Abstract

Fast optical switches have been proposed as a promising alternative to enable continual scaling of data centers with increasing size and data rates. Silicon photonics is a compelling platform for large-scale integrated photonic switches, leveraging advanced manufacturing foundries for electronic integrated circuits. In the past decade, the port counts of silicon photonic switches have increased steadily to 128×128. Further scaling of the switch is constrained by the maximum reticle size (2–3 cm) of lithography tools. Here, we propose to use wafer-scale integration to overcome the die size limit. As a proof of concept demonstration, we fabricated a 240×240 switch by lithographically stitching a 3×3 array of identical 80×80 switch blocks across reticle boundaries. Stitching loss is substantially reduced (0.004 dB) by tapering the waveguide width to 10 μm. The fabricated switch on a 4cm×4cm chip exhibits a maximum on-chip loss of 9.8 dB, an ON/OFF ratio of 70 dB, and switching times of less than 400 ns. To our knowledge, this is the largest integrated photonic switch ever reported. The loss-to-port count ratio (0.04 dB/port) is also the lowest.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Silicon photonics is a disruptive technology for large-scale photonic integrated circuits (PICs) [1], thanks to its ability to use complementary metal-oxide-semiconductor (CMOS)-like fabrication resulting in high-volume production at low cost. In addition to optical transceivers for datacom and telecom, silicon photonics also made inroads into a wide variety of applications such as programmable photonics processors [2,3], photonic neural network circuits [4], optical phased arrays [5,6], and integrated photonic switches [7]. Many of these applications benefit from integrating a large number of photonic elements, leveraging the high integration density and uniform, high-yield process of silicon photonics.

Large-scale photonic switches have attracted much attention for applications in data center networks [812]. Several research groups have reported large-scale silicon photonic switches [7,1318]. Two of the reported switches have a port count 32×32 and an on-chip loss 6dB [7,18]. Further scaling of the switches faces two challenges: (1) high optical loss and (2) maximum chip area limited by the reticle size of lithography. To overcome the cumulative loss in Mach–Zehnder interferometer (MZI) and microring resonator (MRR)-based multistage switches, we have proposed a new microelectromechanical-system (MEMS) switching mechanism that has nearly zero loss in the BAR state [7]. Using a crossbar architecture, all but one of the switching elements are in the BAR state. Thus, large switches with low loss can be realized. We have successfully demonstrated a 128×128 switch [19] on a 1.6×1.7-cm2 die, which is approaching the maximum size allowed in a single reticle (usually around 2–3 cm for deep-UV lithography steppers or scanners). Wafer-scale integration has been employed to create long delay lines across multiple reticles [20]. However, each reticle requires a distinctive mask.

In this paper, we present wafer-scale integrated silicon photonic switches that overcome the reticle size limit. Identical switch blocks are stitched lithographically with a loss less than 0.004dB. As a proof of concept, we experimentally demonstrated a 240×240 switch on a 4×4-cm2 die by stitching a 3×3 array of 80×80 switch blocks. The maximum on-chip loss of the longest optical path is measured to be 9.8 dB. This is the largest integrated photonic switch ever reported in any integrated photonic switches. The loss-to-port count ratio of 0.04 dB/port is also the lowest.

2. ULTRA-LARGE-SCALE SWITCH ARCHITECTURE

Figure 1 shows the schematic of the ultra-large-scale silicon photonic switch architecture. The switches consist of three basic building blocks: (1) an N×1 input coupler block, (2) a 1×N output coupler block, and (3) an N×N switch block. Each block fits within a single reticle of a step-and-repeat lithography stepper (or scanner). The input coupler couples light from N input fibers to N silicon waveguides. These waveguides are connected to the western ports of the switch array. Similarly, the output coupler block is attached to the southern edge of the switch array and couples light to N output fibers. Either grating or edge couplers can be used for the coupler blocks. The N×N switch block is based on matrix architecture with N input, N through, N add, and N drop ports at the western, eastern, northern, and southern edges, respectively. By stitching an M×M array of the switch blocks during lithography, an NM×NM switch is realized. M input coupler blocks and M output coupler blocks are stitched to the western and southern sides of the switch array to provide NM input/output ports. The waveguides are tapered to a wider width to reduce the scattering loss at reticle boundaries, as shown in Fig. 1(b). Switch fabrics with different sizes can be realized by simply varying the number of the switch blocks without changing mask reticles. Multiple switch fabrics with different sizes can be integrated on a single wafer. In our experimental demonstration below, M=3, N=80, and MN=240.

 figure: Fig. 1.

