Abstract

Photonic entanglement is one of the key resources in modern quantum optics. It opens the door to schemes such as quantum communication, quantum teleportation, and quantum-enhanced precision sensing. Sources based on parametric down-conversion or cascaded decays in atomic and atom-like emitters are limited because of their weak interaction with stationary qubits. This is due to their commonly broadband emission. Furthermore, these sources are commonly in the near-infrared such that quantum emitters in the blue spectral region, such as ions or many defect centers, cannot be addressed. Here, we present a sodium-resonant (589.0 nm) and narrow-band (14 MHz) degenerate entanglement source based on a single molecule. A beam-splitter renders two independently emitted photons into a polarization-entangled state. The quality of the entangled photon pairs is verified by the violation of Bell’s inequality. We measure a Bell parameter of S=2.26±0.05. This attests that the detected photon pairs exceed the classical limit; it is reconfirmed by quantum-state tomography and an analysis of the raw detector counts, which result in a value of S=2.24±0.12. The tomography shows fidelity of 82% to a maximally entangled Bell state. This work opens the route to background-free solid-state entanglement sources which surpass the probabilistic nature of the commonly used sources and are free from unwanted multi-photon events. The source is ideal for combination with stationary qubits such as atoms, ions, quantum dots, or defect centers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Photon entanglement, besides its very fundamental relevance [1], now has become a crucial resource in quantum technology for the implementation of various protocols. Quantum communication [2], quantum teleportation [3], and quantum randomness [4,5] utilize entanglement as a key ingredient. Nowadays, certain quantum implementations can be rendered to be independent of their specific experimental implementation or measurement devices. The recent implementation of loophole-free tests of quantum mechanics [6,7] allows certification of, for example, the generation of random numbers [5] or device-independent quantum communication [8].

Early sources of photonic entanglement were based on the cascaded decay of atoms [9]. In the 1990s, sources based on non-linear crystals were developed [10]. Their handling is convenient, and their collection efficiency and spectral brightness have been optimized over the years [11,12]. Fundamentally, these sources suffer from their large spectral bandwidth and their probabilistic nature, which does not allow for the generation of a “push-button” photon pair. The latter problem cannot be addressed by increasing the pump power, as the probability to generate unwanted multi-photon events increases quadratically. Furthermore, sources based on parametric down-conversion are often limited to the (infra-)red region of the optical spectrum. Only a few sources in the visible region of the spectrum exist [13]. These are crucial for interfacing entangled photons to certain stationary quantum nodes, such as ions. Also, such sources are desirable for biological applications since the majority of the relevant optical transitions are in the band from 450–650 nm.

Entanglement sources based on single quantum emitters or other non-linearities have been experimentally investigated in the past decade [1416]. These experiments are also commonly limited to the near-infrared region of the spectrum due to their implementation in semiconductor quantum dots. One alternative is the generation of photonic entanglement by mode-mixing of a pair of single photons on a beam-splitter (see Fig. 1). This has been proposed [17,18] and later experimentally realized with pair of photons from a non-linear process [19,20]. Later, single photons from individual emitters were entangled [2123]. To date, this scheme has not yet become competitive with the just-mentioned sources in terms of brightness and measurements of the raw entanglement.

2. EXPERIMENT

 figure: Fig. 1.

Fig. 1. Scheme of entanglement generation from single photons. The fundamental working principle is founded on the mode-mixing of two identical single photons on a 50:50 beam splitter. If these photons are prepared in two orthogonal polarizations and subsequently detected in the two output ports, the resulting polarization-entangled state is represented as |Ψ=(1/2)(|H|V|V|H). The output photons violate the locality principle, and are suitable for schemes such as quantum teleportation and key distribution. The emission of single photons from single molecules is ideal for this scheme due to their narrow-band nature (ca. 12–20 MHz) and brightness. Furthermore, the molecular photons can be tailored to be compatible with a variety of stationary qubits such as atoms and ions.

Download Full Size | PPT Slide | PDF

The central building block for the entanglement source presented here is a single-photon source based on a single molecule. It consists of a single organic molecule which is embedded in a so-called Shpol’skiĭ matrix of n-tetradecane (Aldrich). The molecule under study was dibenzanthanthrene [DBATT, Fig. 2(a), CAS: 188-42-1, W. Schmidt, Greifenberg]. The sample is prepared by dissolving a small amount of dye in the solvent. Therefore, the sample is initially in a liquid form and sandwiched between a glass cover-slide and a solid-immersion lens made of ZrO2 (n=2.18, 3 mm , A.W.I. Industries). Then the sample is shock-frozen in the cryostat, and the experiments are conducted at an operating temperature of 1.4 K. The molecule is excited with a narrow-band dye ring laser (Coherent 899-29) around 581 nm. The excitation power for the introduced experiments amounts to approximately 1 mW. The light emitted from the molecule is captured after atomic Faraday filtering [spectrum in Fig. 2(c)] by a single-mode fiber [24]. The coupling efficiency from a free-space single-photon stream to the fiber amounts to approximately 20%. To achieve two independent single-photon streams which are subsequently entangled, a beam-splitter and two fibers with a relative delay of Δt=75ns are introduced. This temporal delay is more than 5 times longer than the coherence length of the photons, and allows the emission in both arms to be considered independent. One single molecule is laterally isolated out in an extended sample, and spectrally selected from an inhomogeneous distribution. Dibenzanthanthrene has been a workhorse in a variety of quantum optical experiments [25,26]. A simplified level scheme is depicted in Fig. 2(b). The system is excited into a higher-laying vibrational level and emits photons on the zero-phonon line. This excitation scheme increases neither spectral diffusion nor the observed linewidth [26].

 figure: Fig. 2.

Fig. 2. Experimental configuration. (a) The molecule dibenzanthanthrene (DBATT) is selected for this study. (b) Simplified level scheme. The optical excitation transfers the system to the vibronic excited state, and the system emits Fourier limited photons from the first electronic excited state. This has a lifetime of approximately 10 ns. (c) Experimental configuration. Left, the molecule in the cryostat; Middle, the emitted photons are filtered by a Faraday filter composed of hot atomic sodium vapor and a magnetic field. Right, the generated single-photon stream is split, relatively delayed, and interfaced on a beam splitter. (d) Spectrum of the single molecule under 0–0 excitation. Superimposed orange, transmission spectrum of the Faraday filter. (e) Single-photon antibunching, measured after Faraday filtering. (f) Time-correlated single-photon counting of the output ports of the HOM interferometer.

