Abstract

Silicon photonics provides a promising platform for energy-efficient interconnects within supercomputers and data centers. However, developing a complementary metal–oxide–semiconductor compatible high-speed photodetector with low dark current has long presented a challenge in the field. In this paper, we report the first O-band InAs quantum dot (QD) waveguide photodiode (PD) heterogeneously integrated on silicon. Record low dark currents as low as 0.01 nA, responsivities of 0.34 A/W at 1310 nm and 0.9 A/W at 1280 nm, and a record high 3 dB bandwidth of 15 GHz was measured. Avalanche gain was observed and a maximum gain of up to 45 and a gain bandwidth product (GBP) of 240 GHz were achieved, which are also record high results for any QD avalanche photodetector (APD) on silicon. Additionally, we demonstrate a device sensitivity of 11dBm at 10 Gb/s and open-eye diagrams up to 12.5 Gb/s. These QD-based PDs are able to operate as p-i-n PDs or APDs under different bias conditions and offer a promising alternative to heterogeneous InGaAs-on-silicon and SiGe counterparts in low-power optical communication links. They also leverage the same epitaxial layers and processing steps as heterogeneously integrated QD lasers, significantly simplifying the processing and reducing the cost of a fully integrated QD transceiver on silicon.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

With data consumption in our society increasing exponentially, future supercomputers and data centers will need to send and process data at rapidly increasing speeds and lower energy. Photonics has become the dominant connectivity solution for reach from meter to kilometer and bandwidth from 10 to 400 Gb/s per lane and will soon reach expected aggregated bandwidths of many petabytes/s [1]. Silicon (Si) photonics can naturally leverage the existing advanced technology infrastructure behind the Si complementary metal–oxide–semiconductor (CMOS) industry and has emerged as a new and promising integrated photonic platform in the past decade. While pure Si modulators are capable of reaching data rates over 100 Gb/s, light generation and absorption still rely on non-Si materials.

Arguably the most challenging task in developing a fully integrated Si photonic interconnect is the development of an on-chip laser on Si. Due to the indirect bandgap of germanium, Si-Ge lasers are extremely limited in efficiency and have yet to be proven as viable materials to develop lasers on Si. Additionally, most Si photonic integrated circuits (PICs) contain Ge-on-Si photodiodes (PDs) for photodetection in 1310 and 1550 nm windows. However, these PDs often suffer from relatively high dark current and high dislocation densities in comparison to alternatives made from III-V semiconductor materials.

Monolithic integration offers a platform to incorporate direct bandgap material onto Si. However, this requires the growth of thick buffer layers in order to mitigate threading dislocations in the active device layers, which limits the performance and design flexibility in the integration of active devices. The thick buffer layers prevent efficient, evanescent coupling between Si waveguides and the active devices. Also, the defects within the buffer layers degrade the reliability of devices such as lasers [2].

Therefore, heterogeneous integration of a direct bandgap material is required to provide a viable gain medium for an efficient laser and a high-quality, low-defect density material for PDs [3]. The integration of indium arsenide (InAs) QDs as a gain material on Si has proven to be a promising platform for CMOS-compatible, uncooled on-chip lasers [4]. For example, due to the three-dimensional confinement of carriers, QD lasers promise higher temperature stability and lower threshold current densities when compared to quantum well lasers [5,6]. In addition, due to the size distribution of the dots, QD lasers have a wide gain bandwidth, which allows for a larger channel count in a wavelength division multiplexing (WDM) link and is particularly attractive for comb lasers [7].

Furthermore, quantum dot (QD) PDs heterogenously integrated on Si were made using the same epitaxial layers and fabrication process for a recent 1310 nm hybrid QD Si comb laser with error-free operation for 14 channels [8]. The three-dimensional carrier confinement in the QDs leads to dark currents in these QD PDs as low as 10 pA (1×106A/cm2), which is the lowest dark current of any PD on Si, to our best knowledge. These hybrid Si QD PDs also demonstrate a maximum 3 dB bandwidth of 15 GHz at 1300 nm, and external responsivity of 0.34 A/W at 1310 nm and 0.9 A/W at 1280 nm. An avalanche gain of up to 45 and a gain-bandwidth product (GBP) of 240 GHz were observed, which are the highest for any QD APDs on Si. Open-eye diagrams up to 12.5 Gb/s were taken and temperature studies have been done on these APDs, which exhibit high performance up to 60°C, showing that these APDs can be practically used in an uncooled, WDM system on a Si photonic platform.