Fig. 1. (a) Schematic of ultra-large-scale silicon photonic switches. The switch consists of the three basic building blocks: an N×N switch, an N×1 input coupler, and a 1×N output coupler. (b) Schematic of the N×N switch block. The waveguides are tapered to a wider width to reduce stitching loss. (c) Unit cell of the silicon photonic MEMS switch consisting of a pair of adiabatic couplers on orthogonal bus waveguides with MMI crossing.

Download Full Size | PPT Slide | PDF

The MEMS switching element is similar to what we reported previously [7]. It consists of orthogonal bus waveguides with multimode interference (MMI) crossing on the first layer and a pair of vertically actuated adiabatic couplers on the second layer [Fig. 1(c)]. The multilayer adiabatic coupler switch with MEMS actuation offers many advantages: (1) zero loss in the OFF (BAR) state as the coupler is far from the bus waveguides; (2) low propagation loss using wide ridge waveguides with a shallow etch; and (3) extremely high extinction ratio (>60dB) and low crosstalk (<60dB) over a broad wavelength range (>100nm). The cumulative loss commonly seen in other silicon photonic switches is eliminated. This is a key factor in achieving ultra-large-scale switches with low loss. The detailed designs of MMI crossings and adiabatic couplers can be found in [7].

The offset between adjacent reticles in our deep-UV stepper (ASML 5500/300) is less than 100 nm. Though small, it can cause significant stitching loss in submicrometer waveguides. The misalignment loss can be drastically reduced by widening the waveguides at the joints. Figure 2 shows the simulated misalignment loss of a stitched silicon rib waveguide with a thickness of 220 nm, an etch depth of 60 nm, and a misalignment of 100 nm. For a silicon waveguide with 1 μm width, the loss is larger than 0.1 dB. The stitching loss reduces to below 0.004 dB as the waveguide width increases to 10 μm, the designed tapered width of our waveguide.

 figure: Fig. 2.

Fig. 2. Numerical simulation of the scattering loss caused by 100 nm misalignment at the stitching interface. The inset shows the schematic of the simulated structure. Silicon rib waveguides are designed to have 220 nm thickness and 60 nm partial etch depth.

Download Full Size | PPT Slide | PDF

3. EXPERIMENTAL RESULTS

The ultra-large-scale silicon photonic switches were fabricated using the 6-in. wafer processing facilities in Marvell Nanofabrication Laboratory at University of California Berkeley (UC Berkeley). All three building blocks (input, output, and switch) have a footprint of 1cm×1cm [Fig. 3(a)]. Each switch block consists of 80×80 silicon photonic MEMS switches whose unit cell has a footprint of 110μm×110μm [Fig. 3(b)]. We have successfully realized a 240×240 silicon photonic switch by arranging a 3×3 array of the 80×80 switch blocks and attaching the input and output coupler blocks at the western and southern edges of the switch array, as shown in Fig. 3(a). To ensure the continuity of stitched waveguides, adjacent blocks were exposed with a 5-μm overlap. The widths of the stitched waveguides are tapered to 10 μm to reduce the stitching loss as discussed in the previous section. Figure 3(c) shows the microscope image of the stitched waveguides. The nominal offset between adjacent blocks is measured to be about 70 nm from the closeup scanning electron micrograph (SEM) in the inset of Fig. 3(c). The detailed arrangement of the switch and coupler blocks on the SOI wafer is described in Supplement 1.

 figure: Fig. 3.