Download Full Size | PPT Slide | PDF

One important advantage of molecules against other quantum emitters is their chemical tunability across the full visible spectrum. The combination with atomic systems such as sodium, potassium, or rubidium vapor has enabled the hybridization of single molecules and atoms [25]. Such experiments open the possibility to store single photons in an atomic vapor, and purify the single-photon emission utilizing an atomic-vapor-based Faraday filter [24,27]. To ensure the spectral alignment of the single photons to the sodium resonance, a Faraday filter based on atomic sodium is used [24]. This filter suppresses broadband background light which might be present due to neighboring molecules or spurious fluorescence in the experimental configuration. A 100 mm long evacuated glass cylinder with atomic sodium (Triad Technologies, CO, AR-coated windows) is heated to 153°C and placed in a solenoid which supplies a longitudinal magnetic field of approximately 220 mT. This configuration is placed between crossed polarizers. Their extinction ratio for off-resonant photons amounts to approximately 40 dB, which is limited by the wavefront distortion of the cell windows. The filter provides a Doppler-width limited passband with a near-unity transmittance (>90%) for the selected molecular single photons [Fig. 2(d)].

Once a suitable molecule is selected, the photon statistics of the atomic filtered emission is analyzed by a Hanbury Brown and Twiss recording. This characterizes the single particle nature of our source; the anti-bunching is presented as raw data in Fig. 2(e), and shows multi-photon contributions of less than 4%. Previous studies show that the lifetime limited spectral width Δω0 amounts to 2π×1250MHz ([24]). This matches well to the recorded anti-bunching curve (τsp=11.4ns, Δω=2π×14MHz), which has been acquired under low excitation powers.

Due to the almost ideal spectral properties and the negligible spectral diffusion, the photons also undergo efficient Hong–Ou–Mandel (HOM) interference [28]. This is experimentally verified in the experimental configuration shown on the right of Fig. 2(c). The experiments are based on a free-space configuration with single-mode fiber coupling. The optical configuration is designed to be mechanically very stable (granite table). The entire configuration is aligned prior to the experiments with a laser in the HOM configuration. For this, the laser is locked to the sodium D2-line; then the interference visibility is measured to be larger than 99.9%. With the single-photon stream, the photon-correlation function is analyzed among the detectors. This paper presents the raw clicks of all coincidence measurements. No background correction was performed. The anti-bunching curves in all plots are fitted with a two-level rate equation model and take the electric jitter by the detection system (photon counters and time tagger) into account. The electrical jitter was independently measured in the same configuration utilizing a short (ps) pulse laser. All fits were produced in the computer algebra system Mathematica (ver. 10.4.1, Wolfram Research). The relative delay among the time-tagged recordings on the detectors was determined by the laser pulses.

The single-molecule source exhibits a raw HOM visibility of 94% under continuous-wave (CW) excitation, comparable to our previous results [26]. The data of the selected molecule is presented in Fig. 2(f). This curve fully resembles its anti-bunching curve shown in Fig. 2(e), but is based on the anti-correlation carried by the so-called N00N state, 12(|20+|02) [26]. Such experiments have been performed with a variety of single-photon sources [28,29], and allow us to quantify the suitability of these sources in all-optical gates [30]. How well single photons can undergo interference depends to a good part on the degree of first-order coherence of the involved photons, |g(1)(τ)|. For two coinciding single photons, it is introduced as the two-photon coherentness C2=|g(1)(0)|2 [26]. This entity is usually measured as the HOM visibility of the photons.

3. THEORY

A closely related experiment to the well-studied HOM interference is the supply of orthogonal polarized photons into an entangling beam splitter. This is known as the Shih–Alley configuration [19,20]. Here, no interference occurs, and therefore this measurement is commonly used as a reference for the HOM measurement. The state is defined by |Ψout=(i/2)(|HV|0|0|VH)(1/2)(|H|V|V|H), where the latter term is the |Ψ Bell state. This is a polarization-entangled photonic state, and is based on a coincidental photon detection at remote locations with 50% success probability per trial. The entanglement is formed, although the photons do not interact or interfere at the beamsplitter, but rather due to the mode-mixing of the two incoming photons. The final output state has also been analyzed in a quantum eraser configuration [26]. A further analysis as outlined in the following allows us to characterize the polarization-entangled state which is formed from the molecular photons.

One of the intriguing properties of the generated state is its “spooky action at a distance” [31]. This “non-locality” can be tested with Bell’s inequality [32], if a local hidden variable model is sufficient for its description. Here we use it in the rigid form of Clauser, Horne, Shimony, and Holt [33]. This is based on a correlation measurement which determines visibility among the parallel and orthogonal photon coincidences between two remote parties:

E=(Nhh+Nvv)(Nhv+Nvh)(Nhh+Nvv)+(Nhv+Nvh).
N denotes the number of photon pairs measured according to their polarization (h and v).

Non-locality can be evaluated when the E correlator is measured in appropriate bases or coordinate systems. In the Bell test, party A measures in two bases labeled as α and α. Correspondingly, the other party B measures in β and β. The Bell parameter S is determined by these 2×2 correlator measurements:

S=E(α,β)E(α,β)+E(α,β)+E(α,β).
For a pair of classical local particles, the value is bound to values of 2S2. For a maximum violation of Bell’s inequality, we choose the following bases for the measurement: α=0° and α=45°, and for the other side β=22.5° and β=67.5° [see Fig. 3(a)]. These 2×2 base selections result in the four E correlators. Each one of these consists of four photon-pair coincidences N. Therefore, 16 correlation measurements are used to determine the Bell parameter S [see Fig. 3(b)].

 figure: Fig. 3.

Fig. 3. Bell violation. (a) Relevant experimental configuration with orthogonal incoming photons. (b) Raw recorded data for different analyzer positions, presented as photon–photon correlation functions, g(2)(τ). Time range is ±30ns. (c) Theoretical expectation values for the maximal entangled |Ψ Bell state. (d) g(2)(τ=0) is estimated by a fit of the data in subfigure (b). These fitted values result in a Bell parameter of S=2.26±0.05, which is clearly above the classical limit of S=2.0. (e) Raw analysis of the inner time window (indicated in gray). These are the coinciding photons on the non-polarizing beam-splitter of subfigure (a). Based on the recorded raw coincidence clicks, an entanglement with S=2.24±0.12 is determined.

Download Full Size | PPT Slide | PDF

As for the experimental implementation, the input polarization of the single photons into the entangling beam splitter is changed from the prior HOM experiment. The photons now impinge orthogonally onto the central beam splitter. The output ports are monitored by single-mode fiber-coupled single-photon detectors in two orthogonal polarization bases (h and v). With these 2×2 attached detectors, four different types of photon coincidences occur between the output ports: hh, hv, vh, and vv. By utilizing Eq. (1), we determine the E-correlator. To allow this in any linear polarization bases, half-waveplates are introduced before detection [see Fig. 3(a)]. With two different waveplate configurations on each side, the 16 relevant correlation measurements are obtained.

