Abstract

Organic–inorganic halide perovskites have recently developed into a potential semiconductor coherent light emitter candidate beyond their promise in solar cell applications. However, despite the ample demonstrations of perovskite lasers, experimental results on the origin of optical gain in perovskites are still elusive. Here, we analyze the excitonic gain in the green from mixed-cation halide perovskites Cs0.17[CH(NH2)2]0.83PbBr3 (Cs0.17FA0.83PbBr3) by both low temperature absorption/emission spectroscopies and ultrafast pump–probe transient absorption experiments. The perovskite thin films show a robust excitonic feature up to room temperature, with estimated exciton binding energy Eb=43.8meV, which can be maintained under high electronic excitations that are required for lasers. By using a high-quality (Q=1350) vertical cavity consisting of sputtered dielectric HfO2/SiO2 distributed Bragg reflectors with perovskite optical gain medium embedded inside, we have demonstrated excitonic-gain-enabled optically pumped lasing, with improved threshold of 13.5±1.4μJ/cm2 and device longevity lifetime >35h (108 laser shots) at ambient environment under sustained pulsed optical excitations (3.493 eV, τpulse=0.34ns, 1 kHz). Understanding and exploiting excitonic gain from perovskite thin film materials may help to further boost the performance of perovskite-based lasers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Organic–inorganic halide perovskites have recently been under extensive research for exploring their great promise in solar cell applications [13]. The attractive optoelectronic properties of perovskite materials have enabled realizations of highly efficient solar cells [4] and LED devices [5,6]. For coherent light emitters [7], different forms of perovskite lasers, e.g., single crystalline perovskite nanowires [8] and microplatelets [9], nanocrystals [10,11], polycrystalline perovskite thin films embraced by various optical resonators using vertical cavities [1214], distributed feedback (DFB) gratings [1519], and two-dimensional photonic crystal (PhC) [2022] geometries, have been demonstrated under pulsed optical excitations at room temperature. At cryogenic temperatures, continuous wave (CW) lasing operation has also been demonstrated recently [23,24]. Yet the underlying microscopic mechanism responsible for optical gain and stimulated emission remains rather elusive. In contrast to the photovoltaic regime in which the free electrons and holes are generally preferable for ease of charge separation and collection, Coulombically bound pairs (excitons) can be of advantage in enhancing radiative cross sections for LEDs and lasers. Exciton binding energy is a good first-order measure of how stable the exciton population is against, e.g., thermal fluctuations at room temperature. In CH3NH3PbI3 perovskite thin films at the near-infrared range, the exciton binding energy is small enough [25,26] and there is consensus of free carriers dominating the photoexcitations [2731]. For perovskites with larger bandgaps at shorter visible wavelengths, such as CH3NH3PbBr3, a broad range of exciton binding energy values was reported, covering from 25 to 84 meV [3234]. Such large variance may echo the variability of solution-based fabrication for perovskite thin films, resulting in different optoelectronic qualities.

Here we used mixed-cation perovskite Cs0.17[CH(NH2)2]0.83PbBr3 (Cs0.17FA0.83PbBr3) thin films as the optical medium for analyzing the excitonic gain and making perovskite vertical cavity surface emitting lasers (PeVCSELs). As shown below, this mixed-cation perovskite shows a pronounced excitonic feature up to room temperature. By fitting the near-band-edge absorption spectrum for Wannier excitons, we estimated an exciton binding energy of Eb=43.8meV. This value is larger than conventional inorganic III–V and II–VI bulk semiconductors like GaAs [35], GaN [36], and ZnSe [37,38], for which Wannier type excitons exist, yet much smaller than organic molecules and polymer materials [39,40], which are better described as Frenkel excitons. In the Wannier picture, due to Fröhlich interaction, inelastic scattering of excitons by longitudinal optical (LO) phonons can ionize the excitons into the electron–hole (e-h) pair continuum. By recording the photoluminescence (PL) spectra of mixed-cation perovskite thin films, we obtained a LO phonon energy of ωLO=28.7±1.9meV, importantly smaller than the extracted exciton binding energy Eb. Beyond the robust excitons, this cesium-incorporated mixed-cation perovskite has been shown to exhibit much improved stability performance in solar cell devices [41,42]. We asked if these attributes also benefit perovskite lasers, for which much higher electronic excitations are required.

To reach lasing thresholds in optically pumped perovskite thin film based lasers, an estimated equivalent carrier density of about 10171018cm3 [1315] needs to be generated to create enough optical gain. Under such photoexcitation conditions, strong many-body screening generally dissociates the excitons into an e-h plasma. To study whether bound e-h pairs can survive under the high electronic excitations required for lasing, we conducted ultrafast transient absorption (TA) pump–probe [43,44] experiments. These revealed that the optical gain can in fact be obtained without diminishing the dominant exciton populations in our mixed-cation perovskite thin films. By using resonant pumping at 2.331 eV (λ=532nm), and observing the spectrum of amplified spontaneous emission (ASE) from the films, we obtained another signature of excitonic gain. To further assess the potential of this excitonic gain medium, we fabricated vertical cavity surface emitting laser (VCSEL) devices with a perovskite thin film embedded between sputtered high-reflectivity (99.5%) dielectric HfO2/SiO2 distributed Bragg reflectors (DBRs). The dielectric DBRs are materially compatible with solution-grown perovskites, while the conformal deposition of top DBR directly onto the perovskite thin film can seal the sensitive material hermetically from the ambient environment. Under ultrashort (subpicosecond) pulse pumping condition, stimulated emission typically takes place in a very short time scale and bypasses most issues associated (e.g., competing non-radiative recombination), which benefits the laser to achieve lower thresholds. In our perovskite lasers, we went beyond this transient regime by using the much longer subnanosecond excitation pulses. As detailed below, we have achieved low lasing threshold 13.5μJ/cm2 at 2.244 eV (λ=552.5nm) under subnanosecond optical pulse pumping, with improved device lasing lifetime of more than 35 h in the ambient. This lasing threshold value is comparable to or lower than those for reported perovskite thin film based vertical cavity lasers [10,11,14], and also for other thin-film type lasers made from solution-processed excitonic lasing materials, such as II–VI colloidal nanoplatelets [45] and quantum dots [46,47], with similar cavity structures, lasing wavelengths, and pumping conditions (e.g., pulse width).

2. MIXED-CATION HALIDE PEROVSKITE THIN FILMS WITH EXCITONIC GAIN IN THE GREEN

We synthesized the mixed-cation perovskite thin films by solution-based methods similar to those we have recently developed [20], but now with different perovskite precursors: cesium bromide (CsBr), lead bromide (PbBr2), and formamidinium bromide (FABr) were mixed in dimethyl sulfoxide (DMSO) solvent with specific molar ratio [41,42]. Toluene was used as the anti-solvent in the dripping process during precursor solution spin-casting to induce fast crystallization and form uniform and smooth perovskite thin films (see Supplement 1, Section 1 for fabrication details). Figure 1(a) shows the SEM image of surface morphology of a Cs0.17FA0.83PbBr3 thin film with a closely packed ensemble of nanograins, which suggests a void-free continuous polycrystalline film. The mean value and standard deviation of the grain size distribution were fitted to be μ=79nm and σ=51nm by assuming a Gaussian distribution [Fig. 1(b)]. For the control pure-cation FAPbBr3 films, the values are μ=136nm and σ=107nm [Supplement 1, Fig. S1(c)]. Smaller grain size helps to decrease the surface roughness, an unwanted ingredient that contributes to optical scattering loss. Atomic force microscopy measurements yielded root mean square (RMS) roughness of 9.7 nm for typical Cs0.17FA0.83PbBr3 films, smaller than that of pure-cation FAPbBr3 films with RMS roughness of 17.5 nm. The more uniform grain size distribution in mixed-cation films leads to less inhomogeneous broadening and reduces the full width at half-maximum (FWHM) linewidth of the PL spectrum to 80.4 meV, compared with the control FAPbBr3 case where the PL linewidth is 111.7 meV [Supplement 1, Fig. S1(f)]. Crystal structure information of Cs0.17FA0.83PbBr3 films was extracted from an x-ray diffraction (XRD) pattern, shown in Fig. 1(c). The Cs0.17FA0.83PbBr3 film has the same crystal structure as FAPbBr3, while, after adding the cesium component, the film is structurally more homogeneous as indicated by narrower (001) XRD peak (FWHM0.0518°) than for pure-cation films (FWHM0.0932°). The position of the (001) XRD peak is shifted to a larger angle in Cs0.17FA0.83PbBr3 (2θ=14.7536°) than in FAPbBr3 (2θ=14.7432°), matching the fact that cesium cation size is smaller than organic FA cations [48]; this also proves that cesium atoms have participated in the formation of perovskite unit cells. In addition to the better uniformity of Cs0.17FA0.83PbBr3 films, they are also structurally more stable given the more preferable Goldschmidt tolerance factor and octahedral factor than those of FAPbBr3 films [48].

 figure: Fig. 1.

Fig. 1. (a) Scanning electron microscope image of surface morphology of a Cs0.17FA0.83PbBr3 film on a planar quartz substrate. (b) Grain size distribution of the mixed-cation perovskite film, with Gaussian fit (black line) yielding mean value of 79 nm and standard deviation of 51 nm. (c) X-ray diffraction pattern comparison between Cs0.17FA0.83PbBr3 and control FAPbBr3 films, with zoom-in of (001) peak shown on the right.

Download Full Size | PPT Slide | PDF

To analyze the excitonic feature of mixed-cation perovskites, we fabricated and loaded the Cs0.17FA0.83PbBr3 thin films into a cryogenic chamber down to T=10K. At different temperatures, both the absorption and PL spectra were recorded, as shown in Figs. 2(a) and 2(b). A blueshift of energy with increasing temperature, relating to a positive dEg/dT, was observed in absorption and PL spectra. The trend is also clearly shown in Fig. 2(c), which is opposite to the redshift behavior of conventional III–V inorganic semiconductors [37,38] due to lattice dilation with higher temperature, as described by Varshni’s empirical equation [49]. This feature, however, is common in halide perovskites [5052] and other lead-based semiconductors [53], and has suggested contributions from both the thermal lattice dilation and strong electron phonon coupling [51,52]. The excitonic peak position monotonically increases with temperature from 2.284 eV (T=10K) to 2.337 eV (T=300K), while the PL emission peak locates nearly constantly at 2.266 eV below 160 K before its monotonic increase trend with temperature [Fig. 2(c)]. This transition temperature matches results for pure-cation FAPbBr3 films [50]; however, the PL emission peak position of Cs0.17FA0.83PbBr3 films changes more slowly than FAPbBr3 films below 160 K. The difference between absorption excitonic resonance and PL emission peak (“Stokes shift”) was extracted from the above spectra and plotted in Fig. 2(d). An intrinsic emission Stokes shift results from lattice relaxation of an optically excited state into lower vibrational states, by releasing the excess energy as phonons. The term “intrinsic” is meant to exclude radiative recombination processes associated with defects and impurities. The Huang–Rhys parameter S was used to describe the relation between Stokes shift and phonon energy [54,55] EStokes(S)ωLO, where ωLO is the phonon energy and S is a temperature-independent dimensionless factor (we assume that carrier–phonon interaction is still weak enough to exclude the self-trapping effect). In our previous study of II–VI CdSe/CdS colloidal quantum dots, this temperature-independent Stokes shift was indeed observed [44]. Here, however, the Stokes shift of Cs0.17FA0.83PbBr3 films exhibit a strong dependence on temperature from 80 K to 300 K, indicating that the carrier lattice coupling strength increases with temperature. Below 80 K, the Stokes shift is weakly dependent on temperature, which may result from extrinsic factors, such as defects or surface states that provide local radiative recombination sites for carriers. The mechanism of temperature-dependent Stokes shift in perovskite materials is not yet fully understood in detail, while a dielectric solvation process provided by the halide group was shown to be able to predict similar behavior in perovskite single crystals (CsPbBr3 and MAPbBr3) [56]. On the other hand, the relatively large Stokes shift (e.g., 48.2 meV at 300 K) compared with the half-width at half-maximum (HWHM) linewidth of PL emission (40.2 meV at 300 K) can be an asset to facilitate the light amplification process due to less self-absorption of ASE photons [14,44,47].

 figure: Fig. 2.

Fig. 2. Pseudo-color maps of (a) excitonic absorbance and (b) normalized PL emission of mixed-cation Cs0.17FA0.83PbBr3 films at different temperatures. (c) Positions of absorption excitonic peak and PL peak across the measured temperature range. (d) Temperature-dependent emission Stokes shift of the mixed-cation Cs0.17FA0.83PbBr3 perovskite films.

Download Full Size | PPT Slide | PDF

To extract key parameters, such as exciton binding energy and LO phonon energy, we conducted further quantitative analysis of the absorption and PL spectra [Figs. 3(a) and 3(b)]. A well-defined pronounced excitonic absorption feature is maintained up to room temperature for Cs0.17FA0.83PbBr3 films. The enhanced oscillator strength in excitons (compared with free e-h pairs) promotes light absorption and emission, which benefits our perovskite films in optically pumped laser device applications. The broadening of both absorption and PL spectra under higher temperature results from the Fröhlich interaction between electrons and phonons [5052]. One can model the near-band-edge absorption spectrum by separating the contribution from (excitonic) bound states and continuum states above the bandgap. Under the assumption of Wannier excitons and using the Elliott’s theory of absorption [30,57], the spectrum can be formulated as

α(ω)μcv2ω[4πEb3sech(ωEg+EbΓ)+Egsech(ωEΓ)2πEb1e2πEb/(EEg)dE].
Symbols μcv, ω, Eg, Eb, and Γ are the transition dipole moment, photon energy, bandgap, exciton binding energy, and broadening factor, respectively. The first term in the square bracket is the exciton-related absorption, while the second term represents the contribution from the continuum states (assuming parabolic bands). A hyperbolic secant function is used here to simulate the linewidth broadening, and approximation is made to consider only first-order (n=1) excitons. More detailed information, including the proportionality factor, can be found in Supplement 1, Eq. (S1). Figure 3(c) shows the fitting results, where the numerical fitting (blue line) well matches the measured room temperature absorption spectrum, with the brown solid and dashed lines being exciton and continuum contributions, respectively. The fitting yields an estimate of exciton binding energy Eb=43.8meV and broadening factor Γ=26.0meV (corresponding to the FWHM linewidth of 68.5 meV) for mixed-cation Cs0.17FA0.83PbBr3 films. Compared with pure-cation FAPbBr3 films [14] with fitted Eb=25.0meV and Γ=30.0meV at room temperature, adding cesium components not only contributes a strong excitonic feature, but also helps to decrease the linewidth (i.e., less inhomogeneous broadening). Though still in the Wannier exciton regime (EbEg), the relatively large Eb of Cs0.17FA0.83PbBr3 films versus thermal energy (kT26meV) at room temperature helps to maintain robust Coulombically bound e-h pair states at room temperature and shield them against many-body screening at higher injection levels. The Fröhlich interaction between LO phonons and electrons, which originates from the Coulomb interaction between electrons and the electric field induced by out-of-phase displacements of ions with opposite charges in the LO phonon modes, plays a dominant role in electron–phonon scattering. At high temperatures, the large average LO phonon population results in a large broadening of PL linewidth due to electron–LO-phonon scattering. Acoustic phonons, on the other hand, are accounted for the broadening at low temperatures, where LO phonon population is low. We extracted the PL emission linewidth from the PL spectra at different temperatures, as shown in Fig. 3(d). At low temperatures (T<100K), the PL linewidth has minor broadening within 5 meV, mainly from the contribution of electron–acoustic-phonon scattering. To quantitatively analyze the temperature dependence of the PL linewidth, we formulate the relation by Segall’s equation [50,52,58]:
Γ(T)=Γinh+ΓLOeωLO/kT1.
Here, Γ(T) is the temperature-dependent PL linewidth, Γinh is the temperature-independent inhomogeneous broadening, ΓLO is the electron–LO-phonon or Fröhlich coupling coefficient, and ωLO is the phonon energy. By using Eq. (2), we can fit the experimental data [Fig. 3(d)], and extract fitting parameters Γinh=32.7±0.4meV, ΓLO=93.3±10.1meV, and ωLO=28.7±1.9meV. Though the Fröhlich interaction is typically more important at high temperatures, where the phonon occupation number is high, at low temperature, LO phonon coupling should show multiple luminescence bands with zero, one, etc., phonon lines in the radiative spectrum. For a PL spectrum at T=10K, we used the sum of two Voigt profiles to account for a zero-phonon band and a one-phonon band [59], as shown in Supplement 1, Fig. S2. The energy difference between the two bands was extracted to be 27.4±2.9meV, which matches the phonon energy obtained from Segall’s equation fitting. LO phonon energy comparisons with other perovskite materials are listed in Supplement 1, Table S1. The extracted phonon energy of Cs0.17FA0.83PbBr3 films is smaller than the exciton binding energy Eb of 43.8 meV, which has the significance that even in the presence of substantive Fröhlich interactions in Cs0.17FA0.83PbBr3 films, LO phonon intermediated exciton dissociation to the free e-h plasma is strongly reduced. The phonon modes in perovskite materials are believed to originate predominantly from halide octahedral vibrations [59,60].

 figure: Fig. 3.

Fig. 3. (a) Spectral lineshapes of absorbance and (b) normalized PL spectra of Cs0.17FA0.83PbBr3 films at different temperatures. (c) Theoretical fit of measured absorption spectrum at room temperature according to Elliott’s model of Wannier excitons, yielding an estimate of exciton binding energy Eb=43.8meV. (d) Theoretical fit of PL FWHM linewidth at different temperatures, which includes contributions from inhomogeneous broadening and electron–LO-phonon coupling (Fröhlich interaction).