Fig. 3. (a) Fabricated 240×240 silicon photonic switch on a 4cm×4cm die. (b) Optical micrograph of the unit cell in the silicon photonic MEMS switch. Unit cell size: 110μm×110μm. (c) Tapered waveguides at the stitching interface. Inset: close-up SEM image of the waveguide joint showing 70 nm offset. (d), (e) SEM images of the fabricated silicon photonic MEMS switches.

Download Full Size | PPT Slide | PDF

To characterize the switch, a custom measurement setup was built with two motorized six-axis stages to align the two fiber arrays with the input and output coupler blocks. Two 80-channel fiber arrays with 13-deg polishing angles are used to interface with the switch. With this setup, we can probe any 80×80 switch blocks by moving the fiber arrays along the input or output couplers. As the ultra-large-scale switch can be readily extended to a wafer-scale device, the stages were designed to have a 10-cm translation range. The experimental setup and the fabricated switch are shown in Fig. 4. TE polarized light is coupled in and out of the switch through grating coupler arrays. The coupling loss was measured to be an 4.5dB/facet at 1500 nm wavelength. The switch was electrically addressed using a pair of probes.

 figure: Fig. 4.

Fig. 4. Experimental setup with the 240×240 silicon photonic switch.

Download Full Size | PPT Slide | PDF

Figure 5(a) shows the switching characteristics of a typical switch cell. When the bias voltage increases, the adiabatic couplers are pulled down to the bottom layer at 40 V, directing light from the input bus to the output bus waveguides. The switch stays in the ON state with a further increase in voltage as the coupling distance is precisely defined by microfabricated mechanical stoppers. The switch turns off when the bias voltage decreases below 25 V. This digital switching characteristic without requiring precise bias controls is a key advantage of silicon photonic MEMS switches. These features are particularly beneficial for large-scale switch fabrics with a large number of actuators (57,600 in this switch). The MEMS switch exhibits an extremely high ON/OFF (extinction) ratio of 70 dB, which results in exceptionally low crosstalk. In the OFF state, the switch has no loss, effectively eliminating the loss accumulation in large switch matrices. The broadband spectral response due to the adiabatic couplers is observed [Fig. 5(b)], which makes the switch compatible with wavelength division multiplexed (WDM) signals. The temporal response is shown in Fig. 6. The ON and OFF switching times were measured to be 400 ns and 300 ns, respectively, for a 65-V square-wave voltage waveform. The ON switching time can be shortened by increasing the bias voltage though the OFF switching time is limited by the stiffness of the MEMS springs. Shorter switching time and lower bias voltage are possible by further optimization of the MEMS actuators.

 figure: Fig. 5.

Fig. 5. (a) Measured switching characteristics showing digital switching behavior with an extremely high extinction ratio of 70 dB. (b) Measured switching spectrum confirming broadband operation.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6.

Fig. 6. Measured switching speed of a switching cell.

Download Full Size | PPT Slide | PDF

To characterize the on-chip loss, we measured 200 randomly selected switch configurations. The measured on-chip loss versus the number of switching cells in the light path is plotted in Fig. 7. From the linear fitting, the loss-per-cell and the switching loss are extracted to be 0.019 dB/cell and 0.7 dB, respectively. The maximum loss of the longest optical path is 9.8 dB (=0.019×478+0.7). The switching loss of 0.7 dB is likely due to the high propagation loss in polycrystalline waveguides and adiabatic couplers. It is expected that optimization of the polycrystalline silicon deposition condition can significantly reduce the switching loss [21]. The propagation and crossing losses in the crystalline silicon bus waveguides are the main causes of the loss-per-cell. We measured these passive losses from test structures on the same wafer. The waveguide propagation loss and the crossing loss were characterized to be 0.45 dB/cm and 0.016 dB/crossing, respectively (see Supplement 1). This results in a loss of 0.019 dB/cell (=0.45dB/cm×70μm+0.016dB), which agrees well with the experimental data in Fig. 7.

 figure: Fig. 7.

Fig. 7. On-chip insertion loss versus the number of cells in the light path for 200 randomly selected switch configurations for the 240×240 switch. The loss-per-cell and the switching loss are extracted to be 0.019 dB/cell and 0.7 dB, respectively, from the linear fitting.

