Abstract

Heteroepitaxy of III–V compound semiconductors on industry standard (001) silicon (Si) substrates is highly desirable for large-scale electronic and photonic integrated circuits. Challenges of this approach relate primarily to lattice, polarity, and coefficient of thermal expansion mismatch, which ultimately generate a high density of defects and limit the reliability of active devices. Ongoing efforts to monolithically integrate lasers in silicon photonics include leveraging quantum dots for reduced sensitivity to defects and the ability to enable 1310 nm lasers with gallium arsenide (GaAs) and related compounds. In this work, to extend the operation window to the widely used 1550 nm telecommunications region, we have demonstrated continuous-wave (CW) electrically pumped indium phosphide (InP)-based quantum well lasers on complementary metal-oxide-semiconductor (CMOS)-compatible (001) Si. Heteroepitaxy of InP and related compounds on Si poses additional challenges because the lattice mismatch is significantly larger compared to GaAs. Key to our approach is the development of a low dislocation density InP-on-Si template by metalorganic chemical vapor deposition (MOCVD). Following an InP buffer with a surface defect density of ${1.15} \times {{10}^8}/{{\rm cm}^2}$, a seven-layer indium gallium arsenide phosphide (InGaAsP) multi-quantum well laser diode structure was grown. Fabry–Perot ridge waveguide lasers were then fabricated. A 20-µm wide and 1000-µm long laser demonstrates a room temperature continuous-wave (CW) lasing threshold current density of ${2.05}\;{{\rm kA}/{\rm cm}^2}$ and a maximum output power of 18 mW per facet without facet coating. CW lasing up to 65°C and pulsed lasing greater than 105°C were achieved. This MOCVD-based heteroepitaxy approach offers a practical path toward monolithic integration of InP lasers in silicon photonics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Driven by the significant growth in IP traffic and power consumption of worldwide networks and data centers, silicon photonics has received significant attention in recent years [1]. This technology platform realizes photonic integrated circuits (PICs) by leveraging established complementary metal-oxide-semiconductor (CMOS) processes. For laser integration, hybrid and heterogeneous techniques have been demonstrated [25]. However, for large-scale integration, monolithic techniques are preferred, and direct heteroepitaxy of III-V lasers on silicon (Si) is particularly promising [6]. Discrete indium arsenide (InAs)/gallium arsenide (GaAs) quantum dot (QD) lasers on Si have generated notable device characteristics including low threshold and high temperature operation [7,8]. In addition to providing reduced sensitivity to defects, QDs allow for 1310 nm emission with GaAs-based heteroepitaxy. These lasers are promising for short-reach optical interconnects for data centers and supercomputers [9]. It is, however, challenging to extend the wavelength of the QDs to the 1550 nm wavelength region. The mature indium phosphide (InP) material system therefore prevails for longer wavelength lasers [10]. Additionally, operation in this regime enables a diverse set of applications outside of telecommunications including LiDAR, sensing, free space optical communications, and microwave photonics [1113]. This work focuses on the development of 1550 nm InP-based quantum well (QW) laser diodes (LDs) monolithically grown on CMOS-compatible (001) Si by metalorganic chemical vapor deposition (MOCVD).

The first InP on Si laser, emitting at 1540 nm, was demonstrated with a multi-QW (MQW) structure in 1991 [14]. Vapor mixing epitaxy (VME) was utilized to produce a 13-µm-thick InP layer on a 2 µm GaAs buffer on a 2° offcut Si (001) substrate. No device degradation was observed for over 7000 h of aging owing to the relatively low defect density achieved (less than $10^7/{\rm cm}^2$) [15]. Such a thick template is a concern for cracking and for integration into the silicon photonics platform. In recent work, a much thinner InP template was developed (as thin as 1.5 µm) utilizing an InP-on-V-grooved (001) Si approach [16]. An indium gallium arsenide (InGaAs)/indium aluminum gallium arsenide (InAlGaAs) MQW laser was grown on this template, and room temperature (RT) lasing was demonstrated under pulsed current operation only. Further advancements were also made by replacing the QW active medium with InAs/InAlGaAs QDs emitting at telecom wavelengths, whereby both optically pumped microlasers and electrically pumped diode lasers were demonstrated [1719]. However, there have been no demonstrations of RT continuous-wave (CW) lasers realized with a total III-V layer thickness less than 10 µm above the bottom Si substrate, including all the III-V buffer layers and the topmost laser structure. A thinner buffer could be considered more realistic for coupling of light from III-V active regions to the silicon waveguide on a silicon-on-insulator (SOI) platform [2022]. Some other issues such as the growth rates and facet control of selective heteroepitaxy of III-V lasers on Si, as well as thermal budgets in a CMOS silicon photonics process need to be addressed in the future to facilitate the integration of III-V lasers with silicon photonic circuits.

 figure: Fig. 1.

Fig. 1. (a) 3D schematic representation of InP LD on CMOS-compatible (001) Si and (b) tilted cross-section false color SEM image of an as-cleaved ${20}\;{\unicode{x00B5}{\rm m}} \times {1000}\;{\unicode{x00B5}{\rm m}}$ device.

Download Full Size | PPT Slide | PDF

Several efforts have been attempted to improve the crystalline quality of InP buffers on Si to minimize nonradiative recombination centers [2325]. In this work, multiple ${{\rm In}_{0.71}}{{\rm Ga}_{0.29}}{\rm As}/{\rm InP}$ strained layer superlattices (SLSs) were utilized to interact with and consequently filter the propagating threading dislocations (TDs) in the InP buffer. The resulting InP-on-Si template exhibits a low surface defect density of ${1.15} \times {{10}^8}/{{\rm cm}^2}$. A seven-period InGaAsP/InGaAsP MQW structure was grown on this template. The active region is surrounded by identical InGaAsP separate confined heterostructure (SCH) layers. Fabry–Perot ridge waveguide lasers were then fabricated. A 3D schematic and cross-section scanning electron microscopy (SEM) image of the Si-based laser are shown in Fig. 1. The lasers operate in CW conditions up to a chip temperature of 65°C, and under pulsed conditions over 105°C. A CW lasing threshold current density of ${2.05}\;{{\rm kA}/{\rm cm}^2}$ and output power of 18 mW/facet were demonstrated at RT, without any facet coating. The combination of a reduced InP buffer thickness on a CMOS-compatible (001) silicon substrate and subsequent realization of high temperature continuous-wave operation, these results represent a major advance for 1550 nm lasers monolithically integrated on Si.

2. GROWTH AND FABRICATION

The InP-on-Si template was first grown using a horizontal-reactor low-pressure (LP) MOCVD system. A nano-patterned V-grooved (001) Si substrate was utilized to provide an aspect ratio trapping (ART) of dislocations as well as to avoid the generation of anti-phase boundaries (APBs) [26]. A 2-µm-thick GaAs layer was then grown as an intermediate buffer to alleviate the $\sim 8\%$ lattice mismatch between InP and Si. Details of the V-grooved Si and GaAs buffer growth are available in [27]. Subsequently, an InP buffer was grown in three primary steps. A 30 nm low temperature (LT) InP was grown at 435°C to form a nucleation layer and to accommodate the high density of generated misfit dislocations (on the order of ${{10}^{10}}/{{\rm cm}^2}$). A 45 nm middle temperature (MT) InP layer was then grown at 540°C for coalescence and to planarize the InP growth surface. Afterwards, a 1-µm-thick high temperature (HT) InP primary buffer layer was grown at 600°C–630°C to enhance TD self-annihilation and subsequently improve the buffer quality. However, the thermal budget issue arising from the high temperature growth may be a concern for the compatibility with silicon photonics processes. Next, as depicted in Fig. 2(a), four to five sets of ten-period InGaAs/InP SLSs separated by HT-InP spacers were grown. The total thickness of the InP buffer layer is less than 4 µm. The cross-section scanning transmission electron microscopy (STEM) image shown in Fig. 2(b) clearly illustrates the generation, propagation, and interaction of the defects. A significant number of TDs are either redirected or terminated at the heterointerfaces of each stack of SLSs. Some stacking faults (SFs) are observed to penetrate through the SLSs and reach the InP top surface. These SFs would likely adversely affect device performance by introducing leakage paths [28]. The density of SFs is fairly low, on the order of ${{10}^7}/{{\rm cm}^2}$. Further details on the InP buffer and SLS growth optimization will be reported elsewhere.

 figure: Fig. 2.