Download Full Size | PPT Slide | PDF

Given the robust excitonic feature up to room temperature from Cs0.17FA0.83PbBr3 films, we asked whether exciton effects might also be fundamental and have practical consequences for optical gain. The experiments described above—both absorption (using a halogen white-light lamp) and PL (using a CW source at 3.062 eV with power density of 140mW/cm2) spectra were measured at low electronic injection levels few orders of magnitude below those could generate sizeable optical gain. Under high levels of injection and increased carrier density (ρ1018cm3, which was determined by calculating absorbed photon number per unit volume in each pumping pulse event, assuming one absorbed photon could generate one e-h pair), the Coulomb interaction between electrons and holes (which causes the exciton binding) can be screened [61]. To verify excitons’ persistence at high carrier densities and their capability to create sizeable optical gain, we conducted ultrafast time-resolved TA experiments through a standard pump–probe setup [44] based on an ultrafast Ti:sapphire laser (Supplement 1, Fig. S3).

Upon photoexcitation, a dense population of excitons (bulk equivalent density ρ1017cm3) will be generated, leading to an absorption decrease (i.e., photobleach signal in the TA spectrum) for the probe beam. With even higher level of excitations, the population inversion condition is reached, and we look for stimulated emission with optical gain manifesting in a negative total absorption. Figure 4(a) shows the gain spectroscopy, where the nonlinear probe absorption is the sum of the linear absorption α(ω) (black line, 0μJ/cm2) and nonlinear pump-induced absorption modulation Δα(ω,Δt). In Fig. 4(a), we fix Δt=2ps, that is, the probe pulse reaches the sample 2 ps after the pump pulse, by which the thermalization of the internal exciton bath has taken place [62,63] but prior to any population decay (i.e., radiative exciton recombination, or nonradiative Auger process). The inset in Fig. 4(a) shows the TA signal under excitation energy density of 36.8μJ/cm2. There exists a small photo-induced absorption band on the higher energy side beyond the main exciton bleaching. This photo-induced absorption was investigated by accounting for a possible shifted e-h pair continuum from the bandgap renormalization effect for perovskite materials [63,64]. The total negative value of α(ω)+Δα(ω,Δt) provides a direct measure of optical gain, as shown in Fig. 4(a), which is seen to onset at 2.233eV (i.e., on the lower energy side of the PL spectrum) under equivalent carrier density ρ=6.51×1017cm3. We also estimated the absorption cross section for the excitonic transition to be 6.47×1014cm2 (Supplement 1, Section 5). This value matches other reported numbers for the absorption cross section of perovskite materials [65,66], while it is about 1 order magnitude larger than II–VI colloidal nanocrystals [67,68]. At further higher levels of excitation, the peak position of gain blueshifts due to state filling. Most importantly, the excitonic feature is clearly seen up to carrier density ρ of 2.82×1018cm3 (corresponding to energy density of 36.8μJ/cm2)—above the level when lasing can be reached in a cavity-based structure. We further examined ASE emission from Cs0.17FA0.83PbBr3 films by using a resonant pumping source (2.331 eV, τpulse=0.34ns) to excite the films (Supplement 1, Fig. S4), to give supporting evidence for excitonic gain, here because of the inaccessibility of the free e-h continuum band under the resonant pumping condition. The same blueshifting feature under higher excitations was also observed in the ASE characterizations. Figure 4(b) shows the time-resolved transient absorption at 2.233 eV (i.e., first onset of the optical gain) under various levels of excitation. Here the vertical axis is inverted for clarity, i.e., optical gain happens when Δα(ω0,Δt)/α(ω0)1 (consistent with previous criteria of α(ω0)+Δα(ω0,Δt)0). In contrast to, e.g., II–VI CdSe/CdS colloidal quantum dots [44], we did not observe the fast initial decay (up to density ρ of 2.88×1018cm3)—a signature of the nonradiative Auger recombination that severely depletes the optical gain. Note, however, the difference from colloidal II–VI QDs (diameter 10nm), where the strong electron–hole wavefunction overlap results in Auger processes competing with excitonic radiative recombination. For the perovskite grains (average 79nm in size), the e-h pairs experience considerably milder confinement. The large bandgap of mixed-cation Cs0.17FA0.83PbBr3 films (>2eV) further helps to mitigate the influence of Auger processes. The time window where material optical gain is observed for Cs0.17FA0.83PbBr3 films is 1ns at 13.3μJ/cm2 pump level and >1ns at 37.6μJ/cm2. Because of the polycrystalline nature of our perovskite thin films, nonradiative processes can take place at grain surfaces and boundaries to affect the gain lifetime.

 figure: Fig. 4.

Fig. 4. (a) Nonlinear absorption spectra of Cs0.17FA0.83PbBr3 films under various excitation levels at room temperature with probe pulse arrival delay time Δt=2ps. Linear absorption spectrum obtained in the absence of photoexcitation (0μJ/cm2) is also included (black line). The inset shows the transient absorption spectrum at pump energy density of 36.8μJ/cm2. The onset for optical gain occurs when α+Δα=0 (black arrow) at 2.233eV. (b) Time-resolved transient absorption measured at 2.233 eV (where optical gain first occurs). Here the onset for optical gain is defined when Δα/α=1.

Download Full Size | PPT Slide | PDF

3. LASER EMISSION FROM MIXED-CATION PEROVSKITE THIN FILMS

We next proceeded to fabricate and characterize laser devices from Cs0.17FA0.83PbBr3 films. A VCSEL is a good testbed for serious laser candidate materials due to its inherently short single-pass optical path, thus posing stringent high-gain and low-loss requirements for the active medium and its optical cavity, respectively. Comparing with mechanical stacking of two separate DBRs with optical gain medium in between [11,13], monolithic fabrication of PeVCSELs with a sputtered DBR directly on top of the active medium [14] is advantageous for perovskite materials, as the fabrication automatically provides a hermetic seal to isolate the environmentally sensitive perovskites from the ambient air. As shown by the schematics in Fig. 5(a), we first sputtered 10 pairs of alternating HfO2/SiO2λ/4 stacks as the bottom DBR, with the designed stopband center at a PL peak of 2.289 eV (λ=541.7nm) for maximum coverage of the whole emission spectrum (note the large index contrast between the two dielectric materials, nHfO2=2.07 and nSiO2=1.47). The reflection spectrum of the standalone DBR was measured and showed a good match with the design simulations [Fig. 5(b)]. The finite discrepancy was due to imperfect determination of precise refractive indices and layer thicknesses. The zoom-in figure in Fig. 5(c) demonstrates a maximum reflectivity of 99.5% and a broad high-reflectivity (>99%) spectral window covering 2.145–2.398 eV (517–578 nm) to ensure full coverage of the anticipated optical gain region of mixed-cation Cs0.17FA0.83PbBr3 films.

 figure: Fig. 5.

Fig. 5. (a) Schematic structure of mixed-cation PeVCSEL. The sputtered dielectric DBR stack consists of 10 pairs of HfO2/SiO2. (b) Measured reflectivity spectrum of a standalone HfO2/SiO2 DBR showing a reasonably good match with pre-deposition design simulation. (c) Zoom-in view of the high-reflection band showing peak reflectivity of 99.5%, and a broad spectral window covering from 2.145 eV to 2.398 eV (517–578 nm) wherein reflectivity exceeds 99%. (d) Spontaneous emission from the PeVCSEL device under excitation well below the lasing threshold with a cavity mode peak at 2.244 eV (λ=552.6nm). A Lorentzian profile is used to fit the cavity mode, which leads to a FWHM linewidth of 1.665 meV (Δλ=0.41nm).

Download Full Size | PPT Slide | PDF

After proper hydrophilic surface treatment of the bottom DBR, we deposited the mixed-cation perovskite film on top of it by solution-based spin-casting. The thickness of the film was measured to be d=239.5±9.7nm, corresponding to an 1λ cavity (with refractive index of the perovskite film of 2.3). Right after film fabrication, we transferred the devices back into the sputtering chamber, where the top DBR (with the same structure as the bottom one) was sputtered directly onto the perovskite thin film conformally. To obtain the cold cavity Q factor of the PeVCSELs, we collected the spontaneous emission spectrum of laser devices under excitation well below lasing threshold, which showed a single cavity mode peak at 2.244 eV (λ=552.6nm). By using a Lorentzian profile [69] to fit the cavity mode [Fig. 5(d)], we can extract the cavity mode FWHM linewidth to be 1.665 meV (Δλ=0.41nm), leading to a cold cavity Q=λ/Δλ=1350.

The high-Q laser device was further characterized by using a diode-pumped solid state laser pump (3.493 eV, τpulse=0.34ns, 1 kHz repetition rate). The full lasing characteristics of mixed-cation Cs0.17FA0.83PbBr3-thin-film -based PeVCSELs are summarized in Fig. 6. The simplified schematic of the setup is shown in Fig. 6(a). The pump laser beam was focused onto the PeVCSEL device with a radius of 15μm, and the spatially coherent emission was collected coaxially on the transmission side at the surface normal direction. A long-pass filter was used to block any residue of pump light. Figure 6(b) depicts the double-logarithmic plot of lasing intensity under different pump fluences (solid symbols). The light-out versus light-in (L-L curve) relation exhibits a clear S-shape nonlinear dependence, characteristic of the transition from spontaneous emission via ASE to lasing. The lasing threshold energy density is 13.5±1.4μJ/cm2, together with emission linewidth collapsing, as shown by the empty circles. The threshold energy density corresponds to an equivalent carrier density of ρ=(9.22±0.96)×1017cm3, in a regime where excitons should be the dominant species responsible for optical gain based on the discussion above. This lasing threshold is 30% less than similar PeVCSEL devices using FAPbBr3 thin films as optical gain media [14] under the same pumping conditions. Upon reaching the threshold, a narrow single-mode lasing was observed from the device emission at 2.244 eV (λ=552.5nm), growing super-linearly with higher excitation levels [Fig. 6(c)]. The single mode operation (up to 4 times the lasing threshold) is further demonstrated in a pseudo-color logarithmic plot, as shown in Fig. 6(d), which also shows a background suppression ratio of more than 20 dB. Well-defined spatial coherence can be visualized directly from the near-field images of the PeVCSEL device, as shown in Fig. 6(e). After crossing the threshold, a high-brightness spot emerged, whereas dim and diffuse emission was observed below or near the threshold. A far-field pattern with a fundamental Gaussian beam mode was also characterized under lasing condition [Fig. 6(f)], with transverse (FWHM) divergence angle of 5° extracted from intensity fitting.

 figure: Fig. 6.

Fig. 6. (a) Schematic structure of a vertically pumped PeVCSEL with a long-pass filter to block the pump residue. The pulsed pump source is a compact diode-pumped solid state laser (3.493 eV, τpulse=0.34ns, 1 kHz repetition rate). (b) Device light output with increasing pump fluence expressed in a log–log plot with threshold energy density of 13.5±1.4μJ/cm2. The empty circles record the FWHM linewidth of the emission spectrum. (c) Emission spectra under different excitation levels. Spectrally coherent single-mode lasing at 2.244 eV (λ=552.5nm) with FWHM linewidth of 0.996 meV (Δλ=0.245nm) is observed. (d) Pseudo-color plot of PeVCSEL emission under different levels of excitation in a logarithmic scale demonstrating the single mode operation and large background suppression ratio (>20dB). (e) Near-field images of a device with pump energy densities near and above the threshold. (f) Far-field pattern of PeVCSEL emission, with 5° divergence in the transverse plane. (g) PeVCSEL device (longevity) lifetime measured under the same subnanosecond pumping source at Epump1.5Eth. Green squares monitor the lasing output intensity, while the orange circles track the FWHM linewidth of the emission, indicating persistent lasing operation.

Download Full Size | PPT Slide | PDF

In addition to the pronounced excitonic feature and improved homogeneity that the mixed-cation Cs0.17FA0.83PbBr3 films possess, adding cesium bromide as a precursor also helps to improve the thermal stability of perovskite films, as demonstrated in solar cell devices [42,70]. Using the same testing standard we deployed previously, by setting the pump level at 1.5 times the lasing threshold, we recorded the lasing output and linewidth of Cs0.17FA0.83PbBr3-based PeVCSELs under sustained subnanosecond pulsed pumping (3.493 eV, τpulse=0.34ns, 1 kHz). The results are summarized in Fig. 6(g). Note the time mark of 20h when intensity still has 90% of its original value, and 35h (corresponds to 1.26×108 laser shots) when intensity drops down to 50%. The observed narrow linewidth during the whole testing period confirms the persistence of laser operation. The device lifetime performance here is improved by more than 50% when compared with similar PeVCSEL devices using FAPbBr3 thin films as optical gain media under the same testing conditions [14]. The slow decrease of the lasing intensity presumably has contributions from both the thermal- (e.g., phonon relaxations from excess energy of hot pump photons) and photo-degradation under this sustained pulsed pumping condition. The detailed degradation mechanisms require further studies.

4. CONCLUSION

In this report, we have studied interband transitions in cesium-incorporated mixed-cation Cs0.17FA0.83PbBr3 films by high-resolution spectroscopy as a function of temperature. We have made the case for dominance of excitonic gain from fine grain polycrystalline perovskite films under high electronic injections (by optical pumping), which result in optical gain. By using sputtered dielectric DBRs to embrace the perovskite gain medium and form the vertical cavity, we have successfully utilized the excitonic gain to demonstrate perovskite lasers with improved performance compared with similar structures using pure-cation FAPbBr3 films. This mixed-cation scheme can be applied to other single-halide or mixed-halide perovskites, which might help them to achieve excitonic gain with better emission characteristics. Further work includes exploring the detailed physical mechanism of the microscopic origin of the beneficial role of cesium and finding the optimum cesium composition to optimize optical properties and material stability. We note, however, that excessive amounts of cesium bromide in the precursor solution will severely compromise the film quality under the current solution fabrication method. Finally, the excitonic enhancement of absorption can be potentially used in a resonant (i.e., “cold photon”) pumping regime to mitigate the thermal stress on the films. While resonant pumping is not compatible with the current VCSEL configuration, it can be applied in DFB or photonic crystal cavities that exploit the in-plane feedback.

Funding

U.S. Department of Energy (DOE) (DE-FG02-07ER46387); Air Force Office of Scientific Research (AFOSR) (FA9550-12-1-0488).

Acknowledgment

We thank Dr. Kwangdong Roh, Mr. Shaoran Huang, and Mr. Wenhao Li for useful discussions. We also thank Prof. Domenico Pacifici for sharing a cryogenic measurement setup with us for low temperature experiments.

 

See Supplement 1 for supporting content.

REFERENCES

1. S. D. Stranks and H. J. Snaith, “Metal-halide perovskites for photovoltaic and light-emitting devices,” Nat. Nanotechnol. 10, 391–402 (2015). [CrossRef]  

2. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348, 1234–1237 (2015). [CrossRef]  

3. H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Gratzel, and L. Han, “A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules,” Nature 550, 92–95 (2017). [CrossRef]  

4. “Research Cell Efficiency Records,” National Renewable Energy Laboratory, http://www.nrel.gov/ncpv, accessed June 2018.

5. H. Cho, S. Jeong, M. Park, Y. Kim, C. Wolf, C. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015). [CrossRef]  

6. Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T. Koh, G. D. Scholes, and B. P. Rand, “Efficient perovskite light-emitting diodes featuring nanometer-sized crystallites,” Nat. Photonics 11, 108–115 (2017). [CrossRef]  

7. S. Chen and A. Nurmikko, “Coherent light emitters from solution chemistry: inorganic II-VI nanocrystals and organometallic perovskites,” IEEE J. Sel. Top. Quantum Electron. 23, 1–14 (2017). [CrossRef]  

8. H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015). [CrossRef]  

9. X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, and H. Fu, “Patterning multicolored microdisk laser arrays of cesium lead halide perovskite,” Adv. Mater. 29, 1604510 (2017). [CrossRef]  

10. C. Huang, C. Zou, C. Mao, K. L. Corp, Y. Yao, Y. Lee, C. W. Schlenker, A. K. J. Jen, and L. Y. Lin, “CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability,” ACS Photon. 4, 2281–2289 (2017). [CrossRef]  

11. Y. Wang, X. Li, V. Nalla, H. Zeng, and H. Sun, “Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals,” Adv. Funct. Mater. 27, 1605088 (2017). [CrossRef]  

12. F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillip, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014). [CrossRef]  

13. S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers,” Adv. Mater. 29, 1604781 (2017). [CrossRef]  

14. S. Chen and A. Nurmikko, “Stable green perovskite vertical-cavity surface-emitting lasers on rigid and flexible substrates,” ACS Photon. 4, 2486–2494 (2017). [CrossRef]  

15. S. Chen, W. K. Chong, J. Lee, K. Roh, E. Sari, N. Mathews, T. C. Sum, and A. Nurmikko, “Optically pumped distributed feedback laser from organo-lead iodide perovskite thin films,” in CLEO: Science and Innovations (Optical Society of America, 2015), p. SM2F.6.