4. RESULTS

Following this procedure to determine S, we perform the measurement in the four introduced polarization settings. The experimental outcomes are depicted in a matrix, where each quadrant represents one measurement setting and corresponds to one E-correlator. The raw recorded (cross-)correlation curves are shown in Fig. 3(b) for a time-range of ±30ns. To achieve an identical signal-to-noise for all four quadrants, each of the polarization settings is recorded for 3 min. Then, the motor-controlled waveplates are rotated and the next quadrant is measured. This procedure was repeated for approximately 2 h. Subsequently, the E-correlators, and therefore the Bell parameter S, are computed [33].

As earlier reported in the literature [21], the detected photon coincidences can be corrected for background fluctuations, and a Bell parameter can be determined. Here, we fit the acquired correlation curves shown in Fig. 3(b). This is performed with an anti-bunched correlation function, which is based on a rate equation model. This function can be used due to the CW excitation, which takes the full temporal behavior into account. For an ideal |Ψ state, we would expect the normalized coincidences as displayed in Fig. 3(c), which would result in a maximal violation of Bell’s inequality. We now determine the four E correlators from the experimental fit. They are 0.61, 0.54, 0.57, and 0.54, respectively. This results in an overall Bell parameter of S=2.26±0.05. This violates Bell’s inequality by more than five standard deviations, and proves the non-classicality of the photon pairs.

We now take the raw, fully unaltered recorded coincidences into account. This has not been performed before and presents a more rigid analysis for the usable photonic entanglement. For this, the coincidence window is set to a time bin of Δτ=300ps. These raw coincidence counts are listed in Fig. 3(e). They allow us to calculate the raw Bell parameter, which amounts to S=2.24±0.12. This implies that Bell’s inequality is violated by more than two standard deviations, which gives a 96% confidence that a local classical model is unable to explain the result. Interestingly, this resource can be used in quantum optical experiments as is; no further corrections have to be applied. The applied error propagation is equivalent to other recent references [7].

When the coincidence time window is increased from Δτ=300ps, effectively more and more uncorrelated photon pairs are added to the outcome. The Bell parameter degrades, and from a certain point on, the raw data will not violate Bell’s inequality anymore. The relation of the Bell parameter versus the coincidence time window is discussed, and the experimental data is plotted in Supplement 1. The theoretical fit provides an alternative way to extract the Bell parameter. The value for coinciding photons (Δτ=0) amounts to S=2.2±0.05.

Essential for this entanglement generation is that the involved photons are like single particles, and yet have the ability to undergo a two-photon interference—a property which represents the wave-particle duality [26]. If a source with such an optimal property is used, a maximally entangled state is generated and the Bell violation will result in an absolute S value of 2/2. This is not the case for the presented photon source. One crucial influence is background contributions to the single-photon stream. Spurious photons will contaminate the entanglement among a photon pair, and a single photon source with g(2)(0)>(21)20.17 will not be able to reach a Bell parameter beyond S=2.0. On the other hand, for a perfect single-photon source, the photon interference ability should reach a value below gHOM(2)(0)<11/20.29 in a HOM experiment. The corresponding characterization for our single-photon source is shown in Figs. 1(c) and 1(d). Subsequently, this source should violate Bell’s inequality with a value of S=2.63. Experimental factors, especially the quality of the involved beam splitters, or a beam shift originating from the waveplates, explain the deviation of the achieved Bell parameter from this theoretical maximum.

5. QUANTUM TOMOGRAPHY

This violation of Bell’s inequality proves that a classical theory is not able to explain the outcome. On the other hand, quantum mechanics provides the explanation for this counter-intuitive phenomenon. As for the quantum mechanical description of the Shih–Alley output state, a tomographic measurement characterizes the full polarization state of the photon pairs [34]. Thereby, it provides a comprehensive picture of its quantum mechanical state. For this, the measurements have to include circular polarization; this effectively extends the prior configuration of the Bell test.

The quantum tomography is performed in the same experimental configuration as in Fig. 3(a), which is equipped with additional quarter wave plates in the detection arms. The measurement consists of 3×3 measurement settings. From these configurations, 4×4 correlation curves are taken into account. The derivation of the density matrix is described by the following equations:

ρ^=(x=14y=14M^x,yNx,y)/(x=14y=14tr(M^x,y)Nx,y).
As before, Nx,y denotes the coincidental counts in the relative polarization basis, and M^x,y is the matrix representation of the corresponding measurement. The denominator ensures the normalization of the density matrix. A full mathematical derivation is presented in Supplement 1.

Figure 4 shows the real and imaginary parts of the measured density matrix. The real part is compared to an ideal |Ψ state, which should only have components in the HV and VH bases. While the theory predicts a vanishing imaginary part for the |Ψ state, we see that Fig. 4(b) shows some unwanted contributions. We account the deviations to the theoretical predictions to experimental subtleties, e.g., the optical components are non-ideal. Still, the fidelity of the quantum state exceeds 82%, calculated as F=tr(ρ^Ψ.ρ^M).

 figure: Fig. 4.

Fig. 4. Density matrix of the entangled two-photon state. The quantum state tomography provides a full description of the generated state. This measurement requires two additional quarter wave plates in the setup of Fig. 3(a). (a) real part of the density matrix. (b) imaginary part of the density matrix. The overall fidelity to the |Ψ-Bell state is measured to be 82%, and it predicts a Bell-parameter of S=2.2.

Download Full Size | PPT Slide | PDF

Now that we have determined the density matrix, we can predict any experimental measurement outcome on the photonic quantum state. This spans the previously discussed Bell-type measurement, and it allows to estimate the Bell parameter S. It is calculated as tr(S^.ρ^M)=2.2. This value is fully consistent with the preceding measurements of the Bell test.

A more careful analysis shows that the deviations from |Ψ which might be caused, for example, by imperfect wave plates, could be compensated by an adapted detection. This does not use the original selected linear polarization bases, but another basis which would be ideal with the utilized polarization optics. A theoretical estimation shows that this results in an only slightly larger Bell violation; it still does not match the predicted value, which can be derived from the single-photon nature and the HOM visibility as displayed in Figs. 1(e) and 1(f). This indicates that the optical elements are non-ideal and do not even perform a unitary transform of the photon’s polarization state.

The experimental entanglement generation from true single-photon sources with the aid of linear optics has been pioneered by others [21,23,35]. Usually, other less rigid entanglement criteria have been used. Still, a violation of Bell’s inequality presents a challenge since a fidelity above 78% is required [36]. Furthermore, the generation of photonic entanglement by semiconductor quantum dots often has the alternative of using parametric down-conversion (PDC) sources, because of their comparable emission spectrum. In this near-infrared region, the PDC sources are presently superior in terms of brightness, bandwidth, and ease of handling. Therefore, an entanglement source in the visible range, where the emission wavelength can be chosen deliberately, is unique.