Download Full Size | PPT Slide | PDF

4. CONCLUSION

We have demonstrated wafer-scale 240×240 silicon photonic switches on 4cm×4cm dies by stitching a 3×3 array of 80×80 photonic MEMS switch blocks, three input coupler blocks, and three output coupler blocks. The width of bus waveguides is tapered to 10 μm at the stitching locations, resulting in a negligible stitching loss as low as 0.004 dB. The switch exhibits a maximum on-chip loss of 9.8 dB, an ON/OFF ratio of 70 dB, and switching times of less than 400 ns. To the best of our knowledge, these are the largest integrated photonic switch and the lowest on-chip loss (0.04 dB/port) ever reported.

The proposed switch architecture overcomes the die size limit by the reticles. Reducing the optical loss is another critical factor for further scaling of photonic switches. For example, the longest optical path of a 1000×1000 switch has 1999 crossings in the current matrix architecture, resulting in a loss of 32 dB from the crossings alone, assuming the same crossing loss of 0.016 dB. One possible solution to eliminate waveguide crossings is to use multilayer bus waveguides as reported in [22,23]. The crossing loss, which accounts for 80% of the loss-per-cell, will be reduced to a negligible level, leaving the propagation loss as the main source of the loss. Moreover, the unit cell footprint can be further reduced (by about 30%) without the MMI crossing, resulting in higher integration density and lower loss. Waveguides made in state-of-the-art silicon photonics foundries have propagation losses of 0.1–0.2 dB/cm (shallow-etched silicon rib waveguides). It is projected that a 1000×1000 switch with an 1.5dB (=0.1dB/cm×75μm/cell×2000cells) on-chip loss is achievable.

Funding

Advanced Research Projects Agency–Energy (ARPA-E) (DE-AR0000849); National Science Foundation (NSF) (1827633, EEC-0812072); Google Faculty Research Award; UC Berkeley Bakar Fellow Program; National Research Foundation of Korea (NRF) (2018R1C1B6005302).

Acknowledgment

The authors acknowledge the staff and users of Marvell Nanofabrication Laboratory at UC Berkeley for their assistance and fruitful discussions. The authors declare that there are no conflicts of interest related to this article.

 

See Supplement 1 for supporting content.

REFERENCES

1. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016). [CrossRef]  

2. N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017). [CrossRef]  

3. N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophotonic processors,” Optica 5, 1623–1631 (2018). [CrossRef]  

4. Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017). [CrossRef]  

5. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013). [CrossRef]  

6. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3, 887–890 (2016). [CrossRef]  

7. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3, 64–70 (2016). [CrossRef]  

8. G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “C-through: part-time optics in data centers,” in ACM SIGCOMM Conference (ACM, 2010), pp. 327–338.

9. Z. Zhu, S. Zhong, L. Chen, and K. Chen, “Fully programmable and scalable optical switching fabric for petabyte data center,” Opt. Express 23, 3563–3580 (2015). [CrossRef]  

10. B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lightwave Technol. 33, 768–777 (2015). [CrossRef]  

11. Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters [Invited],” Opt. Express 26, 16022–16043 (2018). [CrossRef]  

12. Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica 5, 1354–1370 (2018). [CrossRef]  

13. S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2, 370–375 (2015). [CrossRef]  

14. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23, 17599–17606 (2015). [CrossRef]  

15. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lightwave Technol. 34, 365–371 (2016). [CrossRef]  

16. L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017). [CrossRef]  

17. P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Lightwave Technol. 36, 233–238 (2018). [CrossRef]  

18. K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 × 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Lightwave Technol. 37, 116–122 (2019). [CrossRef]  

19. K. Kwon, T. J. Seok, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128 × 128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SF1A.4.

