Abstract

Integrated photonics is a powerful platform that can improve the performance and stability of optical systems while providing low-cost, small-footprint, and scalable alternatives to implementations based on free-space optics. While great progress has been made on the development of low-loss integrated photonics platforms at telecom wavelengths, the visible wavelength range has received less attention. Yet, many applications utilize visible or near-visible light, including those in optical imaging, optogenetics, and quantum science and technology. Here we demonstrate an ultra-low-loss integrated visible photonics platform based on thin-film lithium niobate on an insulator. Our waveguides feature ultra-low propagation loss of 6 dB/m, while our microring resonators have an intrinsic quality factor of 11 million, both measured at 637 nm wavelength. Additionally, we demonstrate an on-chip visible intensity modulator with an electro-optic bandwidth of 10 GHz, limited by the detector used. The ultra-low-loss devices demonstrated in this work, together with the strong second- and third-order nonlinearities in lithium niobate, open up new opportunities for creating novel passive and active devices for frequency metrology and quantum information processing in the visible spectrum range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Low-loss, active, and integrated photonic platforms operating at visible wavelengths are of great interest for applications ranging from quantum optics and metrology to bio-sensing and bio-medicine. For example, alkali and alkaline earth metals such as rubidium, cesium, calcium, and sodium, the key elements for modern precision optical frequency metrology [13], magnetometry [46], and quantum computation [710], have their atomic transitions in the visible and near-visible spectrum range. In addition, integrated photonic circuits at visible wavelengths found their way into the fields such as optogenetics [11,12] and bio-sensing [1315]. Furthermore, visible wavelength light is used for quantum state preparation [16], manipulation, and readout of color centers [17], quantum dots [18,19], and various quantum emitters in 2D materials [20,21].

Driven by these applications, several materials have been investigated as candidates for visible photonics platforms, including SiO2 [22,23], Si3N4 [2427], diamond [2832], TiO2 [33], and AlN [34]. With exception of AlN, all of these platforms are electro-optically passive and do not allow for fast control of optical signals. Here we show that lithium niobate (LN) is a promising integrated platform for visible photonics, owing to its wide transparency window (400–5000 nm), large electro-optic coefficient 30 times larger than that of AlN, and strong optical nonlinearity [35]. Our work builds on recently developed thin-film lithium niobate (TFLN) substrates [36] and the novel fabrication method [37] that enabled realization of high-performance electro-optical (EO) modulators [3840] and Kerr and EO frequency combs [41,42] in telecom wavelength range (1500–1650 nm). TFLN platform has also been used to demonstrate an effective generation of visible light via nonlinear processes such as second-harmonic generation (SHG) [4347] and sum-frequency generation (SFG) [48]. In this work, we demonstrate low-loss waveguides and Y splitters, ultra-high-Q microring resonators, and electro-optical (EO) modulators with 10 GHz bandwidth (limited by the bandwidth of the detector used), operating at a technologically relevant 600–900 nm wavelength range.

2. LOW-LOSS LN WAVEGUIDES AND HIGH-Q RESONATORS

In our earlier work [37] focused on telecom LN devices, the main sources of waveguide loss were scattering due to rough sidewalls and linear absorption in the SiO2 cladding. The former is expected to be much more significant at the visible wavelengths considered here, since Rayleigh scattering is proportional to λ4, where λ is the wavelength of light. Therefore, in order to minimize the interaction between the waveguide mode with sidewalls and oxide cladding, we choose to work in a rib configuration where the waveguide consists of a slab and a strip superimposed onto it [Fig. 1(a)]. The waveguide parameters were chosen to satisfy three important conditions: (i) single-mode operation at the wavelength of interest λ=635nm for both transverse-electric (TE) and transverse-magnetic (TM) polarization; (ii) minimal overlap between the optical mode, the waveguide sidewall, and the oxide cladding; and (iii) bending loss <0.1dB/cm for a bending radius of 50 μm. The latter was chosen in order to enable realization of compact high-Q ring resonators. Using numerical modeling (Lumerical), we found that these requirements are satisfied for the following waveguide parameters: strip height eT=180nm, slab thickness wT=120nm, and waveguide top width wW=480nm. The sidewall angle was assumed to be 28° with respect to the vertical direction, and is the result of our fabrication process [37]. Figures 1(a) and 1(b) show the mode profiles of this waveguide at 635 nm and 850 nm, respectively. Since one envisioned application of the LN photonic platform is in nonlinear multi-wavelength processes, we also evaluate the performance of our waveguide at telecom wavelengths [Fig. 1(c)]. As expected, the optical mode is less confined at longer wavelengths, which will result in larger optical losses. It should be noted that at elevated optical power, additional nonlinear loss mechanisms may become relevant, including SHG, the photorefractive effect [49], and thermal instability.

 

Fig. 1. (a)–(c) Finite element simulation of TE00 waveguide mode near three different wavelengths: 635 nm, 850 nm, and 1550 nm; wW=480nm is waveguide width and wT=120nm is LN slab thickness. (d) False-color SEM micrograph of the waveguide cross section. (e) 2D AFM scan on LN waveguide. (f) AFM line profile of LN waveguide.

Download Full Size | PPT Slide | PDF

In order to characterize the optical losses, we fabricated microring resonators with various radii and coupling gaps (Fig. 2). The devices were fabricated on a LN-on-insulator (LNOI) substrate (NANOLN) with 300 nm of an X-cut LN layer on top of a 2-μm-thick thermally grown silicon dioxide layer. The structures were defined with electron beam lithography, and the patterns were transferred through inductively coupled reactive ion etching with Ar+ plasma (ICP-RIE). Finally, the chip was cleaned and covered with 1-μm silicon dioxide, using plasma-enhanced chemical vapor deposition (PECVD). Finally, the waveguide facets were diced and polished. The fabricated chips were inspected by scanning electron microscope (SEM) and atomic force microscope (AFM). Figures 1(d) and 1(e) present a false-color SEM micrograph of a cladded device cross section and an AFM scan of a 500-nm-wide waveguide before cladding, respectively. On the sidewalls of the waveguides, the roughness, measured over a 3-by-0.1-μm area, is found to be 0.7 nm RMS. The 28-deg sidewall angle was extracted from the 1D AFM profile [Fig. 1(f)].