2. DEVICE DESIGN AND FABRICATION

Devices were fabricated on a 100 mm silicon-on-insulator (SOI) wafer with a top Si thickness of 400 nm and a buried oxide thickness of 1000 nm. First, grating couplers and 320 nm thick passive Si waveguides were etched onto an SOI substrate. Then, a GaAs-based p-i-n epitaxial structure with an active region of eight layers of InAs QDs, with QD density of 1×1010cm2, totaling 320 nm in thickness, was bonded directly to the SOI substrate using an O2 plasma-assisted direct bonding process [9]. One monolayer of InAs was grown for the QDs, which were 7 nm in height and 20 nm in diameter.

Next, the Ni/Pd/Au was deposited and then lifted off to define the p-contact. GaAs mesas were made by a mixture of dry etching using BCl3/Cl2/Ar and a wet chemistry etching using citric acid (1M):H2O2(30), which has a high selectivity to the Al0.4Ga0.6As etch stop layer. Then, the Al0.4Ga0.6As layer was etched in a solution of K2Cr2O7:H3PO4, which has a high selectivity to the n-GaAs contact layer in the lower cladding. Pd/Ge/Au was deposited followed by lift-off to define the n-contact. Finally, the devices were passivated with 600 nm thick SiO2, before vias were formed and probe pad metal was evaporated. Figure 1 shows a cross-section schematic and scanning electron microscope (SEM) photo of the device after fabrication.

 

Fig. 1. (a) Cross-section schematic of the photodiode; (b) SEM cross section of the QD waveguide PD on Si.

Download Full Size | PPT Slide | PDF

3. RESULTS AND DISCUSSION

A. Direct Current Characterization

Figure 2 plots the I-V curves of an 11μm×60μm PD at different temperatures. A low dark current of 10 pA (1×106A/cm2) at 1V at 300 K was demonstrated from a 11μm×30μm PD, which is the lowest dark current reported for any PD on Si, to our best knowledge [10]. This value is 3 orders of magnitude lower than the lowest ever reported dark current (1×103A/cm2 at 1V) in p-i-n Ge-on-Si detectors [11]. The dark current density of a 11μm×60μm PD at 1V was 2.7×106A/cm2, and the dark current density of a 11μm×90μm PD at 1V was 3.4×106A/cm2, which showed linear scaling with area, signifying that the main contribution to the dark current is from surface leakage current and not from the bulk of the device. This can be attributed to the high crystal quality and low dislocation density of the III-V material, as well as sufficient surface passivation of the PD mesa.

 

Fig. 2. Dark current vs. temperature for a 11 μm × 60 μm device.

Download Full Size | PPT Slide | PDF

The dark current was measured to be 50 μA around 18V, which is near the breakdown voltage. The temperature dependence on the breakdown voltage reveals that impact ionization of free carriers is the primary physical mechanism responsible for the breakdown of the device.

The responsivity of an 11μm×30μm PD, an 11μm×60μm PD, and an 11μm×90μm PD at 1310 nm was measured and is shown in Fig. 3. Light from a 1310 nm laser is coupled from a cleaved fiber into a grating coupler, which then directs the light along an Si waveguide and couples light evanescently into the PD.

 

Fig. 3. Responsivity at 1310 nm versus voltage bias of QD on Si waveguide PDs of different lengths.

Download Full Size | PPT Slide | PDF

After extracting an estimated total loss of 10 dB from fiber connections and coupling with the grating coupler, responsivity of 0.34 A/W was measured at 9V for an 11μm×90μm PD. Figure 4 displays responsivity with a change in the input optical wavelength. A decrease in responsivity is seen with an increase in wavelength at biases below 12V. At 1280 nm, responsivity of 0.9 A/W is achieved at 4V, and at 1310 nm, the responsivity decreases to about 0.15 A/W at 4V.

 

Fig. 4. Responsivity of an 11μm×90μm PD at different optical input wavelengths.

Download Full Size | PPT Slide | PDF

At shorter wavelengths, carriers are generated in the excited state within the QDs and require less energy to escape the QDs. For instance, the carriers generated in the QDs at 1280 nm have sufficient energy to escape from the QDs and be collected as photocurrent at a reverse voltage bias greater than 4 V. At longer wavelengths, carriers are generated at lower energy states within the QDs and require more energy in order to escape the QDs [12]. We verified the ground energy and excited energy states after observing lasing around 1210–1220 nm and 1300–1310 nm in lasers fabricated from the same structure. Furthermore, the bias dependence on responsivity is also due to the quantum-confined Stark effect (QCSE). As electron and hole wave functions and energy levels in the QDs shift with an applied electric field, the absorption coefficient of the QD layers also shifts [13].