The introduced scheme of entanglement generation forms an alternative to the down-conversion process by a non-linear crystal. The rate of entanglement generation is an important parameter for quantum information processing. As for parametric down-conversion sources, it can be increased with the pump rate, but only to a certain level, since this also increases the risk of generating multi-photon events. This degrades the entanglement purity, since more photon pairs are generated simultaneously. When now, for example, two pairs are generated, the detection of a photon coincidence might not necessarily originate from the same entangled photon pair, and the accidental rate increases. This limits—even from a fundamental point of view—the maximal meaningful rate for PDC sources. A meaningful limit is that, from a trigger pulse, maximally 0.1 photon pairs are generated. Then, already more than 10% multi-photon events occur, which lead to unwanted background. The mode-mixing on a beam splitter opens an interesting alternative: Two deterministic generated single photons will form with a 50% probability of an entangled pair. This scheme does not inherently suffer from background; it surpasses the maximal feasible rate of PDC sources by a factor of 5. Therefore, a source based on the mode-mixing of single photons has the potential to become the entanglement source with the highest spectral brightness and simultaneous negligible background contribution—a prerequisite for an efficient photon–matter interaction, where the photonic source matches to a stationary quantum node.

6. CONCLUSION

In conclusion, we have presented a single-molecule-based source of photonic entanglement. The source exhibits a 14 MHz wide emission, which is resonant to the D2-line of atomic sodium. It consists of two single photons which are polarization-entangled to a |Ψ state by mode-mixing on a 50:50 beam splitter. These photons are then detected as raw coincidences at remote locations and violate a Bell test with a Bell parameter of S=2.24±0.12, more than two standard deviations away from a classical explainable result. This violation is reconfirmed by various fits to the experimental data (S=2.26 and S=2.2), and by quantum state tomography which shows a fidelity of 82% with an expectation value of S=2.2 for the Bell parameter.

A crucial prerequisite for the described effect is an excellent interference ability of the single photons, which is usually proven by a high HOM visibility. For the presented single molecule, the HOM visibility amounts to 94%. The other important factor is the absence of background photons, which here are excellently suppressed with the aid of an atomic Faraday filter. This scheme of entanglement generation can be also implemented with other emitters [21], and will allow for bright, background-free sources of photonic entanglement.

Although entanglement sources based on parametric down-conversion are still more convenient to handle and relax the experimental demands, the introduced source has a number of inherent advantages: the brightness of the presented source, which is to date less than one coincidence per second, can be drastically increased. A first step is to trigger the single-photon emission, which allows for the generation of a few entangled photon pairs per second in our current configuration. Since in this scheme the entanglement rate increases quadratically with the count-rate of the single photons, a high single-photon count-rate is crucial. As for single emitters, this can be achieved using a dielectric cavity [37]. For such a single-molecule, single-photon source, we calculate that about 5×106 photon pairs per second will be generated—and still the source exhibits the same spectral width (14 MHz) as before. Multi-photon contamination, which occurs for strongly pumped down-conversion sources, is avoided. The narrow-band and spectral quiescent nature, and the option to modify the spectral position by chemical means, make single molecules an ideal photonic source which covers the entire visible spectrum. This extends to blue single-photon emitters, such as perylene around 440 nm ([38]), where sources based on parametric down-conversion will be limited.

The above evaluation with raw, unnormalized clicks proves that the introduced scheme can be directly applied to a number of experiments which are based on photonic entanglement. This spans implementations, such as quantum cryptography and entanglement distribution. Furthermore, fundamental experiments, including a loophole-free version of the Bell test, are enabled with the introduced source [39]. Due to the spectral alignment to other quantum systems—here with atomic sodium—the source enables memory-assisted quantum communication [40].

Funding

Deutsche Forschungsgemeinschaft (DFG) (GE2737/5-1); Max-Planck-Gesellschaft (MPG); European Cooperation in Science and Technology (COST) (MP1403).

Acknowledgment

M. R. conducted the experiment and analyzed the data. I. G. and M. R. wrote the manuscript. I. G. and J. W. supervised the team. All authors discussed the results and contributed to the final manuscript. The authors declare no competing financial interests.

 

See Supplement 1 for supporting content.

REFERENCES

1. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012). [CrossRef]  

2. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]  

3. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).

4. R. Colbeck, Quantum and relativistic protocols for secure multi-party computation, Ph.D thesis (University of Cambridge, 2009).

5. S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010). [CrossRef]  

6. B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015). [CrossRef]  

7. W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017). [CrossRef]  

8. A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007). [CrossRef]  

9. S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,” Phys. Rev. Lett. 28, 938–941 (1972). [CrossRef]  

10. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef]  

11. J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013). [CrossRef]  

12. M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photon. 1, 096101 (2016). [CrossRef]  

13. F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532 nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011). [CrossRef]  

14. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000). [CrossRef]  

15. N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006). [CrossRef]  

16. B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013). [CrossRef]  

17. M. Chubarov and E. Nikolayev, “Violation of Einstein locality in states with sub-Poissonian statistics,” Phys. Lett. A 110, 199–202 (1985). [CrossRef]  

18. Z. Ou, C. Hong, and L. Mandel, “Violations of locality in correlation measurements with a beam splitter,” Phys. Lett. A 122, 11–13 (1987). [CrossRef]  

19. Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988). [CrossRef]  

20. Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988). [CrossRef]  

21. D. Fattal, K. Inoue, J. Vučkovič, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett. 92, 037903 (2004). [CrossRef]  

22. J.-B. Trebbia, P. Tamarat, and B. Lounis, “Indistinguishable near-infrared single photons from an individual organic molecule,” Phys. Rev. A 82, 063803 (2010). [CrossRef]  

23. K. Sanaka, A. Pawlis, T. D. Ladd, D. J. Sleiter, K. Lischka, and Y. Yamamoto, “Entangling single photons from independently tuned semiconductor nanoemitters,” Nano Lett. 12, 4611–4616 (2012). [CrossRef]  

24. W. Kiefer, M. Rezai, J. Wrachtrup, and I. Gerhardt, “An atomic spectrum recorded with a single molecule light source,” Appl. Phys. B 122, 1–12 (2016). [CrossRef]  

25. P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014). [CrossRef]  

26. M. Rezai, J. Wrachtrup, and I. Gerhardt, “Coherence properties of molecular single photons for quantum networks,” Phys. Rev. X 8, 031026 (2018). [CrossRef]  