 

Fig. 2. (a) SEM micrograph of a fabricated microring resonator (radius=100μm). (b) SEM image of the coupling region.

Download Full Size | PPT Slide | PDF

One of the main challenges in fabrication of microring resonators at visible wavelengths is the narrow coupling gap needed for a single point coupling scheme. To overcome this difficulty, we implement a pulley coupling scheme where the coupling waveguides wrap around the ring. The exact coupling length was calculated at different wavelengths by using 3D finite difference time domain (FDTD) simulations (Lumerical). SEM micrographs of the fabricated microring resonator and a close-up zoom at the coupling region are shown in Figs. 2(a) and 2(b).

The devices were characterized in the 634–638 nm and 720–850 nm ranges using New Focus Velocity and M2 SolsTis tunable lasers, respectively. Both lasers were calibrated using an external wavemeter and a home-built fiber-based Mach–Zehnder (MZ) interferometer. We launched a TE-polarized laser beam into the coupling waveguide using a single-mode visible lensed fiber (OZ Optics) and collected and detected transmitted light using another lensed fiber followed by a photodetector (New Focus, 1801). The input polarization of the light was controlled by an external fiber-based polarization controller. To avoid the influence of the photorefractive effect and thermal instability, the devices were measured in low-power operation regime with tens of nanowatts of optical power (resulting in tens microwatts of circulating power inside the ring). The typical fiber-to-chip coupling loss is 610dB per facet due to mode mismatch from the fiber to the chip.

Figure 3 shows the transmission spectra of a representative microring resonator measured at different wavelengths. By fitting the experimental results of under-coupled microring resonators with Lorentzian function, we estimate loaded quality factors (Ql) of 7.8×106, 3.2×105, and 1.5×105 at wavelengths of 637 nm, 730 nm, and 800 nm, respectively. These quality factors correspond to intrinsic quality factors of 1.1×107, 5.3×105, 2.7×105respectively. We also characterized the same ring resonator at the telecom wavelength range (1450–1650 nm) using a Santec 510 tunable laser (data not shown) and observed a moderately high loaded Q factor of 1.1×105 (intrinsic Q=2.3×105). As expected, quality factors decrease as wavelength increases due to reduced confinement of the optical mode, leading to increased overlap with waveguide sidewalls and cladding. Based on these results, we estimate the upper limit of the waveguide loss to be α6dB/m at 635 nm wavelength [50]. This value has same order of magnitude as the previously reported loss value for TFLN waveguides at the infrared spectral range [37]. It should be noted that for the TE-polarized waveguide mode in the X-cut LN microring resonator, the refractive index will alternate between an ordinary and an extraordinary value of no to ne. However, for our microrings with large radii of more than 50 μm, such refractive index alternation happens in an adiabatic fashion and therefore does not impose any measurable additional optical loss to the system. To confirm this, the effects of polarization-induced losses were analyzed by collecting the light at the output with a microscope objective and sending it through a polarizer. We do not observe any effects of TE/TM coupling or crosstalk. Importantly, our results show that LN ring resonators optimized for operation in the red can support single-mode low-loss operation across a wide wavelength range, which is essential for the envisioned applications in nonlinear optics, including SHG, sum- and difference-frequency generation, and entangled photon pair generation.

 

Fig. 3. (a) Measured transmission spectrum of TFLN microring cavity near 635 nm wavelengths. (b)–(d) Fit of the resonance dips to Lorentzian function at wavelengths of 637 nm, 730 nm, and 800 nm, respectively. Experimental data shown as blue dots and fit function shown as red line.

Download Full Size | PPT Slide | PDF

3. Y-SPLITTERS AND MACH–ZEHNDER INTERFEROMETR

In addition to low-loss waveguides and high-Q cavities, beam splitters and Mach–Zehnder interferometers (MZI) are key building blocks in integrated optics. There are many ways to realize an on-chip beam splitter, such as MMI couplers [51] Y-Junctions [52], and directional couplers [53]. Among these, Y-splitters are particularly interesting owing to their simplicity, tolerance to fabrication imperfections, and relatively wide bandwidth (hundreds of nanometers). The main drawback of Y-splitters is their relatively large footprint of a few hundred micrometers.

To characterize visible TFLN beam splitters, we fabricated a “Y-splitter tree” [Fig. 4(a)]. In this way, different output arms of the Y-splitter tree experience the same total waveguide length but different number of splitters. By comparing the transmission levels of different arms, the splitting ratios and the splitter losses can be extracted from a linear fit. Figure 4(b) shows the normalized transmission of the cascaded Y-splitter tree, measured at 637 nm, as a function of number of Y-splitters in the cascade. Linear fit to experimental data shows a slope of 3.21dB/splitter, indicating an excessive splitter loss of 0.21dB±0.01dB per Y-splitter.

 

Fig. 4. (a) Mask layout of fabricated device. (b) Measured transmission of cascaded Y-splitter tree as a function of number of Y-splitter branches. The orange line shows a linear fit with a slope of 3.21dB/splitter. (c) Dark field optical microscope image of the unbalanced MZI. Scale bar: 50 μm. (d) Measured transmission spectrum of the MZI showing extinction ratios of 30dB. Inset: SEM micrograph of Y-splitter section. Scale bar: 2 μm.

Download Full Size | PPT Slide | PDF

Figure 4(c) shows a dark field optical image of a fabricated unbalanced MZI formed using two Y-junctions and two low-loss waveguides. Since the top arm is longer, the light propagating in it will accumulate additional phase compared to the light propagating in the bottom arm. After optical beams are recombined using a Y-splitter [Fig. 4(d), inset], the difference in phase is converted into an amplitude modulation, resulting in constructive and destructive interference [Fig. 4(c)]. An important figure of merit for the MZI is the extinction ratio (ER), which is the ratio between the amplitude of constructively and destructively interfered light. In our devices the highest measured ER is 30dB, and it is larger than 15 dB across the measured wavelength range. Effects such as polarization mixing and higher-order mode coupling in the Y-splitter are likely the cause of the reduced ER at longer wavelengths. This can be improved by further optimization of the Y-splitter design.