The spectral response for an 11μm×90μm PD is plotted in Fig. 5. Both a wavelength dependence and a bias dependence are seen in the responsivity. At higher voltage biases, the bias dependence on the responsivity is primarily due to an increase in avalanche gain with an applied electric field. Furthermore, the gain is also wavelength-dependent, suggesting that the carrier injection and multiplication processes may differ with wavelength [14]. This could be due to differing carrier populations within each energy level of the QDs with a change in the input optical wavelength. We believe that avalanche multiplication occurs in the GaAs spacer layers between the QDs [15,16]. It is also possible that multiplication occurs within the InAs QD material, as suggested in [17].

 

Fig. 5. Spectral response versus voltage of an 11μm×90μm PD.

Download Full Size | PPT Slide | PDF

The gain of the device at 1310 nm was measured as a function of bias voltage and is shown in Fig. 6. Unity gain was confirmed to be at 4V by measuring and observing a linear increase in excess noise with voltage bias at biases higher than 4V [18]. The external responsivity at unity gain and with 8 dBm optical input power at room temperature is 0.06 A/W, and the maximum external responsivity at room temperature is 2.7 A/W. A maximum gain of about 45 was seen at room temperature, with avalanche gain seen up to a stage temperature of 60°C, displaying the temperature robustness of the devices. A temperature dependence on the gain, as well as a decrease in gain at high biases, have been observed and are due to the increase of dark current with temperature and bias. As temperature increases, more carriers gather sufficient energy to escape the QDs through thermionic emission and contribute to dark current.

 

Fig. 6. Gain versus voltage for an 11μm×60μm device at 1310 nm.

Download Full Size | PPT Slide | PDF

B. High-Frequency Measurements and Analysis

The output frequency response of the PDs was measured at 16V and at room temperature using an HP light wave component analyzer (LCA) at an input wavelength of 1300 nm and plotted in Fig. 7. Measurements revealed a maximum 3 dB bandwidth of 8 GHz for an 11μm×90μm PD, 11 GHz for an 11μm×60μm PD, and 15 GHz for an 11μm×30μm PD.

 

Fig. 7. Output frequency response of an 11μm×30μm PD, an 11μm×60μm, and an 11μm×90μm PD measured at 16V bias voltage (dashed lines are smoothed data).

Download Full Size | PPT Slide | PDF

The frequency responses are transit-time-limited at low biases, and RC-limited at high biases, before avalanche gain dominates in the PDs. At low biases, photogenerated carriers take time in order to escape from the QDs before being collected by the contacts. With an increase in the applied electric field, photogenerated carriers escape from the QDs within a shorter period of time [19]. With a high enough applied electric field, the frequency response is maximized as it approaches the RC limit of the device.

The frequency response was also measured under bias voltages in which high multiplication gain occurs, as shown in Fig. 8. An inductive peaking effect was observed, which has been previously explained in other APDs to be caused by impact ionization, which introduces a phase delay between the AC photocurrent and the applied electric field [20].

 

Fig. 8. Output frequency responses of an 11μm×90μm PD from 18V to 19V.

Download Full Size | PPT Slide | PDF

A maximum GBP of 240 GHz was measured at a bias voltage of 18.6V, as shown in Fig. 9. This is higher than most traditional InP-based receivers based on APDs, which is around 100–200 GHz due to their larger impact ionization coefficient k value [21]. This number also compares to SiGe APD counterparts showing higher GBP due to the low k value of Si. But they often suffer from higher dark currents due to dislocations at lattice-mismatched Ge/Si interfaces.

 

Fig. 9. GBP of an 11μm×90μm PD.

Download Full Size | PPT Slide | PDF

The GBP decreases at voltage biases higher than 18.6V because after avalanche breakdown, the dark current increases at a significantly faster rate than the photocurrent does, reducing the total gain. Furthermore, as voltage bias increases, avalanche buildup time increases and limits the total carrier transit time, slowing down the frequency response.

These PDs provide enough multiplication gain to produce a sufficiently high signal-to-noise ratio and clear eye diagrams without the need of a transimpedance amplifier (TIA). A high-speed pseudorandom binary sequence (PRBS) signal was amplified by a 20 dB high-speed power amplifier. Then, a 1310 nm optical signal couples to a PD that is biased through an RF probe and a bias tee. The output electrical signal is monitored by a DCA86100C sampling scope in the form of an eye diagram.

Figures 10(a)10(c) show the electrical eye diagrams of an 11μm×30μm APD at 5, 10, and 12.5 Gbps, respectively. At a gain of 40, a signal-to-noise ratio greater than 7 and 5 dB at 5 and 10 Gbps were obtained, respectively. We have also obtained open-eye diagrams at 12.5 Gbps, as shown in Fig. 10(c), where the data rate was limited by the pattern generator.