20. S. Gundavarapu, M. Belt, T. A. Huffman, M. A. Tran, T. Komljenovic, J. E. Bowers, and D. J. Blumenthal, “Interferometric optical gyroscope based on an integrated Si3N4 low-loss waveguide coil,” J. Lightwave Technol. 36, 1185–1191 (2018). [CrossRef]  

21. D. Kwong, J. Covey, A. Hosseini, Y. Zhang, X. Xu, and R. T. Chen, “Ultralow-loss polycrystalline silicon waveguides and high uniformity 1 × 12 MMI fanout for 3D photonic integration,” Opt. Express 20, 21722–21728 (2012). [CrossRef]  

22. W. D. Sacher, J. C. Mikkelsen, P. Dumais, J. Jiang, D. Goodwill, X. Luo, Y. Huang, Y. Yang, A. Bois, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, “Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions,” Opt. Express 25, 30862–30875 (2017). [CrossRef]  

23. S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lightwave Technol. 36, 1824–1830 (2018). [CrossRef]  

References

  • View by:

  1. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
    [Crossref]
  2. N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
    [Crossref]
  3. N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophotonic processors,” Optica 5, 1623–1631 (2018).
    [Crossref]
  4. Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
    [Crossref]
  5. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
    [Crossref]
  6. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3, 887–890 (2016).
    [Crossref]
  7. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3, 64–70 (2016).
    [Crossref]
  8. G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “C-through: part-time optics in data centers,” in ACM SIGCOMM Conference (ACM, 2010), pp. 327–338.
  9. Z. Zhu, S. Zhong, L. Chen, and K. Chen, “Fully programmable and scalable optical switching fabric for petabyte data center,” Opt. Express 23, 3563–3580 (2015).
    [Crossref]
  10. B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lightwave Technol. 33, 768–777 (2015).
    [Crossref]
  11. Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters [Invited],” Opt. Express 26, 16022–16043 (2018).
    [Crossref]
  12. Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica 5, 1354–1370 (2018).
    [Crossref]
  13. S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2, 370–375 (2015).
    [Crossref]
  14. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23, 17599–17606 (2015).
    [Crossref]
  15. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lightwave Technol. 34, 365–371 (2016).
    [Crossref]
  16. L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
    [Crossref]
  17. P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package,” J. Lightwave Technol. 36, 233–238 (2018).
    [Crossref]
  18. K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 × 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Lightwave Technol. 37, 116–122 (2019).
    [Crossref]
  19. K. Kwon, T. J. Seok, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128 × 128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SF1A.4.
  20. S. Gundavarapu, M. Belt, T. A. Huffman, M. A. Tran, T. Komljenovic, J. E. Bowers, and D. J. Blumenthal, “Interferometric optical gyroscope based on an integrated Si3N4 low-loss waveguide coil,” J. Lightwave Technol. 36, 1185–1191 (2018).
    [Crossref]
  21. D. Kwong, J. Covey, A. Hosseini, Y. Zhang, X. Xu, and R. T. Chen, “Ultralow-loss polycrystalline silicon waveguides and high uniformity 1 × 12 MMI fanout for 3D photonic integration,” Opt. Express 20, 21722–21728 (2012).
    [Crossref]
  22. W. D. Sacher, J. C. Mikkelsen, P. Dumais, J. Jiang, D. Goodwill, X. Luo, Y. Huang, Y. Yang, A. Bois, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, “Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions,” Opt. Express 25, 30862–30875 (2017).
    [Crossref]
  23. S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lightwave Technol. 36, 1824–1830 (2018).
    [Crossref]

2019 (1)

2018 (6)

2017 (4)

W. D. Sacher, J. C. Mikkelsen, P. Dumais, J. Jiang, D. Goodwill, X. Luo, Y. Huang, Y. Yang, A. Bois, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, “Tri-layer silicon nitride-on-silicon photonic platform for ultra-low-loss crossings and interlayer transitions,” Opt. Express 25, 30862–30875 (2017).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref]

2016 (4)

2015 (4)

2013 (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

2012 (1)

Alsing, P. M.

Andersen, D. G.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “C-through: part-time optics in data centers,” in ACM SIGCOMM Conference (ACM, 2010), pp. 327–338.

Baehr-Jones, T.

N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophotonic processors,” Optica 5, 1623–1631 (2018).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

Bahadori, M.

Belt, M.

Bergman, K.

Bernier, E.

Bickford, J. R.

Blumenthal, D. J.

Boeuf, F.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Bois, A.

Bowers, J. E.