27. S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016). [CrossRef]  

28. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987). [CrossRef]  

29. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002). [CrossRef]  

30. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef]  

31. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935). [CrossRef]  

32. J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964). [CrossRef]  

33. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969). [CrossRef]  

34. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001). [CrossRef]  

35. O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013). [CrossRef]  

36. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996). [CrossRef]  

37. G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011). [CrossRef]  

38. M. Pirotta, A. Renn, M. H. Werts, and U. P. Wild, “Single molecule spectroscopy. Perylene in the Shpol’skii matrix n-nonane,” Chem. Phys. Lett. 250, 576–582 (1996). [CrossRef]  

39. S. Popescu, L. Hardy, and M. Z. Żukowski, “Revisiting Bell’s theorem for a class of down-conversion experiments,” Phys. Rev. A 56, R4353–R4356 (1997). [CrossRef]  

40. D. Luong, L. Jiang, J. Kim, and N. Lütkenhaus, “Overcoming lossy channel bounds using a single quantum repeater node,” Appl. Phys. B 122, 96 (2016). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
    [Crossref]
  2. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [Crossref]
  3. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
  4. R. Colbeck, Quantum and relativistic protocols for secure multi-party computation, Ph.D thesis (University of Cambridge, 2009).
  5. S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
    [Crossref]
  6. B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
    [Crossref]
  7. W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
    [Crossref]
  8. A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
    [Crossref]
  9. S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,” Phys. Rev. Lett. 28, 938–941 (1972).
    [Crossref]
  10. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [Crossref]
  11. J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
    [Crossref]
  12. M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photon. 1, 096101 (2016).
    [Crossref]
  13. F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532 nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
    [Crossref]
  14. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
    [Crossref]
  15. N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
    [Crossref]
  16. B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
    [Crossref]
  17. M. Chubarov and E. Nikolayev, “Violation of Einstein locality in states with sub-Poissonian statistics,” Phys. Lett. A 110, 199–202 (1985).
    [Crossref]
  18. Z. Ou, C. Hong, and L. Mandel, “Violations of locality in correlation measurements with a beam splitter,” Phys. Lett. A 122, 11–13 (1987).
    [Crossref]
  19. Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
    [Crossref]
  20. Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988).
    [Crossref]
  21. D. Fattal, K. Inoue, J. Vučkovič, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett. 92, 037903 (2004).
    [Crossref]
  22. J.-B. Trebbia, P. Tamarat, and B. Lounis, “Indistinguishable near-infrared single photons from an individual organic molecule,” Phys. Rev. A 82, 063803 (2010).
    [Crossref]
  23. K. Sanaka, A. Pawlis, T. D. Ladd, D. J. Sleiter, K. Lischka, and Y. Yamamoto, “Entangling single photons from independently tuned semiconductor nanoemitters,” Nano Lett. 12, 4611–4616 (2012).
    [Crossref]
  24. W. Kiefer, M. Rezai, J. Wrachtrup, and I. Gerhardt, “An atomic spectrum recorded with a single molecule light source,” Appl. Phys. B 122, 1–12 (2016).
    [Crossref]
  25. P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
    [Crossref]
  26. M. Rezai, J. Wrachtrup, and I. Gerhardt, “Coherence properties of molecular single photons for quantum networks,” Phys. Rev. X 8, 031026 (2018).
    [Crossref]
  27. S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
    [Crossref]
  28. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref]
  29. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
    [Crossref]
  30. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref]
  31. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
    [Crossref]
  32. J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964).
    [Crossref]
  33. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
    [Crossref]
  34. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
    [Crossref]
  35. O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
    [Crossref]
  36. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
    [Crossref]
  37. G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
    [Crossref]
  38. M. Pirotta, A. Renn, M. H. Werts, and U. P. Wild, “Single molecule spectroscopy. Perylene in the Shpol’skii matrix n-nonane,” Chem. Phys. Lett. 250, 576–582 (1996).
    [Crossref]
  39. S. Popescu, L. Hardy, and M. Z. Żukowski, “Revisiting Bell’s theorem for a class of down-conversion experiments,” Phys. Rev. A 56, R4353–R4356 (1997).
    [Crossref]
  40. D. Luong, L. Jiang, J. Kim, and N. Lütkenhaus, “Overcoming lossy channel bounds using a single quantum repeater node,” Appl. Phys. B 122, 96 (2016).
    [Crossref]

2018 (1)

M. Rezai, J. Wrachtrup, and I. Gerhardt, “Coherence properties of molecular single photons for quantum networks,” Phys. Rev. X 8, 031026 (2018).
[Crossref]

2017 (1)

W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
[Crossref]

2016 (4)

M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photon. 1, 096101 (2016).
[Crossref]

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

W. Kiefer, M. Rezai, J. Wrachtrup, and I. Gerhardt, “An atomic spectrum recorded with a single molecule light source,” Appl. Phys. B 122, 1–12 (2016).
[Crossref]

D. Luong, L. Jiang, J. Kim, and N. Lütkenhaus, “Overcoming lossy channel bounds using a single quantum repeater node,” Appl. Phys. B 122, 96 (2016).
[Crossref]

2015 (1)

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

2014 (1)

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref]

2013 (3)

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref]

2012 (2)

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

K. Sanaka, A. Pawlis, T. D. Ladd, D. J. Sleiter, K. Lischka, and Y. Yamamoto, “Entangling single photons from independently tuned semiconductor nanoemitters,” Nano Lett. 12, 4611–4616 (2012).
[Crossref]

2011 (2)

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532 nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

2010 (2)

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

J.-B. Trebbia, P. Tamarat, and B. Lounis, “Indistinguishable near-infrared single photons from an individual organic molecule,” Phys. Rev. A 82, 063803 (2010).
[Crossref]

2007 (1)

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

2006 (1)

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

2004 (1)

D. Fattal, K. Inoue, J. Vučkovič, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett. 92, 037903 (2004).
[Crossref]

2002 (1)

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

2001 (2)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

2000 (1)

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[Crossref]

1997 (2)

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).