 

Fig. 10. Eye diagrams at a bias voltage of 13V at (a) 5 Gb/s, (b) 10 Gb/s, and (c) 12.5 Gb/s.

Download Full Size | PPT Slide | PDF

A bit error rate (BER) test was conducted using an Anritsu Bit Error Rate Tester at 10 Gb/s. At a gain of 28, the sensitivity was measured to be about 11dBm at a BER of 1×1012 and 14.6dBm at a BER of 2.4×104, as shown in Fig. 11. This sensitivity is a few decibels higher than that of a typical Ge-on-Si p-i-n PD [22]. The sensitivity can be increased by wire bonding the QD PD to a TIA, as done in a case with a Ge-on-Si APD [23].

 

Fig. 11. BER versus input optical power of a 11μm×90μm PD at a gain of 28.

Download Full Size | PPT Slide | PDF

4. CONCLUSION

In this paper, we presented QD PDs heterogeneously integrated on Si using the same epitaxial layers and fabrication process for a QD laser on Si. These QD PDs exhibited dark current as low as 10 pA (1×106A/cm2), which is the lowest dark current of any PD on Si, to our best knowledge. These PDs also show a maximum 3 dB bandwidth of 15 GHz at 1300 nm, and external responsivity of 0.34 A/W at 1310 nm and 0.9 A/W at 1280 nm. A GBP of 240 GHz was observed, which is the highest for any QD APDs on Si. Open-eye diagrams were measured up to 12.5 Gb/s, and temperature studies have been done, demonstrating high performance up to 60°C and showing that these APDs can be used uncooled in an Si photonic interconnect within a WDM system.

Acknowledgment

The authors thank Min Ren, Yuan Yuan, Andrew Jones, and Yingtao Hu for their helpful discussions.

REFERENCES

1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009). [CrossRef]  

2. J. Reboul, L. Cerutti, J. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011). [CrossRef]  

3. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010). [CrossRef]  

4. G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016). [CrossRef]  

5. M. Sugawara and M. Usami, “Quantum dot devices handling the heat,” Nat. Photonics 3, 30–31 (2009). [CrossRef]  

6. G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3  μm quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 230–232 (2000). [CrossRef]  

7. G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006). [CrossRef]  

8. G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in IEEE International Semiconductor Laser Conference (ISLC), Santa Fe, New Mexico, USA (2018).

9. D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer boning on the silicon-on insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008). [CrossRef]  

10. B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310  nm hybrid silicon quantum dot photodiodes with ultra-low dark current,” in 76th Device Research Conference (DRC) (IEEE, 2018), pp. 1–2.

11. L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19, 1813–1815 (2007). [CrossRef]  

12. F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999). [CrossRef]  

13. P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004). [CrossRef]  

14. L. L. Pinel, S. J. Dimler, X. Zhou, S. Abdullah, S. Zhang, C. H. Tan, and J. S. Ng, “Effects of carrier injection profile on low noise thin Al0.85 Ga0.15 As0.56 Sb0.44 avalanche photodiodes,” Opt. Express 26, 3568–3576 (2018). [CrossRef]  

15. I. Sandall, J. S. Ng, J. P. David, C. H. Tan, T. Wang, and H. Liu, “1300  nm wavelength InAs quantum dot photodetector grown on silicon,” Opt. Express 20, 10446–10452 (2012). [CrossRef]  

16. B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June 25, 2019.

17. Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017). [CrossRef]  

18. H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009). [CrossRef]  

19. W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, and J. I. Chyi, “Hole emission processes in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 195337 (2002). [CrossRef]  

20. J. E. Bowers, D. Dai, Y. Kang, and M. Morse, “High-gain high- sensitivity resonant Ge/Si APD photodetectors,” Proc. SPIE 7660, 76603H(2010). [CrossRef]  

21. D. Dai, H. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a waveguide- type Ge/Si avalanche photodetector,” Phys. Stat. Solidi C 7, 2532–2535 (2010). [CrossRef]  

22. K. Yu, C. H. Chen, A. Titriku, A. Shafik, M. Fiorentino, P. Y. Chiang, and S. Palermo, “25  Gb/s hybrid integrated silicon photonic receiver with microring wavelength stabilization,” in Optical Fiber Communication Conference, Optical Society of America, March 22–26, 2015, paper W3A–6.

23. Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low- voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [Crossref]
  2. J. Reboul, L. Cerutti, J. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
    [Crossref]
  3. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
    [Crossref]
  4. G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
    [Crossref]
  5. M. Sugawara and M. Usami, “Quantum dot devices handling the heat,” Nat. Photonics 3, 30–31 (2009).
    [Crossref]
  6. G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3  μm quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 230–232 (2000).
    [Crossref]
  7. G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
    [Crossref]
  8. G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in IEEE International Semiconductor Laser Conference (ISLC), Santa Fe, New Mexico, USA (2018).
  9. D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer boning on the silicon-on insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
    [Crossref]
  10. B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310  nm hybrid silicon quantum dot photodiodes with ultra-low dark current,” in 76th Device Research Conference (DRC) (IEEE, 2018), pp. 1–2.
  11. L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19, 1813–1815 (2007).
    [Crossref]
  12. F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
    [Crossref]
  13. P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
    [Crossref]
  14. L. L. Pinel, S. J. Dimler, X. Zhou, S. Abdullah, S. Zhang, C. H. Tan, and J. S. Ng, “Effects of carrier injection profile on low noise thin Al0.85 Ga0.15 As0.56 Sb0.44 avalanche photodiodes,” Opt. Express 26, 3568–3576 (2018).
    [Crossref]
  15. I. Sandall, J. S. Ng, J. P. David, C. H. Tan, T. Wang, and H. Liu, “1300  nm wavelength InAs quantum dot photodetector grown on silicon,” Opt. Express 20, 10446–10452 (2012).
    [Crossref]
  16. B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.
  17. Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
    [Crossref]
  18. H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
    [Crossref]
  19. W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, and J. I. Chyi, “Hole emission processes in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 195337 (2002).
    [Crossref]
  20. J. E. Bowers, D. Dai, Y. Kang, and M. Morse, “High-gain high- sensitivity resonant Ge/Si APD photodetectors,” Proc. SPIE 7660, 76603H(2010).
    [Crossref]
  21. D. Dai, H. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a waveguide- type Ge/Si avalanche photodetector,” Phys. Stat. Solidi C 7, 2532–2535 (2010).
    [Crossref]
  22. K. Yu, C. H. Chen, A. Titriku, A. Shafik, M. Fiorentino, P. Y. Chiang, and S. Palermo, “25  Gb/s hybrid integrated silicon photonic receiver with microring wavelength stabilization,” in Optical Fiber Communication Conference, Optical Society of America, March22–26, 2015, paper W3A–6.
  23. Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low- voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016).
    [Crossref]

2018 (1)

2017 (1)

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

2016 (2)

2012 (1)

2011 (1)

J. Reboul, L. Cerutti, J. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

2010 (3)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

J. E. Bowers, D. Dai, Y. Kang, and M. Morse, “High-gain high- sensitivity resonant Ge/Si APD photodetectors,” Proc. SPIE 7660, 76603H(2010).
[Crossref]

D. Dai, H. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a waveguide- type Ge/Si avalanche photodetector,” Phys. Stat. Solidi C 7, 2532–2535 (2010).
[Crossref]

2009 (3)

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

M. Sugawara and M. Usami, “Quantum dot devices handling the heat,” Nat. Photonics 3, 30–31 (2009).
[Crossref]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

2008 (1)

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer boning on the silicon-on insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
[Crossref]

2007 (1)

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19, 1813–1815 (2007).
[Crossref]

2006 (1)

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

2004 (1)

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

2002 (1)

W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, and J. I. Chyi, “Hole emission processes in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 195337 (2002).
[Crossref]

2000 (1)

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3  μm quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 230–232 (2000).
[Crossref]

1999 (1)

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

Abdullah, S.

Aers, G. C.

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

Allen, C. N.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Assanto, G.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19, 1813–1815 (2007).
[Crossref]

Barrios, P.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Beausoleil, R.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in IEEE International Semiconductor Laser Conference (ISLC), Santa Fe, New Mexico, USA (2018).

Beausoleil, R. G.

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
[Crossref]

Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low- voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016).
[Crossref]

B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.

B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310  nm hybrid silicon quantum dot photodiodes with ultra-low dark current,” in 76th Device Research Conference (DRC) (IEEE, 2018), pp. 1–2.

Bowers, J. E.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

J. E. Bowers, D. Dai, Y. Kang, and M. Morse, “High-gain high- sensitivity resonant Ge/Si APD photodetectors,” Proc. SPIE 7660, 76603H(2010).
[Crossref]

D. Dai, H. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a waveguide- type Ge/Si avalanche photodetector,” Phys. Stat. Solidi C 7, 2532–2535 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer boning on the silicon-on insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
[Crossref]

Campbell, J.

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

Cerutti, L.