4. INTENSITY MODULATOR

Important advantage of LN visible photonic platform over competing platforms is the ability to realize efficient electro-optic modulators and optical switches and routers. To demonstrate this, we fabricated on-chip amplitude modulators which consist of unbalanced MZI with embedded active phase shifters in both interferometer’s paths. A coplanar ground-signal-ground (GSG) transmission line was used to deliver RF fields. The active phase shifters were fabricated in an additional lithography step followed by evaporation and lift-off of gold electrodes. The gap between the electrodes is 5 μm. The optical microscope image of the fabricated structure is shown in Fig. 5(a). To characterize the DC performance of the device, we measured a normalized transmission of the device as a function of applied voltage. The voltage required for inducing a phase change of π is called half-wave voltage (Vπ). We found a Vπ of 8 V for a 2-mm-long device, which translates into a voltage-length product (VπL) of 1.6 V·cm. This value is slightly better than that of the previously reported infrared (IR) TFLN modulator [38] since the same refractive index shift would induce a larger phase accumulation at shorter wavelengths.

 

Fig. 5. (a) Optical image of the fabricated LN amplitude modulator. (b) Measured normalized transmission versus applied DC voltage showing a half-wave voltage of 8 V for a 2-mm-long device at a wavelength of 850 nm. Measured electro-optical response of the amplitude modulator. (c) The 3-dB cutoff frequency is 10GHz, limited by the detector. Inset: Measured electrical insertion loss (S21 parameters) shows an electrical (3-dB) bandwidth of 17 GHz.

Download Full Size | PPT Slide | PDF

The electro-optic bandwidth of our modulator was measured using a vector network analyzer (Agilent E8364B). The optical signal from the modulator was sent to a high-speed avalanche photodiode (APD, EOT ET-4000A, bandwidth 10 GHz). RF measurements were performed by using 50-Ω, 40-GHz RF probes, and all the results were normalized relative to RF cable losses. Figure 5(b) shows the measured electro-optic response of our modulator at a wavelength of 850 nm. We measure our modulator with 100 μW of optical power inside the device for several hours without observing any power instability or performance degradation in modulator operation. We measured the electro-optical 3-dB bandwidth to be 10 GHz, and it is currently limited by the bandwidth of the high-gain photodetector used. To confirm this, we measured the electrical bandwidth (S21 parameter) of our coplanar transmission line [Fig. 5(c), inset] and found the electrical 3-dB bandwidth to be 17 GHz. This value could be further increased by improving the design of the microwave coplanar transmission lines [54]. We note that our numerical modeling indicates that modulation bandwidth is not limited by group velocity mismatch between the optical and RF signals. In the case of low RF propagation loss, the modulation bandwidth limit is inversely proportional to the product of waveguide length and the group index mismatch Δng [55]. In our case, in the 2-mm-long device with Δng=0.12, the bandwidth limit due to velocity mismatch is BW=300GHz, and it does not limit the EO performance of our modulator. We also note that the 10-GHz bandwidth is sufficient for many practical applications at the visible spectrum range, including frequency-modulation spectroscopy [56] or Pound–Drever–Hall laser-locking technique [57].

5. CONCLUSIONS

In conclusion, we have demonstrated an ultra-low-loss platform for integrated photonics at visible wavelengths, which achieved ultra-low linear propagation losses. Additionally, we demonstrate an on-chip intensity modulator with an electro-optic bandwidth of 10 GHz and a low voltage-length product of 1.6 V·cm. We believe LN will become a powerful candidate for integrated on-chip photonic applications such as active light manipulation and wavelength conversion at the visible wavelength range as well as other applications such as combination with quantum emitters and alkali metals and that it will motivate future studies in the field of active photonic devices at the visible wavelength range.

Funding

National Science Foundation (NSF) (ECCS-1609549, ECCS-1740296 E2CDA), Defense Advanced Research Projects Agency (DARPA) (W31P4Q-15-1-0013); City University of Hong Kong Start-up Funds.

Acknowledgment

We thank C. Reimer for feedback on the manuscript. Lithium niobate devices were fabricated in the Center for Nanoscale Systems (CNS) at Harvard, a member of the National Nanotechnology Infrastructure Network, supported by the NSF.

REFERENCES

1. J. C. Bergquist, Frequency Standards and Metrology (World Scientific, 1996), pp. 1–574.

2. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002). [CrossRef]  

3. J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016). [CrossRef]  

4. L. W. Parsons and Z. M. Wiatr, “Rubidium vapour magnetometer,” J. Sci. Instrum. 39, 292–300 (1962). [CrossRef]  

5. H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016). [CrossRef]  

6. S. J. Smullin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80, 033420 (2009). [CrossRef]  

7. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009). [CrossRef]  

8. K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011). [CrossRef]  

9. O. Katz and O. Firstenberg, “Light storage for one second in room-temperature alkali vapor,” Nat. Commun. 9, 2074 (2018). [CrossRef]  

10. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001). [CrossRef]  

11. E. Shim, Y. Chen, S. Masmanidis, and M. Li, “Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications,” Sci. Rep. 6, 22693 (2016). [CrossRef]  

12. E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017). [CrossRef]  

13. P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015). [CrossRef]  

14. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18, 22747–22761 (2010). [CrossRef]  

15. I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970  nm wavelength,” Appl. Phys. Lett. 97, 81108 (2010). [CrossRef]  

16. I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016). [CrossRef]  

17. I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2, 911–928 (2014). [CrossRef]  

18. Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018). [CrossRef]  

19. Y.-S. Park, S. Guo, N. S. Makarov, and V. I. Klimov, “Room temperature single-photon emission from individual perovskite quantum dots,” ACS Nano 9, 10386–10393 (2015). [CrossRef]  

20. Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015). [CrossRef]  

21. J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016). [CrossRef]  

22. Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010). [CrossRef]  

23. S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017). [CrossRef]  

24. P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017). [CrossRef]  

25. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21, 14036–14046 (2013). [CrossRef]  

26. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17, 14543–14551 (2009). [CrossRef]  

27. M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, and M. Lončar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett. 36, 421–423 (2011). [CrossRef]  

28. M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014). [CrossRef]  

29. P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett. 43, 318–321 (2018). [CrossRef]  

30. B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017). [CrossRef]  

31. L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct. Fundam. Applic. 15, 130–136 (2015). [CrossRef]  

32. P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi 212, 2385–2399 (2015). [CrossRef]  

33. J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO_2 resonators for visible photonics,” Opt. Lett. 37, 539–541 (2012). [CrossRef]  

34. C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012). [CrossRef]  

35. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985). [CrossRef]  

36. P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85, 4603–4605 (2004). [CrossRef]  

37. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017). [CrossRef]  

38. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018). [CrossRef]  

39. A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41, 5700–5703 (2016). [CrossRef]  

40. A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26, 14810–14816 (2018). [CrossRef]  

41. C. Wang, M. Zhang, R. Zhu, H. Hu, and M. Loncar, “Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation,” Nat. Commun. 10, 978 (2019).

42. M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).

43. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017). [CrossRef]  

44. R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018). [CrossRef]  

45. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018). [CrossRef]  

46. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015). [CrossRef]  

47. R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev., 1800288 (2019), Early View. [CrossRef]  

48. Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photon. Res. 5, 623 (2017). [CrossRef]  

49. A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006). [CrossRef]  

50. C. Zhang, L. R. Dalton, P. Rabiei, and W. H. Steier, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968–1975 (2002). [CrossRef]  

51. Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “1×8 cascaded multimode interference splitter in silicon-on-insulator,” Jpn. J. Appl. Phys. 43, 5085–5087 (2004). [CrossRef]  

52. S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Cascade wide-angle Y-junction 1 × 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator,” Opt. Express 16, 21456–21461 (2008). [CrossRef]  

53. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005). [CrossRef]  

54. X. Zhang and T. Miyoshi, “Optimum design of coplanar waveguide for LiNbO/sub 3/optical modulator,” IEEE Trans. Microw. Theory Tech. 43, 523–528 (1995). [CrossRef]  

55. D. Janner, M. Belmonte, and V. Pruneri, “Tailoring the electrooptic response and improving the performance of integrated LiNbO3 modulators by domain engineering,” J. Lightwave Technol. 25, 2402–2409 (2007). [CrossRef]  

56. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983). [CrossRef]  

57. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. C. Bergquist, Frequency Standards and Metrology (World Scientific, 1996), pp. 1–574.
  2. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref]
  3. J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
    [Crossref]
  4. L. W. Parsons and Z. M. Wiatr, “Rubidium vapour magnetometer,” J. Sci. Instrum. 39, 292–300 (1962).
    [Crossref]
  5. H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
    [Crossref]
  6. S. J. Smullin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80, 033420 (2009).
    [Crossref]
  7. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
    [Crossref]
  8. K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
    [Crossref]
  9. O. Katz and O. Firstenberg, “Light storage for one second in room-temperature alkali vapor,” Nat. Commun. 9, 2074 (2018).
    [Crossref]
  10. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
    [Crossref]
  11. E. Shim, Y. Chen, S. Masmanidis, and M. Li, “Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications,” Sci. Rep. 6, 22693 (2016).
    [Crossref]
  12. E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
    [Crossref]
  13. P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
    [Crossref]
  14. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18, 22747–22761 (2010).
    [Crossref]
  15. I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970  nm wavelength,” Appl. Phys. Lett. 97, 81108 (2010).
    [Crossref]
  16. I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
    [Crossref]
  17. I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2, 911–928 (2014).
    [Crossref]
  18. Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
    [Crossref]
  19. Y.-S. Park, S. Guo, N. S. Makarov, and V. I. Klimov, “Room temperature single-photon emission from individual perovskite quantum dots,” ACS Nano 9, 10386–10393 (2015).
    [Crossref]
  20. Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
    [Crossref]
  21. J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
    [Crossref]
  22. Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
    [Crossref]
  23. S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
    [Crossref]
  24. P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
    [Crossref]
  25. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21, 14036–14046 (2013).
    [Crossref]
  26. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17, 14543–14551 (2009).
    [Crossref]
  27. M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, and M. Lončar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett. 36, 421–423 (2011).
    [Crossref]
  28. M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
    [Crossref]
  29. P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett. 43, 318–321 (2018).
    [Crossref]
  30. B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
    [Crossref]
  31. L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct. Fundam. Applic. 15, 130–136 (2015).
    [Crossref]
  32. P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi 212, 2385–2399 (2015).
    [Crossref]
  33. J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO_2 resonators for visible photonics,” Opt. Lett. 37, 539–541 (2012).
    [Crossref]
  34. C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
    [Crossref]
  35. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
    [Crossref]
  36. P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85, 4603–4605 (2004).
    [Crossref]
  37. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
    [Crossref]
  38. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
    [Crossref]
  39. A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41, 5700–5703 (2016).
    [Crossref]
  40. A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26, 14810–14816 (2018).
    [Crossref]
  41. C. Wang, M. Zhang, R. Zhu, H. Hu, and M. Loncar, “Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation,” Nat. Commun. 10, 978 (2019).
  42. M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).
  43. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
    [Crossref]
  44. R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
    [Crossref]
  45. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
    [Crossref]
  46. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
    [Crossref]
  47. R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev., 1800288 (2019), Early View.
    [Crossref]
  48. Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photon. Res. 5, 623 (2017).
    [Crossref]
  49. A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
    [Crossref]
  50. C. Zhang, L. R. Dalton, P. Rabiei, and W. H. Steier, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968–1975 (2002).
    [Crossref]
  51. Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “1×8 cascaded multimode interference splitter in silicon-on-insulator,” Jpn. J. Appl. Phys. 43, 5085–5087 (2004).
    [Crossref]
  52. S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Cascade wide-angle Y-junction 1 × 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator,” Opt. Express 16, 21456–21461 (2008).
    [Crossref]
  53. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
    [Crossref]
  54. X. Zhang and T. Miyoshi, “Optimum design of coplanar waveguide for LiNbO/sub 3/optical modulator,” IEEE Trans. Microw. Theory Tech. 43, 523–528 (1995).
    [Crossref]
  55. D. Janner, M. Belmonte, and V. Pruneri, “Tailoring the electrooptic response and improving the performance of integrated LiNbO3 modulators by domain engineering,” J. Lightwave Technol. 25, 2402–2409 (2007).
    [Crossref]
  56. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
    [Crossref]
  57. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]