S. Popescu, L. Hardy, and M. Z. Żukowski, “Revisiting Bell’s theorem for a class of down-conversion experiments,” Phys. Rev. A 56, R4353–R4356 (1997).
[Crossref]

1996 (2)

M. Pirotta, A. Renn, M. H. Werts, and U. P. Wild, “Single molecule spectroscopy. Perylene in the Shpol’skii matrix n-nonane,” Chem. Phys. Lett. 250, 576–582 (1996).
[Crossref]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[Crossref]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref]

1988 (2)

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[Crossref]

Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988).
[Crossref]

1987 (2)

Z. Ou, C. Hong, and L. Mandel, “Violations of locality in correlation measurements with a beam splitter,” Phys. Lett. A 122, 11–13 (1987).
[Crossref]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

1985 (1)

M. Chubarov and E. Nikolayev, “Violation of Einstein locality in states with sub-Poissonian statistics,” Phys. Lett. A 110, 199–202 (1985).
[Crossref]

1972 (1)

S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,” Phys. Rev. Lett. 28, 938–941 (1972).
[Crossref]

1969 (1)

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

1964 (1)

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964).
[Crossref]

1935 (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Abellan, C.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Acin, A.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Acín, A.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Akopian, N.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Allevi, A.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532 nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Alley, C. O.

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[Crossref]

Almeida, M. P.

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

Amaya, W.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Avella, A.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532 nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Avron, J.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Bell, J. S.

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964).
[Crossref]

Bennett, C. H.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[Crossref]

Benson, O.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[Crossref]

Berlatzky, Y.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Bernien, H.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Blok, M. S.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Bondani, M.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532 nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Bouwmeester, D.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).

Brassard, G.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[Crossref]

Brunner, N.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Burchardt, D.

W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
[Crossref]

Chen, W. X.

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

Chen, Z.-B.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Chng, B.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref]

Chubarov, M.

M. Chubarov and E. Nikolayev, “Violation of Einstein locality in states with sub-Poissonian statistics,” Phys. Lett. A 110, 199–202 (1985).
[Crossref]

Clauser, J. F.

S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,” Phys. Rev. Lett. 28, 938–941 (1972).
[Crossref]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Colbeck, R.

R. Colbeck, Quantum and relativistic protocols for secure multi-party computation, Ph.D thesis (University of Cambridge, 2009).

Cristiani, M.

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

de la Giroday, A. B.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

de Riedmatten, H.

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

Dreau, A. E.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Eghlidi, H.

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

Eibl, M.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref]

Elkouss, D.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Fattal, D.

D. Fattal, K. Inoue, J. Vučkovič, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett. 92, 037903 (2004).
[Crossref]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Fekete, J.

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

Freedman, S. J.

S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,” Phys. Rev. Lett. 28, 938–941 (1972).
[Crossref]

Galinis, J.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532 nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Garthoff, R.

W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
[Crossref]

Gazzano, O.

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

Gerardot, B. D.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Gerhardt, I.

M. Rezai, J. Wrachtrup, and I. Gerhardt, “Coherence properties of molecular single photons for quantum networks,” Phys. Rev. X 8, 031026 (2018).
[Crossref]

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

W. Kiefer, M. Rezai, J. Wrachtrup, and I. Gerhardt, “An atomic spectrum recorded with a single molecule light source,” Appl. Phys. B 122, 1–12 (2016).
[Crossref]

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref]

Gershoni, D.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Gisin, N.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Gotzinger, S.

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

Gulati, G. K.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref]

Hanson, R.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Hardy, L.

S. Popescu, L. Hardy, and M. Z. Żukowski, “Revisiting Bell’s theorem for a class of down-conversion experiments,” Phys. Rev. A 56, R4353–R4356 (1997).
[Crossref]

Hayes, D.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Hensen, B.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Holt, R. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Hong, C.

Z. Ou, C. Hong, and L. Mandel, “Violations of locality in correlation measurements with a beam splitter,” Phys. Lett. A 122, 11–13 (1987).
[Crossref]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Horne, M. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Inoue, K.

D. Fattal, K. Inoue, J. Vučkovič, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett. 92, 037903 (2004).
[Crossref]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Jetter, M.

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

Jiang, L.

D. Luong, L. Jiang, J. Kim, and N. Lütkenhaus, “Overcoming lossy channel bounds using a single quantum repeater node,” Appl. Phys. B 122, 96 (2016).
[Crossref]

Kalb, N.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Kiefer, W.

W. Kiefer, M. Rezai, J. Wrachtrup, and I. Gerhardt, “An atomic spectrum recorded with a single molecule light source,” Appl. Phys. B 122, 1–12 (2016).
[Crossref]

Kim, J.

D. Luong, L. Jiang, J. Kim, and N. Lütkenhaus, “Overcoming lossy channel bounds using a single quantum repeater node,” Appl. Phys. B 122, 96 (2016).
[Crossref]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Kukura, P.

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

Kurtsiefer, C.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref]

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Ladd, T. D.

K. Sanaka, A. Pawlis, T. D. Ladd, D. J. Sleiter, K. Lischka, and Y. Yamamoto, “Entangling single photons from independently tuned semiconductor nanoemitters,” Nano Lett. 12, 4611–4616 (2012).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Lee, G. K.

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

Lemaitre, A.

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

Lettow, R.

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

Lindner, N. H.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Lischka, K.

K. Sanaka, A. Pawlis, T. D. Ladd, D. J. Sleiter, K. Lischka, and Y. Yamamoto, “Entangling single photons from independently tuned semiconductor nanoemitters,” Nano Lett. 12, 4611–4616 (2012).
[Crossref]

Lounis, B.

J.-B. Trebbia, P. Tamarat, and B. Lounis, “Indistinguishable near-infrared single photons from an individual organic molecule,” Phys. Rev. A 82, 063803 (2010).
[Crossref]

Lu, C.-Y.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Luo, L.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Luong, D.

D. Luong, L. Jiang, J. Kim, and N. Lütkenhaus, “Overcoming lossy channel bounds using a single quantum repeater node,” Appl. Phys. B 122, 96 (2016).
[Crossref]

Lütkenhaus, N.

D. Luong, L. Jiang, J. Kim, and N. Lütkenhaus, “Overcoming lossy channel bounds using a single quantum repeater node,” Appl. Phys. B 122, 96 (2016).
[Crossref]

Machulka, R.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532 nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Mandel, L.

Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988).
[Crossref]

Z. Ou, C. Hong, and L. Mandel, “Violations of locality in correlation measurements with a beam splitter,” Phys. Lett. A 122, 11–13 (1987).
[Crossref]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Manning, T. A.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Markham, M.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Maslennikov, G.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref]

Massar, S.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Mataloni, P.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532 nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Matsukevich, D.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref]

Matsukevich, D. N.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Mattle, K.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Maunz, P.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Michler, P.

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

Milani, G.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532 nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Mitchell, M. W.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Monroe, C.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Nawrath, C.

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

Nikolayev, E.

M. Chubarov and E. Nikolayev, “Violation of Einstein locality in states with sub-Poissonian statistics,” Phys. Lett. A 110, 199–202 (1985).
[Crossref]

Nikolova, A.

M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photon. 1, 096101 (2016).
[Crossref]

Nowak, A. K.