J. Reboul, L. Cerutti, J. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Chang, W. H.

W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, and J. I. Chyi, “Hole emission processes in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 195337 (2002).
[Crossref]

Charbonneau, S.

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

Chen, C. H.

K. Yu, C. H. Chen, A. Titriku, A. Shafik, M. Fiorentino, P. Y. Chiang, and S. Palermo, “25  Gb/s hybrid integrated silicon photonic receiver with microring wavelength stabilization,” in Optical Fiber Communication Conference, Optical Society of America, March22–26, 2015, paper W3A–6.

Chen, H.

D. Dai, H. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a waveguide- type Ge/Si avalanche photodetector,” Phys. Stat. Solidi C 7, 2532–2535 (2010).
[Crossref]

Chen, W. Y.

W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, and J. I. Chyi, “Hole emission processes in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 195337 (2002).
[Crossref]

Chen, X. Y.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Chen, Y. H.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Chiang, P. Y.

K. Yu, C. H. Chen, A. Titriku, A. Shafik, M. Fiorentino, P. Y. Chiang, and S. Palermo, “25  Gb/s hybrid integrated silicon photonic receiver with microring wavelength stabilization,” in Optical Fiber Communication Conference, Optical Society of America, March22–26, 2015, paper W3A–6.

Chyi, J. I.

W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, and J. I. Chyi, “Hole emission processes in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 195337 (2002).
[Crossref]

Colace, L.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19, 1813–1815 (2007).
[Crossref]

Dai, D.

D. Dai, H. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a waveguide- type Ge/Si avalanche photodetector,” Phys. Stat. Solidi C 7, 2532–2535 (2010).
[Crossref]

J. E. Bowers, D. Dai, Y. Kang, and M. Morse, “High-gain high- sensitivity resonant Ge/Si APD photodetectors,” Proc. SPIE 7660, 76603H(2010).
[Crossref]

Dalacu, D.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

David, J. P.

Deppe, D. G.

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3  μm quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 230–232 (2000).
[Crossref]

Descos, A.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in IEEE International Semiconductor Laser Conference (ISLC), Santa Fe, New Mexico, USA (2018).

B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.

Dimler, S. J.

Dion, C.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Fafard, S.

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

Farrell, A.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Feng, Y.

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

Ferrara, P.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19, 1813–1815 (2007).
[Crossref]

Fiorentino, M.

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
[Crossref]

Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low- voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016).
[Crossref]

K. Yu, C. H. Chen, A. Titriku, A. Shafik, M. Fiorentino, P. Y. Chiang, and S. Palermo, “25  Gb/s hybrid integrated silicon photonic receiver with microring wavelength stabilization,” in Optical Fiber Communication Conference, Optical Society of America, March22–26, 2015, paper W3A–6.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in IEEE International Semiconductor Laser Conference (ISLC), Santa Fe, New Mexico, USA (2018).

Fulgoni, D.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19, 1813–1815 (2007).
[Crossref]

Grech, P.

J. Reboul, L. Cerutti, J. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Gu, Y.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Hinzer, K.

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

Hsu, T. M.

W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, and J. I. Chyi, “Hole emission processes in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 195337 (2002).
[Crossref]

Hu, C.

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

Huang, Z.

Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low- voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016).
[Crossref]

B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.

Huffaker, D. L.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3  μm quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 230–232 (2000).
[Crossref]

Ji, W. Y.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Jin, P.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Juang, B. C.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Kang, Y.

J. E. Bowers, D. Dai, Y. Kang, and M. Morse, “High-gain high- sensitivity resonant Ge/Si APD photodetectors,” Proc. SPIE 7660, 76603H(2010).
[Crossref]

D. Dai, H. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a waveguide- type Ge/Si avalanche photodetector,” Phys. Stat. Solidi C 7, 2532–2535 (2010).
[Crossref]

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

Kurczveil, G.

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
[Crossref]

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in IEEE International Semiconductor Laser Conference (ISLC), Santa Fe, New Mexico, USA (2018).

B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310  nm hybrid silicon quantum dot photodiodes with ultra-low dark current,” in 76th Device Research Conference (DRC) (IEEE, 2018), pp. 1–2.

B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.

Lapointe, J.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Li, C.

Li, C. M.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Liang, B. L.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Liang, D.

Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low- voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016).
[Crossref]

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer boning on the silicon-on insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
[Crossref]

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in IEEE International Semiconductor Laser Conference (ISLC), Santa Fe, New Mexico, USA (2018).

B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310  nm hybrid silicon quantum dot photodiodes with ultra-low dark current,” in 76th Device Research Conference (DRC) (IEEE, 2018), pp. 1–2.

B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.

Liu, F. Q.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Liu, H.