2019 (1)

C. Wang, M. Zhang, R. Zhu, H. Hu, and M. Loncar, “Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation,” Nat. Commun. 10, 978 (2019).

2018 (7)

A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26, 14810–14816 (2018).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

O. Katz and O. Firstenberg, “Light storage for one second in room-temperature alkali vapor,” Nat. Commun. 9, 2074 (2018).
[Crossref]

Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
[Crossref]

P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett. 43, 318–321 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

2017 (7)

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo, F. Gao, G. Zhang, and J. Xu, “Sum-frequency generation in on-chip lithium niobate microdisk resonators,” Photon. Res. 5, 623 (2017).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
[Crossref]

2016 (6)

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

E. Shim, Y. Chen, S. Masmanidis, and M. Li, “Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications,” Sci. Rep. 6, 22693 (2016).
[Crossref]

A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41, 5700–5703 (2016).
[Crossref]

2015 (6)

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct. Fundam. Applic. 15, 130–136 (2015).
[Crossref]

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi 212, 2385–2399 (2015).
[Crossref]

Y.-S. Park, S. Guo, N. S. Makarov, and V. I. Klimov, “Room temperature single-photon emission from individual perovskite quantum dots,” ACS Nano 9, 10386–10393 (2015).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
[Crossref]

2014 (2)

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2, 911–928 (2014).
[Crossref]

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

2013 (1)

2012 (2)

J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO_2 resonators for visible photonics,” Opt. Lett. 37, 539–541 (2012).
[Crossref]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

2011 (2)

M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, and M. Lončar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett. 36, 421–423 (2011).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

2010 (3)

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18, 22747–22761 (2010).
[Crossref]

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970  nm wavelength,” Appl. Phys. Lett. 97, 81108 (2010).
[Crossref]

Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[Crossref]

2009 (3)

E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17, 14543–14551 (2009).
[Crossref]

S. J. Smullin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80, 033420 (2009).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

2008 (1)

2007 (1)

2006 (1)

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

2005 (1)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
[Crossref]

2004 (2)

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “1×8 cascaded multimode interference splitter in silicon-on-insulator,” Jpn. J. Appl. Phys. 43, 5085–5087 (2004).
[Crossref]

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85, 4603–4605 (2004).
[Crossref]

2002 (2)

2001 (1)

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

1995 (1)

X. Zhang and T. Miyoshi, “Optimum design of coplanar waveguide for LiNbO/sub 3/optical modulator,” IEEE Trans. Microw. Theory Tech. 43, 523–528 (1995).
[Crossref]

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

1983 (2)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

1962 (1)

L. W. Parsons and Z. M. Wiatr, “Rubidium vapour magnetometer,” J. Sci. Instrum. 39, 292–300 (1962).
[Crossref]

Adibi, A.

Aharonovich, I.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2, 911–928 (2014).
[Crossref]

Aksyuk, V. A.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Alemany, R.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Andrade, N.

Andreou, A. G.

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

Arakawa, Y.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
[Crossref]

Armellini, C.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Atabaki, A. H.

Babinec, T.

Bakhru, H.

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct. Fundam. Applic. 15, 130–136 (2015).
[Crossref]

Baños, R.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Barclay, P.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Barclay, P. E.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Belmonte, M.

Bergquist, J. C.

J. C. Bergquist, Frequency Standards and Metrology (World Scientific, 1996), pp. 1–574.

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Bharadwaj, V.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Bienstman, P.

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

Bo, F.

Bogaerts, W.

Bradley, J. D. B.

Bratschitsch, R.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Bru, L. A.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Burek, M. J.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Burgess, I. B.

Buscaino, B.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Chen, E. H.

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct. Fundam. Applic. 15, 130–136 (2015).
[Crossref]

Chen, M.-C.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Chen, S.

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “1×8 cascaded multimode interference splitter in silicon-on-insulator,” Jpn. J. Appl. Phys. 43, 5085–5087 (2004).
[Crossref]

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Chen, Y.

Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
[Crossref]

E. Shim, Y. Chen, S. Masmanidis, and M. Li, “Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications,” Sci. Rep. 6, 22693 (2016).
[Crossref]

Cheng, R.

Chi, D.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Chiappini, A.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Choy, J. T.

Chu, T.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
[Crossref]

Chu, Y.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Cirera, J. M.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Claes, T.

Clark, G.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Cossairt, B. M.

Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
[Crossref]

Dalton, L. R.

Deisseroth, K.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Dellis, A. T.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Deotare, P.

Deotare, P. B.

DeSalvo, R.

Desiatov, B.

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970  nm wavelength,” Appl. Phys. Lett. 97, 81108 (2010).
[Crossref]

Ding, X.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Diziain, S.

Doménech, J. D.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Domínguez, C.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Donley, E. A.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Eaton, S.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Eaton, S. M.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Englund, D.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct. Fundam. Applic. 15, 130–136 (2015).
[Crossref]

Evans, C. C.

Fan, Z.

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “1×8 cascaded multimode interference splitter in silicon-on-insulator,” Jpn. J. Appl. Phys. 43, 5085–5087 (2004).
[Crossref]

Fang, Q.