Fig. 2. (a) Epitaxial structure and (b) cross-sectional STEM image of the 3.9 µm InP buffer grown on V-grooved (001) Si. (c) Optical microscope image of the InP surface after growth and (d) a ${10} \times {10}\;{{\unicode{x00B5}{\rm m}}^2}$ AFM scan of the surface morphology demonstrating a roughness of 3.79 nm. (e) Representative ECCI image of the InP buffer revealing surface defects. Low power excitation RT-PL spectra of (f) the InP-on-Si with and without insertion of SLSs, and (g) seven-layer InGaAsP-based QW active structure grown on InP-on-Si template and InP native substrate, respectively.

Download Full Size | PPT Slide | PDF

Following the InP buffer growth, the surface is mirror-like with minimal hillocks as observed in the optical microscope image of Fig. 2(c). As shown in the atomic force microscopy (AFM) image of Fig. 2(d), the surface morphology is smooth with only a few pinholes observed. The surface roughness (RMS value) is 3.79 nm for an area of ${10}\;{\unicode{x00B5}{\rm m}} \times {10}\;{\unicode{x00B5}{\rm m}}$. To accurately quantify the surface defect density, a large-area (total observation area of $\sim{681}\;{{\unicode{x00B5}{\rm m}}^2}$) electron channel contrasting imaging (ECCI) scan was performed. The channeling condition consists of both $\{ 0 {\bar 4} 0\} $ and $\{ 2 {\bar 2} 0\} $ excitations to maximize the detection of 60° misfit dislocations threading onto the surface [27]. A representative ECCI image is shown in Fig. 2(e), illustrating the ability to count and distinguish TDs, SFs, and pinholes. To accurately evaluate the effect of the SLSs on dislocation reduction, RT photoluminescence (PL) measurements were carried out at a low excitation regime (${8.3}\;{{\rm W}/{\rm cm}^2}$) to assess the optical quality of two InP-on-Si templates equipped with the same thickness of InP buffer but one with SLSs and the other without SLSs. As shown in Fig. 2(f), a more than five-fold increase was achieved for the InP peak intensity when the surface defect density was reduced from ${4.81} \times {{10}^8}/{\rm cm}^2$ to ${1.15} \times {{10}^8}/{{\rm cm}^2}$ by introducing the SLSs. A further comparison is presented in Fig. 2(g), where a seven-layer InGaAsP/InGaAsP MQW active region with emission near 1550 nm was grown on the InP-on-Si template with SLS insertion, as well as on a premium InP (001) native substrate. The low power (${3.7}\;{{\rm W}/{\rm cm}^2}$) PL measurement indicates a reasonable PL intensity and a comparable full-width at half-maximum (FWHM) value for the QWs grown on InP-on-Si. The peak intensity for the QWs on Si is approximately 3.6 times lower than that demonstrated for the native InP substrate. Worth noting, QWs are considered to be more sensitive to dislocations than QDs. A reported PL intensity discrepancy is greater than an order of magnitude for QWs grown on GaAs-on-Si compared to those grown on native GaAs substrates [29]. These results suggest the suitability of our advanced InP-on-Si template for realizing 1550 nm lasers.

To investigate further, an MQW laser structure was grown both on a high quality InP-on-Si template and on an n-type InP (001) substrate. Disilane (${{\rm Si}_2}{{\rm H}_6}$) and diethylzinc (DEZn) were used for the n- and p-type dopants, respectively, for cladding and contact layers. The detailed layer structure is depicted in Fig. 3(a). Ridge lasers for electrical pumping were fabricated following the steps summarized schematically in Figs. 3(b)3(f). A Ti/Pt/Au metal stack was first deposited for the p-contact and then covered with silicon dioxide (${{\rm SiO}_2}$), which was subsequently patterned to provide a hard mask for ridge etching. The ridge waveguides were formed using inductively-coupled plasma reactive ion etching (ICP-RIE). The etch terminated well above the active region to avoid damage to the QWs. A smooth sidewall was realized using chlorine/hydrogen/argon (${{\rm Cl}_2}/{{\rm H}_2}/{\rm Ar}$) and an etch temperature of 200°C. Following sidewall passivation, another etch was performed to expose the n-InP contact layer. After the deposition of Ni/AuGe/Ni/Au alloyed metal contacts, dielectric material was deposited for sidewall passivation. The metal contacts were exposed with a patterned dielectric etch, and then 2-µm-thick Au contact pads were formed with a liftoff process. The final device geometry is shown schematically in Fig. 1(a). After the frontend fabrication was completed, the samples were thinned, and laser bars were cleaved to form facets. Devices were then mounted onto ceramic carriers to facilitate characterization.

 figure: Fig. 3.

Fig. 3. Schematic illustration of the process steps for the ridge laser fabrication including: (a) the as-grown QW laser, (b) p-metal deposition and ridge etch, (c) etch to expose n-contact layer, (d) n-metal deposition, (e) sidewall passivation, and (f) probe pad formation. Optical microscope images of as-fabricated laser bars (g) on InP and (h) on Si.

Download Full Size | PPT Slide | PDF

3. RESULTS AND DISCUSSION

Figures 3(g) and 3(h) show broad view optical microscope images of devices fabricated on InP and on Si prior to cleaving. Hillocks are observed for lasers on Si with an extremely low density of $\sim \text{1,052}/{{\rm cm}^2}$, originating from the indium clustering occurring during the InP buffer and SLSs growth. Fortunately, most of the ridge waveguides have bypassed the sparse hillocks. A 70° tilted SEM image of an as-cleaved laser bar with a 20 µm ridge width was shown in Fig. 1(b). The Si V-grooves are aligned parallel to the laser stripes along the [110] direction. The cleaved facets are clean, mirror-like, and free of corrugations for this device. The III-V layers can be clearly distinguished in the false color SEM image. Five stacks of SLSs were utilized for the InP-on-Si template (total InP buffer thickness of 3.9 µm) used for the final laser structure, which yields a surface defect density of ${1.15} \times {{10}^8}/{{\rm cm}^2}$. Compared to state-of-the-art GaAs-on-Si template technology that achieves a defect density on the order of ${{10}^6}/{{\rm cm}^2}$, the InP surface defect density is higher due to several factors. The larger lattice mismatch between InP and Si (8%) compared to GaAs and Si (4%) requires a thicker buffer to reduce the dislocation density. Therefore, the higher dislocation density for InP-on-Si prior to SLS insertion results in a lower dislocation filtering efficiency due to a reduction of strain inside the SLSs [30]. Meanwhile, the larger lattice mismatch also results in a rougher surface morphology, degrading the efficacy of the inserted SLSs by deteriorating SLS interfaces and varying SLS alloy compositions, thus hindering dislocation glide [31].

The smaller mismatch in the coefficient of thermal expansion between InP and Si weakens the effect of thermal cycle annealing that propels the dislocations. Also, the operation of the SLSs in the InP-on-Si template is less effective compared to InGaAs/GaAs SLSs in GaAs-on-Si with similar strain fields, thus limiting their dislocation filtering ability. More specifically, the high indium-containing ${{\rm In}_{0.71}}{{\rm Ga}_{0.29}}{\rm As}/{\rm InP}$ SLSs adopted here could progressively decrease the dislocation glide velocity, limiting the lateral motion of the dislocations [32].

 figure: Fig. 4.

Fig. 4. (a) IV characteristics, (b) LI characteristics and total wall-plug efficiency for the ${20}\;{\unicode{x00B5}{\rm m}} \times {1000}\;{\unicode{x00B5}{\rm m}}$ ridge laser on InP and on InP-on-Si.

Download Full Size | PPT Slide | PDF

Last, another possible explanation for the less effective SLSs is attributed to the reduced elastic shear modulus of the high indium-containing ${{\rm In}_{0.71}}{{\rm Ga}_{0.29}}{\rm As}/{\rm InP}$ SLSs to repulse dislocations because the shear modulus decreases monotonically with increasing lattice constant [30]. The ${{\rm In}_x}{{\rm Ga}_{1 - x}}{\rm As}/{\rm InP}$ SLSs can therefore be further improved by reducing the indium composition to less than 30% [33].