Liu, H. D.

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

Lu, Z.

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

Ma, Y.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

McCaffrey, J.

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

McIntosh, D.

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Morse, M.

J. E. Bowers, D. Dai, Y. Kang, and M. Morse, “High-gain high- sensitivity resonant Ge/Si APD photodetectors,” Proc. SPIE 7660, 76603H(2010).
[Crossref]

D. Dai, H. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a waveguide- type Ge/Si avalanche photodetector,” Phys. Stat. Solidi C 7, 2532–2535 (2010).
[Crossref]

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

Nash, L.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19, 1813–1815 (2007).
[Crossref]

Ng, J. S.

Ni Allen, C.

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

Ortner, G.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Pakulski, G.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Palermo, S.

Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low- voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016).
[Crossref]

K. Yu, C. H. Chen, A. Titriku, A. Shafik, M. Fiorentino, P. Y. Chiang, and S. Palermo, “25  Gb/s hybrid integrated silicon photonic receiver with microring wavelength stabilization,” in Optical Fiber Communication Conference, Optical Society of America, March22–26, 2015, paper W3A–6.

Pan, H.

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

Paniccia, M. J.

D. Dai, H. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a waveguide- type Ge/Si avalanche photodetector,” Phys. Stat. Solidi C 7, 2532–2535 (2010).
[Crossref]

Park, G.

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3  μm quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 230–232 (2000).
[Crossref]

Pinel, L. L.

Poitras, D.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Poole, P. J.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Raymond, S.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Reboul, J.

J. Reboul, L. Cerutti, J. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Render, W.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

Rodriguez, J.

J. Reboul, L. Cerutti, J. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Sandall, I.

Santori, C.

Shafik, A.

K. Yu, C. H. Chen, A. Titriku, A. Shafik, M. Fiorentino, P. Y. Chiang, and S. Palermo, “25  Gb/s hybrid integrated silicon photonic receiver with microring wavelength stabilization,” in Optical Fiber Communication Conference, Optical Society of America, March22–26, 2015, paper W3A–6.

Shchekin, O. B.

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3  μm quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 230–232 (2000).
[Crossref]

Shi, Y. H.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Sorin, W.

Sugawara, M.

M. Sugawara and M. Usami, “Quantum dot devices handling the heat,” Nat. Photonics 3, 30–31 (2009).
[Crossref]

Tan, C. H.

Titriku, A.

K. Yu, C. H. Chen, A. Titriku, A. Shafik, M. Fiorentino, P. Y. Chiang, and S. Palermo, “25  Gb/s hybrid integrated silicon photonic receiver with microring wavelength stabilization,” in Optical Fiber Communication Conference, Optical Society of America, March22–26, 2015, paper W3A–6.

Tossoun, B.

B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.

B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310  nm hybrid silicon quantum dot photodiodes with ultra-low dark current,” in 76th Device Research Conference (DRC) (IEEE, 2018), pp. 1–2.

Tournié, E.

J. Reboul, L. Cerutti, J. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

Usami, M.

M. Sugawara and M. Usami, “Quantum dot devices handling the heat,” Nat. Photonics 3, 30–31 (2009).
[Crossref]

Wang, P.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Wang, T.

Wang, Z. G.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Xu, B.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Yang, F.

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

Ye, X. L.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Yeh, N. T.

W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, and J. I. Chyi, “Hole emission processes in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 195337 (2002).
[Crossref]

Yu, K.

Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low- voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016).
[Crossref]

K. Yu, C. H. Chen, A. Titriku, A. Shafik, M. Fiorentino, P. Y. Chiang, and S. Palermo, “25  Gb/s hybrid integrated silicon photonic receiver with microring wavelength stabilization,” in Optical Fiber Communication Conference, Optical Society of America, March22–26, 2015, paper W3A–6.

Zeng, X.

B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.

Zhang, C.

B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.

B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310  nm hybrid silicon quantum dot photodiodes with ultra-low dark current,” in 76th Device Research Conference (DRC) (IEEE, 2018), pp. 1–2.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in IEEE International Semiconductor Laser Conference (ISLC), Santa Fe, New Mexico, USA (2018).

Zhang, S.

Zhang, Y. G.

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Zhang, Z. Y.

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

Zhou, X.