Faraon, A.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Fathpour, S.

Fejer, M. M.

Fernandez, T.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Fernandez, T. T.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Fernández, J.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Ferrari, M.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Finkelstein, H.

Firstenberg, O.

O. Katz and O. Firstenberg, “Light storage for one second in room-temperature alkali vapor,” Nat. Commun. 9, 2074 (2018).
[Crossref]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Fong, K. Y.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Fowler, T. M.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Friedfeld, M. R.

Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
[Crossref]

Fryett, T.

Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
[Crossref]

Gao, F.

Gargallo, B.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Geiss, R.

Ghosh, R. K.

S. J. Smullin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80, 033420 (2009).
[Crossref]

Gong, Y.

Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[Crossref]

Goykhman, I.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970  nm wavelength,” Appl. Phys. Lett. 97, 81108 (2010).
[Crossref]

Grange, R.

Gunter, P.

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85, 4603–4605 (2004).
[Crossref]

Guo, G.-C.

Guo, S.

Y.-S. Park, S. Guo, N. S. Makarov, and V. I. Klimov, “Room temperature single-photon emission from individual perovskite quantum dots,” ACS Nano 9, 10386–10393 (2015).
[Crossref]

Hadden, J.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Hadden, J. P.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Hainberger, R.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Hao, Z.

He, Y.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
[Crossref]

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev., 1800288 (2019), Early View.
[Crossref]

He, Y.-M.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Honardoost, A.

Hong, W.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hu, H.

C. Wang, M. Zhang, R. Zhu, H. Hu, and M. Loncar, “Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation,” Nat. Commun. 10, 978 (2019).

Hummon, M.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Ishida, S.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
[Crossref]

Jankowski, M.

Janner, D.

Kafel, M.

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

Kahn, J.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).

Katz, O.

O. Katz and O. Firstenberg, “Light storage for one second in room-temperature alkali vapor,” Nat. Commun. 9, 2074 (2018).
[Crossref]

Kern, J.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Khan, M.

Kitching, J.

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Kley, E.-B.

Klimov, V. I.

Y.-S. Park, S. Guo, N. S. Makarov, and V. I. Klimov, “Room temperature single-photon emission from individual perovskite quantum dots,” ACS Nano 9, 10386–10393 (2015).
[Crossref]

Knappe, S.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

Koppitsch, G.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Korth, H.

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Kraft, J.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Kuhn, T.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Kwong, D. L.

Lai, Y.-H.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Lal, A.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Langford, N. K.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

Langrock, C.

Latawiec, P.

Lee, K. C.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

Lee, S. H.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Lehtonen, S. J.

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

Levy, U.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970  nm wavelength,” Appl. Phys. Lett. 97, 81108 (2010).
[Crossref]

Li, L.

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct. Fundam. Applic. 15, 130–136 (2015).
[Crossref]

Li, M.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
[Crossref]

E. Shim, Y. Chen, S. Masmanidis, and M. Li, “Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications,” Sci. Rep. 6, 22693 (2016).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev., 1800288 (2019), Early View.
[Crossref]

Li, Q.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Li, X.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Liang, H.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev., 1800288 (2019), Early View.
[Crossref]

Liddy, M. S. Z.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Lin, Q.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev., 1800288 (2019), Early View.
[Crossref]

Lo, G. Q.

Lo, M.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Loncar, M.

C. Wang, M. Zhang, R. Zhu, H. Hu, and M. Loncar, “Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation,” Nat. Commun. 10, 978 (2019).

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett. 43, 318–321 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
[Crossref]

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO_2 resonators for visible photonics,” Opt. Lett. 37, 539–541 (2012).
[Crossref]

M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, and M. Lončar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett. 36, 421–423 (2011).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).

London, S. M.

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

Lu, C.-Y.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Lukin, M. D.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Luo, R.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev., 1800288 (2019), Early View.
[Crossref]

Lvovsky, A. I.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Ma, S.

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Majumdar, A.

Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
[Crossref]

Makarov, N. S.

Y.-S. Park, S. Guo, N. S. Makarov, and V. I. Klimov, “Room temperature single-photon emission from individual perovskite quantum dots,” ACS Nano 9, 10386–10393 (2015).
[Crossref]

Maleki, L.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Mao, W.

Marandi, A.

Markham, M.

Mas, R.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Masmanidis, S.

E. Shim, Y. Chen, S. Masmanidis, and M. Li, “Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications,” Sci. Rep. 6, 22693 (2016).
[Crossref]

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Mazur, E.

McCutcheon, M. W.

Meesala, S.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Melnik, E.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Mercante, A. J.

Merget, F.

Michaelis de Vasconcellos, S.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Michelberger, P.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

Micó, G.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Miyoshi, T.

X. Zhang and T. Miyoshi, “Optimum design of coplanar waveguide for LiNbO/sub 3/optical modulator,” IEEE Trans. Microw. Theory Tech. 43, 523–528 (1995).
[Crossref]

Moreaux, L. C.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Muellner, P.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Muñoz, P.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Nebel, C.

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi 212, 2385–2399 (2015).
[Crossref]

Neu, E.

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2, 911–928 (2014).
[Crossref]

Niehues, I.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Nunn, J.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

Oh, D. Y.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

Pan, J.-W.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Paolella, A.

Park, Y.-S.

Y.-S. Park, S. Guo, N. S. Makarov, and V. I. Klimov, “Room temperature single-photon emission from individual perovskite quantum dots,” ACS Nano 9, 10386–10393 (2015).
[Crossref]

Parsons, L. W.

L. W. Parsons and Z. M. Wiatr, “Rubidium vapour magnetometer,” J. Sci. Instrum. 39, 292–300 (1962).
[Crossref]

Pastor, D.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Patel, P.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Patil, A.

Pérez, D.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Pernice, W. H. P.

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi 212, 2385–2399 (2015).
[Crossref]

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Pertsch, T.

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Prather, D. W.

Pruneri, V.

Quan, Q.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Rabiei, P.