Representative current-voltage (IV) and light-current (LI) characteristics for a ${20}\;{\unicode{x00B5}{\rm m}} \times {1000}\;{\unicode{x00B5}{\rm m}}$ ridge laser on InP and Si are shown in Fig. 4. These measurements were performed at a temperature-controlled stage temperature of 15°C. Although the turn-on voltage of the LDs on both substrates are similar, the extracted series resistance on ${\rm Si} \,\,({1.7}\;\Omega )$ is more than twice that for the laser on ${\rm InP} \,\,({0.8}\;\Omega )$. This is primarily attributed to the significantly thin n-InP conductive layer for the laser on Si, which adds lateral n-resistance to the total series resistance, compared to the $ {\gt} 150 \text{-} {\unicode{x00B5}{\rm m}}$ thick n-type InP substrate of the laser on InP. More n-type doping in the InP buffer for the laser on Si in future implementations is expected to improve performance. Additionally, defects also serve as carrier scattering centers, resulting in higher leakage and higher resistance [34]. The threshold currents and total wall-plug efficiencies (WPEs) can be inferred from Fig. 4(b). In addition to the three times larger threshold value for the laser on Si (the LD on InP typically demonstrates a lasing threshold current density of ${650}\;{{\rm A}/{\rm cm}^2}$), the slope efficiency on Si is also approximately two times lower (0.07 W/A) compared to the InP laser (0.13 W/A). These discrepancies correlate well with their respective QW PL intensities from Fig. 2(g). The total WPE for the laser on Si is approximately 2.7% at its peak, more than five times lower than that for the laser on InP. This difference is mainly attributed to the lower injection efficiency for the laser on Si, as well as the larger series resistance.

Figure 5 presents the RT lasing spectra of a ${20}\;{\unicode{x00B5}{\rm m}} \times {500}\;{\unicode{x00B5}{\rm m}}$ laser device on Si for various CW pump currents and for various operating temperatures. The observed primary lasing peak is at a wavelength that is 27 nm longer than the peak PL intensity. This phenomenon can be explained by the discrepancy between the gain and PL peak wavelengths. It is known that the lasing wavelength of semiconductor lasers is primarily determined by the gain peak, which is slightly different than the PL peak. We always observe the lasing peak locating on the lower energy side compared with the PL peak, because the lower energy states (longer wavelength) are inverted more easily due to the lower density of states and thus will have more gain. But the PL intensity in the longer wavelength is lower due to fewer carriers occupying these energy states, and fewer photons will be emitted. One does not necessarily need the energy states to be inverted to observe the PL signal, which is yet inevitable for the gain to get lasing. Meanwhile, the device heating should also account for this peak wavelength difference. It is further evidenced by the spontaneous emission background in Fig. 5(a). The free spectral range (FSR) of the resonant cavity is measured to be $ \Delta \lambda = 0.68\,\, {\rm nm} $ near the lasing peak, corresponding to a group index ${{n}_{\rm g} = {\lambda }^{2}}/{2}\Delta {\lambda \times L = 3.74}.$ Aside from the extracted red-shift rate of 0.0073 nm/mA and 1.17 nm/°C, an indication of mode hopping was also observed when gradually increasing the injection current. For an injection current less than 400 mA, a single lasing mode dominates that is 22 dB higher in power compared to the next highest power mode.

 figure: Fig. 5.

Fig. 5. (a) Emission spectra at progressively increased currents for a ${20}\;{\unicode{x00B5}{\rm m}} \times {500}\;{\unicode{x00B5}{\rm m}}$ laser device on Si. The measurement temperature was fixed at 20°C. (b) Lasing spectra for the same device at various stage temperatures with an injection current of 400 mA.

Download Full Size | PPT Slide | PDF

The lasing characteristics for various cavity lengths are further presented in Fig. 6, measured under both CW and pulsed operating conditions (300 ns current pulses, 10% pulse duty cycle). As demonstrated in Figs. 6(d)6(f), a significant reduction (2–3 times) in threshold densities was observed under pulsed pumping, compared to the CW operation, indicating that the lasers on Si are primarily limited by the device self-heating. This heat could originate from the larger series resistance, and lower injection efficiency that results from TDs present inside the active region, as well as the higher free carrier loss at higher injection current levels. The threshold current density, ${{\rm J}_{\rm th}}$, is generally lower for longer cavities. However, the considerably large ${{\rm J}_{\rm th}}$ for the 375 and 1500 µm long devices may be due to imperfect facet cleaving. A high reflectivity (HR) coating on the rear facet is expected to lower the threshold, increase the output power, and improve the temperature stability [35].

 figure: Fig. 6.

Fig. 6. LI characteristics for lasers on InP for various cavity lengths under (a) CW and (b) pulsed current injection. The cavity width is 20 µm for all devices. (c) Dependence of threshold current density of InP laser on the cavity length under both operation modes. (d) LI plots for lasers on Si for different cavity lengths under (d) CW and (e) pulsed operation, along with (f) their extracted threshold current densities.

Download Full Size | PPT Slide | PDF

Temperature-dependent LI characteristics were also measured, and the results are shown in Fig. 7. A thermal-electric cooler (TEC) was used to control the stage temperature. As demonstrated in Fig. 7(a), the ${20}\;{\unicode{x00B5}{\rm m}} \times {1000}\;{\unicode{x00B5}{\rm m}}$ laser bar can sustain lasing up to 65°C under CW operation. The highest output power at a chip temperature of 60°C is 5 mW. Thermal roll-over is observed in the LI characteristics; this could be associated with the severe device self-heating as discussed earlier, as well as an inferior heat sink on Si due to the highly defective InP/GaAs interface [see Fig. 1(b)] and the residual thermal stress inside the InP-on-Si template [36]. It is worth noting that all of the approximately 20 devices measured, of various cavity lengths, operated stably during repeated room-temperature LIV and temperature-dependent LI measurements without suffering any rapid degradation or failure. This is speculated to be related to the suppressed development of dark spot defects (DSDs) into dark line defects (DLDs) in InP-based LDs, caused by dislocation climbing [37].

 figure: Fig. 7.

Fig. 7. Measured LI characteristics for the ${20}\;{\unicode{x00B5}{\rm m}} \times {1000}\;{\unicode{x00B5}{\rm m}}$ ridge laser on Si as a function of stage temperature under: (a) CW pumping and (b) pulsed operation, and (c) temperature dependence of threshold current. (d) LI curves from the same device size on InP at various stage temperatures under (d) CW and (e) pulsed operations, and (f) temperature dependence of the threshold current.

Download Full Size | PPT Slide | PDF

It is well known that the major cause of device aging in AlGaAs/GaAs-based lasers is recombination enhanced dislocation climb (REDC) [38], and the growth of $ \langle {100} \rangle $ DLDs and DSDs, which significantly extend with increasing current injection and higher junction temperature [39]. Specifically, the evolution of DLDs is caused by the climbing motion of dislocations, resulting in rapid degradation. Recently, the extracted device lifetime of the InAs/GaAs QD lasers on Si is partially attributed to their greatly reduced threshold current densities, in addition to the apparent lower sensitivity of QDs to defects. Although the thresholds and the buffer quality of InP-based LDs on Si are inferior to GaAs-based QD lasers on Si, the reliability of C-band InP-based LDs on Si is promising due to various intrinsic properties. First, for C-band InP-based lasers, experiments have revealed a lower recombination energy due to the longer lasing wavelength (1550 nm) [40]. This feature allows for a significantly reduced REDC compared with some 1300 nm lasers on Si, thus extending device lifetime. Second, the development of DLDs strongly depends on the bandgap energy, as proven experimentally in [41]. In that experiment, under the same severe aging conditions (injection current density of ${10}\;{{\rm kA}/{\rm cm}^2}$ and high junction temperature of 250°C), DLDs were only observed in devices lasing at 1290 nm, while no DLD was formed for the device lasing at 1550 nm. Additionally, the development speed of $ \langle {100} \rangle $ DLD was calculated to be approximately 0.3 µm/h, under the ${10}\;{{\rm kA}/{\rm cm}^2}$ injection level and junction temperature of 250°C, which is two orders of magnitude smaller than AlGaAs/GaAs operating under similar current density but at room temperature [41]. Moreover, the InP-on-Si buffer is equipped with a lower residual thermal strain, on the order of ${{10}^8}\;{\rm dyn}/{{\rm cm}^2}$, which is an order of magnitude lower than that for GaAs on Si [40]. The growth of dislocations is aided by the presence of a large tensile strain that results from the mismatch in the thermal expansion coefficients [42]. Last, during an auto-current-control (ACC) aging test of 1550 nm InP-based LDs on Si [37], it was revealed that although the emergence of DSD is responsible for gradual degradation, the density of DSDs becomes saturated after a certain number are generated (the DSD density is on the same order as the dislocation density inside the active region). Therefore, no further degradation will take place, and the existing DSDs would neither evolve into detrimental DLDs, nor grow larger in size [37]. All of these inherent advantages of InP-based LDs demonstrate that reliable operation of 1550 nm LDs on Si should be attainable. It is also pointed out that by replacing the QWs in this work with InP-based QDs, a longer device lifetime can be anticipated. Even though further improvements can be made, the InP-on-Si laser results presented here show great promise for realizing practical 1550 nm lasers monolithically integrated in silicon photonics.