16. Y. Jia, R. A. Kerner, A. J. Grede, A. N. Brigeman, B. P. Rand, and N. C. Giebink, “Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator,” Nano Lett. 16, 4624–4629 (2016). [CrossRef]  

17. P. Brenner, M. Stulz, D. Kapp, T. Abzieher, U. W. Paetzold, A. Quintilla, I. A. Howard, H. Kalt, and U. Lemmer, “Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures,” Appl. Phys. Lett. 109, 141106 (2016). [CrossRef]  

18. G. L. Whitworth, J. R. Harwell, D. N. Miller, G. J. Hedley, W. Zhang, H. J. Snaith, G. A. Turnbull, and I. D. W. Samuel, “Nanoimprinted distributed feedback lasers of solution processed hybrid perovskites,” Opt. Express 24, 23677–23684 (2016). [CrossRef]  

19. J. R. Harwell, G. L. Whitworth, G. A. Turnbull, and I. D. W. Samuel, “Green perovskite distributed feedback lasers,” Sci. Rep. 7, 11727 (2017). [CrossRef]  

20. S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10, 3959–3967 (2016). [CrossRef]  

21. H. Cha, S. Bae, M. Lee, and H. Jeon, “Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain,” Appl. Phys. Lett. 108, 181104 (2016). [CrossRef]  

22. N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen, A. Marianovich, W. Kowalsky, R. Heiderhoff, H. C. Scheer, and T. Riedl, “Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites,” Adv. Mater. 29, 1605003 (2017). [CrossRef]  

23. Y. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N. C. Giebink, “Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor,” Nat. Photonics 11, 784–788 (2017). [CrossRef]  

24. T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018). [CrossRef]  

25. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites,” Nat. Phys. 11, 582–587 (2015). [CrossRef]  

26. P. Piatkowski, B. Cohen, C. S. Ponseca, M. Salado, S. Kazim, S. Ahmad, V. Sundstrom, and A. Douhal, “Unravelling charge carriers generation, diffusion, and recombination in formamidinium lead triiodide perovskite polycrystalline thin film,” J. Phys. Chem. Lett. 7, 204–210 (2016). [CrossRef]  

27. C. Wehrenfenning, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 1584–1589 (2014). [CrossRef]  

28. T. J. Savenije, C. S. Ponseca, L. Kunneman, M. Abdellah, K. Zheng, Y. Tian, Q. Zhu, S. E. Canton, I. G. Scheblykin, T. Pullerits, A. Yartsev, and V. Sundstrom, “Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite,” J. Phys. Chem. Lett. 5, 2189–2194 (2014). [CrossRef]  

29. L. Q. Phuong, Y. Yamada, M. Nagai, N. Maruyama, A. Wakamiya, and Y. Kanemitsu, “Free carriers versus excitons in CH3NH3PbI3 perovskite thin films at low temperatures: charge transfer from the orthorhombic phase to the tetragonal phase,” J. Phys. Chem. Lett. 7, 2316–2321 (2016). [CrossRef]  

30. M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014). [CrossRef]  

31. V. D’innocenzo, G. Grancini, M. J. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5, 3586 (2014). [CrossRef]  

32. K. Zheng, Q. Zhu, M. Abdellah, M. E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S. E. Canton, and T. N. Pullerits, “Exciton binding energy and the nature of emissive states in organometal halide perovskites,” J. Phys. Chem. Lett. 6, 2969–2975 (2015). [CrossRef]  

33. M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “Excited state properties of hybrid perovskites,” Acc. Chem. Res. 49, 166–173 (2016). [CrossRef]  

34. K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. T. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors,” Energy Environ. Sci. 9, 962–970 (2016). [CrossRef]  

35. R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures,” Phys. Rev. Lett. 33, 827–830 (1974). [CrossRef]  

36. J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71, 2572–2574 (1997). [CrossRef]  

37. J. Ding, H. Jeon, T. Ishihara, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and stimulated emission in ZnSe-based quantum wells up to room temperature,” Surf. Sci. 267, 616–622 (1992). [CrossRef]  

38. J. Ding, H. Jeon, T. Ishihara, M. Hagerott, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and laser emission in ZnSe-based quantum wells,” Phys. Rev. Lett. 69, 1707–1710 (1992). [CrossRef]  

39. I. G. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, “Charge-separation energy in films of π-conjugated organic molecules,” Chem. Phys. Lett. 327, 181–188 (2000). [CrossRef]  

40. I. H. Campbell, T. W. Hagler, D. L. Smith, and J. P. Ferraris, “Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures,” Phys. Rev. Lett. 76, 1900–1903 (1996). [CrossRef]  

41. D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, “A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells,” Science 351, 151–155 (2016). [CrossRef]  

42. Z. Wang, D. P. McMeekin, N. Sakai, S. V. Reenen, K. Wojciechowski, J. B. Patel, M. B. Johnston, and H. J. Snaith, “Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers,” Adv. Mater. 29, 1604186 (2017). [CrossRef]  

43. E. A. Dias, J. I. Saari, P. Tyagi, and P. Kambhampati, “Improving optical gain performance in semiconductor quantum dots via coupled quantum shells,” J. Phys. Chem. C 116, 5407–5413 (2012). [CrossRef]  

44. K. Roh, J. Lee, C. Dang, and A. Nurmikko, “Spectroscopy of optical gain in low threshold colloidal quantum dots laser media: dominance of single-exciton states at room temperature,” Opt. Mater. Express 6, 3776–3786 (2016). [CrossRef]  

45. C. She, I. Fedin, D. S. Solzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets,” ACS Nano 9, 9475–9485 (2015). [CrossRef]  

46. C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7, 335–339 (2012). [CrossRef]  

47. K. Roh, C. Dang, J. Lee, S. Chen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers,” Opt. Express 22, 18800–18806 (2014). [CrossRef]  

48. J. S. Manser, J. A. Christians, and P. V. Kamat, “Intriguing optoelectronic properties of metal halide perovskites,” Chem. Rev. 116, 12956–13008 (2016). [CrossRef]  

49. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967). [CrossRef]  

50. A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Perez-Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, and L. M. Herz, “Electron-phonon coupling in hybrid lead halide perovskites,” Nat. Commun. 7, 11755 (2016). [CrossRef]  

51. J. Tilchin, D. N. Dirin, G. I. Maikov, A. Sashchiuk, M. V. Kovalenko, and E. Lifshitz, “Hydrogen-like Wannier-Mott excitons in single crystal of methylammonium lead bromide perovskite,” ACS Nano 10, 6363–6371 (2016). [CrossRef]  

52. R. Saran, A. H. Jungemann, A. G. Kanaras, and R. J. Curry, “Giant bandgap renormalization and exciton-phonon scattering in perovskite nanocrystals,” Adv. Opt. Mater. 5, 1700231 (2017). [CrossRef]  

53. F. W. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res. 33, 773–780 (2000). [CrossRef]  

54. K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centers,” Proc. R. Soc. London Ser. A 204, 406–423 (1950). [CrossRef]  

55. M. de Jong, L. Seijo, A. Meijerink, and F. T. Rabouw, “Resolving the ambiguity in the relation between Stokes shift and Huang-Rhys parameter,” Phys. Chem. Chem. Phys. 17, 16959–16969 (2015). [CrossRef]  

56. Y. Guo, O. Yaffe, T. D. Hull, J. S. Owen, D. R. Reichman, and L. E. Brus, “Liquid-like free carrier solvation and band edge luminescence in lead-halide perovskites,” arXiV:1804.01509 (2018).

57. R. Elliott, “Intensity of optical absorption by excitons,” Phys. Rev. 108, 1384–1389 (1957). [CrossRef]  

58. S. Rudin, T. L. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors,” Phys. Rev. B 42, 11218–11231 (1990). [CrossRef]  

59. C. M. Iaru, J. J. Geuchies, P. M. Koenraad, D. Vanmaekelbergh, and A. Y. Silov, “Strong carrier-phonon coupling in lead halide perovskite nanocrystals,” ACS Nano 11, 11024–11030 (2017). [CrossRef]  

60. A. M. A. Leguy, A. R. Goni, J. M. Frost, J. Skelton, F. Brivio, X. Rodrigues, O. J. Weber, A. Pallipurath, M. I. Alonso, M. Campoy, M. T. Weller, J. Nelson, A. Walsh, and P. R. F. Barnes, “Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites,” Phys. Chem. Chem. Phys. 18, 27051–27066 (2016). [CrossRef]  

61. W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985). [CrossRef]  

62. J. M. Richter, F. Branchi, F. V. A. Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8, 376 (2017). [CrossRef]  

63. M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017). [CrossRef]  

64. Y. Yang, D. P. Ostrowski, R. M. France, K. Zhu, J. Lagemaat, J. M. Luther, and M. C. Beard, “Observation of a hot-phonon bottleneck in lead-iodide perovskites,” Nat. Photonics 10, 53–59 (2016). [CrossRef]  

65. S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015). [CrossRef]  

66. J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017). [CrossRef]  

67. C. A. Leatherdale, W. K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002). [CrossRef]  

68. J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, and V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006). [CrossRef]  

69. H. Altug, E. Dirk, and V. Jenela, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006). [CrossRef]  

70. M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and S. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016). [CrossRef]  

References

  • View by:

  1. S. D. Stranks and H. J. Snaith, “Metal-halide perovskites for photovoltaic and light-emitting devices,” Nat. Nanotechnol. 10, 391–402 (2015).
    [Crossref]
  2. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348, 1234–1237 (2015).
    [Crossref]
  3. H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Gratzel, and L. Han, “A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules,” Nature 550, 92–95 (2017).
    [Crossref]
  4. “Research Cell Efficiency Records,” National Renewable Energy Laboratory, http://www.nrel.gov/ncpv , accessed June 2018.
  5. H. Cho, S. Jeong, M. Park, Y. Kim, C. Wolf, C. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
    [Crossref]
  6. Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T. Koh, G. D. Scholes, and B. P. Rand, “Efficient perovskite light-emitting diodes featuring nanometer-sized crystallites,” Nat. Photonics 11, 108–115 (2017).
    [Crossref]
  7. S. Chen and A. Nurmikko, “Coherent light emitters from solution chemistry: inorganic II-VI nanocrystals and organometallic perovskites,” IEEE J. Sel. Top. Quantum Electron. 23, 1–14 (2017).
    [Crossref]
  8. H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
    [Crossref]
  9. X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, and H. Fu, “Patterning multicolored microdisk laser arrays of cesium lead halide perovskite,” Adv. Mater. 29, 1604510 (2017).
    [Crossref]
  10. C. Huang, C. Zou, C. Mao, K. L. Corp, Y. Yao, Y. Lee, C. W. Schlenker, A. K. J. Jen, and L. Y. Lin, “CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability,” ACS Photon. 4, 2281–2289 (2017).
    [Crossref]
  11. Y. Wang, X. Li, V. Nalla, H. Zeng, and H. Sun, “Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals,” Adv. Funct. Mater. 27, 1605088 (2017).
    [Crossref]
  12. F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillip, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
    [Crossref]
  13. S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers,” Adv. Mater. 29, 1604781 (2017).
    [Crossref]
  14. S. Chen and A. Nurmikko, “Stable green perovskite vertical-cavity surface-emitting lasers on rigid and flexible substrates,” ACS Photon. 4, 2486–2494 (2017).
    [Crossref]
  15. S. Chen, W. K. Chong, J. Lee, K. Roh, E. Sari, N. Mathews, T. C. Sum, and A. Nurmikko, “Optically pumped distributed feedback laser from organo-lead iodide perovskite thin films,” in CLEO: Science and Innovations (Optical Society of America, 2015), p. SM2F.6.
  16. Y. Jia, R. A. Kerner, A. J. Grede, A. N. Brigeman, B. P. Rand, and N. C. Giebink, “Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator,” Nano Lett. 16, 4624–4629 (2016).
    [Crossref]
  17. P. Brenner, M. Stulz, D. Kapp, T. Abzieher, U. W. Paetzold, A. Quintilla, I. A. Howard, H. Kalt, and U. Lemmer, “Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures,” Appl. Phys. Lett. 109, 141106 (2016).
    [Crossref]
  18. G. L. Whitworth, J. R. Harwell, D. N. Miller, G. J. Hedley, W. Zhang, H. J. Snaith, G. A. Turnbull, and I. D. W. Samuel, “Nanoimprinted distributed feedback lasers of solution processed hybrid perovskites,” Opt. Express 24, 23677–23684 (2016).
    [Crossref]
  19. J. R. Harwell, G. L. Whitworth, G. A. Turnbull, and I. D. W. Samuel, “Green perovskite distributed feedback lasers,” Sci. Rep. 7, 11727 (2017).
    [Crossref]
  20. S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10, 3959–3967 (2016).
    [Crossref]
  21. H. Cha, S. Bae, M. Lee, and H. Jeon, “Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain,” Appl. Phys. Lett. 108, 181104 (2016).
    [Crossref]
  22. N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen, A. Marianovich, W. Kowalsky, R. Heiderhoff, H. C. Scheer, and T. Riedl, “Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites,” Adv. Mater. 29, 1605003 (2017).
    [Crossref]
  23. Y. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N. C. Giebink, “Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor,” Nat. Photonics 11, 784–788 (2017).
    [Crossref]
  24. T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
    [Crossref]
  25. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites,” Nat. Phys. 11, 582–587 (2015).
    [Crossref]
  26. P. Piatkowski, B. Cohen, C. S. Ponseca, M. Salado, S. Kazim, S. Ahmad, V. Sundstrom, and A. Douhal, “Unravelling charge carriers generation, diffusion, and recombination in formamidinium lead triiodide perovskite polycrystalline thin film,” J. Phys. Chem. Lett. 7, 204–210 (2016).
    [Crossref]
  27. C. Wehrenfenning, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 1584–1589 (2014).
    [Crossref]
  28. T. J. Savenije, C. S. Ponseca, L. Kunneman, M. Abdellah, K. Zheng, Y. Tian, Q. Zhu, S. E. Canton, I. G. Scheblykin, T. Pullerits, A. Yartsev, and V. Sundstrom, “Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite,” J. Phys. Chem. Lett. 5, 2189–2194 (2014).
    [Crossref]
  29. L. Q. Phuong, Y. Yamada, M. Nagai, N. Maruyama, A. Wakamiya, and Y. Kanemitsu, “Free carriers versus excitons in CH3NH3PbI3 perovskite thin films at low temperatures: charge transfer from the orthorhombic phase to the tetragonal phase,” J. Phys. Chem. Lett. 7, 2316–2321 (2016).
    [Crossref]
  30. M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
    [Crossref]
  31. V. D’innocenzo, G. Grancini, M. J. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5, 3586 (2014).
    [Crossref]
  32. K. Zheng, Q. Zhu, M. Abdellah, M. E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S. E. Canton, and T. N. Pullerits, “Exciton binding energy and the nature of emissive states in organometal halide perovskites,” J. Phys. Chem. Lett. 6, 2969–2975 (2015).
    [Crossref]
  33. M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “Excited state properties of hybrid perovskites,” Acc. Chem. Res. 49, 166–173 (2016).
    [Crossref]
  34. K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. T. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors,” Energy Environ. Sci. 9, 962–970 (2016).
    [Crossref]
  35. R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures,” Phys. Rev. Lett. 33, 827–830 (1974).
    [Crossref]
  36. J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71, 2572–2574 (1997).
    [Crossref]
  37. J. Ding, H. Jeon, T. Ishihara, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and stimulated emission in ZnSe-based quantum wells up to room temperature,” Surf. Sci. 267, 616–622 (1992).
    [Crossref]
  38. J. Ding, H. Jeon, T. Ishihara, M. Hagerott, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and laser emission in ZnSe-based quantum wells,” Phys. Rev. Lett. 69, 1707–1710 (1992).
    [Crossref]
  39. I. G. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, “Charge-separation energy in films of π-conjugated organic molecules,” Chem. Phys. Lett. 327, 181–188 (2000).
    [Crossref]
  40. I. H. Campbell, T. W. Hagler, D. L. Smith, and J. P. Ferraris, “Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures,” Phys. Rev. Lett. 76, 1900–1903 (1996).
    [Crossref]
  41. D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, “A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells,” Science 351, 151–155 (2016).
    [Crossref]
  42. Z. Wang, D. P. McMeekin, N. Sakai, S. V. Reenen, K. Wojciechowski, J. B. Patel, M. B. Johnston, and H. J. Snaith, “Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers,” Adv. Mater. 29, 1604186 (2017).
    [Crossref]
  43. E. A. Dias, J. I. Saari, P. Tyagi, and P. Kambhampati, “Improving optical gain performance in semiconductor quantum dots via coupled quantum shells,” J. Phys. Chem. C 116, 5407–5413 (2012).
    [Crossref]
  44. K. Roh, J. Lee, C. Dang, and A. Nurmikko, “Spectroscopy of optical gain in low threshold colloidal quantum dots laser media: dominance of single-exciton states at room temperature,” Opt. Mater. Express 6, 3776–3786 (2016).
    [Crossref]
  45. C. She, I. Fedin, D. S. Solzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets,” ACS Nano 9, 9475–9485 (2015).
    [Crossref]
  46. C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7, 335–339 (2012).
    [Crossref]
  47. K. Roh, C. Dang, J. Lee, S. Chen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers,” Opt. Express 22, 18800–18806 (2014).
    [Crossref]
  48. J. S. Manser, J. A. Christians, and P. V. Kamat, “Intriguing optoelectronic properties of metal halide perovskites,” Chem. Rev. 116, 12956–13008 (2016).
    [Crossref]
  49. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
    [Crossref]
  50. A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Perez-Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, and L. M. Herz, “Electron-phonon coupling in hybrid lead halide perovskites,” Nat. Commun. 7, 11755 (2016).
    [Crossref]
  51. J. Tilchin, D. N. Dirin, G. I. Maikov, A. Sashchiuk, M. V. Kovalenko, and E. Lifshitz, “Hydrogen-like Wannier-Mott excitons in single crystal of methylammonium lead bromide perovskite,” ACS Nano 10, 6363–6371 (2016).
    [Crossref]
  52. R. Saran, A. H. Jungemann, A. G. Kanaras, and R. J. Curry, “Giant bandgap renormalization and exciton-phonon scattering in perovskite nanocrystals,” Adv. Opt. Mater. 5, 1700231 (2017).
    [Crossref]
  53. F. W. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res. 33, 773–780 (2000).
    [Crossref]
  54. K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centers,” Proc. R. Soc. London Ser. A 204, 406–423 (1950).
    [Crossref]
  55. M. de Jong, L. Seijo, A. Meijerink, and F. T. Rabouw, “Resolving the ambiguity in the relation between Stokes shift and Huang-Rhys parameter,” Phys. Chem. Chem. Phys. 17, 16959–16969 (2015).
    [Crossref]
  56. Y. Guo, O. Yaffe, T. D. Hull, J. S. Owen, D. R. Reichman, and L. E. Brus, “Liquid-like free carrier solvation and band edge luminescence in lead-halide perovskites,” arXiV:1804.01509 (2018).
  57. R. Elliott, “Intensity of optical absorption by excitons,” Phys. Rev. 108, 1384–1389 (1957).
    [Crossref]
  58. S. Rudin, T. L. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors,” Phys. Rev. B 42, 11218–11231 (1990).
    [Crossref]
  59. C. M. Iaru, J. J. Geuchies, P. M. Koenraad, D. Vanmaekelbergh, and A. Y. Silov, “Strong carrier-phonon coupling in lead halide perovskite nanocrystals,” ACS Nano 11, 11024–11030 (2017).
    [Crossref]
  60. A. M. A. Leguy, A. R. Goni, J. M. Frost, J. Skelton, F. Brivio, X. Rodrigues, O. J. Weber, A. Pallipurath, M. I. Alonso, M. Campoy, M. T. Weller, J. Nelson, A. Walsh, and P. R. F. Barnes, “Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites,” Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).
    [Crossref]
  61. W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
    [Crossref]
  62. J. M. Richter, F. Branchi, F. V. A. Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8, 376 (2017).
    [Crossref]
  63. M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
    [Crossref]
  64. Y. Yang, D. P. Ostrowski, R. M. France, K. Zhu, J. Lagemaat, J. M. Luther, and M. C. Beard, “Observation of a hot-phonon bottleneck in lead-iodide perovskites,” Nat. Photonics 10, 53–59 (2016).
    [Crossref]
  65. S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
    [Crossref]
  66. J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
    [Crossref]
  67. C. A. Leatherdale, W. K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
    [Crossref]
  68. J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, and V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
    [Crossref]
  69. H. Altug, E. Dirk, and V. Jenela, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
    [Crossref]
  70. M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and S. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
    [Crossref]