S. Gundavarapu, M. Belt, T. A. Huffman, M. A. Tran, T. Komljenovic, J. E. Bowers, and D. J. Blumenthal, “Interferometric optical gyroscope based on an integrated Si3N4 low-loss waveguide coil,” J. Lightwave Technol. 36, 1185–1191 (2018).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Budd, R.

Bunandar, D.

N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophotonic processors,” Optica 5, 1623–1631 (2018).
[Crossref]

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

Carolan, J.

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Celo, D.

Chen, C.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

Chen, K.

Chen, L.

Chen, R. T.

Cheng, Q.

Chu, T.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref]

Cong, G.

Covey, J.

Doylend, J. K.

Dumais, P.

Dupuis, N.

Englund, D.

N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophotonic processors,” Optica 5, 1623–1631 (2018).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

Fanto, M. L.

Fédéli, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Feshali, A.

Geng, D.

Glick, M.

Goodwill, D.

Goodwill, D. J.

Gundavarapu, S.

Han, S.

Harris, N. C.

N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophotonic processors,” Optica 5, 1623–1631 (2018).
[Crossref]

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Hartmann, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Hasegawa, J.

He, J.

Heck, J.

Henriksson, J.

K. Kwon, T. J. Seok, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128 × 128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SF1A.4.

Hochberg, M.

N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophotonic processors,” Optica 5, 1623–1631 (2018).
[Crossref]

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Hosseini, A.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Huang, Y.

Huffman, T. A.

Hutchison, D. N.

Ikeda, K.

Jacobs, J.

K. Kwon, T. J. Seok, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128 × 128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SF1A.4.

Jiang, J.

Kaminsky, M.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “C-through: part-time optics in data centers,” in ACM SIGCOMM Conference (ACM, 2010), pp. 327–338.

Kawashima, H.

Kim, W.

Kimura, T.

Komljenovic, T.

S. Gundavarapu, M. Belt, T. A. Huffman, M. A. Tran, T. Komljenovic, J. E. Bowers, and D. J. Blumenthal, “Interferometric optical gyroscope based on an integrated Si3N4 low-loss waveguide coil,” J. Lightwave Technol. 36, 1185–1191 (2018).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Konoike, R.

Koshino, K.

Kozuch, M.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “C-through: part-time optics in data centers,” in ACM SIGCOMM Conference (ACM, 2010), pp. 327–338.

Kumar, R.

Kwon, K.

K. Kwon, T. J. Seok, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128 × 128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SF1A.4.

Kwong, D.

Lahini, Y.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

Larochelle, H.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Lee, B. G.

Li, M.

Liu, W.

Lloyd, S.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

Lo, P. G.-Q.

Luo, J.

K. Kwon, T. J. Seok, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128 × 128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SF1A.4.

Luo, X.

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Mashanovich, G. Z.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Matsumaro, K.

Matsuura, H.

Mehrvar, H.

Mikkelsen, J. C.

Mower, J.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

Muller, R. S.

Namiki, S.

Nedeljkovic, M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Ng, T. S. E.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “C-through: part-time optics in data centers,” in ACM SIGCOMM Conference (ACM, 2010), pp. 327–338.

O’Brien, P.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Ochikubo, L.

K. Kwon, T. J. Seok, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128 × 128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SF1A.4.

Ohtsuka, M.

Papagiannaki, K.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “C-through: part-time optics in data centers,” in ACM SIGCOMM Conference (ACM, 2010), pp. 327–338.

Pepeljugoski, P.

Phare, C. T.

Poon, J. K. S.

Prabhu, M.

N. C. Harris, J. Carolan, D. Bunandar, M. Prabhu, M. Hochberg, T. Baehr-Jones, M. L. Fanto, A. M. Smith, C. C. Tison, P. M. Alsing, and D. Englund, “Linear programmable nanophotonic processors,” Optica 5, 1623–1631 (2018).
[Crossref]

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Qiao, L.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref]

Quack, N.

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Rong, H.

Rumley, S.

Ryan, M.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “C-through: part-time optics in data centers,” in ACM SIGCOMM Conference (ACM, 2010), pp. 327–338.