The pulsed measurements reported in Fig. 7(b) demonstrate lasing to greater than 105°C, limited by the temperature range of the TEC used. The characteristic temperature ${{\rm T}_0}$ was calculated from the data reported in Fig. 7(c) using the following expression [16]:

$$\frac{{I_{\rm th}(T_{1})}}{{I_{\rm th}{(T}_{2})}} = \exp \left(\frac{{T}_{1}- {T_{2}}}{{{T}_{0}}} \right )\!.$$

For the QW laser grown on Si under CW pumping conditions, the characteristic temperature was extracted to be 65.3 K between 15°C and 50°C, and 41 K between 50°C and 65°C. In contrast, the ${{T}_0}$ value is higher (55 K) between 55°C and 105°C under pulsed current injection with a duty cycle of 10%. The same temperature-dependent measurement was also performed for the lasers grown on native InP with an identical device geometry. In addition to a higher output power as well as an elevated operating temperature (95°C under CW injection and greater than 105°C under pulsed operation), the threshold temperature stability is also apparently improved, as shown in Fig. 7(f). The ${{T}_0}$ value on InP was 74 K between 15°C and 55°C, and 44.2 K between 55°C and 85°C. The severe Auger recombination and carrier escape at above 85°C accounts for the sharp decrease of ${{T}_0}$ (28 K). Under pulsed operation, the ${{T}_0}$ was extracted to be 111.5 K between 15°C and 55°C, and 51.2 K between 55°C and 105°C. Improved temperature characteristics for lasers on both substrates can be expected by replacing the InGaAsP-based active region with InAlGaAs alloys due to their larger conduction band offset [43], as well as by replacing the conventional QW active elements with the InAs/InAlGaAs quantum dot or quantum dash materials for their lower thresholds and more isolated energy states characteristics [44,45]. Also, introducing more n-type doping in the InP buffer layer for the laser on Si, as well as incorporating in situ thermal cycle annealing, are both expected to improve the device performance without increasing the total III-V buffer thickness. Nevertheless, the results reported here represent a significant advancement for the realization of 1550 nm lasers on CMOS-compatible (001) silicon substrates.

4. CONCLUSION

Using a relatively low dislocation density InP buffer on a V-grooved (001) Si substrate, implemented with a GaAs intermediate buffer and incorporation of InGaAs/InP SLSs, we realized a RT CW 1550 nm laser on Si. The InP buffer thickness is only 3.9 µm thick, which mitigates cracking and allows for practical solutions to incorporate lasers in the silicon photonics process that can couple efficiently to silicon waveguides. The fabricated ridge waveguide lasers yielded a reasonable RT CW lasing threshold (${2.05}\;{{\rm kA}/{\rm cm}^2}$) and a respectable output power of 18 mW/facet for devices without facet coating. The temperature-dependent measurements reported CW operation up to 65°C with reasonable characteristic temperature values. Pulsed measurements were carried out simultaneously to minimize the self-heating; these measurement results suggest that performance of the lasers on Si is limited by self-heating, which can be improved in future devices. The heat generation on Si is attributed to the larger series resistance and lower injection efficiency, compared to the laser on InP. The inferior heat dissipation on Si may also be due to the residual thermal stress of the InP-on-Si template, as well as the defective InP/GaAs interface. Future work will investigate these factors further. To improve performance, heavily doped n-type graded buffers could be utilized to further reduce the resistance and the impact of defects generated at the InP/GaAs interface. More systematic measurements and aging tests will also be conducted to evaluate the influence of an HR facet coating on device performance and lifetime.

Funding

Defense Advanced Research Projects Agency (D18AP00072).

Acknowledgment

The authors acknowledge SUNY Polytechnic University for providing patterned Si substrates, Aidan Taylor and Fengqiao Sang for technical support, and Gordon Keeler for technical discussions.

REFERENCES

1. Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017). [CrossRef]  

2. B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express 24, 10435–10444 (2016). [CrossRef]  

3. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010). [CrossRef]  

4. K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012). [CrossRef]  

5. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006). [CrossRef]  

6. A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017). [CrossRef]  

7. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016). [CrossRef]  

8. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014). [CrossRef]  

9. K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2017). [CrossRef]  

10. P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005). [CrossRef]  

11. H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019). [CrossRef]  

12. B. J. Isaac, B. Song, S. Pinna, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019). [CrossRef]  

13. Y. Liu, A. Wichman, B. Isaac, J. Kalkavage, E. J. Adles, T. R. Clark, and J. Klamkin, “Tuning optimization of ring resonator delays for integrated optical beam forming networks,” J. Lightwave Technol. 35, 4954–4960 (2017). [CrossRef]  

14. M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30, 3876 (1991). [CrossRef]  

15. T. Yamada, M. Tachikawa, T. Sasaki, H. Mori, and Y. Kadota, “7000 h continuous wave operation of multiple quantum well laser on Si at 50 C,” Appl. Phys. Lett. 70, 1614–1615 (1997). [CrossRef]  

16. S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5 µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26, 14514–14523 (2018). [CrossRef]  

17. B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017). [CrossRef]  

18. B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017). [CrossRef]  

19. S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113, 221103 (2018). [CrossRef]  

20. Y. Zhang, Y. Su, Y. Bi, J. Pan, H. Yu, Y. Zhang, J. Sun, X. Sun, and M. Chong, “Inclined emitting slotted single-mode laser with 1.7° vertical divergence angle for PIC applications,” Opt. Lett. 43, 86–89 (2018). [CrossRef]  

21. B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019). [CrossRef]  

22. B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27, 19348–19358 (2019). [CrossRef]  

23. B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017). [CrossRef]  

24. L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018). [CrossRef]  

25. B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: the role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123, 193104 (2018). [CrossRef]  

26. Q. Li and K. M. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017). [CrossRef]  

27. B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3 µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019). [CrossRef]  

28. G. H. Schwuttke, K. Brack, and E. W. Hearn, “The influence of stacking faults on leakage currents of FET devices,” Microelectron. Reliab. 10, 467–470 (1971). [CrossRef]  

29. A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015). [CrossRef]  

30. T. S. Rao, K. Nozawa, and Y. Horikoshi, “Migration enhanced epitaxy growth of GaAs on Si with (GaAs)1−x(Si2)x GaAs strained layer superlattice buffer layers,” Appl. Phys. Lett. 62, 154–156 (1993). [CrossRef]  

31. N. J. Quitoriano and E. A. Fitzgerald, “Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation,” J. Appl. Phys. 102, 033511 (2007). [CrossRef]  

32. E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019). [CrossRef]  

33. H. Itakura, T. Suzuki, Z. K. Jiang, T. Soga, T. Jimbo, and M. Umeno, “Effect of InGaAs/InP strained layer superlattice in InP-on-Si,” J. Cryst. Growth 115, 154–157 (1991). [CrossRef]  

34. S. Mahajan, “Defects in semiconductors and their effects on devices,” Acta Mater. 48, 137–149 (2000). [CrossRef]  

35. I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004). [CrossRef]  

36. A. Vega-Flick, D. Jung, S. Yue, J. E. Bowers, and B. Liao, “Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain,” Phys. Rev. Mater. 3, 034603 (2019). [CrossRef]  

37. T. Sasaki, H. Mori, M. Tachikawa, and T. Yamada, “Aging tests of InP-based laser diodes heteroepitaxially grown on Si substrates,” J. Appl. Phys. 84, 6725–6728 (1998). [CrossRef]  

38. E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019). [CrossRef]  

39. Y. Hasegawa, T. Egawa, T. Jimbo, and M. Umeno, “Influences of dark line defects on characteristics of AlGaAs/GaAs quantum well lasers grown on Si substrates,” Jpn. J. Appl. Phys. 34, 2994–2999 (1995). [CrossRef]  

40. M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992). [CrossRef]  

41. M. Fukuda, K. Wakita, and G. Iwane, “Observation of dark defects related to degradation in InGaAsP/InP DH lasers under accelerated operation,” Jpn. J. Appl. Phys. 20, L87–L90 (1981). [CrossRef]  

42. F. Olsson, “Selective epitaxy of indium phosphide and heteroepitaxy of indium phosphide on silicon for monolithic integration,” Doctoral dissertation (KTH, 2008).

