

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref]

Minamide, H.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a THz-wave parametric oscillator,” Appl. Opt. 40, 1423–1426 (2001).
[Crossref]

Moriena, G.

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref]

Mücke, O. D.

Murate, K.

K. Murate and K. Kawase, “Perspective: terahertz wave parametric generator and its applications,” J. Appl. Phys. 124, 160901 (2018).
[Crossref]

Murdin, B. N.

B. N. Murdin, “Far-infrared free-electron lasers and their applications,” Contemp. Phys. 50, 391–406 (2009).
[Crossref]

Naftaly, M.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Nagatsuma, T.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10, 371–379 (2016).
[Crossref]

Nanni, E. A.

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref]

Nawata, K.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref]

Nelson, K. A.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).
[Crossref]

Nie, M.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124, 16 (2018).
[Crossref]

Ortega, T. A.

T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, “Tunable 3–6  THz polariton laser exceeding 0.1  mW average output power based on crystalline RbTiOPO4,” IEEE J. Sel. Top. Quantum Electron. 24, 5100806 (2018).
[Crossref]

Ovchinnikov, A. V.

Pantell, R. H.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26, 418–421 (1975).
[Crossref]

Paoloni, C.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Pardo, D.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Park, S. H.

Y. U. Jeong, S. H. Park, B. C. Lee, and H. J. Cha, “Compact terahertz free-electron laser as a users facility,” in 3rd Asia Particle Accelerator Conference, Gyeongju, South Korea, 2004, pp. 759–761.

Pasiskevicius, V.

Pask, H. M.

T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, “Tunable 3–6  THz polariton laser exceeding 0.1  mW average output power based on crystalline RbTiOPO4,” IEEE J. Sel. Top. Quantum Electron. 24, 5100806 (2018).
[Crossref]

Peltek, S. E.

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

Piestrup, M. A.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26, 418–421 (1975).
[Crossref]

Popik, V. M.

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

Qin, Z.

Ramian, G.

G. Ramian, “The new UCSB free-electron lasers,” Nucl. Instrum. Meth. Phys. Res. A 318, 225–229 (1992).
[Crossref]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Ravi, K.

M. Hemmer, G. Cirmi, K. Ravi, F. Reichert, F. Ahr, L. Zapata, O. D. Mücke, A.-L. Calendron, H. Çankaya, D. Schimpf, N. H. Matlis, and F. X. Kärtner, “Cascaded interactions mediated by terahertz radiation,” Opt. Express 26, 12536–12546 (2018).
[Crossref]

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref]

Rea, S.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Redlich, B.

W. J. van der Zande, R. T. Jongma, L. van der Meer, and B. Redlich, “FELIX facility: free electron laser light sources from 0.2 to 75  THz,” in 38st International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2013).

Reichert, F.

Ren, Y.

Y. Wang, Y. Ren, D. Xu, L. Tang, Y. He, C. Song, L. Chen, C. Li, C. Yan, and J. Yao, “Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal,” Chin. Phys. B 27, 114213 (2018).
[Crossref]

Renaud, C.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10, 371–379 (2016).
[Crossref]

Ridler, N.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Rodriguez, G.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Salikova, T. V.

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

Sato, M.

Scheglov, M. A.

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

Schimpf, D.

Schmuttenmaer, C. A.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Schunemann, P. G.

Seeds, A.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Seredniakov, S. S.

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

Shams, H.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Shevchenko, O. A.

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

Shi, J.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124, 16 (2018).
[Crossref]

Shi, W.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108, 011007 (2016).
[Crossref]

Shikata, J.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a THz-wave parametric oscillator,” Appl. Opt. 40, 1423–1426 (2001).
[Crossref]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 34, R1–R14 (2001).
[Crossref]

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24, 202–204 (1999).
[Crossref]

Sibik, J.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Simoens, F.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Skrinsky, A. N.

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

Song, C.

Y. Wang, Y. Ren, D. Xu, L. Tang, Y. He, C. Song, L. Chen, C. Li, C. Yan, and J. Yao, “Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal,” Chin. Phys. B 27, 114213 (2018).
[Crossref]

Sorokin, E.

Sorokina, I. T.

Spence, D. J.

T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, “Tunable 3–6  THz polariton laser exceeding 0.1  mW average output power based on crystalline RbTiOPO4,” IEEE J. Sel. Top. Quantum Electron. 24, 5100806 (2018).
[Crossref]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Stöhr, A.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Strömqvist, G.

Sussman, S. S.

S. S. Sussman, Tunable Light Scattering from Transverse Optical Modes in Lithium Niobate (Stanford University, 1970).

Taira, T.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref]

Takaoka, E.