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

Olmschenk, S.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

Ortegel, N.

W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
[Crossref]

Ou, Z.

Z. Ou, C. Hong, and L. Mandel, “Violations of locality in correlation measurements with a beam splitter,” Phys. Lett. A 122, 11–13 (1987).
[Crossref]

Ou, Z. Y.

Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988).
[Crossref]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Pan, J.-W.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).

Pawlis, A.

K. Sanaka, A. Pawlis, T. D. Ladd, D. J. Sleiter, K. Lischka, and Y. Yamamoto, “Entangling single photons from independently tuned semiconductor nanoemitters,” Nano Lett. 12, 4611–4616 (2012).
[Crossref]

Pelton, M.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[Crossref]

Perego, A. M.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532 nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Petroff, P. M.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Pironio, S.

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Pirotta, M.

M. Pirotta, A. Renn, M. H. Werts, and U. P. Wild, “Single molecule spectroscopy. Perylene in the Shpol’skii matrix n-nonane,” Chem. Phys. Lett. 250, 576–582 (1996).
[Crossref]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Poem, E.

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

Popescu, S.

S. Popescu, L. Hardy, and M. Z. Żukowski, “Revisiting Bell’s theorem for a class of down-conversion experiments,” Phys. Rev. A 56, R4353–R4356 (1997).
[Crossref]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[Crossref]

Portalupi, S. L.

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

Pruneri, V.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Rambach, M.

M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photon. 1, 096101 (2016).
[Crossref]

Rau, M.

W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
[Crossref]

Redeker, K.

W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
[Crossref]

Reiserer, A.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Renn, A.

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

M. Pirotta, A. Renn, M. H. Werts, and U. P. Wild, “Single molecule spectroscopy. Perylene in the Shpol’skii matrix n-nonane,” Chem. Phys. Lett. 250, 576–582 (1996).
[Crossref]

Rezai, M.

M. Rezai, J. Wrachtrup, and I. Gerhardt, “Coherence properties of molecular single photons for quantum networks,” Phys. Rev. X 8, 031026 (2018).
[Crossref]

W. Kiefer, M. Rezai, J. Wrachtrup, and I. Gerhardt, “An atomic spectrum recorded with a single molecule light source,” Appl. Phys. B 122, 1–12 (2016).
[Crossref]

Rieländer, D.

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Rosenfeld, W.

W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
[Crossref]

Ruitenberg, J.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Sagnes, I.

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

Sanaka, K.

K. Sanaka, A. Pawlis, T. D. Ladd, D. J. Sleiter, K. Lischka, and Y. Yamamoto, “Entangling single photons from independently tuned semiconductor nanoemitters,” Nano Lett. 12, 4611–4616 (2012).
[Crossref]

Sandoghdar, V.

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

Santori, C.

D. Fattal, K. Inoue, J. Vučkovič, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett. 92, 037903 (2004).
[Crossref]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[Crossref]

Scarani, V.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

Schouten, R. N.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Schumacher, B.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[Crossref]

Sciarrino, F.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532 nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Senellart, P.

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Shih, Y. H.

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[Crossref]

Shimony, A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Siyushev, P.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref]

Sleiter, D. J.

K. Sanaka, A. Pawlis, T. D. Ladd, D. J. Sleiter, K. Lischka, and Y. Yamamoto, “Entangling single photons from independently tuned semiconductor nanoemitters,” Nano Lett. 12, 4611–4616 (2012).
[Crossref]

Smolin, J. A.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[Crossref]

Solomon, G. S.

D. Fattal, K. Inoue, J. Vučkovič, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett. 92, 037903 (2004).
[Crossref]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Spasibko, K. Y.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532 nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Srivathsan, B.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref]

Stein, G.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref]

Tamarat, P.

J.-B. Trebbia, P. Tamarat, and B. Lounis, “Indistinguishable near-infrared single photons from an individual organic molecule,” Phys. Rev. A 82, 063803 (2010).
[Crossref]

Taminiau, T. H.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Trebbia, J.-B.

J.-B. Trebbia, P. Tamarat, and B. Lounis, “Indistinguishable near-infrared single photons from an individual organic molecule,” Phys. Rev. A 82, 063803 (2010).
[Crossref]

Twitchen, D. J.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Vallone, G.

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532 nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Vermeulen, R. F. L.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Vuckovic, J.

D. Fattal, K. Inoue, J. Vučkovič, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett. 92, 037903 (2004).
[Crossref]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Wehner, S.

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Weinfurter, H.

W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
[Crossref]

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Weinhold, T. J.

M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photon. 1, 096101 (2016).
[Crossref]

Werts, M. H.

M. Pirotta, A. Renn, M. H. Werts, and U. P. Wild, “Single molecule spectroscopy. Perylene in the Shpol’skii matrix n-nonane,” Chem. Phys. Lett. 250, 576–582 (1996).
[Crossref]

White, A. G.

M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photon. 1, 096101 (2016).
[Crossref]

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Widmann, M.

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

Wild, U. P.

M. Pirotta, A. Renn, M. H. Werts, and U. P. Wild, “Single molecule spectroscopy. Perylene in the Shpol’skii matrix n-nonane,” Chem. Phys. Lett. 250, 576–582 (1996).
[Crossref]

Wootters, W. K.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[Crossref]

Wrachtrup, J.

M. Rezai, J. Wrachtrup, and I. Gerhardt, “Coherence properties of molecular single photons for quantum networks,” Phys. Rev. X 8, 031026 (2018).
[Crossref]

W. Kiefer, M. Rezai, J. Wrachtrup, and I. Gerhardt, “An atomic spectrum recorded with a single molecule light source,” Appl. Phys. B 122, 1–12 (2016).
[Crossref]

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref]

Yamamoto, Y.