Sacher, W. D.

Schares, L.

Schmid, J. H.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Schow, C. L.

Seki, M.

Seok, T. J.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lightwave Technol. 36, 1824–1830 (2018).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lightwave Technol. 34, 365–371 (2016).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3, 64–70 (2016).
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2, 370–375 (2015).
[Crossref]

K. Kwon, T. J. Seok, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128 × 128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SF1A.4.

K. Kwon, T. J. Seok, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128 × 128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SF1A.4.

Shen, Y.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Skirlo, S.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Smith, A. M.

Soljacic, M.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Steinbrecher, G. R.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

Suda, S.

Sugaya, T.

Sun, J.

D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3, 887–890 (2016).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Sun, X.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Suzuki, K.

Tang, W.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref]

Tanizawa, K.

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Tison, C. C.

Toyama, M.

Tran, M. A.

Tu, X.

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Wang, G.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “C-through: part-time optics in data centers,” in ACM SIGCOMM Conference (ACM, 2010), pp. 327–338.

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Wei, Y.

Wong, F. N. C.

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

Wu, M. C.

Xu, D.-X.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Xu, X.

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Yan, S.

Yang, Y.

Yokoyama, N.

Yoo, B.-W.

Yu, K.

Zhang, C.

Zhang, Y.

Zhao, F.

Zhao, S.

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Zhong, S.

Zhu, Z.

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

J. Lightwave Technol. (6)

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Nat. Photonics (2)

N. C. Harris, G. R. Steinbrecher, M. Prabhu, Y. Lahini, J. Mower, D. Bunandar, C. Chen, F. N. C. Wong, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Quantum transport simulations in a programmable nanophotonic processor,” Nat. Photonics 11, 447–452 (2017).
[Crossref]

Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić, “Deep learning with coherent nanophotonic circuits,” Nat. Photonics 11, 441–446 (2017).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Opt. Express (5)

Optica (5)

Sci. Rep. (1)

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref]

Other (2)

K. Kwon, T. J. Seok, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128 × 128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SF1A.4.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “C-through: part-time optics in data centers,” in ACM SIGCOMM Conference (ACM, 2010), pp. 327–338.

Supplementary Material (1)

NameDescription
Supplement 1       Supplement 1

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic of ultra-large-scale silicon photonic switches. The switch consists of the three basic building blocks: an N × N switch, an N × 1 input coupler, and a 1 × N output coupler. (b) Schematic of the N × N switch block. The waveguides are tapered to a wider width to reduce stitching loss. (c) Unit cell of the silicon photonic MEMS switch consisting of a pair of adiabatic couplers on orthogonal bus waveguides with MMI crossing.
Fig. 2.
Fig. 2. Numerical simulation of the scattering loss caused by 100 nm misalignment at the stitching interface. The inset shows the schematic of the simulated structure. Silicon rib waveguides are designed to have 220 nm thickness and 60 nm partial etch depth.
Fig. 3.
Fig. 3. (a) Fabricated 240 × 240 silicon photonic switch on a 4 cm × 4 cm die. (b) Optical micrograph of the unit cell in the silicon photonic MEMS switch. Unit cell size: 110 μm × 110 μm . (c) Tapered waveguides at the stitching interface. Inset: close-up SEM image of the waveguide joint showing 70 nm offset. (d), (e) SEM images of the fabricated silicon photonic MEMS switches.
Fig. 4.
Fig. 4. Experimental setup with the 240 × 240 silicon photonic switch.
Fig. 5.
Fig. 5. (a) Measured switching characteristics showing digital switching behavior with an extremely high extinction ratio of 70 dB. (b) Measured switching spectrum confirming broadband operation.
Fig. 6.
Fig. 6. Measured switching speed of a switching cell.
Fig. 7.
Fig. 7. On-chip insertion loss versus the number of cells in the light path for 200 randomly selected switch configurations for the 240 × 240 switch. The loss-per-cell and the switching loss are extracted to be 0.019 dB/cell and 0.7 dB, respectively, from the linear fitting.

Metrics