2018 (1)

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

2017 (17)

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T. Koh, G. D. Scholes, and B. P. Rand, “Efficient perovskite light-emitting diodes featuring nanometer-sized crystallites,” Nat. Photonics 11, 108–115 (2017).
[Crossref]

Z. Wang, D. P. McMeekin, N. Sakai, S. V. Reenen, K. Wojciechowski, J. B. Patel, M. B. Johnston, and H. J. Snaith, “Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers,” Adv. Mater. 29, 1604186 (2017).
[Crossref]

C. Huang, C. Zou, C. Mao, K. L. Corp, Y. Yao, Y. Lee, C. W. Schlenker, A. K. J. Jen, and L. Y. Lin, “CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability,” ACS Photon. 4, 2281–2289 (2017).
[Crossref]

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers,” Adv. Mater. 29, 1604781 (2017).
[Crossref]

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

Y. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N. C. Giebink, “Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor,” Nat. Photonics 11, 784–788 (2017).
[Crossref]

C. M. Iaru, J. J. Geuchies, P. M. Koenraad, D. Vanmaekelbergh, and A. Y. Silov, “Strong carrier-phonon coupling in lead halide perovskite nanocrystals,” ACS Nano 11, 11024–11030 (2017).
[Crossref]

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

J. R. Harwell, G. L. Whitworth, G. A. Turnbull, and I. D. W. Samuel, “Green perovskite distributed feedback lasers,” Sci. Rep. 7, 11727 (2017).
[Crossref]

Y. Wang, X. Li, V. Nalla, H. Zeng, and H. Sun, “Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals,” Adv. Funct. Mater. 27, 1605088 (2017).
[Crossref]

J. M. Richter, F. Branchi, F. V. A. Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8, 376 (2017).
[Crossref]

S. Chen and A. Nurmikko, “Coherent light emitters from solution chemistry: inorganic II-VI nanocrystals and organometallic perovskites,” IEEE J. Sel. Top. Quantum Electron. 23, 1–14 (2017).
[Crossref]

X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, and H. Fu, “Patterning multicolored microdisk laser arrays of cesium lead halide perovskite,” Adv. Mater. 29, 1604510 (2017).
[Crossref]

S. Chen and A. Nurmikko, “Stable green perovskite vertical-cavity surface-emitting lasers on rigid and flexible substrates,” ACS Photon. 4, 2486–2494 (2017).
[Crossref]

H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Gratzel, and L. Han, “A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules,” Nature 550, 92–95 (2017).
[Crossref]

N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen, A. Marianovich, W. Kowalsky, R. Heiderhoff, H. C. Scheer, and T. Riedl, “Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites,” Adv. Mater. 29, 1605003 (2017).
[Crossref]

R. Saran, A. H. Jungemann, A. G. Kanaras, and R. J. Curry, “Giant bandgap renormalization and exciton-phonon scattering in perovskite nanocrystals,” Adv. Opt. Mater. 5, 1700231 (2017).
[Crossref]

2016 (17)

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10, 3959–3967 (2016).
[Crossref]

Y. Jia, R. A. Kerner, A. J. Grede, A. N. Brigeman, B. P. Rand, and N. C. Giebink, “Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator,” Nano Lett. 16, 4624–4629 (2016).
[Crossref]

G. L. Whitworth, J. R. Harwell, D. N. Miller, G. J. Hedley, W. Zhang, H. J. Snaith, G. A. Turnbull, and I. D. W. Samuel, “Nanoimprinted distributed feedback lasers of solution processed hybrid perovskites,” Opt. Express 24, 23677–23684 (2016).
[Crossref]

D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, “A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells,” Science 351, 151–155 (2016).
[Crossref]

J. S. Manser, J. A. Christians, and P. V. Kamat, “Intriguing optoelectronic properties of metal halide perovskites,” Chem. Rev. 116, 12956–13008 (2016).
[Crossref]

A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Perez-Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, and L. M. Herz, “Electron-phonon coupling in hybrid lead halide perovskites,” Nat. Commun. 7, 11755 (2016).
[Crossref]

K. Roh, J. Lee, C. Dang, and A. Nurmikko, “Spectroscopy of optical gain in low threshold colloidal quantum dots laser media: dominance of single-exciton states at room temperature,” Opt. Mater. Express 6, 3776–3786 (2016).
[Crossref]

L. Q. Phuong, Y. Yamada, M. Nagai, N. Maruyama, A. Wakamiya, and Y. Kanemitsu, “Free carriers versus excitons in CH3NH3PbI3 perovskite thin films at low temperatures: charge transfer from the orthorhombic phase to the tetragonal phase,” J. Phys. Chem. Lett. 7, 2316–2321 (2016).
[Crossref]

P. Piatkowski, B. Cohen, C. S. Ponseca, M. Salado, S. Kazim, S. Ahmad, V. Sundstrom, and A. Douhal, “Unravelling charge carriers generation, diffusion, and recombination in formamidinium lead triiodide perovskite polycrystalline thin film,” J. Phys. Chem. Lett. 7, 204–210 (2016).
[Crossref]

M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “Excited state properties of hybrid perovskites,” Acc. Chem. Res. 49, 166–173 (2016).
[Crossref]

J. Tilchin, D. N. Dirin, G. I. Maikov, A. Sashchiuk, M. V. Kovalenko, and E. Lifshitz, “Hydrogen-like Wannier-Mott excitons in single crystal of methylammonium lead bromide perovskite,” ACS Nano 10, 6363–6371 (2016).
[Crossref]

H. Cha, S. Bae, M. Lee, and H. Jeon, “Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain,” Appl. Phys. Lett. 108, 181104 (2016).
[Crossref]

M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and S. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
[Crossref]

K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. T. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors,” Energy Environ. Sci. 9, 962–970 (2016).
[Crossref]

Y. Yang, D. P. Ostrowski, R. M. France, K. Zhu, J. Lagemaat, J. M. Luther, and M. C. Beard, “Observation of a hot-phonon bottleneck in lead-iodide perovskites,” Nat. Photonics 10, 53–59 (2016).
[Crossref]

A. M. A. Leguy, A. R. Goni, J. M. Frost, J. Skelton, F. Brivio, X. Rodrigues, O. J. Weber, A. Pallipurath, M. I. Alonso, M. Campoy, M. T. Weller, J. Nelson, A. Walsh, and P. R. F. Barnes, “Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites,” Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).
[Crossref]

P. Brenner, M. Stulz, D. Kapp, T. Abzieher, U. W. Paetzold, A. Quintilla, I. A. Howard, H. Kalt, and U. Lemmer, “Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures,” Appl. Phys. Lett. 109, 141106 (2016).
[Crossref]

2015 (9)

C. She, I. Fedin, D. S. Solzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets,” ACS Nano 9, 9475–9485 (2015).
[Crossref]

A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites,” Nat. Phys. 11, 582–587 (2015).
[Crossref]

K. Zheng, Q. Zhu, M. Abdellah, M. E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S. E. Canton, and T. N. Pullerits, “Exciton binding energy and the nature of emissive states in organometal halide perovskites,” J. Phys. Chem. Lett. 6, 2969–2975 (2015).
[Crossref]

M. de Jong, L. Seijo, A. Meijerink, and F. T. Rabouw, “Resolving the ambiguity in the relation between Stokes shift and Huang-Rhys parameter,” Phys. Chem. Chem. Phys. 17, 16959–16969 (2015).
[Crossref]

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348, 1234–1237 (2015).
[Crossref]

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

S. D. Stranks and H. J. Snaith, “Metal-halide perovskites for photovoltaic and light-emitting devices,” Nat. Nanotechnol. 10, 391–402 (2015).
[Crossref]

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

H. Cho, S. Jeong, M. Park, Y. Kim, C. Wolf, C. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

2014 (6)

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillip, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

K. Roh, C. Dang, J. Lee, S. Chen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers,” Opt. Express 22, 18800–18806 (2014).
[Crossref]

C. Wehrenfenning, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 1584–1589 (2014).
[Crossref]

T. J. Savenije, C. S. Ponseca, L. Kunneman, M. Abdellah, K. Zheng, Y. Tian, Q. Zhu, S. E. Canton, I. G. Scheblykin, T. Pullerits, A. Yartsev, and V. Sundstrom, “Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite,” J. Phys. Chem. Lett. 5, 2189–2194 (2014).
[Crossref]

V. D’innocenzo, G. Grancini, M. J. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5, 3586 (2014).
[Crossref]

2012 (2)

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7, 335–339 (2012).
[Crossref]

E. A. Dias, J. I. Saari, P. Tyagi, and P. Kambhampati, “Improving optical gain performance in semiconductor quantum dots via coupled quantum shells,” J. Phys. Chem. C 116, 5407–5413 (2012).
[Crossref]

2006 (2)

H. Altug, E. Dirk, and V. Jenela, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, and V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
[Crossref]

2002 (1)

C. A. Leatherdale, W. K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
[Crossref]

2000 (2)

F. W. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res. 33, 773–780 (2000).
[Crossref]

I. G. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, “Charge-separation energy in films of π-conjugated organic molecules,” Chem. Phys. Lett. 327, 181–188 (2000).
[Crossref]

1997 (1)

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71, 2572–2574 (1997).
[Crossref]

1996 (1)

I. H. Campbell, T. W. Hagler, D. L. Smith, and J. P. Ferraris, “Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures,” Phys. Rev. Lett. 76, 1900–1903 (1996).
[Crossref]

1992 (2)

J. Ding, H. Jeon, T. Ishihara, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and stimulated emission in ZnSe-based quantum wells up to room temperature,” Surf. Sci. 267, 616–622 (1992).
[Crossref]

J. Ding, H. Jeon, T. Ishihara, M. Hagerott, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and laser emission in ZnSe-based quantum wells,” Phys. Rev. Lett. 69, 1707–1710 (1992).
[Crossref]

1990 (1)

S. Rudin, T. L. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors,” Phys. Rev. B 42, 11218–11231 (1990).
[Crossref]

1985 (1)

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
[Crossref]

1974 (1)

R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures,” Phys. Rev. Lett. 33, 827–830 (1974).
[Crossref]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]

1957 (1)

R. Elliott, “Intensity of optical absorption by excitons,” Phys. Rev. 108, 1384–1389 (1957).
[Crossref]

1950 (1)

K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centers,” Proc. R. Soc. London Ser. A 204, 406–423 (1950).
[Crossref]

Abdellah, M.

K. Zheng, Q. Zhu, M. Abdellah, M. E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S. E. Canton, and T. N. Pullerits, “Exciton binding energy and the nature of emissive states in organometal halide perovskites,” J. Phys. Chem. Lett. 6, 2969–2975 (2015).
[Crossref]

T. J. Savenije, C. S. Ponseca, L. Kunneman, M. Abdellah, K. Zheng, Y. Tian, Q. Zhu, S. E. Canton, I. G. Scheblykin, T. Pullerits, A. Yartsev, and V. Sundstrom, “Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite,” J. Phys. Chem. Lett. 5, 2189–2194 (2014).
[Crossref]

Abzieher, T.

P. Brenner, M. Stulz, D. Kapp, T. Abzieher, U. W. Paetzold, A. Quintilla, I. A. Howard, H. Kalt, and U. Lemmer, “Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures,” Appl. Phys. Lett. 109, 141106 (2016).
[Crossref]

Ahmad, S.

P. Piatkowski, B. Cohen, C. S. Ponseca, M. Salado, S. Kazim, S. Ahmad, V. Sundstrom, and A. Douhal, “Unravelling charge carriers generation, diffusion, and recombination in formamidinium lead triiodide perovskite polycrystalline thin film,” J. Phys. Chem. Lett. 7, 204–210 (2016).
[Crossref]

Alcocer, M. J.

V. D’innocenzo, G. Grancini, M. J. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5, 3586 (2014).
[Crossref]

Al-Marri, M. J.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

Alonso, M. I.

A. M. A. Leguy, A. R. Goni, J. M. Frost, J. Skelton, F. Brivio, X. Rodrigues, O. J. Weber, A. Pallipurath, M. I. Alonso, M. Campoy, M. T. Weller, J. Nelson, A. Walsh, and P. R. F. Barnes, “Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites,” Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).
[Crossref]

Altug, H.

H. Altug, E. Dirk, and V. Jenela, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

Aresti, M.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Atallah, T. L.

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

Atature, M.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillip, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Bae, S.

H. Cha, S. Bae, M. Lee, and H. Jeon, “Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain,” Appl. Phys. Lett. 108, 181104 (2016).
[Crossref]

Barnes, P. R. F.

A. M. A. Leguy, A. R. Goni, J. M. Frost, J. Skelton, F. Brivio, X. Rodrigues, O. J. Weber, A. Pallipurath, M. I. Alonso, M. Campoy, M. T. Weller, J. Nelson, A. Walsh, and P. R. F. Barnes, “Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites,” Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).
[Crossref]

Bawendi, M. G.

C. A. Leatherdale, W. K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
[Crossref]

Beard, M. C.

Y. Yang, D. P. Ostrowski, R. M. France, K. Zhu, J. Lagemaat, J. M. Luther, and M. C. Beard, “Observation of a hot-phonon bottleneck in lead-iodide perovskites,” Nat. Photonics 10, 53–59 (2016).
[Crossref]

Bendikov, T.

M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and S. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
[Crossref]

Bezel, I.

J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, and V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
[Crossref]

Bhaumik, S.

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

Bi, E.

H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Gratzel, and L. Han, “A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules,” Nature 550, 92–95 (2017).
[Crossref]

Bodnarchuk, M. I.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

Bongiovanni, G.

M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “Excited state properties of hybrid perovskites,” Acc. Chem. Res. 49, 166–173 (2016).
[Crossref]

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Branchi, F.

J. M. Richter, F. Branchi, F. V. A. Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8, 376 (2017).
[Crossref]

Breen, C.

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7, 335–339 (2012).
[Crossref]

Brenner, P.

P. Brenner, M. Stulz, D. Kapp, T. Abzieher, U. W. Paetzold, A. Quintilla, I. A. Howard, H. Kalt, and U. Lemmer, “Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures,” Appl. Phys. Lett. 109, 141106 (2016).
[Crossref]

Brigeman, A. N.

Y. Jia, R. A. Kerner, A. J. Grede, A. N. Brigeman, B. P. Rand, and N. C. Giebink, “Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator,” Nano Lett. 16, 4624–4629 (2016).
[Crossref]

Brivio, F.

A. M. A. Leguy, A. R. Goni, J. M. Frost, J. Skelton, F. Brivio, X. Rodrigues, O. J. Weber, A. Pallipurath, M. I. Alonso, M. Campoy, M. T. Weller, J. Nelson, A. Walsh, and P. R. F. Barnes, “Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites,” Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).
[Crossref]

Brus, L. E.

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

Y. Guo, O. Yaffe, T. D. Hull, J. S. Owen, D. R. Reichman, and L. E. Brus, “Liquid-like free carrier solvation and band edge luminescence in lead-halide perovskites,” arXiV:1804.01509 (2018).

Cadelano, M.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Cahen, S.

M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and S. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
[Crossref]

Camargo, F. V. A.

J. M. Richter, F. Branchi, F. V. A. Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8, 376 (2017).
[Crossref]

Campbell, I. H.

I. H. Campbell, T. W. Hagler, D. L. Smith, and J. P. Ferraris, “Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures,” Phys. Rev. Lett. 76, 1900–1903 (1996).
[Crossref]

Campoy, M.