Adv. Opt. Mater. (1)

Y. Ma, Y. G. Zhang, Y. Gu, X. Y. Chen, P. Wang, B. C. Juang, A. Farrell, B. L. Liang, D. L. Huffaker, Y. H. Shi, and W. Y. Ji, “Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications,” Adv. Opt. Mater. 5, 1601023 (2017).
[Crossref]

Appl. Phys. Lett. (3)

P. Jin, C. M. Li, Z. Y. Zhang, F. Q. Liu, Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 85, 2791–2793 (2004).
[Crossref]

J. Reboul, L. Cerutti, J. Rodriguez, P. Grech, and E. Tournié, “Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si,” Appl. Phys. Lett. 99, 121113 (2011).
[Crossref]

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, “External cavity InAs/InP quantum dot laser with a tuning range of 166  nm,” Appl. Phys. Lett. 88, 121119 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (2)

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19, 1813–1815 (2007).
[Crossref]

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3  μm quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 230–232 (2000).
[Crossref]

J. Appl. Phys. (1)

H. D. Liu, H. Pan, C. Hu, D. McIntosh, Z. Lu, J. Campbell, Y. Kang, and M. Morse, “Avalanche photodiode punch- through gain determination through excess noise analysis,” J. Appl. Phys. 106, 064507 (2009).
[Crossref]

J. Vac. Sci. Technol. B (1)

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer boning on the silicon-on insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
[Crossref]

Nat. Photonics (2)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

M. Sugawara and M. Usami, “Quantum dot devices handling the heat,” Nat. Photonics 3, 30–31 (2009).
[Crossref]

Opt. Express (3)

Optica (1)

Phys. Rev. B (1)

W. H. Chang, W. Y. Chen, T. M. Hsu, N. T. Yeh, and J. I. Chyi, “Hole emission processes in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 66, 195337 (2002).
[Crossref]

Phys. Stat. Solidi C (1)

D. Dai, H. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a waveguide- type Ge/Si avalanche photodetector,” Phys. Stat. Solidi C 7, 2532–2535 (2010).
[Crossref]

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Proc. SPIE (1)

J. E. Bowers, D. Dai, Y. Kang, and M. Morse, “High-gain high- sensitivity resonant Ge/Si APD photodetectors,” Proc. SPIE 7660, 76603H(2010).
[Crossref]

Superlattices Microstruct. (1)

F. Yang, K. Hinzer, C. Ni Allen, S. Fafard, G. C. Aers, Y. Feng, J. McCaffrey, and S. Charbonneau, “Quantum dot pin structure in an electric field,” Superlattices Microstruct. 25, 419–424 (1999).
[Crossref]

Other (4)

K. Yu, C. H. Chen, A. Titriku, A. Shafik, M. Fiorentino, P. Y. Chiang, and S. Palermo, “25  Gb/s hybrid integrated silicon photonic receiver with microring wavelength stabilization,” in Optical Fiber Communication Conference, Optical Society of America, March22–26, 2015, paper W3A–6.

B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, X. Zeng, Z. Huang, D. Liang, and R. G. Beausoleil, “1310  nm quantum dot waveguide avalanche photodiode heterogeneously integrated on silicon,” in 21st European Conference on Integrated Optics, June25, 2019.

B. Tossoun, G. Kurczveil, C. Zhang, D. Liang, and R. G. Beausoleil, “High-speed 1310  nm hybrid silicon quantum dot photodiodes with ultra-low dark current,” in 76th Device Research Conference (DRC) (IEEE, 2018), pp. 1–2.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in IEEE International Semiconductor Laser Conference (ISLC), Santa Fe, New Mexico, USA (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) Cross-section schematic of the photodiode; (b) SEM cross section of the QD waveguide PD on Si.
Fig. 2.
Fig. 2. Dark current vs. temperature for a 11 μm × 60 μm device.
Fig. 3.
Fig. 3. Responsivity at 1310 nm versus voltage bias of QD on Si waveguide PDs of different lengths.
Fig. 4.
Fig. 4. Responsivity of an 11μm×90μm PD at different optical input wavelengths.
Fig. 5.
Fig. 5. Spectral response versus voltage of an 11μm×90μm PD.
Fig. 6.
Fig. 6. Gain versus voltage for an 11μm×60μm device at 1310 nm.
Fig. 7.
Fig. 7. Output frequency response of an 11μm×30μm PD, an 11μm×60μm, and an 11μm×90μm PD measured at 16V bias voltage (dashed lines are smoothed data).
Fig. 8.
Fig. 8. Output frequency responses of an 11μm×90μm PD from 18V to 19V.
Fig. 9.
Fig. 9. GBP of an 11μm×90μm PD.
Fig. 10.
Fig. 10. Eye diagrams at a bias voltage of 13V at (a) 5 Gb/s, (b) 10 Gb/s, and (c) 12.5 Gb/s.
Fig. 11.
Fig. 11. BER versus input optical power of a 11μm×90μm PD at a gain of 28.

Metrics