Rampini, S.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Ramponi, R.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Rao, A.

Rath, P.

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi 212, 2385–2399 (2015).
[Crossref]

Reim, K. F.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

Reimer, C.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).

Reimer, J.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Reiter, D. E.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Ren, X.-F.

Rochman, J.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Romalis, M. V.

S. J. Smullin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80, 033420 (2009).
[Crossref]

Romero-García, S.

Roukes, M. L.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Roxworthy, B.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Ryou, A.

Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
[Crossref]

Sacher, W. D.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Sánchez, A. M.

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Sanders, B. C.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Saravi, S.

Savchenkov, A. A.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Savukov, I. M.

S. J. Smullin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80, 033420 (2009).
[Crossref]

Schaibley, J. R.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Schmidt, R.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Schneider, R.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Schrank, F.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Schrempel, F.

Schröder, T.

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct. Fundam. Applic. 15, 130–136 (2015).
[Crossref]

Schuck, C.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Segev, E.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Sergeyev, A.

Serpengüzel, A.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Setzpfandt, F.

Shah Hosseini, E.

Shams-Ansari, A.

P. Latawiec, V. Venkataraman, A. Shams-Ansari, M. Markham, and M. Lončar, “Integrated diamond Raman laser pumped in the near-visible,” Opt. Lett. 43, 318–321 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).

Shen, B.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Sherman, J.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Shi, S.

Shim, E.

E. Shim, Y. Chen, S. Masmanidis, and M. Li, “Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications,” Sci. Rep. 6, 22693 (2016).
[Crossref]

Smullin, S. J.

S. J. Smullin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80, 033420 (2009).
[Crossref]

Soltani, M.

Song, J. F.

Sotillo, B.

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Srinivasan, K.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Steier, W. H.

Stiehm, T.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Strekalov, D.

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Strohbehn, K.

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

Sun, X.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Tang, H. X.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Tao, S. H.

Tejada, F.

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

Tittel, W.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Tolias, A. S.

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

Tonndorf, P.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Toth, M.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

Tünnermann, A.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Ummethala, S.

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi 212, 2385–2399 (2015).
[Crossref]

Vahala, K.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Vasilakis, G.

S. J. Smullin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80, 033420 (2009).
[Crossref]

Venkataraman, V.

Vuckovic, J.

Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[Crossref]

Walmsley, I. A.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Wang, C.

C. Wang, M. Zhang, R. Zhu, H. Hu, and M. Loncar, “Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation,” Nat. Commun. 10, 978 (2019).

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).

Wang, H.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Wang, J.

Wang, Z.

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “1×8 cascaded multimode interference splitter in silicon-on-insulator,” Jpn. J. Appl. Phys. 43, 5085–5087 (2004).
[Crossref]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Wei, Y.-J.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Weikle, R. M.

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Westly, D.

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

Whitehead, J.

Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
[Crossref]

Wiatr, Z. M.

L. W. Parsons and Z. M. Wiatr, “Rubidium vapour magnetometer,” J. Sci. Instrum. 39, 292–300 (1962).
[Crossref]

Wigger, D.

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Witzens, J.

Xia, J.

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “1×8 cascaded multimode interference splitter in silicon-on-insulator,” Jpn. J. Appl. Phys. 43, 5085–5087 (2004).
[Crossref]

Xie, L.

Xiong, C.

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Xiong, X.

Xu, J.

Xu, X.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Yamada, H.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
[Crossref]

Yang, K. Y.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Yang, Q.-F.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Yao, P.

Yao, W.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Yegnanarayanan, S.

Yi, X.

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Yu, J.

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “1×8 cascaded multimode interference splitter in silicon-on-insulator,” Jpn. J. Appl. Phys. 43, 5085–5087 (2004).
[Crossref]

Yu, M. B.

Zhang, C.

Zhang, G.

Zhang, M.

C. Wang, M. Zhang, R. Zhu, H. Hu, and M. Loncar, “Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation,” Nat. Commun. 10, 978 (2019).

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).

Zhang, Q.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Zhang, X.

X. Zhang and T. Miyoshi, “Optimum design of coplanar waveguide for LiNbO/sub 3/optical modulator,” IEEE Trans. Microw. Theory Tech. 43, 523–528 (1995).
[Crossref]

Zhong, F.

Zhu, R.

C. Wang, M. Zhang, R. Zhu, H. Hu, and M. Loncar, “Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation,” Nat. Commun. 10, 978 (2019).

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).

ACS Nano (1)

Y.-S. Park, S. Guo, N. S. Makarov, and V. I. Klimov, “Room temperature single-photon emission from individual perovskite quantum dots,” ACS Nano 9, 10386–10393 (2015).
[Crossref]

Adv. Mater. (1)

J. Kern, I. Niehues, P. Tonndorf, R. Schmidt, D. Wigger, R. Schneider, T. Stiehm, S. Michaelis de Vasconcellos, D. E. Reiter, T. Kuhn, and R. Bratschitsch, “Nanoscale positioning of single-photon emitters in atomically thin WSe2,” Adv. Mater. 28, 7101–7105 (2016).
[Crossref]

Adv. Opt. Mater. (1)

I. Aharonovich and E. Neu, “Diamond nanophotonics,” Adv. Opt. Mater. 2, 911–928 (2014).
[Crossref]

Appl. Phys. A (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Appl. Phys. B (2)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Appl. Phys. Lett. (3)

P. Rabiei and P. Gunter, “Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding,” Appl. Phys. Lett. 85, 4603–4605 (2004).
[Crossref]

Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[Crossref]

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970  nm wavelength,” Appl. Phys. Lett. 97, 81108 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Technol. Lett. 17, 585–587 (2005).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

X. Zhang and T. Miyoshi, “Optimum design of coplanar waveguide for LiNbO/sub 3/optical modulator,” IEEE Trans. Microw. Theory Tech. 43, 523–528 (1995).
[Crossref]