A. M. A. Leguy, A. R. Goni, J. M. Frost, J. Skelton, F. Brivio, X. Rodrigues, O. J. Weber, A. Pallipurath, M. I. Alonso, M. Campoy, M. T. Weller, J. Nelson, A. Walsh, and P. R. F. Barnes, “Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites,” Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).
[Crossref]

Cannas, C.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Canton, S. E.

K. Zheng, Q. Zhu, M. Abdellah, M. E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S. E. Canton, and T. N. Pullerits, “Exciton binding energy and the nature of emissive states in organometal halide perovskites,” J. Phys. Chem. Lett. 6, 2969–2975 (2015).
[Crossref]

T. J. Savenije, C. S. Ponseca, L. Kunneman, M. Abdellah, K. Zheng, Y. Tian, Q. Zhu, S. E. Canton, I. G. Scheblykin, T. Pullerits, A. Yartsev, and V. Sundstrom, “Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite,” J. Phys. Chem. Lett. 5, 2189–2194 (2014).
[Crossref]

Casey, H. C.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71, 2572–2574 (1997).
[Crossref]

Cerullo, G.

J. M. Richter, F. Branchi, F. V. A. Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8, 376 (2017).
[Crossref]

Cha, H.

H. Cha, S. Bae, M. Lee, and H. Jeon, “Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain,” Appl. Phys. Lett. 108, 181104 (2016).
[Crossref]

Chabera, P.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

Chemla, D. S.

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
[Crossref]

Chen, F.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Chen, H.

H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Gratzel, and L. Han, “A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules,” Nature 550, 92–95 (2017).
[Crossref]

Chen, J.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

Chen, S.

S. Chen and A. Nurmikko, “Coherent light emitters from solution chemistry: inorganic II-VI nanocrystals and organometallic perovskites,” IEEE J. Sel. Top. Quantum Electron. 23, 1–14 (2017).
[Crossref]

S. Chen and A. Nurmikko, “Stable green perovskite vertical-cavity surface-emitting lasers on rigid and flexible substrates,” ACS Photon. 4, 2486–2494 (2017).
[Crossref]

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers,” Adv. Mater. 29, 1604781 (2017).
[Crossref]

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10, 3959–3967 (2016).
[Crossref]

K. Roh, C. Dang, J. Lee, S. Chen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers,” Opt. Express 22, 18800–18806 (2014).
[Crossref]

S. Chen, W. K. Chong, J. Lee, K. Roh, E. Sari, N. Mathews, T. C. Sum, and A. Nurmikko, “Optically pumped distributed feedback laser from organo-lead iodide perovskite thin films,” in CLEO: Science and Innovations (Optical Society of America, 2015), p. SM2F.6.

Chen, Y.

N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen, A. Marianovich, W. Kowalsky, R. Heiderhoff, H. C. Scheer, and T. Riedl, “Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites,” Adv. Mater. 29, 1605003 (2017).
[Crossref]

Cheng, P.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

Cho, H.

H. Cho, S. Jeong, M. Park, Y. Kim, C. Wolf, C. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Chong, W. K.

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10, 3959–3967 (2016).
[Crossref]

S. Chen, W. K. Chong, J. Lee, K. Roh, E. Sari, N. Mathews, T. C. Sum, and A. Nurmikko, “Optically pumped distributed feedback laser from organo-lead iodide perovskite thin films,” in CLEO: Science and Innovations (Optical Society of America, 2015), p. SM2F.6.

Christians, J. A.

J. S. Manser, J. A. Christians, and P. V. Kamat, “Intriguing optoelectronic properties of metal halide perovskites,” Chem. Rev. 116, 12956–13008 (2016).
[Crossref]

Coe-Sullivan, S.

K. Roh, C. Dang, J. Lee, S. Chen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers,” Opt. Express 22, 18800–18806 (2014).
[Crossref]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7, 335–339 (2012).
[Crossref]

Cohen, B.

P. Piatkowski, B. Cohen, C. S. Ponseca, M. Salado, S. Kazim, S. Ahmad, V. Sundstrom, and A. Douhal, “Unravelling charge carriers generation, diffusion, and recombination in formamidinium lead triiodide perovskite polycrystalline thin film,” J. Phys. Chem. Lett. 7, 204–210 (2016).
[Crossref]

Corp, K. L.

C. Huang, C. Zou, C. Mao, K. L. Corp, Y. Yao, Y. Lee, C. W. Schlenker, A. K. J. Jen, and L. Y. Lin, “CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability,” ACS Photon. 4, 2281–2289 (2017).
[Crossref]

Curry, R. J.

R. Saran, A. H. Jungemann, A. G. Kanaras, and R. J. Curry, “Giant bandgap renormalization and exciton-phonon scattering in perovskite nanocrystals,” Adv. Opt. Mater. 5, 1700231 (2017).
[Crossref]

D’innocenzo, V.

V. D’innocenzo, G. Grancini, M. J. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5, 3586 (2014).
[Crossref]

Dahlberg, P. D.

C. She, I. Fedin, D. S. Solzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets,” ACS Nano 9, 9475–9485 (2015).
[Crossref]

Dang, C.

de Jong, M.

M. de Jong, L. Seijo, A. Meijerink, and F. T. Rabouw, “Resolving the ambiguity in the relation between Stokes shift and Huang-Rhys parameter,” Phys. Chem. Chem. Phys. 17, 16959–16969 (2015).
[Crossref]

DenBaars, S. P.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71, 2572–2574 (1997).
[Crossref]

Deschler, F.

J. M. Richter, F. Branchi, F. V. A. Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8, 376 (2017).
[Crossref]

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillip, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Dias, E. A.

E. A. Dias, J. I. Saari, P. Tyagi, and P. Kambhampati, “Improving optical gain performance in semiconductor quantum dots via coupled quantum shells,” J. Phys. Chem. C 116, 5407–5413 (2012).
[Crossref]

Ding, J.

J. Ding, H. Jeon, T. Ishihara, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and stimulated emission in ZnSe-based quantum wells up to room temperature,” Surf. Sci. 267, 616–622 (1992).
[Crossref]

J. Ding, H. Jeon, T. Ishihara, M. Hagerott, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and laser emission in ZnSe-based quantum wells,” Phys. Rev. Lett. 69, 1707–1710 (1992).
[Crossref]

Ding, Q.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Dingle, R.

R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures,” Phys. Rev. Lett. 33, 827–830 (1974).
[Crossref]

Dirin, D. N.

J. Tilchin, D. N. Dirin, G. I. Maikov, A. Sashchiuk, M. V. Kovalenko, and E. Lifshitz, “Hydrogen-like Wannier-Mott excitons in single crystal of methylammonium lead bromide perovskite,” ACS Nano 10, 6363–6371 (2016).
[Crossref]

Dirk, E.

H. Altug, E. Dirk, and V. Jenela, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

Douhal, A.

P. Piatkowski, B. Cohen, C. S. Ponseca, M. Salado, S. Kazim, S. Ahmad, V. Sundstrom, and A. Douhal, “Unravelling charge carriers generation, diffusion, and recombination in formamidinium lead triiodide perovskite polycrystalline thin film,” J. Phys. Chem. Lett. 7, 204–210 (2016).
[Crossref]

Downer, M. C.

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
[Crossref]

Elliott, R.

R. Elliott, “Intensity of optical absorption by excitons,” Phys. Rev. 108, 1384–1389 (1957).
[Crossref]

Engel, G. S.

C. She, I. Fedin, D. S. Solzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets,” ACS Nano 9, 9475–9485 (2015).
[Crossref]

Eperon, G. E.

D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, “A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells,” Science 351, 151–155 (2016).
[Crossref]

A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Perez-Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, and L. M. Herz, “Electron-phonon coupling in hybrid lead halide perovskites,” Nat. Commun. 7, 11755 (2016).
[Crossref]

K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. T. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors,” Energy Environ. Sci. 9, 962–970 (2016).
[Crossref]

C. Wehrenfenning, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 1584–1589 (2014).
[Crossref]

Evans, T. J. S.

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

Fedin, I.

C. She, I. Fedin, D. S. Solzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets,” ACS Nano 9, 9475–9485 (2015).
[Crossref]

Ferraris, J. P.

I. H. Campbell, T. W. Hagler, D. L. Smith, and J. P. Ferraris, “Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures,” Phys. Rev. Lett. 76, 1900–1903 (1996).
[Crossref]

Fiebig, M.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

Figus, C.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Fork, R. L.

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
[Crossref]

France, R. M.

Y. Yang, D. P. Ostrowski, R. M. France, K. Zhu, J. Lagemaat, J. M. Luther, and M. C. Beard, “Observation of a hot-phonon bottleneck in lead-iodide perovskites,” Nat. Photonics 10, 53–59 (2016).
[Crossref]

Friend, R. H.

J. M. Richter, F. Branchi, F. V. A. Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8, 376 (2017).
[Crossref]

H. Cho, S. Jeong, M. Park, Y. Kim, C. Wolf, C. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillip, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Frost, J. M.

A. M. A. Leguy, A. R. Goni, J. M. Frost, J. Skelton, F. Brivio, X. Rodrigues, O. J. Weber, A. Pallipurath, M. I. Alonso, M. Campoy, M. T. Weller, J. Nelson, A. Walsh, and P. R. F. Barnes, “Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites,” Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).
[Crossref]

Fu, H.

X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, and H. Fu, “Patterning multicolored microdisk laser arrays of cesium lead halide perovskite,” Adv. Mater. 29, 1604510 (2017).
[Crossref]

Fu, Y.

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Furdyna, J.

J. Ding, H. Jeon, T. Ishihara, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and stimulated emission in ZnSe-based quantum wells up to room temperature,” Surf. Sci. 267, 616–622 (1992).
[Crossref]

J. Ding, H. Jeon, T. Ishihara, M. Hagerott, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and laser emission in ZnSe-based quantum wells,” Phys. Rev. Lett. 69, 1707–1710 (1992).
[Crossref]

Galkowski, K.

K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. T. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors,” Energy Environ. Sci. 9, 962–970 (2016).
[Crossref]

Generalov, A.

K. Zheng, Q. Zhu, M. Abdellah, M. E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S. E. Canton, and T. N. Pullerits, “Exciton binding energy and the nature of emissive states in organometal halide perovskites,” J. Phys. Chem. Lett. 6, 2969–2975 (2015).
[Crossref]

Geuchies, J. J.

C. M. Iaru, J. J. Geuchies, P. M. Koenraad, D. Vanmaekelbergh, and A. Y. Silov, “Strong carrier-phonon coupling in lead halide perovskite nanocrystals,” ACS Nano 11, 11024–11030 (2017).
[Crossref]

Giebink, N. C.

Y. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N. C. Giebink, “Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor,” Nat. Photonics 11, 784–788 (2017).
[Crossref]

Y. Jia, R. A. Kerner, A. J. Grede, A. N. Brigeman, B. P. Rand, and N. C. Giebink, “Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator,” Nano Lett. 16, 4624–4629 (2016).
[Crossref]

Giustino, F.

A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Perez-Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, and L. M. Herz, “Electron-phonon coupling in hybrid lead halide perovskites,” Nat. Commun. 7, 11755 (2016).
[Crossref]

Goh, T. W.

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

Gong, Z.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Goni, A. R.

A. M. A. Leguy, A. R. Goni, J. M. Frost, J. Skelton, F. Brivio, X. Rodrigues, O. J. Weber, A. Pallipurath, M. I. Alonso, M. Campoy, M. T. Weller, J. Nelson, A. Walsh, and P. R. F. Barnes, “Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites,” Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).
[Crossref]

Gossard, A. C.

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
[Crossref]

Grancini, G.

V. D’innocenzo, G. Grancini, M. J. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5, 3586 (2014).
[Crossref]

Gratzel, M.

H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Gratzel, and L. Han, “A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules,” Nature 550, 92–95 (2017).
[Crossref]

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

Grede, A. J.

Y. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N. C. Giebink, “Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor,” Nat. Photonics 11, 784–788 (2017).
[Crossref]

Y. Jia, R. A. Kerner, A. J. Grede, A. N. Brigeman, B. P. Rand, and N. C. Giebink, “Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator,” Nano Lett. 16, 4624–4629 (2016).
[Crossref]

Guo, Y.

Y. Guo, O. Yaffe, T. D. Hull, J. S. Owen, D. R. Reichman, and L. E. Brus, “Liquid-like free carrier solvation and band edge luminescence in lead-halide perovskites,” arXiV:1804.01509 (2018).

Gupta, S.

M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and S. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
[Crossref]

Gustafsson, M. V.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Hagerott, M.

J. Ding, H. Jeon, T. Ishihara, M. Hagerott, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and laser emission in ZnSe-based quantum wells,” Phys. Rev. Lett. 69, 1707–1710 (1992).
[Crossref]

Haghighirad, A.

D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, “A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells,” Science 351, 151–155 (2016).
[Crossref]

Hagler, T. W.

I. H. Campbell, T. W. Hagler, D. L. Smith, and J. P. Ferraris, “Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures,” Phys. Rev. Lett. 76, 1900–1903 (1996).
[Crossref]

Han, J.

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers,” Adv. Mater. 29, 1604781 (2017).
[Crossref]

Han, K.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

Han, L.

H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Gratzel, and L. Han, “A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules,” Nature 550, 92–95 (2017).
[Crossref]

Harwell, J. R.

He, J.

H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Gratzel, and L. Han, “A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules,” Nature 550, 92–95 (2017).
[Crossref]

He, X.

X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, and H. Fu, “Patterning multicolored microdisk laser arrays of cesium lead halide perovskite,” Adv. Mater. 29, 1604510 (2017).
[Crossref]

Hedley, G. J.

Heiderhoff, R.

N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen, A. Marianovich, W. Kowalsky, R. Heiderhoff, H. C. Scheer, and T. Riedl, “Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites,” Adv. Mater. 29, 1605003 (2017).
[Crossref]

Heiss, W.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

Henry, C. H.

R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures,” Phys. Rev. Lett. 33, 827–830 (1974).
[Crossref]

Heo, J. H.

H. Cho, S. Jeong, M. Park, Y. Kim, C. Wolf, C. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Herz, L. M.

D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, “A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells,” Science 351, 151–155 (2016).
[Crossref]

A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Perez-Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, and L. M. Herz, “Electron-phonon coupling in hybrid lead halide perovskites,” Nat. Commun. 7, 11755 (2016).
[Crossref]

C. Wehrenfenning, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 1584–1589 (2014).
[Crossref]

Higler, R.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillip, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Hill, I. G.

I. G. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, “Charge-separation energy in films of π-conjugated organic molecules,” Chem. Phys. Lett. 327, 181–188 (2000).
[Crossref]

Hodes, G.

M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and S. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
[Crossref]

Horantner, M. T.

D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, “A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells,” Science 351, 151–155 (2016).
[Crossref]

Howard, I. A.

P. Brenner, M. Stulz, D. Kapp, T. Abzieher, U. W. Paetzold, A. Quintilla, I. A. Howard, H. Kalt, and U. Lemmer, “Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures,” Appl. Phys. Lett. 109, 141106 (2016).
[Crossref]

Htoon, H.

J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, and V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
[Crossref]

Hu, T.

N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen, A. Marianovich, W. Kowalsky, R. Heiderhoff, H. C. Scheer, and T. Riedl, “Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites,” Adv. Mater. 29, 1605003 (2017).
[Crossref]

Huang, C.

C. Huang, C. Zou, C. Mao, K. L. Corp, Y. Yao, Y. Lee, C. W. Schlenker, A. K. J. Jen, and L. Y. Lin, “CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability,” ACS Photon. 4, 2281–2289 (2017).
[Crossref]

Huang, K.

K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centers,” Proc. R. Soc. London Ser. A 204, 406–423 (1950).
[Crossref]

Hull, T. D.

Y. Guo, O. Yaffe, T. D. Hull, J. S. Owen, D. R. Reichman, and L. E. Brus, “Liquid-like free carrier solvation and band edge luminescence in lead-halide perovskites,” arXiV:1804.01509 (2018).

Humer, M.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

Huttner, S.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillip, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Iaru, C. M.

C. M. Iaru, J. J. Geuchies, P. M. Koenraad, D. Vanmaekelbergh, and A. Y. Silov, “Strong carrier-phonon coupling in lead halide perovskite nanocrystals,” ACS Nano 11, 11024–11030 (2017).
[Crossref]

Im, S. H.

H. Cho, S. Jeong, M. Park, Y. Kim, C. Wolf, C. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Ishihara, T.

J. Ding, H. Jeon, T. Ishihara, M. Hagerott, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and laser emission in ZnSe-based quantum wells,” Phys. Rev. Lett. 69, 1707–1710 (1992).
[Crossref]

J. Ding, H. Jeon, T. Ishihara, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and stimulated emission in ZnSe-based quantum wells up to room temperature,” Surf. Sci. 267, 616–622 (1992).
[Crossref]

Ivanov, S. A.

J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, and V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
[Crossref]

Jarausch, D. D.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillip, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Jen, A. K. J.

C. Huang, C. Zou, C. Mao, K. L. Corp, Y. Yao, Y. Lee, C. W. Schlenker, A. K. J. Jen, and L. Y. Lin, “CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability,” ACS Photon. 4, 2281–2289 (2017).
[Crossref]

Jenela, V.

H. Altug, E. Dirk, and V. Jenela, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

Jeon, H.

H. Cha, S. Bae, M. Lee, and H. Jeon, “Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain,” Appl. Phys. Lett. 108, 181104 (2016).
[Crossref]

J. Ding, H. Jeon, T. Ishihara, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and stimulated emission in ZnSe-based quantum wells up to room temperature,” Surf. Sci. 267, 616–622 (1992).
[Crossref]

J. Ding, H. Jeon, T. Ishihara, M. Hagerott, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and laser emission in ZnSe-based quantum wells,” Phys. Rev. Lett. 69, 1707–1710 (1992).
[Crossref]

Jeon, N. J.