Tanaka, K.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).
[Crossref]

Tang, G.

Tang, L.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124, 16 (2018).
[Crossref]

Y. Wang, Y. Ren, D. Xu, L. Tang, Y. He, C. Song, L. Chen, C. Li, C. Yan, and J. Yao, “Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal,” Chin. Phys. B 27, 114213 (2018).
[Crossref]

Taniuchi, T.

Taylor, A. J.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

Taylor, Z. D.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Teng, B.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124, 16 (2018).
[Crossref]

van der Meer, L.

W. J. van der Zande, R. T. Jongma, L. van der Meer, and B. Redlich, “FELIX facility: free electron laser light sources from 0.2 to 75  THz,” in 38st International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2013).

van der Zande, W. J.

W. J. van der Zande, R. T. Jongma, L. van der Meer, and B. Redlich, “FELIX facility: free electron laser light sources from 0.2 to 75  THz,” in 38st International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2013).

Veber, S. L.

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

Vicario, C.

Vinokurov, N. A.

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

Vitiello, M. S.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Vodopyanov, K. L.

Wallace, V. P.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Wang, C.

Wang, P. C.

Wang, T. D.

Wang, W.

Wang, Y.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124, 16 (2018).
[Crossref]

Y. Wang, Y. Ren, D. Xu, L. Tang, Y. He, C. Song, L. Chen, C. Li, C. Yan, and J. Yao, “Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal,” Chin. Phys. B 27, 114213 (2018).
[Crossref]

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108, 011007 (2016).
[Crossref]

Weightman, P.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Williams, G. P.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Wu, D.

Wu, M. H.

Wyncke, B.

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[Crossref]

Xu, D.

Y. Wang, Y. Ren, D. Xu, L. Tang, Y. He, C. Song, L. Chen, C. Li, C. Yan, and J. Yao, “Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal,” Chin. Phys. B 27, 114213 (2018).
[Crossref]

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124, 16 (2018).
[Crossref]

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108, 011007 (2016).
[Crossref]

Xu, W.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108, 011007 (2016).
[Crossref]

Yan, C.

Y. Wang, Y. Ren, D. Xu, L. Tang, Y. He, C. Song, L. Chen, C. Li, C. Yan, and J. Yao, “Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal,” Chin. Phys. B 27, 114213 (2018).
[Crossref]

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124, 16 (2018).
[Crossref]

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108, 011007 (2016).
[Crossref]

Yan, D.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124, 16 (2018).
[Crossref]

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108, 011007 (2016).
[Crossref]

Yao, J.

Y. Wang, Y. Ren, D. Xu, L. Tang, Y. He, C. Song, L. Chen, C. Li, C. Yan, and J. Yao, “Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal,” Chin. Phys. B 27, 114213 (2018).
[Crossref]

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124, 16 (2018).
[Crossref]

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108, 011007 (2016).
[Crossref]

Zapata, L.

Zeitler, J. A.

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Zhang, S.

Zhang, X.

Zhang, Y.

Zhao, G.

Zhong, K.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108, 011007 (2016).
[Crossref]

Zukauskas, A.

Appl. Opt. (2)

Appl. Phys. B (1)

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124, 16 (2018).
[Crossref]

Appl. Phys. Lett. (2)

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26, 418–421 (1975).
[Crossref]

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108, 011007 (2016).
[Crossref]

Chin. Phys. B (1)

Y. Wang, Y. Ren, D. Xu, L. Tang, Y. He, C. Song, L. Chen, C. Li, C. Yan, and J. Yao, “Energy scaling and extended tunability of a ring cavity terahertz parametric oscillator based on KTiOPO4 crystal,” Chin. Phys. B 27, 114213 (2018).
[Crossref]

Contemp. Phys. (1)

B. N. Murdin, “Far-infrared free-electron lasers and their applications,” Contemp. Phys. 50, 391–406 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, “Tunable 3–6  THz polariton laser exceeding 0.1  mW average output power based on crystalline RbTiOPO4,” IEEE J. Sel. Top. Quantum Electron. 24, 5100806 (2018).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, Y. Y. Choporova, V. V. Gerasimov, Y. V. Getmanov, S. L. Kiselev, B. A. Knyazev, V. V. Kubarev, S. E. Peltek, V. M. Popik, T. V. Salikova, M. A. Scheglov, S. S. Seredniakov, O. A. Shevchenko, A. N. Skrinsky, S. L. Veber, and N. A. Vinokurov, “Novosibirsk free electron laser: facility description and recent experiments,” IEEE Trans. Terahertz Sci. Technol. 5, 798–809 (2015).
[Crossref]