43. B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015). [CrossRef]  

44. B. Shi and K. M. Lau, “Enhanced optical properties of InAs/InAlGaAs/InP quantum dots grown by metal-organic chemical vapor deposition using a double-cap technique,” J. Cryst. Growth 433, 19–23 (2016). [CrossRef]  

45. M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: material structures and devices,” Prog. Quantum Electron. 38, 237–313 (2014). [CrossRef]  

References

  • View by:

  1. Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
    [Crossref]
  2. B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express 24, 10435–10444 (2016).
    [Crossref]
  3. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
    [Crossref]
  4. K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
    [Crossref]
  5. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
    [Crossref]
  6. A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
    [Crossref]
  7. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  8. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
    [Crossref]
  9. K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2017).
    [Crossref]
  10. P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
    [Crossref]
  11. H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
    [Crossref]
  12. B. J. Isaac, B. Song, S. Pinna, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
    [Crossref]
  13. Y. Liu, A. Wichman, B. Isaac, J. Kalkavage, E. J. Adles, T. R. Clark, and J. Klamkin, “Tuning optimization of ring resonator delays for integrated optical beam forming networks,” J. Lightwave Technol. 35, 4954–4960 (2017).
    [Crossref]
  14. M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30, 3876 (1991).
    [Crossref]
  15. T. Yamada, M. Tachikawa, T. Sasaki, H. Mori, and Y. Kadota, “7000 h continuous wave operation of multiple quantum well laser on Si at 50 C,” Appl. Phys. Lett. 70, 1614–1615 (1997).
    [Crossref]
  16. S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5 µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26, 14514–14523 (2018).
    [Crossref]
  17. B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
    [Crossref]
  18. B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
    [Crossref]
  19. S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113, 221103 (2018).
    [Crossref]
  20. Y. Zhang, Y. Su, Y. Bi, J. Pan, H. Yu, Y. Zhang, J. Sun, X. Sun, and M. Chong, “Inclined emitting slotted single-mode laser with 1.7° vertical divergence angle for PIC applications,” Opt. Lett. 43, 86–89 (2018).
    [Crossref]
  21. B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
    [Crossref]
  22. B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27, 19348–19358 (2019).
    [Crossref]
  23. B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).
    [Crossref]
  24. L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
    [Crossref]
  25. B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: the role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123, 193104 (2018).
    [Crossref]
  26. Q. Li and K. M. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017).
    [Crossref]
  27. B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3 µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
    [Crossref]
  28. G. H. Schwuttke, K. Brack, and E. W. Hearn, “The influence of stacking faults on leakage currents of FET devices,” Microelectron. Reliab. 10, 467–470 (1971).
    [Crossref]
  29. A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
    [Crossref]
  30. T. S. Rao, K. Nozawa, and Y. Horikoshi, “Migration enhanced epitaxy growth of GaAs on Si with (GaAs)1−x(Si2)x GaAs strained layer superlattice buffer layers,” Appl. Phys. Lett. 62, 154–156 (1993).
    [Crossref]
  31. N. J. Quitoriano and E. A. Fitzgerald, “Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation,” J. Appl. Phys. 102, 033511 (2007).
    [Crossref]
  32. E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
    [Crossref]
  33. H. Itakura, T. Suzuki, Z. K. Jiang, T. Soga, T. Jimbo, and M. Umeno, “Effect of InGaAs/InP strained layer superlattice in InP-on-Si,” J. Cryst. Growth 115, 154–157 (1991).
    [Crossref]
  34. S. Mahajan, “Defects in semiconductors and their effects on devices,” Acta Mater. 48, 137–149 (2000).
    [Crossref]
  35. I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
    [Crossref]
  36. A. Vega-Flick, D. Jung, S. Yue, J. E. Bowers, and B. Liao, “Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain,” Phys. Rev. Mater. 3, 034603 (2019).
    [Crossref]
  37. T. Sasaki, H. Mori, M. Tachikawa, and T. Yamada, “Aging tests of InP-based laser diodes heteroepitaxially grown on Si substrates,” J. Appl. Phys. 84, 6725–6728 (1998).
    [Crossref]
  38. E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
    [Crossref]
  39. Y. Hasegawa, T. Egawa, T. Jimbo, and M. Umeno, “Influences of dark line defects on characteristics of AlGaAs/GaAs quantum well lasers grown on Si substrates,” Jpn. J. Appl. Phys. 34, 2994–2999 (1995).
    [Crossref]
  40. M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
    [Crossref]
  41. M. Fukuda, K. Wakita, and G. Iwane, “Observation of dark defects related to degradation in InGaAsP/InP DH lasers under accelerated operation,” Jpn. J. Appl. Phys. 20, L87–L90 (1981).
    [Crossref]
  42. F. Olsson, “Selective epitaxy of indium phosphide and heteroepitaxy of indium phosphide on silicon for monolithic integration,” Doctoral dissertation (KTH, 2008).
  43. B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
    [Crossref]
  44. B. Shi and K. M. Lau, “Enhanced optical properties of InAs/InAlGaAs/InP quantum dots grown by metal-organic chemical vapor deposition using a double-cap technique,” J. Cryst. Growth 433, 19–23 (2016).
    [Crossref]
  45. M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: material structures and devices,” Prog. Quantum Electron. 38, 237–313 (2014).
    [Crossref]

2019 (8)

H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
[Crossref]

B. J. Isaac, B. Song, S. Pinna, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

B. Zhang, W. Q. Wei, J. H. Wang, J. Y. Zhang, H. Cong, Q. Feng, T. Wang, and J. J. Zhang, “1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy,” Opt. Express 27, 19348–19358 (2019).
[Crossref]

B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3 µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
[Crossref]

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

A. Vega-Flick, D. Jung, S. Yue, J. E. Bowers, and B. Liao, “Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain,” Phys. Rev. Mater. 3, 034603 (2019).
[Crossref]

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

2018 (5)

L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: the role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123, 193104 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5 µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26, 14514–14523 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113, 221103 (2018).
[Crossref]

Y. Zhang, Y. Su, Y. Bi, J. Pan, H. Yu, Y. Zhang, J. Sun, X. Sun, and M. Chong, “Inclined emitting slotted single-mode laser with 1.7° vertical divergence angle for PIC applications,” Opt. Lett. 43, 86–89 (2018).
[Crossref]

2017 (8)

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

Y. Liu, A. Wichman, B. Isaac, J. Kalkavage, E. J. Adles, T. R. Clark, and J. Klamkin, “Tuning optimization of ring resonator delays for integrated optical beam forming networks,” J. Lightwave Technol. 35, 4954–4960 (2017).
[Crossref]

Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. Van Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2017).
[Crossref]

Q. Li and K. M. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).
[Crossref]

2016 (3)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express 24, 10435–10444 (2016).
[Crossref]

B. Shi and K. M. Lau, “Enhanced optical properties of InAs/InAlGaAs/InP quantum dots grown by metal-organic chemical vapor deposition using a double-cap technique,” J. Cryst. Growth 433, 19–23 (2016).
[Crossref]

2015 (2)

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
[Crossref]

2014 (2)

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: material structures and devices,” Prog. Quantum Electron. 38, 237–313 (2014).
[Crossref]

2012 (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

2010 (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

2007 (1)

N. J. Quitoriano and E. A. Fitzgerald, “Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation,” J. Appl. Phys. 102, 033511 (2007).
[Crossref]

2006 (1)

2005 (1)

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

2004 (1)

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

2000 (1)

S. Mahajan, “Defects in semiconductors and their effects on devices,” Acta Mater. 48, 137–149 (2000).
[Crossref]

1998 (1)

T. Sasaki, H. Mori, M. Tachikawa, and T. Yamada, “Aging tests of InP-based laser diodes heteroepitaxially grown on Si substrates,” J. Appl. Phys. 84, 6725–6728 (1998).
[Crossref]

1997 (1)

T. Yamada, M. Tachikawa, T. Sasaki, H. Mori, and Y. Kadota, “7000 h continuous wave operation of multiple quantum well laser on Si at 50 C,” Appl. Phys. Lett. 70, 1614–1615 (1997).
[Crossref]

1995 (1)

Y. Hasegawa, T. Egawa, T. Jimbo, and M. Umeno, “Influences of dark line defects on characteristics of AlGaAs/GaAs quantum well lasers grown on Si substrates,” Jpn. J. Appl. Phys. 34, 2994–2999 (1995).
[Crossref]

1993 (1)

T. S. Rao, K. Nozawa, and Y. Horikoshi, “Migration enhanced epitaxy growth of GaAs on Si with (GaAs)1−x(Si2)x GaAs strained layer superlattice buffer layers,” Appl. Phys. Lett. 62, 154–156 (1993).
[Crossref]

1992 (1)

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
[Crossref]

1991 (2)

H. Itakura, T. Suzuki, Z. K. Jiang, T. Soga, T. Jimbo, and M. Umeno, “Effect of InGaAs/InP strained layer superlattice in InP-on-Si,” J. Cryst. Growth 115, 154–157 (1991).
[Crossref]

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30, 3876 (1991).
[Crossref]

1981 (1)

M. Fukuda, K. Wakita, and G. Iwane, “Observation of dark defects related to degradation in InGaAsP/InP DH lasers under accelerated operation,” Jpn. J. Appl. Phys. 20, L87–L90 (1981).
[Crossref]

1971 (1)

G. H. Schwuttke, K. Brack, and E. W. Hearn, “The influence of stacking faults on leakage currents of FET devices,” Microelectron. Reliab. 10, 467–470 (1971).
[Crossref]

Adles, E. J.