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348, 1234–1237 (2015).
[Crossref]

Jeong, S.

H. Cho, S. Jeong, M. Park, Y. Kim, C. Wolf, C. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Jia, Y.

Y. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N. C. Giebink, “Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor,” Nat. Photonics 11, 784–788 (2017).
[Crossref]

Y. Jia, R. A. Kerner, A. J. Grede, A. N. Brigeman, B. P. Rand, and N. C. Giebink, “Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator,” Nano Lett. 16, 4624–4629 (2016).
[Crossref]

Jin, S.

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Johnston, M. B.

Z. Wang, D. P. McMeekin, N. Sakai, S. V. Reenen, K. Wojciechowski, J. B. Patel, M. B. Johnston, and H. J. Snaith, “Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers,” Adv. Mater. 29, 1604186 (2017).
[Crossref]

D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, “A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells,” Science 351, 151–155 (2016).
[Crossref]

A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Perez-Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, and L. M. Herz, “Electron-phonon coupling in hybrid lead halide perovskites,” Nat. Commun. 7, 11755 (2016).
[Crossref]

C. Wehrenfenning, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 1584–1589 (2014).
[Crossref]

Jungemann, A. H.

R. Saran, A. H. Jungemann, A. G. Kanaras, and R. J. Curry, “Giant bandgap renormalization and exciton-phonon scattering in perovskite nanocrystals,” Adv. Opt. Mater. 5, 1700231 (2017).
[Crossref]

Kahn, A.

I. G. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, “Charge-separation energy in films of π-conjugated organic molecules,” Chem. Phys. Lett. 327, 181–188 (2000).
[Crossref]

Kalt, H.

P. Brenner, M. Stulz, D. Kapp, T. Abzieher, U. W. Paetzold, A. Quintilla, I. A. Howard, H. Kalt, and U. Lemmer, “Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures,” Appl. Phys. Lett. 109, 141106 (2016).
[Crossref]

Kamat, P. V.

J. S. Manser, J. A. Christians, and P. V. Kamat, “Intriguing optoelectronic properties of metal halide perovskites,” Chem. Rev. 116, 12956–13008 (2016).
[Crossref]

Kambhampati, P.

E. A. Dias, J. I. Saari, P. Tyagi, and P. Kambhampati, “Improving optical gain performance in semiconductor quantum dots via coupled quantum shells,” J. Phys. Chem. C 116, 5407–5413 (2012).
[Crossref]

Kanaras, A. G.

R. Saran, A. H. Jungemann, A. G. Kanaras, and R. J. Curry, “Giant bandgap renormalization and exciton-phonon scattering in perovskite nanocrystals,” Adv. Opt. Mater. 5, 1700231 (2017).
[Crossref]

Kandada, A. R. S.

V. D’innocenzo, G. Grancini, M. J. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5, 3586 (2014).
[Crossref]

Kanemitsu, Y.

L. Q. Phuong, Y. Yamada, M. Nagai, N. Maruyama, A. Wakamiya, and Y. Kanemitsu, “Free carriers versus excitons in CH3NH3PbI3 perovskite thin films at low temperatures: charge transfer from the orthorhombic phase to the tetragonal phase,” J. Phys. Chem. Lett. 7, 2316–2321 (2016).
[Crossref]

Kapp, D.

P. Brenner, M. Stulz, D. Kapp, T. Abzieher, U. W. Paetzold, A. Quintilla, I. A. Howard, H. Kalt, and U. Lemmer, “Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures,” Appl. Phys. Lett. 109, 141106 (2016).
[Crossref]

Kazim, S.

P. Piatkowski, B. Cohen, C. S. Ponseca, M. Salado, S. Kazim, S. Ahmad, V. Sundstrom, and A. Douhal, “Unravelling charge carriers generation, diffusion, and recombination in formamidinium lead triiodide perovskite polycrystalline thin film,” J. Phys. Chem. Lett. 7, 204–210 (2016).
[Crossref]

Kedem, N.

M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and S. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
[Crossref]

Keller, B. P.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71, 2572–2574 (1997).
[Crossref]

Kerner, R. A.

Y. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N. C. Giebink, “Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor,” Nat. Photonics 11, 784–788 (2017).
[Crossref]

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T. Koh, G. D. Scholes, and B. P. Rand, “Efficient perovskite light-emitting diodes featuring nanometer-sized crystallites,” Nat. Photonics 11, 108–115 (2017).
[Crossref]

Y. Jia, R. A. Kerner, A. J. Grede, A. N. Brigeman, B. P. Rand, and N. C. Giebink, “Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator,” Nano Lett. 16, 4624–4629 (2016).
[Crossref]

Kim, Y.

H. Cho, S. Jeong, M. Park, Y. Kim, C. Wolf, C. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Kim, Y. C.

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348, 1234–1237 (2015).
[Crossref]

Klimov, V. I.

J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, and V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
[Crossref]

Klintberg, L. E.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillip, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Knox, W. H.

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
[Crossref]

Koenraad, P. M.

C. M. Iaru, J. J. Geuchies, P. M. Koenraad, D. Vanmaekelbergh, and A. Y. Silov, “Strong carrier-phonon coupling in lead halide perovskite nanocrystals,” ACS Nano 11, 11024–11030 (2017).
[Crossref]

Koh, T.

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T. Koh, G. D. Scholes, and B. P. Rand, “Efficient perovskite light-emitting diodes featuring nanometer-sized crystallites,” Nat. Photonics 11, 108–115 (2017).
[Crossref]

Kolbas, R. M.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71, 2572–2574 (1997).
[Crossref]

Korte, L.

D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, “A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells,” Science 351, 151–155 (2016).
[Crossref]

Kovalenko, M. V.

J. Tilchin, D. N. Dirin, G. I. Maikov, A. Sashchiuk, M. V. Kovalenko, and E. Lifshitz, “Hydrogen-like Wannier-Mott excitons in single crystal of methylammonium lead bromide perovskite,” ACS Nano 10, 6363–6371 (2016).
[Crossref]

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

Kowalsky, W.

N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen, A. Marianovich, W. Kowalsky, R. Heiderhoff, H. C. Scheer, and T. Riedl, “Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites,” Adv. Mater. 29, 1605003 (2017).
[Crossref]

Krieg, F.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

Kulbak, M.

M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and S. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
[Crossref]

Kumar, M. S.

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

Kunneman, L.

T. J. Savenije, C. S. Ponseca, L. Kunneman, M. Abdellah, K. Zheng, Y. Tian, Q. Zhu, S. E. Canton, I. G. Scheblykin, T. Pullerits, A. Yartsev, and V. Sundstrom, “Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite,” J. Phys. Chem. Lett. 5, 2189–2194 (2014).
[Crossref]

Lagemaat, J.

Y. Yang, D. P. Ostrowski, R. M. France, K. Zhu, J. Lagemaat, J. M. Luther, and M. C. Beard, “Observation of a hot-phonon bottleneck in lead-iodide perovskites,” Nat. Photonics 10, 53–59 (2016).
[Crossref]

Lanzani, G.

V. D’innocenzo, G. Grancini, M. J. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5, 3586 (2014).
[Crossref]

Leatherdale, C. A.

C. A. Leatherdale, W. K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
[Crossref]

Lee, C.

H. Cho, S. Jeong, M. Park, Y. Kim, C. Wolf, C. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Lee, J.

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers,” Adv. Mater. 29, 1604781 (2017).
[Crossref]

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10, 3959–3967 (2016).
[Crossref]

K. Roh, J. Lee, C. Dang, and A. Nurmikko, “Spectroscopy of optical gain in low threshold colloidal quantum dots laser media: dominance of single-exciton states at room temperature,” Opt. Mater. Express 6, 3776–3786 (2016).
[Crossref]

K. Roh, C. Dang, J. Lee, S. Chen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers,” Opt. Express 22, 18800–18806 (2014).
[Crossref]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7, 335–339 (2012).
[Crossref]

S. Chen, W. K. Chong, J. Lee, K. Roh, E. Sari, N. Mathews, T. C. Sum, and A. Nurmikko, “Optically pumped distributed feedback laser from organo-lead iodide perovskite thin films,” in CLEO: Science and Innovations (Optical Society of America, 2015), p. SM2F.6.

Lee, J. H.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71, 2572–2574 (1997).
[Crossref]

Lee, K. M.

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T. Koh, G. D. Scholes, and B. P. Rand, “Efficient perovskite light-emitting diodes featuring nanometer-sized crystallites,” Nat. Photonics 11, 108–115 (2017).
[Crossref]

Lee, M.

H. Cha, S. Bae, M. Lee, and H. Jeon, “Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain,” Appl. Phys. Lett. 108, 181104 (2016).
[Crossref]

Lee, M. M.

V. D’innocenzo, G. Grancini, M. J. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5, 3586 (2014).
[Crossref]

Lee, T.

H. Cho, S. Jeong, M. Park, Y. Kim, C. Wolf, C. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Lee, Y.

C. Huang, C. Zou, C. Mao, K. L. Corp, Y. Yao, Y. Lee, C. W. Schlenker, A. K. J. Jen, and L. Y. Lin, “CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability,” ACS Photon. 4, 2281–2289 (2017).
[Crossref]

Leguy, A. M. A.

A. M. A. Leguy, A. R. Goni, J. M. Frost, J. Skelton, F. Brivio, X. Rodrigues, O. J. Weber, A. Pallipurath, M. I. Alonso, M. Campoy, M. T. Weller, J. Nelson, A. Walsh, and P. R. F. Barnes, “Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites,” Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).
[Crossref]

Lehmann, A. G.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Lehtivuori, H.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

Leijtens, T.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillip, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Lemmer, U.

P. Brenner, M. Stulz, D. Kapp, T. Abzieher, U. W. Paetzold, A. Quintilla, I. A. Howard, H. Kalt, and U. Lemmer, “Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures,” Appl. Phys. Lett. 109, 141106 (2016).
[Crossref]

Levine, I.

M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and S. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
[Crossref]

Li, M.

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

Li, X.

Y. Wang, X. Li, V. Nalla, H. Zeng, and H. Sun, “Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals,” Adv. Funct. Mater. 27, 1605088 (2017).
[Crossref]

Liao, Q.

X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, and H. Fu, “Patterning multicolored microdisk laser arrays of cesium lead halide perovskite,” Adv. Mater. 29, 1604510 (2017).
[Crossref]

Lifshitz, E.

J. Tilchin, D. N. Dirin, G. I. Maikov, A. Sashchiuk, M. V. Kovalenko, and E. Lifshitz, “Hydrogen-like Wannier-Mott excitons in single crystal of methylammonium lead bromide perovskite,” ACS Nano 10, 6363–6371 (2016).
[Crossref]

Lin, L. Y.

C. Huang, C. Zou, C. Mao, K. L. Corp, Y. Yao, Y. Lee, C. W. Schlenker, A. K. J. Jen, and L. Y. Lin, “CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability,” ACS Photon. 4, 2281–2289 (2017).
[Crossref]

Liu, D.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

Liu, P.

X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, and H. Fu, “Patterning multicolored microdisk laser arrays of cesium lead halide perovskite,” Adv. Mater. 29, 1604510 (2017).
[Crossref]

Lu, Y.

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10, 3959–3967 (2016).
[Crossref]

Luca, G. D.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

Luo, H.

J. Ding, H. Jeon, T. Ishihara, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and stimulated emission in ZnSe-based quantum wells up to room temperature,” Surf. Sci. 267, 616–622 (1992).
[Crossref]

J. Ding, H. Jeon, T. Ishihara, M. Hagerott, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and laser emission in ZnSe-based quantum wells,” Phys. Rev. Lett. 69, 1707–1710 (1992).
[Crossref]

Luther, J. M.

Y. Yang, D. P. Ostrowski, R. M. France, K. Zhu, J. Lagemaat, J. M. Luther, and M. C. Beard, “Observation of a hot-phonon bottleneck in lead-iodide perovskites,” Nat. Photonics 10, 53–59 (2016).
[Crossref]

Maikov, G. I.

J. Tilchin, D. N. Dirin, G. I. Maikov, A. Sashchiuk, M. V. Kovalenko, and E. Lifshitz, “Hydrogen-like Wannier-Mott excitons in single crystal of methylammonium lead bromide perovskite,” ACS Nano 10, 6363–6371 (2016).
[Crossref]

Manser, J. S.

J. S. Manser, J. A. Christians, and P. V. Kamat, “Intriguing optoelectronic properties of metal halide perovskites,” Chem. Rev. 116, 12956–13008 (2016).
[Crossref]

Mao, C.

C. Huang, C. Zou, C. Mao, K. L. Corp, Y. Yao, Y. Lee, C. W. Schlenker, A. K. J. Jen, and L. Y. Lin, “CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability,” ACS Photon. 4, 2281–2289 (2017).
[Crossref]

Marianovich, A.

N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen, A. Marianovich, W. Kowalsky, R. Heiderhoff, H. C. Scheer, and T. Riedl, “Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites,” Adv. Mater. 29, 1605003 (2017).
[Crossref]

Marongiu, D.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Maruyama, N.

L. Q. Phuong, Y. Yamada, M. Nagai, N. Maruyama, A. Wakamiya, and Y. Kanemitsu, “Free carriers versus excitons in CH3NH3PbI3 perovskite thin films at low temperatures: charge transfer from the orthorhombic phase to the tetragonal phase,” J. Phys. Chem. Lett. 7, 2316–2321 (2016).
[Crossref]

Mathews, N.

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10, 3959–3967 (2016).
[Crossref]

S. Chen, W. K. Chong, J. Lee, K. Roh, E. Sari, N. Mathews, T. C. Sum, and A. Nurmikko, “Optically pumped distributed feedback laser from organo-lead iodide perovskite thin films,” in CLEO: Science and Innovations (Optical Society of America, 2015), p. SM2F.6.

Mayer, A.

N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen, A. Marianovich, W. Kowalsky, R. Heiderhoff, H. C. Scheer, and T. Riedl, “Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites,” Adv. Mater. 29, 1605003 (2017).
[Crossref]

McMeekin, D. P.

Z. Wang, D. P. McMeekin, N. Sakai, S. V. Reenen, K. Wojciechowski, J. B. Patel, M. B. Johnston, and H. J. Snaith, “Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers,” Adv. Mater. 29, 1604186 (2017).
[Crossref]

D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, “A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells,” Science 351, 151–155 (2016).
[Crossref]

Meijerink, A.

M. de Jong, L. Seijo, A. Meijerink, and F. T. Rabouw, “Resolving the ambiguity in the relation between Stokes shift and Huang-Rhys parameter,” Phys. Chem. Chem. Phys. 17, 16959–16969 (2015).
[Crossref]

Meng, F.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Messing, M. E.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

K. Zheng, Q. Zhu, M. Abdellah, M. E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S. E. Canton, and T. N. Pullerits, “Exciton binding energy and the nature of emissive states in organometal halide perovskites,” J. Phys. Chem. Lett. 6, 2969–2975 (2015).
[Crossref]

Mhaisalkar, S.

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

Mikulec, F. V.

C. A. Leatherdale, W. K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
[Crossref]

Miller, D. A. B.

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
[Crossref]

Miller, D. N.

Milot, R. L.

A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Perez-Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, and L. M. Herz, “Electron-phonon coupling in hybrid lead halide perovskites,” Nat. Commun. 7, 11755 (2016).
[Crossref]

Mishra, U. K.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71, 2572–2574 (1997).
[Crossref]

Mitioglu, A.

K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. T. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors,” Energy Environ. Sci. 9, 962–970 (2016).
[Crossref]

A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites,” Nat. Phys. 11, 582–587 (2015).
[Crossref]

Miyata, A.

K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. T. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors,” Energy Environ. Sci. 9, 962–970 (2016).
[Crossref]

A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites,” Nat. Phys. 11, 582–587 (2015).
[Crossref]

Mura, A.

M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “Excited state properties of hybrid perovskites,” Acc. Chem. Res. 49, 166–173 (2016).
[Crossref]

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Musinu, A.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Muth, J. F.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71, 2572–2574 (1997).
[Crossref]

Myoung, N.

H. Cho, S. Jeong, M. Park, Y. Kim, C. Wolf, C. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Nagai, M.

L. Q. Phuong, Y. Yamada, M. Nagai, N. Maruyama, A. Wakamiya, and Y. Kanemitsu, “Free carriers versus excitons in CH3NH3PbI3 perovskite thin films at low temperatures: charge transfer from the orthorhombic phase to the tetragonal phase,” J. Phys. Chem. Lett. 7, 2316–2321 (2016).
[Crossref]

Nalla, V.

Y. Wang, X. Li, V. Nalla, H. Zeng, and H. Sun, “Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals,” Adv. Funct. Mater. 27, 1605088 (2017).
[Crossref]

Nanda, J.

J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, and V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
[Crossref]

Nedelcu, G.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

Nelson, J.

A. M. A. Leguy, A. R. Goni, J. M. Frost, J. Skelton, F. Brivio, X. Rodrigues, O. J. Weber, A. Pallipurath, M. I. Alonso, M. Campoy, M. T. Weller, J. Nelson, A. Walsh, and P. R. F. Barnes, “Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites,” Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).
[Crossref]

Nicholas, R. J.

K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. T. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors,” Energy Environ. Sci. 9, 962–970 (2016).
[Crossref]

A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites,” Nat. Phys. 11, 582–587 (2015).
[Crossref]

Niu, Y.