J. Appl. Phys. (1)

K. Murate and K. Kawase, “Perspective: terahertz wave parametric generator and its applications,” J. Appl. Phys. 124, 160901 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. C (1)

G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[Crossref]

J. Phys. D (2)

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 34, R1–R14 (2001).
[Crossref]

S. S. Dhillon, M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, E. Castro-Camus, D. R. S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C. A. Schmuttenmaer, T. L. Cocker, R. Huber, A. G. Markelz, Z. D. Taylor, V. P. Wallace, J. A. Zeitler, J. Sibik, T. M. Korter, B. Ellison, S. Rea, P. Goldsmith, K. B. Cooper, R. Appleby, D. Pardo, P. G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J. E. Cunningham, and M. B. Johnston, “The 2017 terahertz science and technology roadmap,” J. Phys. D 50, 043001 (2017).
[Crossref]

Nat. Commun. (1)

E. A. Nanni, W. R. Huang, K. H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref]

Nat. Photonics (3)

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10, 371–379 (2016).
[Crossref]

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

Nucl. Instrum. Meth. Phys. Res. A (1)

G. Ramian, “The new UCSB free-electron lasers,” Nucl. Instrum. Meth. Phys. Res. A 318, 225–229 (1992).
[Crossref]

Opt. Eng. (1)

N. M. Burford and M. O. El-Shenawee, “Review of terahertz photoconductive antenna technology,” Opt. Eng. 56, 010901 (2017).
[Crossref]

Opt. Express (7)

M. Hemmer, G. Cirmi, K. Ravi, F. Reichert, F. Ahr, L. Zapata, O. D. Mücke, A.-L. Calendron, H. Çankaya, D. Schimpf, N. H. Matlis, and F. X. Kärtner, “Cascaded interactions mediated by terahertz radiation,” Opt. Express 26, 12536–12546 (2018).
[Crossref]

W. Wang, Z. Cong, Z. Liu, X. Zhang, Z. Qin, G. Tang, N. Li, Y. Zhang, and Q. Lu, “THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal,” Opt. Express 22, 17092–17098 (2014).
[Crossref]

M. H. Wu, Y. C. Chiu, T. D. Wang, G. Zhao, A. Zukauskas, F. Laurell, and Y. C. Huang, “Terahertz parametric generation and amplification from potassium titanyl phosphate in comparison with lithium niobate and lithium tantalate,” Opt. Express 24, 25964–25973 (2016).
[Crossref]

G. Tang, Z. Cong, Z. Qin, X. Zhang, W. Wang, D. Wu, N. Li, Q. Fu, Q. Lu, and S. Zhang, “Energy scaling of terahertz-wave parametric sources,” Opt. Express 23, 4144–4152 (2015).
[Crossref]

T. D. Wang, S. T. Lin, Y. Y. Lin, A. C. Chiang, and Y. C. Huang, “Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate,” Opt. Express 16, 6471–6478 (2008).
[Crossref]

H. Jang, G. Strömqvist, V. Pasiskevicius, and C. Canalias, “Control of forward stimulated polariton scattering in periodically-poled KTP crystals,” Opt. Express 21, 27277–27283 (2013).
[Crossref]

T. D. Wang, Y. C. Huang, M. Y. Chuang, Y. H. Lin, C. H. Lee, Y. Y. Lin, F. Y. Lin, and G. K. Kitaeva, “Long-range parametric amplification of THz wave with absorption loss exceeding parametric gain,” Opt. Express 21, 2452–2462 (2013).
[Crossref]

Opt. Lett. (6)

Sci. Rep. (1)

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).
[Crossref]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Other (5)

W. J. van der Zande, R. T. Jongma, L. van der Meer, and B. Redlich, “FELIX facility: free electron laser light sources from 0.2 to 75  THz,” in 38st International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2013).

S. S. Sussman, Tunable Light Scattering from Transverse Optical Modes in Lithium Niobate (Stanford University, 1970).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