K. Sanaka, A. Pawlis, T. D. Ladd, D. J. Sleiter, K. Lischka, and Y. Yamamoto, “Entangling single photons from independently tuned semiconductor nanoemitters,” Nano Lett. 12, 4611–4616 (2012).
[Crossref]

D. Fattal, K. Inoue, J. Vučkovič, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett. 92, 037903 (2004).
[Crossref]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[Crossref]

Zeilinger, A.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Zukowski, M. Z.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

S. Popescu, L. Hardy, and M. Z. Żukowski, “Revisiting Bell’s theorem for a class of down-conversion experiments,” Phys. Rev. A 56, R4353–R4356 (1997).
[Crossref]

APL Photon. (1)

M. Rambach, A. Nikolova, T. J. Weinhold, and A. G. White, “Sub-megahertz linewidth single photon source,” APL Photon. 1, 096101 (2016).
[Crossref]

Appl. Phys. B (2)

W. Kiefer, M. Rezai, J. Wrachtrup, and I. Gerhardt, “An atomic spectrum recorded with a single molecule light source,” Appl. Phys. B 122, 1–12 (2016).
[Crossref]

D. Luong, L. Jiang, J. Kim, and N. Lütkenhaus, “Overcoming lossy channel bounds using a single quantum repeater node,” Appl. Phys. B 122, 96 (2016).
[Crossref]

Chem. Phys. Lett. (1)

M. Pirotta, A. Renn, M. H. Werts, and U. P. Wild, “Single molecule spectroscopy. Perylene in the Shpol’skii matrix n-nonane,” Chem. Phys. Lett. 250, 576–582 (1996).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A. M. Perego, K. Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, “High degree of entanglement and nonlocality of a two-photon state generated at 532 nm,” Eur. Phys. J. Spec. Top. 199, 111–125 (2011).
[Crossref]

Nano Lett. (1)

K. Sanaka, A. Pawlis, T. D. Ladd, D. J. Sleiter, K. Lischka, and Y. Yamamoto, “Entangling single photons from independently tuned semiconductor nanoemitters,” Nano Lett. 12, 4611–4616 (2012).
[Crossref]

Nat. Commun. (1)

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

Nat. Photonics (1)

G. K. Lee, W. X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gotzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011).
[Crossref]

Nature (6)

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

B. Hensen, H. Bernien, A. E. Dreau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Phys. Lett. A (2)

M. Chubarov and E. Nikolayev, “Violation of Einstein locality in states with sub-Poissonian statistics,” Phys. Lett. A 110, 199–202 (1985).
[Crossref]

Z. Ou, C. Hong, and L. Mandel, “Violations of locality in correlation measurements with a beam splitter,” Phys. Lett. A 122, 11–13 (1987).
[Crossref]

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Phys. Rev. A (3)

J.-B. Trebbia, P. Tamarat, and B. Lounis, “Indistinguishable near-infrared single photons from an individual organic molecule,” Phys. Rev. A 82, 063803 (2010).
[Crossref]

S. Popescu, L. Hardy, and M. Z. Żukowski, “Revisiting Bell’s theorem for a class of down-conversion experiments,” Phys. Rev. A 56, R4353–R4356 (1997).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Phys. Rev. Lett. (16)

O. Gazzano, M. P. Almeida, A. K. Nowak, S. L. Portalupi, A. Lemaitre, I. Sagnes, A. G. White, and P. Senellart, “Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source,” Phys. Rev. Lett. 110, 250501 (2013).
[Crossref]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[Crossref]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[Crossref]

Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988).
[Crossref]

D. Fattal, K. Inoue, J. Vučkovič, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett. 92, 037903 (2004).
[Crossref]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[Crossref]

N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from semiconductor quantum dots,” Phys. Rev. Lett. 96, 130501 (2006).
[Crossref]

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111, 123602 (2013).
[Crossref]

W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, “Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes,” Phys. Rev. Lett. 119, 010402 (2017).
[Crossref]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,” Phys. Rev. Lett. 28, 938–941 (1972).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, “Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks,” Phys. Rev. Lett. 110, 220502 (2013).
[Crossref]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref]

Phys. Rev. X (1)

M. Rezai, J. Wrachtrup, and I. Gerhardt, “Coherence properties of molecular single photons for quantum networks,” Phys. Rev. X 8, 031026 (2018).
[Crossref]

Physics (1)

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964).
[Crossref]

Rev. Mod. Phys. (1)

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Other (1)

R. Colbeck, Quantum and relativistic protocols for secure multi-party computation, Ph.D thesis (University of Cambridge, 2009).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental Document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Scheme of entanglement generation from single photons. The fundamental working principle is founded on the mode-mixing of two identical single photons on a 50:50 beam splitter. If these photons are prepared in two orthogonal polarizations and subsequently detected in the two output ports, the resulting polarization-entangled state is represented as | Ψ = ( 1 / 2 ) ( | H | V | V | H ) . The output photons violate the locality principle, and are suitable for schemes such as quantum teleportation and key distribution. The emission of single photons from single molecules is ideal for this scheme due to their narrow-band nature (ca. 12–20 MHz) and brightness. Furthermore, the molecular photons can be tailored to be compatible with a variety of stationary qubits such as atoms and ions.
Fig. 2.
Fig. 2. Experimental configuration. (a) The molecule dibenzanthanthrene (DBATT) is selected for this study. (b) Simplified level scheme. The optical excitation transfers the system to the vibronic excited state, and the system emits Fourier limited photons from the first electronic excited state. This has a lifetime of approximately 10 ns. (c) Experimental configuration. Left, the molecule in the cryostat; Middle, the emitted photons are filtered by a Faraday filter composed of hot atomic sodium vapor and a magnetic field. Right, the generated single-photon stream is split, relatively delayed, and interfaced on a beam splitter. (d) Spectrum of the single molecule under 0–0 excitation. Superimposed orange, transmission spectrum of the Faraday filter. (e) Single-photon antibunching, measured after Faraday filtering. (f) Time-correlated single-photon counting of the output ports of the HOM interferometer.
Fig. 3.
Fig. 3. Bell violation. (a) Relevant experimental configuration with orthogonal incoming photons. (b) Raw recorded data for different analyzer positions, presented as photon–photon correlation functions, g ( 2 ) ( τ ) . Time range is ± 30 ns . (c) Theoretical expectation values for the maximal entangled | Ψ Bell state. (d)  g ( 2 ) ( τ = 0 ) is estimated by a fit of the data in subfigure (b). These fitted values result in a Bell parameter of S = 2.26 ± 0.05 , which is clearly above the classical limit of S = 2.0 . (e) Raw analysis of the inner time window (indicated in gray). These are the coinciding photons on the non-polarizing beam-splitter of subfigure (a). Based on the recorded raw coincidence clicks, an entanglement with S = 2.24 ± 0.12 is determined.
Fig. 4.
Fig. 4. Density matrix of the entangled two-photon state. The quantum state tomography provides a full description of the generated state. This measurement requires two additional quarter wave plates in the setup of Fig. 3(a). (a) real part of the density matrix. (b) imaginary part of the density matrix. The overall fidelity to the | Ψ -Bell state is measured to be 82%, and it predicts a Bell-parameter of S = 2.2 .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E = ( N h h + N v v ) ( N h v + N v h ) ( N h h + N v v ) + ( N h v + N v h ) .
S = E ( α , β ) E ( α , β ) + E ( α , β ) + E ( α , β ) .
ρ ^ = ( x = 1 4 y = 1 4 M ^ x , y N x , y ) / ( x = 1 4 y = 1 4 t r ( M ^ x , y ) N x , y ) .

Metrics