K. Zheng, Q. Zhu, M. Abdellah, M. E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S. E. Canton, and T. N. Pullerits, “Exciton binding energy and the nature of emissive states in organometal halide perovskites,” J. Phys. Chem. Lett. 6, 2969–2975 (2015).
[Crossref]

Noh, J. H.

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348, 1234–1237 (2015).
[Crossref]

Nurmikko, A.

S. Chen and A. Nurmikko, “Coherent light emitters from solution chemistry: inorganic II-VI nanocrystals and organometallic perovskites,” IEEE J. Sel. Top. Quantum Electron. 23, 1–14 (2017).
[Crossref]

S. Chen and A. Nurmikko, “Stable green perovskite vertical-cavity surface-emitting lasers on rigid and flexible substrates,” ACS Photon. 4, 2486–2494 (2017).
[Crossref]

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers,” Adv. Mater. 29, 1604781 (2017).
[Crossref]

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10, 3959–3967 (2016).
[Crossref]

K. Roh, J. Lee, C. Dang, and A. Nurmikko, “Spectroscopy of optical gain in low threshold colloidal quantum dots laser media: dominance of single-exciton states at room temperature,” Opt. Mater. Express 6, 3776–3786 (2016).
[Crossref]

K. Roh, C. Dang, J. Lee, S. Chen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers,” Opt. Express 22, 18800–18806 (2014).
[Crossref]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7, 335–339 (2012).
[Crossref]

J. Ding, H. Jeon, T. Ishihara, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and stimulated emission in ZnSe-based quantum wells up to room temperature,” Surf. Sci. 267, 616–622 (1992).
[Crossref]

J. Ding, H. Jeon, T. Ishihara, M. Hagerott, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and laser emission in ZnSe-based quantum wells,” Phys. Rev. Lett. 69, 1707–1710 (1992).
[Crossref]

S. Chen, W. K. Chong, J. Lee, K. Roh, E. Sari, N. Mathews, T. C. Sum, and A. Nurmikko, “Optically pumped distributed feedback laser from organo-lead iodide perovskite thin films,” in CLEO: Science and Innovations (Optical Society of America, 2015), p. SM2F.6.

Nuuttila, L.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

Ostrowski, D. P.

Y. Yang, D. P. Ostrowski, R. M. France, K. Zhu, J. Lagemaat, J. M. Luther, and M. C. Beard, “Observation of a hot-phonon bottleneck in lead-iodide perovskites,” Nat. Photonics 10, 53–59 (2016).
[Crossref]

Owen, J. S.

Y. Guo, O. Yaffe, T. D. Hull, J. S. Owen, D. R. Reichman, and L. E. Brus, “Liquid-like free carrier solvation and band edge luminescence in lead-halide perovskites,” arXiV:1804.01509 (2018).

Paetzold, U. W.

P. Brenner, M. Stulz, D. Kapp, T. Abzieher, U. W. Paetzold, A. Quintilla, I. A. Howard, H. Kalt, and U. Lemmer, “Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures,” Appl. Phys. Lett. 109, 141106 (2016).
[Crossref]

Pallipurath, A.

A. M. A. Leguy, A. R. Goni, J. M. Frost, J. Skelton, F. Brivio, X. Rodrigues, O. J. Weber, A. Pallipurath, M. I. Alonso, M. Campoy, M. T. Weller, J. Nelson, A. Walsh, and P. R. F. Barnes, “Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites,” Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).
[Crossref]

Park, M.

H. Cho, S. Jeong, M. Park, Y. Kim, C. Wolf, C. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Pascal, R. A.

I. G. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, “Charge-separation energy in films of π-conjugated organic molecules,” Chem. Phys. Lett. 327, 181–188 (2000).
[Crossref]

Patel, J. B.

Z. Wang, D. P. McMeekin, N. Sakai, S. V. Reenen, K. Wojciechowski, J. B. Patel, M. B. Johnston, and H. J. Snaith, “Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers,” Adv. Mater. 29, 1604186 (2017).
[Crossref]

Pathak, S.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillip, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Perez-Osorio, M. A.

A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Perez-Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, and L. M. Herz, “Electron-phonon coupling in hybrid lead halide perovskites,” Nat. Commun. 7, 11755 (2016).
[Crossref]

Petrozza, A.

V. D’innocenzo, G. Grancini, M. J. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5, 3586 (2014).
[Crossref]

Phillip, R. T.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillip, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Phuong, L. Q.

L. Q. Phuong, Y. Yamada, M. Nagai, N. Maruyama, A. Wakamiya, and Y. Kanemitsu, “Free carriers versus excitons in CH3NH3PbI3 perovskite thin films at low temperatures: charge transfer from the orthorhombic phase to the tetragonal phase,” J. Phys. Chem. Lett. 7, 2316–2321 (2016).
[Crossref]

Piatkowski, P.

P. Piatkowski, B. Cohen, C. S. Ponseca, M. Salado, S. Kazim, S. Ahmad, V. Sundstrom, and A. Douhal, “Unravelling charge carriers generation, diffusion, and recombination in formamidinium lead triiodide perovskite polycrystalline thin film,” J. Phys. Chem. Lett. 7, 204–210 (2016).
[Crossref]

Piras, R.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Piryatinski, A.

J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, and V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
[Crossref]

Plochocka, P.

K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. T. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors,” Energy Environ. Sci. 9, 962–970 (2016).
[Crossref]

A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites,” Nat. Phys. 11, 582–587 (2015).
[Crossref]

Ponseca, C. S.

P. Piatkowski, B. Cohen, C. S. Ponseca, M. Salado, S. Kazim, S. Ahmad, V. Sundstrom, and A. Douhal, “Unravelling charge carriers generation, diffusion, and recombination in formamidinium lead triiodide perovskite polycrystalline thin film,” J. Phys. Chem. Lett. 7, 204–210 (2016).
[Crossref]

T. J. Savenije, C. S. Ponseca, L. Kunneman, M. Abdellah, K. Zheng, Y. Tian, Q. Zhu, S. E. Canton, I. G. Scheblykin, T. Pullerits, A. Yartsev, and V. Sundstrom, “Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite,” J. Phys. Chem. Lett. 5, 2189–2194 (2014).
[Crossref]

Portugall, O.

K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. T. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors,” Energy Environ. Sci. 9, 962–970 (2016).
[Crossref]

A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites,” Nat. Phys. 11, 582–587 (2015).
[Crossref]

Pourdavoud, N.

N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen, A. Marianovich, W. Kowalsky, R. Heiderhoff, H. C. Scheer, and T. Riedl, “Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites,” Adv. Mater. 29, 1605003 (2017).
[Crossref]

Price, M.

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillip, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Protesescu, L.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

Pullerits, T.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

T. J. Savenije, C. S. Ponseca, L. Kunneman, M. Abdellah, K. Zheng, Y. Tian, Q. Zhu, S. E. Canton, I. G. Scheblykin, T. Pullerits, A. Yartsev, and V. Sundstrom, “Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite,” J. Phys. Chem. Lett. 5, 2189–2194 (2014).
[Crossref]

Pullerits, T. N.

K. Zheng, Q. Zhu, M. Abdellah, M. E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S. E. Canton, and T. N. Pullerits, “Exciton binding energy and the nature of emissive states in organometal halide perovskites,” J. Phys. Chem. Lett. 6, 2969–2975 (2015).
[Crossref]

Quintilla, A.

P. Brenner, M. Stulz, D. Kapp, T. Abzieher, U. W. Paetzold, A. Quintilla, I. A. Howard, H. Kalt, and U. Lemmer, “Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures,” Appl. Phys. Lett. 109, 141106 (2016).
[Crossref]

Quochi, F.

M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “Excited state properties of hybrid perovskites,” Acc. Chem. Res. 49, 166–173 (2016).
[Crossref]

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Rabouw, F. T.

M. de Jong, L. Seijo, A. Meijerink, and F. T. Rabouw, “Resolving the ambiguity in the relation between Stokes shift and Huang-Rhys parameter,” Phys. Chem. Chem. Phys. 17, 16959–16969 (2015).
[Crossref]

Rand, B. P.

Y. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N. C. Giebink, “Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor,” Nat. Photonics 11, 784–788 (2017).
[Crossref]

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T. Koh, G. D. Scholes, and B. P. Rand, “Efficient perovskite light-emitting diodes featuring nanometer-sized crystallites,” Nat. Photonics 11, 108–115 (2017).
[Crossref]

Y. Jia, R. A. Kerner, A. J. Grede, A. N. Brigeman, B. P. Rand, and N. C. Giebink, “Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator,” Nano Lett. 16, 4624–4629 (2016).
[Crossref]

Rech, B.

D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, “A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells,” Science 351, 151–155 (2016).
[Crossref]

Reenen, S. V.

Z. Wang, D. P. McMeekin, N. Sakai, S. V. Reenen, K. Wojciechowski, J. B. Patel, M. B. Johnston, and H. J. Snaith, “Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers,” Adv. Mater. 29, 1604186 (2017).
[Crossref]

Rehman, W.

D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, “A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells,” Science 351, 151–155 (2016).
[Crossref]

Reichman, D. R.

Y. Guo, O. Yaffe, T. D. Hull, J. S. Owen, D. R. Reichman, and L. E. Brus, “Liquid-like free carrier solvation and band edge luminescence in lead-halide perovskites,” arXiV:1804.01509 (2018).

Reinecke, T. L.

S. Rudin, T. L. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors,” Phys. Rev. B 42, 11218–11231 (1990).
[Crossref]

Rhys, A.

K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centers,” Proc. R. Soc. London Ser. A 204, 406–423 (1950).
[Crossref]

Ribaud, L.

K. Zheng, Q. Zhu, M. Abdellah, M. E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S. E. Canton, and T. N. Pullerits, “Exciton binding energy and the nature of emissive states in organometal halide perovskites,” J. Phys. Chem. Lett. 6, 2969–2975 (2015).
[Crossref]

Richter, J. M.

J. M. Richter, F. Branchi, F. V. A. Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8, 376 (2017).
[Crossref]

Riedl, T.

N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen, A. Marianovich, W. Kowalsky, R. Heiderhoff, H. C. Scheer, and T. Riedl, “Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites,” Adv. Mater. 29, 1605003 (2017).
[Crossref]

Rodrigues, X.

A. M. A. Leguy, A. R. Goni, J. M. Frost, J. Skelton, F. Brivio, X. Rodrigues, O. J. Weber, A. Pallipurath, M. I. Alonso, M. Campoy, M. T. Weller, J. Nelson, A. Walsh, and P. R. F. Barnes, “Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites,” Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).
[Crossref]

Roh, K.

K. Roh, J. Lee, C. Dang, and A. Nurmikko, “Spectroscopy of optical gain in low threshold colloidal quantum dots laser media: dominance of single-exciton states at room temperature,” Opt. Mater. Express 6, 3776–3786 (2016).
[Crossref]

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10, 3959–3967 (2016).
[Crossref]

K. Roh, C. Dang, J. Lee, S. Chen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers,” Opt. Express 22, 18800–18806 (2014).
[Crossref]

S. Chen, W. K. Chong, J. Lee, K. Roh, E. Sari, N. Mathews, T. C. Sum, and A. Nurmikko, “Optically pumped distributed feedback laser from organo-lead iodide perovskite thin films,” in CLEO: Science and Innovations (Optical Society of America, 2015), p. SM2F.6.

Rudin, S.

S. Rudin, T. L. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors,” Phys. Rev. B 42, 11218–11231 (1990).
[Crossref]

Ryu, S.

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348, 1234–1237 (2015).
[Crossref]

Saari, J. I.

E. A. Dias, J. I. Saari, P. Tyagi, and P. Kambhampati, “Improving optical gain performance in semiconductor quantum dots via coupled quantum shells,” J. Phys. Chem. C 116, 5407–5413 (2012).
[Crossref]

Saba, M.

M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “Excited state properties of hybrid perovskites,” Acc. Chem. Res. 49, 166–173 (2016).
[Crossref]

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Sadhanala, A.

H. Cho, S. Jeong, M. Park, Y. Kim, C. Wolf, C. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Sadoughi, G.

D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, “A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells,” Science 351, 151–155 (2016).
[Crossref]

Sakai, N.

Z. Wang, D. P. McMeekin, N. Sakai, S. V. Reenen, K. Wojciechowski, J. B. Patel, M. B. Johnston, and H. J. Snaith, “Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers,” Adv. Mater. 29, 1604186 (2017).
[Crossref]

D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, “A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells,” Science 351, 151–155 (2016).
[Crossref]

Salado, M.

P. Piatkowski, B. Cohen, C. S. Ponseca, M. Salado, S. Kazim, S. Ahmad, V. Sundstrom, and A. Douhal, “Unravelling charge carriers generation, diffusion, and recombination in formamidinium lead triiodide perovskite polycrystalline thin film,” J. Phys. Chem. Lett. 7, 204–210 (2016).
[Crossref]

Saliba, M.

D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, “A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells,” Science 351, 151–155 (2016).
[Crossref]

Samarth, N.

J. Ding, H. Jeon, T. Ishihara, M. Hagerott, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and laser emission in ZnSe-based quantum wells,” Phys. Rev. Lett. 69, 1707–1710 (1992).
[Crossref]

J. Ding, H. Jeon, T. Ishihara, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and stimulated emission in ZnSe-based quantum wells up to room temperature,” Surf. Sci. 267, 616–622 (1992).
[Crossref]

Samuel, I. D. W.

Saran, R.

R. Saran, A. H. Jungemann, A. G. Kanaras, and R. J. Curry, “Giant bandgap renormalization and exciton-phonon scattering in perovskite nanocrystals,” Adv. Opt. Mater. 5, 1700231 (2017).
[Crossref]

Sari, E.

S. Chen, W. K. Chong, J. Lee, K. Roh, E. Sari, N. Mathews, T. C. Sum, and A. Nurmikko, “Optically pumped distributed feedback laser from organo-lead iodide perovskite thin films,” in CLEO: Science and Innovations (Optical Society of America, 2015), p. SM2F.6.

Sarritzu, V.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Sashchiuk, A.

J. Tilchin, D. N. Dirin, G. I. Maikov, A. Sashchiuk, M. V. Kovalenko, and E. Lifshitz, “Hydrogen-like Wannier-Mott excitons in single crystal of methylammonium lead bromide perovskite,” ACS Nano 10, 6363–6371 (2016).
[Crossref]

Savenije, T. J.

T. J. Savenije, C. S. Ponseca, L. Kunneman, M. Abdellah, K. Zheng, Y. Tian, Q. Zhu, S. E. Canton, I. G. Scheblykin, T. Pullerits, A. Yartsev, and V. Sundstrom, “Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite,” J. Phys. Chem. Lett. 5, 2189–2194 (2014).
[Crossref]

Schaller, R. D.

C. She, I. Fedin, D. S. Solzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets,” ACS Nano 9, 9475–9485 (2015).
[Crossref]

Scheblykin, I. G.

T. J. Savenije, C. S. Ponseca, L. Kunneman, M. Abdellah, K. Zheng, Y. Tian, Q. Zhu, S. E. Canton, I. G. Scheblykin, T. Pullerits, A. Yartsev, and V. Sundstrom, “Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite,” J. Phys. Chem. Lett. 5, 2189–2194 (2014).
[Crossref]

Scheer, H. C.

N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen, A. Marianovich, W. Kowalsky, R. Heiderhoff, H. C. Scheer, and T. Riedl, “Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites,” Adv. Mater. 29, 1605003 (2017).
[Crossref]

Schlaus, A.

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

Schlenker, C. W.

C. Huang, C. Zou, C. Mao, K. L. Corp, Y. Yao, Y. Lee, C. W. Schlenker, A. K. J. Jen, and L. Y. Lin, “CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability,” ACS Photon. 4, 2281–2289 (2017).
[Crossref]

Scholes, G. D.

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T. Koh, G. D. Scholes, and B. P. Rand, “Efficient perovskite light-emitting diodes featuring nanometer-sized crystallites,” Nat. Photonics 11, 108–115 (2017).
[Crossref]

Segall, B.

S. Rudin, T. L. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors,” Phys. Rev. B 42, 11218–11231 (1990).
[Crossref]

Seijo, L.

M. de Jong, L. Seijo, A. Meijerink, and F. T. Rabouw, “Resolving the ambiguity in the relation between Stokes shift and Huang-Rhys parameter,” Phys. Chem. Chem. Phys. 17, 16959–16969 (2015).
[Crossref]

Seo, J.

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348, 1234–1237 (2015).
[Crossref]

Seok, S. I.

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348, 1234–1237 (2015).
[Crossref]

Sestu, N.

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

Shank, C. V.

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
[Crossref]

She, C.

C. She, I. Fedin, D. S. Solzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets,” ACS Nano 9, 9475–9485 (2015).
[Crossref]

Shmagin, I. K.

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71, 2572–2574 (1997).
[Crossref]

Silov, A. Y.

C. M. Iaru, J. J. Geuchies, P. M. Koenraad, D. Vanmaekelbergh, and A. Y. Silov, “Strong carrier-phonon coupling in lead halide perovskite nanocrystals,” ACS Nano 11, 11024–11030 (2017).
[Crossref]

Skelton, J.

A. M. A. Leguy, A. R. Goni, J. M. Frost, J. Skelton, F. Brivio, X. Rodrigues, O. J. Weber, A. Pallipurath, M. I. Alonso, M. Campoy, M. T. Weller, J. Nelson, A. Walsh, and P. R. F. Barnes, “Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites,” Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).
[Crossref]

Smith, D. L.

I. H. Campbell, T. W. Hagler, D. L. Smith, and J. P. Ferraris, “Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures,” Phys. Rev. Lett. 76, 1900–1903 (1996).
[Crossref]

Snaith, H. J.