J. M. Klopf, “Table of IR/THz FELs worldwide,” https://www.hzdr.de/db/Cms?pNid=471 .

Y. U. Jeong, S. H. Park, B. C. Lee, and H. J. Cha, “Compact terahertz free-electron laser as a users facility,” in 3rd Asia Particle Accelerator Conference, Gyeongju, South Korea, 2004, pp. 759–761.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Phase matching diagram of the stimulated polariton scattering in KTP. In the crystallographic x y plane, an infrared pump wave scatters off redshifted Stokes and THz waves at ± 2.3 ° and ± 61.5 ° , respectively, for the maximum gain at 5.7 THz. (b) An off-center pumped THz parametric generator using a z-cut crystal, wherein the THz-wave component incident on the crystal–air interface is coupled out via, for instance, a silicon prism, and the other component walking away from the pump region is quickly absorbed by the crystal. (c) A THz off-axis parametric oscillator using a y-cut crystal, wherein the THz wave is confined to the pump-filled gain region until pump depletion via total internal reflection between the y surfaces.
Fig. 2.
Fig. 2. Experimental setup of the KTP OTPO seeded by a spectrally filtered Stokes wave from a KTP TPG. An amplified passively Q -switched Nd:YAG laser synchronously pumps both the OTPO and TPG. The THz wave is coupled out from the OTPO by using a silicon prism and measured by a pyroelectric detector. HWP, half-wave plate; PBS, polarization beam splitter; LPF, THz low-pass filter.
Fig. 3.
Fig. 3. (a) Effective nonlinear coefficient d eff , THz-wave absorption coefficient α T , and SPS gain coefficient g of KTP versus THz frequency and corresponding Stokes wavelength. Compared with LN, KTP has a smaller nonlinear coefficient, a comparably strong absorption coefficient, but can be phase-matched at higher THz frequencies. The peak SPS gain occurs at 5.77 THz with a corresponding Stokes wavelength at 1086.2 nm for a pump wavelength at 1064 nm. The dark lines are stop bands at the transverse optical phonon modes of KTP. (b) The Stokes spectra of the TPG and unseeded OTPO pumped by 2.4 and 13.7 mJ pulse energies at 1064 nm. The slight shift of the two spectral peaks results from different pump intensities in the two KTP crystals.
Fig. 4.
Fig. 4. (a) Measured THz-radiation pulse (red curve) by our pyroelectric detector. The 0.72 V signal amplitude (average value) corresponds to a THz pulse energy of 6.6 μJ, according to the vendor-supplied calibrations for the detector, the low-pass filter, and the parabolic gold mirrors. When we inserted a 0.15-mm-thick glass or a 0.5-mm-thick LN, which strongly absorbs radiation at 5.7 THz while it transmits laser near 1 μm, in front of the pyroelectric detector, the detector signal returns to the zero line (blue curve). (b) Wavelength measurement (blue circle) by using a self-built scanning Fabry–Perot (F-P) interferometer consisting of two metallic wire meshes. The periodicity of the interferogram indicates a THz radiation wavelength of 52 μm.
Fig. 5.
Fig. 5. (a) Experimental setup of the THz DFG for characterizing the THz-wave pulse width. (b) The measured signal (Stokes) pulse profile (red curve) in comparison with the pump pulse (black curve). The FWHM widths of the signal and pump pulses measured by the fast photodetector are 92 and 450 ps, respectively. The THz-wave pulse width calculated from Eq. (4) is < 94 ps .
Fig. 6.
Fig. 6. Measured peak power and energy of THz-wave radiation as a function of pump energy for the OTPO. With 14 and 5 μJ energy in the seeding Stokes pulses through the 100 and 20 μm slits, the measured THz pulse energies are 6.6 μJ with a 11.9 mJ pump and 5.9 μJ with a 13.7 mJ pump at 5.7 THz, respectively. Given the 63% coupling efficiency of the silicon prism and the < 94 ps THz pulse width, the peak far-infrared power emitted from the seeded OTPO into the silicon prism is > 111 kW .
Fig. 7.
Fig. 7. Measured pulse energy of the radiation at 5.7 THz versus slit opening at a constant pump energy of 13.7 mJ. The high parametric gain in the OTPO results in quick saturation of the output THz-wave radiation for slit openings > 30 μm . With a slit opening of 10 μm, the measured pulse energy and peak power are 4.2 μJ and > 45 kW , respectively, expected to have a transform-limited linewidth of 8 × 10 4 at 5.7 THz for an estimated pulse width of 94 ps.
Fig. 8.
Fig. 8. Measured THz tuning curve versus seeding Stokes wavelength for 20 (blue circle) and 100 μm (red square) slit openings. When varying the seeding Stokes wavelength, we kept the experimental conditions of the TPG and OTPO unchanged. The tuning range of the generated THz radiation is about 150 GHz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g ( ω T ) = α T ( ω T ) 2 cos ϕ ( ω T ) { 1 + 16 cos ϕ ( ω T ) [ Γ ( ω T ) α T ( ω T ) ] 2 1 } ,
ϕ s = ϕ T exp ( α T 2 L ) Γ 2 | g / 2 | 2 | sinh ( g 2 L ) | 2 ,
ϕ s ϕ T ϕ p .
1 Δ t s 2 = 1 Δ t T 2 + 1 Δ t p 2 .

Metrics