J. Geophys. Res. (Space Phys.) (1)

H. Korth, K. Strohbehn, F. Tejada, A. G. Andreou, J. Kitching, S. Knappe, S. J. Lehtonen, S. M. London, and M. Kafel, “Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb,” J. Geophys. Res. (Space Phys.) 121, 7870–7880 (2016).
[Crossref]

J. Lightwave Technol. (2)

J. Phys. Conf. Ser. (1)

J. Kitching, E. A. Donley, S. Knappe, M. Hummon, A. T. Dellis, J. Sherman, K. Srinivasan, V. A. Aksyuk, Q. Li, D. Westly, B. Roxworthy, and A. Lal, “NIST on a chip: realizing SI units with microfabricated alkali vapour cells,” J. Phys. Conf. Ser. 723, 012056 (2016).
[Crossref]

J. Sci. Instrum. (1)

L. W. Parsons and Z. M. Wiatr, “Rubidium vapour magnetometer,” J. Sci. Instrum. 39, 292–300 (1962).
[Crossref]

Jpn. J. Appl. Phys. (1)

Z. Wang, Z. Fan, J. Xia, S. Chen, and J. Yu, “1×8 cascaded multimode interference splitter in silicon-on-insulator,” Jpn. J. Appl. Phys. 43, 5085–5087 (2004).
[Crossref]

Micromachines (1)

B. Sotillo, V. Bharadwaj, J. Hadden, S. Rampini, A. Chiappini, T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. Barclay, R. Ramponi, S. Eaton, B. Sotillo, V. Bharadwaj, J. P. Hadden, S. Rampini, A. Chiappini, T. T. Fernandez, C. Armellini, A. Serpengüzel, M. Ferrari, P. E. Barclay, R. Ramponi, and S. M. Eaton, “Visible to infrared diamond photonics enabled by focused femtosecond laser pulses,” Micromachines 8, 60 (2017).
[Crossref]

Nano Lett. (1)

Y. Chen, A. Ryou, M. R. Friedfeld, T. Fryett, J. Whitehead, B. M. Cossairt, and A. Majumdar, “Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities,” Nano Lett. 18, 6404–6410 (2018).
[Crossref]

Nat. Commun. (4)

O. Katz and O. Firstenberg, “Light storage for one second in room-temperature alkali vapor,” Nat. Commun. 9, 2074 (2018).
[Crossref]

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, and K. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

C. Wang, M. Zhang, R. Zhu, H. Hu, and M. Loncar, “Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation,” Nat. Commun. 10, 978 (2019).

Nat. Nanotechnol. (1)

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotechnol. 10, 497–502 (2015).
[Crossref]

Nat. Photonics (2)

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Nature (2)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Neurophotonics (1)

E. Segev, J. Reimer, L. C. Moreaux, T. M. Fowler, D. Chi, W. D. Sacher, M. Lo, K. Deisseroth, A. S. Tolias, A. Faraon, and M. L. Roukes, “Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics,” Neurophotonics 4, 011002 (2017).
[Crossref]

New J. Phys. (1)

C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14, 095014 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Optica (3)

Photon. Nanostruct. Fundam. Applic. (1)

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct. Fundam. Applic. 15, 130–136 (2015).
[Crossref]

Photon. Res. (1)

Phys. Rev. A (1)

S. J. Smullin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A 80, 033420 (2009).
[Crossref]

Phys. Rev. B (1)

A. A. Savchenkov, A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Enhancement of photorefraction in whispering gallery mode resonators,” Phys. Rev. B 74, 245119 (2006).
[Crossref]

Phys. Rev. Lett. (2)

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Phys. Status Solidi (1)

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi 212, 2385–2399 (2015).
[Crossref]

Procedia Eng. (1)

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Sci. Rep. (1)

E. Shim, Y. Chen, S. Masmanidis, and M. Li, “Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications,” Sci. Rep. 6, 22693 (2016).
[Crossref]

Sensors (1)

P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, J. M. Cirera, R. Mas, and C. Domínguez, “Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications,” Sensors 17, 2088 (2017).
[Crossref]

Other (3)

J. C. Bergquist, Frequency Standards and Metrology (World Scientific, 1996), pp. 1–574.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev., 1800288 (2019), Early View.
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, and M. Loncar, “Broadband electro-optic frequency comb generation in an integrated microring resonator,” arXiv:1809.08636 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a)–(c) Finite element simulation of TE00 waveguide mode near three different wavelengths: 635 nm, 850 nm, and 1550 nm; wW=480nm is waveguide width and wT=120nm is LN slab thickness. (d) False-color SEM micrograph of the waveguide cross section. (e) 2D AFM scan on LN waveguide. (f) AFM line profile of LN waveguide.
Fig. 2.
Fig. 2. (a) SEM micrograph of a fabricated microring resonator (radius=100μm). (b) SEM image of the coupling region.
Fig. 3.
Fig. 3. (a) Measured transmission spectrum of TFLN microring cavity near 635 nm wavelengths. (b)–(d) Fit of the resonance dips to Lorentzian function at wavelengths of 637 nm, 730 nm, and 800 nm, respectively. Experimental data shown as blue dots and fit function shown as red line.
Fig. 4.
Fig. 4. (a) Mask layout of fabricated device. (b) Measured transmission of cascaded Y-splitter tree as a function of number of Y-splitter branches. The orange line shows a linear fit with a slope of 3.21dB/splitter. (c) Dark field optical microscope image of the unbalanced MZI. Scale bar: 50 μm. (d) Measured transmission spectrum of the MZI showing extinction ratios of 30dB. Inset: SEM micrograph of Y-splitter section. Scale bar: 2 μm.
Fig. 5.
Fig. 5. (a) Optical image of the fabricated LN amplitude modulator. (b) Measured normalized transmission versus applied DC voltage showing a half-wave voltage of 8 V for a 2-mm-long device at a wavelength of 850 nm. Measured electro-optical response of the amplitude modulator. (c) The 3-dB cutoff frequency is 10GHz, limited by the detector. Inset: Measured electrical insertion loss (S21 parameters) shows an electrical (3-dB) bandwidth of 17 GHz.

Metrics