Arakawa, Y.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2017).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

Badcock, T. J.

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

Behfar, A.

Bertru, N.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Bi, Y.

Bowers, J.

L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Bowers, J. E.

A. Vega-Flick, D. Jung, S. Yue, J. E. Bowers, and B. Liao, “Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain,” Phys. Rev. Mater. 3, 034603 (2019).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

Brack, K.

G. H. Schwuttke, K. Brack, and E. W. Hearn, “The influence of stacking faults on leakage currents of FET devices,” Microelectron. Reliab. 10, 467–470 (1971).
[Crossref]

Brunelli, S. Š.

L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
[Crossref]

Brunelli, S. T. Š.

H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
[Crossref]

Caroff, P.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Castellano, A.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Cerutti, L.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Charles, W.

L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
[Crossref]

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Childs, D. T.

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

Chong, M.

Clark, T. R.

Cohen, O.

Coldren, L. A.

H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
[Crossref]

B. J. Isaac, B. Song, S. Pinna, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

Cong, H.

Dehaese, O.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Egawa, T.

Y. Hasegawa, T. Egawa, T. Jimbo, and M. Umeno, “Influences of dark line defects on characteristics of AlGaAs/GaAs quantum well lasers grown on Si substrates,” Jpn. J. Appl. Phys. 34, 2994–2999 (1995).
[Crossref]

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Fang, A. W.

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Feng, Q.

Fitzgerald, E. A.

N. J. Quitoriano and E. A. Fitzgerald, “Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation,” J. Appl. Phys. 102, 033511 (2007).
[Crossref]

Folliot, H.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Fukuda, M.

M. Fukuda, K. Wakita, and G. Iwane, “Observation of dark defects related to degradation in InGaAsP/InP DH lasers under accelerated operation,” Jpn. J. Appl. Phys. 20, L87–L90 (1981).
[Crossref]

Garreau, A.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Gossard, A. C.

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Groom, K. M.

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

Guo, W.

Han, Y.

B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

Hasegawa, Y.

Y. Hasegawa, T. Egawa, T. Jimbo, and M. Umeno, “Influences of dark line defects on characteristics of AlGaAs/GaAs quantum well lasers grown on Si substrates,” Jpn. J. Appl. Phys. 34, 2994–2999 (1995).
[Crossref]

Hearn, E. W.

G. H. Schwuttke, K. Brack, and E. W. Hearn, “The influence of stacking faults on leakage currents of FET devices,” Microelectron. Reliab. 10, 467–470 (1971).
[Crossref]

Homeyer, E.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Hopkinson, M.

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

Horikoshi, Y.

T. S. Rao, K. Nozawa, and Y. Horikoshi, “Migration enhanced epitaxy growth of GaAs on Si with (GaAs)1−x(Si2)x GaAs strained layer superlattice buffer layers,” Appl. Phys. Lett. 62, 154–156 (1993).
[Crossref]

Hu, E. L.

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

Hughes, E. T.

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

Isaac, B.

L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
[Crossref]

Y. Liu, A. Wichman, B. Isaac, J. Kalkavage, E. J. Adles, T. R. Clark, and J. Klamkin, “Tuning optimization of ring resonator delays for integrated optical beam forming networks,” J. Lightwave Technol. 35, 4954–4960 (2017).
[Crossref]

Isaac, B. J.

B. J. Isaac, B. Song, S. Pinna, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

Itakura, H.

H. Itakura, T. Suzuki, Z. K. Jiang, T. Soga, T. Jimbo, and M. Umeno, “Effect of InGaAs/InP strained layer superlattice in InP-on-Si,” J. Cryst. Growth 115, 154–157 (1991).
[Crossref]

Itoh, Y.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
[Crossref]

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30, 3876 (1991).
[Crossref]

Iwane, G.

M. Fukuda, K. Wakita, and G. Iwane, “Observation of dark defects related to degradation in InGaAsP/InP DH lasers under accelerated operation,” Jpn. J. Appl. Phys. 20, L87–L90 (1981).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Jiang, Z. K.

H. Itakura, T. Suzuki, Z. K. Jiang, T. Soga, T. Jimbo, and M. Umeno, “Effect of InGaAs/InP strained layer superlattice in InP-on-Si,” J. Cryst. Growth 115, 154–157 (1991).
[Crossref]

Jimbo, T.

Y. Hasegawa, T. Egawa, T. Jimbo, and M. Umeno, “Influences of dark line defects on characteristics of AlGaAs/GaAs quantum well lasers grown on Si substrates,” Jpn. J. Appl. Phys. 34, 2994–2999 (1995).
[Crossref]

H. Itakura, T. Suzuki, Z. K. Jiang, T. Soga, T. Jimbo, and M. Umeno, “Effect of InGaAs/InP strained layer superlattice in InP-on-Si,” J. Cryst. Growth 115, 154–157 (1991).
[Crossref]

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

Jung, D.

A. Vega-Flick, D. Jung, S. Yue, J. E. Bowers, and B. Liao, “Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain,” Phys. Rev. Mater. 3, 034603 (2019).
[Crossref]

Kadota, Y.

T. Yamada, M. Tachikawa, T. Sasaki, H. Mori, and Y. Kadota, “7000 h continuous wave operation of multiple quantum well laser on Si at 50 C,” Appl. Phys. Lett. 70, 1614–1615 (1997).
[Crossref]

Kalkavage, J.

Khan, M. Z. M.

M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: material structures and devices,” Prog. Quantum Electron. 38, 237–313 (2014).
[Crossref]

Klamkin, J.

B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3 µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
[Crossref]

H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
[Crossref]

B. J. Isaac, B. Song, S. Pinna, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
[Crossref]

Y. Liu, A. Wichman, B. Isaac, J. Kalkavage, E. J. Adles, T. R. Clark, and J. Klamkin, “Tuning optimization of ring resonator delays for integrated optical beam forming networks,” J. Lightwave Technol. 35, 4954–4960 (2017).
[Crossref]

B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express 24, 10435–10444 (2016).
[Crossref]

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Kunert, B.

Labbé, C.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Lau, K. M.

B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113, 221103 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5 µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26, 14514–14523 (2018).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: the role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123, 193104 (2018).
[Crossref]

Q. Li and K. M. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi and K. M. Lau, “Enhanced optical properties of InAs/InAlGaAs/InP quantum dots grown by metal-organic chemical vapor deposition using a double-cap technique,” J. Cryst. Growth 433, 19–23 (2016).
[Crossref]

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
[Crossref]

Le Corre, A.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Lelarge, F.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Li, Q.

B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113, 221103 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5 µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26, 14514–14523 (2018).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: the role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123, 193104 (2018).
[Crossref]

Q. Li and K. M. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liang, D.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Liao, B.

A. Vega-Flick, D. Jung, S. Yue, J. E. Bowers, and B. Liao, “Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain,” Phys. Rev. Mater. 3, 034603 (2019).
[Crossref]

Liu, A. W. K.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Liu, A. Y.

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liu, H. Y.

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Liu, Y.

Loualiche, S.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Lubyshev, D.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Mahajan, S.

S. Mahajan, “Defects in semiconductors and their effects on devices,” Acta Mater. 48, 137–149 (2000).
[Crossref]

Megalini, L.

L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
[Crossref]

Mori, H.

T. Sasaki, H. Mori, M. Tachikawa, and T. Yamada, “Aging tests of InP-based laser diodes heteroepitaxially grown on Si substrates,” J. Appl. Phys. 84, 6725–6728 (1998).
[Crossref]

T. Yamada, M. Tachikawa, T. Sasaki, H. Mori, and Y. Kadota, “7000 h continuous wave operation of multiple quantum well laser on Si at 50 C,” Appl. Phys. Lett. 70, 1614–1615 (1997).
[Crossref]

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
[Crossref]

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30, 3876 (1991).
[Crossref]

Mowbray, D. J.

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

Mukherjee, K.

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

Narcy, G.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Ng, K. W.

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
[Crossref]

Ng, T. K.

M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: material structures and devices,” Prog. Quantum Electron. 38, 237–313 (2014).
[Crossref]

Nishi, K.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2017).
[Crossref]

Norman, J.

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Nozawa, K.

T. S. Rao, K. Nozawa, and Y. Horikoshi, “Migration enhanced epitaxy growth of GaAs on Si with (GaAs)1−x(Si2)x GaAs strained layer superlattice buffer layers,” Appl. Phys. Lett. 62, 154–156 (1993).
[Crossref]

Olsson, F.

F. Olsson, “Selective epitaxy of indium phosphide and heteroepitaxy of indium phosphide on silicon for monolithic integration,” Doctoral dissertation (KTH, 2008).

Ooi, B. S.

M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: material structures and devices,” Prog. Quantum Electron. 38, 237–313 (2014).
[Crossref]

Pan, J.

Paniccia, M. J.

Pantouvaki, M.

Paranthoen, C.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Park, H.

Pinna, S.

H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
[Crossref]

B. J. Isaac, B. Song, S. Pinna, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

Piron, R.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Platz, C.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

Quitoriano, N. J.

N. J. Quitoriano and E. A. Fitzgerald, “Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation,” J. Appl. Phys. 102, 033511 (2007).
[Crossref]

Rao, T. S.

T. S. Rao, K. Nozawa, and Y. Horikoshi, “Migration enhanced epitaxy growth of GaAs on Si with (GaAs)1−x(Si2)x GaAs strained layer superlattice buffer layers,” Appl. Phys. Lett. 62, 154–156 (1993).
[Crossref]

Ristic, S.

Robbins, D.

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

Rodriguez, J. B.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Roelkens, G.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sakai, Y.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
[Crossref]

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30, 3876 (1991).
[Crossref]

Sang, F.

H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
[Crossref]

Sasaki, T.

T. Sasaki, H. Mori, M. Tachikawa, and T. Yamada, “Aging tests of InP-based laser diodes heteroepitaxially grown on Si substrates,” J. Appl. Phys. 84, 6725–6728 (1998).
[Crossref]

T. Yamada, M. Tachikawa, T. Sasaki, H. Mori, and Y. Kadota, “7000 h continuous wave operation of multiple quantum well laser on Si at 50 C,” Appl. Phys. Lett. 70, 1614–1615 (1997).
[Crossref]

Schwuttke, G. H.

G. H. Schwuttke, K. Brack, and E. W. Hearn, “The influence of stacking faults on leakage currents of FET devices,” Microelectron. Reliab. 10, 467–470 (1971).
[Crossref]

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sellers, I. R.

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

Shah, R. D.

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

Shi, B.

B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3 µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
[Crossref]

B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113, 221103 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5 µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26, 14514–14523 (2018).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: the role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123, 193104 (2018).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

B. Shi and K. M. Lau, “Enhanced optical properties of InAs/InAlGaAs/InP quantum dots grown by metal-organic chemical vapor deposition using a double-cap technique,” J. Cryst. Growth 433, 19–23 (2016).
[Crossref]

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
[Crossref]

Shi, Y.

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Skolnick, M. S.

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Soga, T.

H. Itakura, T. Suzuki, Z. K. Jiang, T. Soga, T. Jimbo, and M. Umeno, “Effect of InGaAs/InP strained layer superlattice in InP-on-Si,” J. Cryst. Growth 115, 154–157 (1991).
[Crossref]

Song, B.

B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3 µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
[Crossref]

H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
[Crossref]

B. J. Isaac, B. Song, S. Pinna, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express 24, 10435–10444 (2016).
[Crossref]

Srinivasan, S.

Stagarescu, C.

Su, Y.

Sugawara, M.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2017).
[Crossref]

Sugo, M.

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
[Crossref]

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30, 3876 (1991).
[Crossref]

Sun, J.

Sun, X.

Suran Brunelli, S.

B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3 µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
[Crossref]

Suzuki, T.

H. Itakura, T. Suzuki, Z. K. Jiang, T. Soga, T. Jimbo, and M. Umeno, “Effect of InGaAs/InP strained layer superlattice in InP-on-Si,” J. Cryst. Growth 115, 154–157 (1991).
[Crossref]

Tachikawa, M.

T. Sasaki, H. Mori, M. Tachikawa, and T. Yamada, “Aging tests of InP-based laser diodes heteroepitaxially grown on Si substrates,” J. Appl. Phys. 84, 6725–6728 (1998).
[Crossref]

T. Yamada, M. Tachikawa, T. Sasaki, H. Mori, and Y. Kadota, “7000 h continuous wave operation of multiple quantum well laser on Si at 50 C,” Appl. Phys. Lett. 70, 1614–1615 (1997).
[Crossref]

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30, 3876 (1991).
[Crossref]

Takemasa, K.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2017).
[Crossref]

Tanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

Tang, C. W.

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
[Crossref]

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Taylor, A.

L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
[Crossref]

Taylor, A. A.

B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3 µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
[Crossref]

Tournié, E.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Umeno, M.

Y. Hasegawa, T. Egawa, T. Jimbo, and M. Umeno, “Influences of dark line defects on characteristics of AlGaAs/GaAs quantum well lasers grown on Si substrates,” Jpn. J. Appl. Phys. 34, 2994–2999 (1995).
[Crossref]

H. Itakura, T. Suzuki, Z. K. Jiang, T. Soga, T. Jimbo, and M. Umeno, “Effect of InGaAs/InP strained layer superlattice in InP-on-Si,” J. Cryst. Growth 115, 154–157 (1991).
[Crossref]

Van Campenhout, J.

Van Thourhout, D.

Vega-Flick, A.

A. Vega-Flick, D. Jung, S. Yue, J. E. Bowers, and B. Liao, “Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain,” Phys. Rev. Mater. 3, 034603 (2019).
[Crossref]

Wakita, K.

M. Fukuda, K. Wakita, and G. Iwane, “Observation of dark defects related to degradation in InGaAsP/InP DH lasers under accelerated operation,” Jpn. J. Appl. Phys. 20, L87–L90 (1981).
[Crossref]

Wan, Y.

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
[Crossref]

Wang, J. H.

Wang, L.

B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3 µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
[Crossref]

Wang, T.

Wang, Z.

Watanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

Wei, W. Q.

Wichman, A.

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Yamada, T.

T. Sasaki, H. Mori, M. Tachikawa, and T. Yamada, “Aging tests of InP-based laser diodes heteroepitaxially grown on Si substrates,” J. Appl. Phys. 84, 6725–6728 (1998).
[Crossref]

T. Yamada, M. Tachikawa, T. Sasaki, H. Mori, and Y. Kadota, “7000 h continuous wave operation of multiple quantum well laser on Si at 50 C,” Appl. Phys. Lett. 70, 1614–1615 (1997).
[Crossref]

Yu, H.

Yue, S.

A. Vega-Flick, D. Jung, S. Yue, J. E. Bowers, and B. Liao, “Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain,” Phys. Rev. Mater. 3, 034603 (2019).
[Crossref]

Zhang, B.

Zhang, C.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

Zhang, J. J.

Zhang, J. Y.

Zhang, Y.

Zhao, H.

H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
[Crossref]

B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3 µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
[Crossref]

Zhu, S.

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113, 221103 (2018).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “Room-temperature electrically-pumped 1.5 µm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si,” Opt. Express 26, 14514–14523 (2018).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

Zou, X.

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
[Crossref]

ACS Photon. (1)

B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu, and K. M. Lau, “Continuous-wave optically pumped 1.55 µm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon,” ACS Photon. 4, 204–210 (2017).
[Crossref]

Acta Mater. (1)

S. Mahajan, “Defects in semiconductors and their effects on devices,” Acta Mater. 48, 137–149 (2000).
[Crossref]

APL Photon. (1)

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau, F. Lelarge, and E. Tournié, “Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si,” APL Photon. 2, 061301 (2017).
[Crossref]

Appl. Phys. Lett. (8)

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 µm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).
[Crossref]

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87, 243107 (2005).
[Crossref]

T. Yamada, M. Tachikawa, T. Sasaki, H. Mori, and Y. Kadota, “7000 h continuous wave operation of multiple quantum well laser on Si at 50 C,” Appl. Phys. Lett. 70, 1614–1615 (1997).
[Crossref]

B. Shi, S. Zhu, Q. Li, C. W. Tang, Y. Wan, E. L. Hu, and K. M. Lau, “1.55 µm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si,” Appl. Phys. Lett. 110, 121109 (2017).
[Crossref]

B. Shi, L. Wang, A. A. Taylor, S. Suran Brunelli, H. Zhao, B. Song, and J. Klamkin, “MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3 µm quantum dot laser applications,” Appl. Phys. Lett. 114, 172102 (2019).
[Crossref]

T. S. Rao, K. Nozawa, and Y. Horikoshi, “Migration enhanced epitaxy growth of GaAs on Si with (GaAs)1−x(Si2)x GaAs strained layer superlattice buffer layers,” Appl. Phys. Lett. 62, 154–156 (1993).
[Crossref]

S. Zhu, B. Shi, Q. Li, and K. M. Lau, “1.5 µm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon,” Appl. Phys. Lett. 113, 221103 (2018).
[Crossref]

M. Sugo, H. Mori, Y. Sakai, and Y. Itoh, “Stable cw operation at room temperature of a 1.5-µm wavelength multiple quantum well laser on a Si substrate,” Appl. Phys. Lett. 60, 472–473 (1992).
[Crossref]

Electron. Lett. (1)

I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, “1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density,” Electron. Lett. 40, 1412–1413 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

B. Shi, Y. Han, Q. Li, and K. M. Lau, “1.55-µm lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

H. Zhao, S. Pinna, F. Sang, B. Song, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “High-power indium phosphide photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 25, 1–10 (2019).
[Crossref]

B. J. Isaac, B. Song, S. Pinna, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR,” IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019).
[Crossref]

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (1)

B. Shi, Q. Li, Y. Wan, K. W. Ng, X. Zou, C. W. Tang, and K. M. Lau, “InAlGaAs/InAlAs MQWs on Si Substrate,” IEEE Photon. Technol. Lett. 27, 748–751 (2015).
[Crossref]

J. Appl. Phys. (5)

T. Sasaki, H. Mori, M. Tachikawa, and T. Yamada, “Aging tests of InP-based laser diodes heteroepitaxially grown on Si substrates,” J. Appl. Phys. 84, 6725–6728 (1998).
[Crossref]

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Epitaxial growth of high quality InP on Si substrates: the role of InAs/InP quantum dots as effective dislocation filters,” J. Appl. Phys. 123, 193104 (2018).
[Crossref]

N. J. Quitoriano and E. A. Fitzgerald, “Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation,” J. Appl. Phys. 102, 033511 (2007).
[Crossref]

E. T. Hughes, R. D. Shah, and K. Mukherjee, “Glide of threading dislocations in (In) AlGaAs on Si induced by carrier recombination: characteristics, mitigation, and filtering,” J. Appl. Phys. 125, 165702 (2019).
[Crossref]

J. Cryst. Growth (3)

H. Itakura, T. Suzuki, Z. K. Jiang, T. Soga, T. Jimbo, and M. Umeno, “Effect of InGaAs/InP strained layer superlattice in InP-on-Si,” J. Cryst. Growth 115, 154–157 (1991).
[Crossref]

B. Shi, Q. Li, and K. M. Lau, “Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si,” J. Cryst. Growth 464, 28–32 (2017).
[Crossref]

B. Shi and K. M. Lau, “Enhanced optical properties of InAs/InAlGaAs/InP quantum dots grown by metal-organic chemical vapor deposition using a double-cap technique,” J. Cryst. Growth 433, 19–23 (2016).
[Crossref]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (3)

M. Sugo, H. Mori, Y. Itoh, Y. Sakai, and M. Tachikawa, “1.5 µm-long-wavelength multiple quantum well laser on a Si substrate,” Jpn. J. Appl. Phys. 30, 3876 (1991).
[Crossref]

Y. Hasegawa, T. Egawa, T. Jimbo, and M. Umeno, “Influences of dark line defects on characteristics of AlGaAs/GaAs quantum well lasers grown on Si substrates,” Jpn. J. Appl. Phys. 34, 2994–2999 (1995).
[Crossref]

M. Fukuda, K. Wakita, and G. Iwane, “Observation of dark defects related to degradation in InGaAsP/InP DH lasers under accelerated operation,” Jpn. J. Appl. Phys. 20, L87–L90 (1981).
[Crossref]

Laser Photon. Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Materials (1)

L. Megalini, S. Š. Brunelli, W. Charles, A. Taylor, B. Isaac, J. Bowers, and J. Klamkin, “Strain-compensated InGaAsP superlattices for defect reduction of InP grown on exact-oriented (001) patterned Si substrates by metal organic chemical vapor deposition,” Materials 11, 337 (2018).
[Crossref]

Microelectron. Reliab. (1)

G. H. Schwuttke, K. Brack, and E. W. Hearn, “The influence of stacking faults on leakage currents of FET devices,” Microelectron. Reliab. 10, 467–470 (1971).
[Crossref]

Nat. Photonics (1)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Photon. Res. (1)

Phys. Rev. Mater. (1)

A. Vega-Flick, D. Jung, S. Yue, J. E. Bowers, and B. Liao, “Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain,” Phys. Rev. Mater. 3, 034603 (2019).
[Crossref]

Prog. Cryst. Growth Charact. Mater. (1)

Q. Li and K. M. Lau, “Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics,” Prog. Cryst. Growth Charact. Mater. 63, 105–120 (2017).
[Crossref]

Prog. Quantum Electron. (1)

M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: material structures and devices,” Prog. Quantum Electron. 38, 237–313 (2014).
[Crossref]

Sci. Rep. (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

Other (1)

F. Olsson, “Selective epitaxy of indium phosphide and heteroepitaxy of indium phosphide on silicon for monolithic integration,” Doctoral dissertation (KTH, 2008).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) 3D schematic representation of InP LD on CMOS-compatible (001) Si and (b) tilted cross-section false color SEM image of an as-cleaved ${20}\;{\unicode{x00B5}{\rm m}} \times {1000}\;{\unicode{x00B5}{\rm m}}$ device.
Fig. 2.
Fig. 2. (a) Epitaxial structure and (b) cross-sectional STEM image of the 3.9 µm InP buffer grown on V-grooved (001) Si. (c) Optical microscope image of the InP surface after growth and (d) a ${10} \times {10}\;{{\unicode{x00B5}{\rm m}}^2}$ AFM scan of the surface morphology demonstrating a roughness of 3.79 nm. (e) Representative ECCI image of the InP buffer revealing surface defects. Low power excitation RT-PL spectra of (f) the InP-on-Si with and without insertion of SLSs, and (g) seven-layer InGaAsP-based QW active structure grown on InP-on-Si template and InP native substrate, respectively.
Fig. 3.
Fig. 3. Schematic illustration of the process steps for the ridge laser fabrication including: (a) the as-grown QW laser, (b) p-metal deposition and ridge etch, (c) etch to expose n-contact layer, (d) n-metal deposition, (e) sidewall passivation, and (f) probe pad formation. Optical microscope images of as-fabricated laser bars (g) on InP and (h) on Si.
Fig. 4.
Fig. 4. (a) IV characteristics, (b) LI characteristics and total wall-plug efficiency for the ${20}\;{\unicode{x00B5}{\rm m}} \times {1000}\;{\unicode{x00B5}{\rm m}}$ ridge laser on InP and on InP-on-Si.
Fig. 5.
Fig. 5. (a) Emission spectra at progressively increased currents for a ${20}\;{\unicode{x00B5}{\rm m}} \times {500}\;{\unicode{x00B5}{\rm m}}$ laser device on Si. The measurement temperature was fixed at 20°C. (b) Lasing spectra for the same device at various stage temperatures with an injection current of 400 mA.
Fig. 6.
Fig. 6. LI characteristics for lasers on InP for various cavity lengths under (a) CW and (b) pulsed current injection. The cavity width is 20 µm for all devices. (c) Dependence of threshold current density of InP laser on the cavity length under both operation modes. (d) LI plots for lasers on Si for different cavity lengths under (d) CW and (e) pulsed operation, along with (f) their extracted threshold current densities.
Fig. 7.
Fig. 7. Measured LI characteristics for the ${20}\;{\unicode{x00B5}{\rm m}} \times {1000}\;{\unicode{x00B5}{\rm m}}$ ridge laser on Si as a function of stage temperature under: (a) CW pumping and (b) pulsed operation, and (c) temperature dependence of threshold current. (d) LI curves from the same device size on InP at various stage temperatures under (d) CW and (e) pulsed operations, and (f) temperature dependence of the threshold current.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I t h ( T 1 ) I t h ( T 2 ) = exp ( T 1 T 2 T 0 ) .

Metrics