Z. Wang, D. P. McMeekin, N. Sakai, S. V. Reenen, K. Wojciechowski, J. B. Patel, M. B. Johnston, and H. J. Snaith, “Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers,” Adv. Mater. 29, 1604186 (2017).
[Crossref]

D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, “A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells,” Science 351, 151–155 (2016).
[Crossref]

A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Perez-Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, and L. M. Herz, “Electron-phonon coupling in hybrid lead halide perovskites,” Nat. Commun. 7, 11755 (2016).
[Crossref]

K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. T. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors,” Energy Environ. Sci. 9, 962–970 (2016).
[Crossref]

G. L. Whitworth, J. R. Harwell, D. N. Miller, G. J. Hedley, W. Zhang, H. J. Snaith, G. A. Turnbull, and I. D. W. Samuel, “Nanoimprinted distributed feedback lasers of solution processed hybrid perovskites,” Opt. Express 24, 23677–23684 (2016).
[Crossref]

S. D. Stranks and H. J. Snaith, “Metal-halide perovskites for photovoltaic and light-emitting devices,” Nat. Nanotechnol. 10, 391–402 (2015).
[Crossref]

A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites,” Nat. Phys. 11, 582–587 (2015).
[Crossref]

C. Wehrenfenning, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 1584–1589 (2014).
[Crossref]

V. D’innocenzo, G. Grancini, M. J. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5, 3586 (2014).
[Crossref]

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillip, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

Solzhnikov, D. S.

C. She, I. Fedin, D. S. Solzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets,” ACS Nano 9, 9475–9485 (2015).
[Crossref]

Soos, Z. G.

I. G. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, “Charge-separation energy in films of π-conjugated organic molecules,” Chem. Phys. Lett. 327, 181–188 (2000).
[Crossref]

Spencer, M. S.

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

Steckel, J. S.

K. Roh, C. Dang, J. Lee, S. Chen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers,” Opt. Express 22, 18800–18806 (2014).
[Crossref]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7, 335–339 (2012).
[Crossref]

Stergiopoulos, T.

K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. T. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors,” Energy Environ. Sci. 9, 962–970 (2016).
[Crossref]

Stranks, S. D.

K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. T. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors,” Energy Environ. Sci. 9, 962–970 (2016).
[Crossref]

A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites,” Nat. Phys. 11, 582–587 (2015).
[Crossref]

S. D. Stranks and H. J. Snaith, “Metal-halide perovskites for photovoltaic and light-emitting devices,” Nat. Nanotechnol. 10, 391–402 (2015).
[Crossref]

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillip, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

V. D’innocenzo, G. Grancini, M. J. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5, 3586 (2014).
[Crossref]

Stulz, M.

P. Brenner, M. Stulz, D. Kapp, T. Abzieher, U. W. Paetzold, A. Quintilla, I. A. Howard, H. Kalt, and U. Lemmer, “Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures,” Appl. Phys. Lett. 109, 141106 (2016).
[Crossref]

Sum, T. C.

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10, 3959–3967 (2016).
[Crossref]

S. Chen, W. K. Chong, J. Lee, K. Roh, E. Sari, N. Mathews, T. C. Sum, and A. Nurmikko, “Optically pumped distributed feedback laser from organo-lead iodide perovskite thin films,” in CLEO: Science and Innovations (Optical Society of America, 2015), p. SM2F.6.

Sun, H.

Y. Wang, X. Li, V. Nalla, H. Zeng, and H. Sun, “Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals,” Adv. Funct. Mater. 27, 1605088 (2017).
[Crossref]

Sundstrom, V.

P. Piatkowski, B. Cohen, C. S. Ponseca, M. Salado, S. Kazim, S. Ahmad, V. Sundstrom, and A. Douhal, “Unravelling charge carriers generation, diffusion, and recombination in formamidinium lead triiodide perovskite polycrystalline thin film,” J. Phys. Chem. Lett. 7, 204–210 (2016).
[Crossref]

T. J. Savenije, C. S. Ponseca, L. Kunneman, M. Abdellah, K. Zheng, Y. Tian, Q. Zhu, S. E. Canton, I. G. Scheblykin, T. Pullerits, A. Yartsev, and V. Sundstrom, “Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite,” J. Phys. Chem. Lett. 5, 2189–2194 (2014).
[Crossref]

Talapin, D. V.

C. She, I. Fedin, D. S. Solzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets,” ACS Nano 9, 9475–9485 (2015).
[Crossref]

Tang, W.

H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Gratzel, and L. Han, “A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules,” Nature 550, 92–95 (2017).
[Crossref]

Tian, Y.

T. J. Savenije, C. S. Ponseca, L. Kunneman, M. Abdellah, K. Zheng, Y. Tian, Q. Zhu, S. E. Canton, I. G. Scheblykin, T. Pullerits, A. Yartsev, and V. Sundstrom, “Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite,” J. Phys. Chem. Lett. 5, 2189–2194 (2014).
[Crossref]

Tilchin, J.

J. Tilchin, D. N. Dirin, G. I. Maikov, A. Sashchiuk, M. V. Kovalenko, and E. Lifshitz, “Hydrogen-like Wannier-Mott excitons in single crystal of methylammonium lead bromide perovskite,” ACS Nano 10, 6363–6371 (2016).
[Crossref]

Tran, N. L.

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T. Koh, G. D. Scholes, and B. P. Rand, “Efficient perovskite light-emitting diodes featuring nanometer-sized crystallites,” Nat. Photonics 11, 108–115 (2017).
[Crossref]

Tretiak, S.

J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, and V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
[Crossref]

Trinh, M. T.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Turnbull, G. A.

Tyagi, P.

E. A. Dias, J. I. Saari, P. Tyagi, and P. Kambhampati, “Improving optical gain performance in semiconductor quantum dots via coupled quantum shells,” J. Phys. Chem. C 116, 5407–5413 (2012).
[Crossref]

Vanmaekelbergh, D.

C. M. Iaru, J. J. Geuchies, P. M. Koenraad, D. Vanmaekelbergh, and A. Y. Silov, “Strong carrier-phonon coupling in lead halide perovskite nanocrystals,” ACS Nano 11, 11024–11030 (2017).
[Crossref]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]

Verdi, C.

A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Perez-Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, and L. M. Herz, “Electron-phonon coupling in hybrid lead halide perovskites,” Nat. Commun. 7, 11755 (2016).
[Crossref]

Wakamiya, A.

L. Q. Phuong, Y. Yamada, M. Nagai, N. Maruyama, A. Wakamiya, and Y. Kanemitsu, “Free carriers versus excitons in CH3NH3PbI3 perovskite thin films at low temperatures: charge transfer from the orthorhombic phase to the tetragonal phase,” J. Phys. Chem. Lett. 7, 2316–2321 (2016).
[Crossref]

Walsh, A.

A. M. A. Leguy, A. R. Goni, J. M. Frost, J. Skelton, F. Brivio, X. Rodrigues, O. J. Weber, A. Pallipurath, M. I. Alonso, M. Campoy, M. T. Weller, J. Nelson, A. Walsh, and P. R. F. Barnes, “Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites,” Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).
[Crossref]

Wang, J. T.

K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. T. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors,” Energy Environ. Sci. 9, 962–970 (2016).
[Crossref]

A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites,” Nat. Phys. 11, 582–587 (2015).
[Crossref]

Wang, S.

N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen, A. Marianovich, W. Kowalsky, R. Heiderhoff, H. C. Scheer, and T. Riedl, “Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites,” Adv. Mater. 29, 1605003 (2017).
[Crossref]

Wang, Y.

Y. Wang, X. Li, V. Nalla, H. Zeng, and H. Sun, “Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals,” Adv. Funct. Mater. 27, 1605088 (2017).
[Crossref]

H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Gratzel, and L. Han, “A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules,” Nature 550, 92–95 (2017).
[Crossref]

Wang, Z.

Z. Wang, D. P. McMeekin, N. Sakai, S. V. Reenen, K. Wojciechowski, J. B. Patel, M. B. Johnston, and H. J. Snaith, “Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers,” Adv. Mater. 29, 1604186 (2017).
[Crossref]

Weber, O. J.

A. M. A. Leguy, A. R. Goni, J. M. Frost, J. Skelton, F. Brivio, X. Rodrigues, O. J. Weber, A. Pallipurath, M. I. Alonso, M. Campoy, M. T. Weller, J. Nelson, A. Walsh, and P. R. F. Barnes, “Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites,” Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).
[Crossref]

Wehrenfenning, C.

C. Wehrenfenning, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 1584–1589 (2014).
[Crossref]

Weller, M. T.

A. M. A. Leguy, A. R. Goni, J. M. Frost, J. Skelton, F. Brivio, X. Rodrigues, O. J. Weber, A. Pallipurath, M. I. Alonso, M. Campoy, M. T. Weller, J. Nelson, A. Walsh, and P. R. F. Barnes, “Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites,” Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).
[Crossref]

Whitworth, G. L.

Wiegmann, W.

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
[Crossref]

R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures,” Phys. Rev. Lett. 33, 827–830 (1974).
[Crossref]

Wise, F. W.

F. W. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res. 33, 773–780 (2000).
[Crossref]

Wojciechowski, K.

Z. Wang, D. P. McMeekin, N. Sakai, S. V. Reenen, K. Wojciechowski, J. B. Patel, M. B. Johnston, and H. J. Snaith, “Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers,” Adv. Mater. 29, 1604186 (2017).
[Crossref]

Wolf, C.

H. Cho, S. Jeong, M. Park, Y. Kim, C. Wolf, C. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Woo, W. K.

C. A. Leatherdale, W. K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
[Crossref]

Wright, A. D.

A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Perez-Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, and L. M. Herz, “Electron-phonon coupling in hybrid lead halide perovskites,” Nat. Commun. 7, 11755 (2016).
[Crossref]

Wu, X.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Xiao, Z.

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T. Koh, G. D. Scholes, and B. P. Rand, “Efficient perovskite light-emitting diodes featuring nanometer-sized crystallites,” Nat. Photonics 11, 108–115 (2017).
[Crossref]

Xie, F.

H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Gratzel, and L. Han, “A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules,” Nature 550, 92–95 (2017).
[Crossref]

Yaffe, O.

Y. Guo, O. Yaffe, T. D. Hull, J. S. Owen, D. R. Reichman, and L. E. Brus, “Liquid-like free carrier solvation and band edge luminescence in lead-halide perovskites,” arXiV:1804.01509 (2018).

Yakunin, S.

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

Yamada, Y.

L. Q. Phuong, Y. Yamada, M. Nagai, N. Maruyama, A. Wakamiya, and Y. Kanemitsu, “Free carriers versus excitons in CH3NH3PbI3 perovskite thin films at low temperatures: charge transfer from the orthorhombic phase to the tetragonal phase,” J. Phys. Chem. Lett. 7, 2316–2321 (2016).
[Crossref]

Yang, W. S.

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348, 1234–1237 (2015).
[Crossref]

Yang, X.

H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Gratzel, and L. Han, “A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules,” Nature 550, 92–95 (2017).
[Crossref]

Yang, Y.

Y. Yang, D. P. Ostrowski, R. M. France, K. Zhu, J. Lagemaat, J. M. Luther, and M. C. Beard, “Observation of a hot-phonon bottleneck in lead-iodide perovskites,” Nat. Photonics 10, 53–59 (2016).
[Crossref]

Yantara, N.

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

Yao, J.

X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, and H. Fu, “Patterning multicolored microdisk laser arrays of cesium lead halide perovskite,” Adv. Mater. 29, 1604510 (2017).
[Crossref]

Yao, Y.

C. Huang, C. Zou, C. Mao, K. L. Corp, Y. Yao, Y. Lee, C. W. Schlenker, A. K. J. Jen, and L. Y. Lin, “CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability,” ACS Photon. 4, 2281–2289 (2017).
[Crossref]

Yartsev, A.

T. J. Savenije, C. S. Ponseca, L. Kunneman, M. Abdellah, K. Zheng, Y. Tian, Q. Zhu, S. E. Canton, I. G. Scheblykin, T. Pullerits, A. Yartsev, and V. Sundstrom, “Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite,” J. Phys. Chem. Lett. 5, 2189–2194 (2014).
[Crossref]

Ye, F.

H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Gratzel, and L. Han, “A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules,” Nature 550, 92–95 (2017).
[Crossref]

Yin, M.

H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Gratzel, and L. Han, “A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules,” Nature 550, 92–95 (2017).
[Crossref]

Yoo, S.

H. Cho, S. Jeong, M. Park, Y. Kim, C. Wolf, C. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

Zeng, H.

Y. Wang, X. Li, V. Nalla, H. Zeng, and H. Sun, “Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals,” Adv. Funct. Mater. 27, 1605088 (2017).
[Crossref]

Zhang, C.

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers,” Adv. Mater. 29, 1604781 (2017).
[Crossref]

Zhang, H.

X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, and H. Fu, “Patterning multicolored microdisk laser arrays of cesium lead halide perovskite,” Adv. Mater. 29, 1604510 (2017).
[Crossref]

Zhang, W.

G. L. Whitworth, J. R. Harwell, D. N. Miller, G. J. Hedley, W. Zhang, H. J. Snaith, G. A. Turnbull, and I. D. W. Samuel, “Nanoimprinted distributed feedback lasers of solution processed hybrid perovskites,” Opt. Express 24, 23677–23684 (2016).
[Crossref]

K. Zheng, Q. Zhu, M. Abdellah, M. E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S. E. Canton, and T. N. Pullerits, “Exciton binding energy and the nature of emissive states in organometal halide perovskites,” J. Phys. Chem. Lett. 6, 2969–2975 (2015).
[Crossref]

Zhao, B.

J. M. Richter, F. Branchi, F. V. A. Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8, 376 (2017).
[Crossref]

Zhao, L.

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T. Koh, G. D. Scholes, and B. P. Rand, “Efficient perovskite light-emitting diodes featuring nanometer-sized crystallites,” Nat. Photonics 11, 108–115 (2017).
[Crossref]

Zheng, K.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

K. Zheng, Q. Zhu, M. Abdellah, M. E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S. E. Canton, and T. N. Pullerits, “Exciton binding energy and the nature of emissive states in organometal halide perovskites,” J. Phys. Chem. Lett. 6, 2969–2975 (2015).
[Crossref]

T. J. Savenije, C. S. Ponseca, L. Kunneman, M. Abdellah, K. Zheng, Y. Tian, Q. Zhu, S. E. Canton, I. G. Scheblykin, T. Pullerits, A. Yartsev, and V. Sundstrom, “Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite,” J. Phys. Chem. Lett. 5, 2189–2194 (2014).
[Crossref]

Zhong, X.

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

Zhu, H.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Zhu, K.

Y. Yang, D. P. Ostrowski, R. M. France, K. Zhu, J. Lagemaat, J. M. Luther, and M. C. Beard, “Observation of a hot-phonon bottleneck in lead-iodide perovskites,” Nat. Photonics 10, 53–59 (2016).
[Crossref]

Zhu, Q.

K. Zheng, Q. Zhu, M. Abdellah, M. E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S. E. Canton, and T. N. Pullerits, “Exciton binding energy and the nature of emissive states in organometal halide perovskites,” J. Phys. Chem. Lett. 6, 2969–2975 (2015).
[Crossref]

T. J. Savenije, C. S. Ponseca, L. Kunneman, M. Abdellah, K. Zheng, Y. Tian, Q. Zhu, S. E. Canton, I. G. Scheblykin, T. Pullerits, A. Yartsev, and V. Sundstrom, “Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite,” J. Phys. Chem. Lett. 5, 2189–2194 (2014).
[Crossref]

Zhu, X. Y.

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Zidek, K.

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

Zou, C.

C. Huang, C. Zou, C. Mao, K. L. Corp, Y. Yao, Y. Lee, C. W. Schlenker, A. K. J. Jen, and L. Y. Lin, “CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability,” ACS Photon. 4, 2281–2289 (2017).
[Crossref]

Acc. Chem. Res. (2)

M. Saba, F. Quochi, A. Mura, and G. Bongiovanni, “Excited state properties of hybrid perovskites,” Acc. Chem. Res. 49, 166–173 (2016).
[Crossref]

F. W. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res. 33, 773–780 (2000).
[Crossref]

ACS Nano (4)

J. Tilchin, D. N. Dirin, G. I. Maikov, A. Sashchiuk, M. V. Kovalenko, and E. Lifshitz, “Hydrogen-like Wannier-Mott excitons in single crystal of methylammonium lead bromide perovskite,” ACS Nano 10, 6363–6371 (2016).
[Crossref]

C. She, I. Fedin, D. S. Solzhnikov, P. D. Dahlberg, G. S. Engel, R. D. Schaller, and D. V. Talapin, “Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets,” ACS Nano 9, 9475–9485 (2015).
[Crossref]

C. M. Iaru, J. J. Geuchies, P. M. Koenraad, D. Vanmaekelbergh, and A. Y. Silov, “Strong carrier-phonon coupling in lead halide perovskite nanocrystals,” ACS Nano 11, 11024–11030 (2017).
[Crossref]

S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, “A photonic crystal laser from solution based organo-lead iodide perovskite thin films,” ACS Nano 10, 3959–3967 (2016).
[Crossref]

ACS Photon. (2)

C. Huang, C. Zou, C. Mao, K. L. Corp, Y. Yao, Y. Lee, C. W. Schlenker, A. K. J. Jen, and L. Y. Lin, “CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability,” ACS Photon. 4, 2281–2289 (2017).
[Crossref]

S. Chen and A. Nurmikko, “Stable green perovskite vertical-cavity surface-emitting lasers on rigid and flexible substrates,” ACS Photon. 4, 2486–2494 (2017).
[Crossref]

Adv. Funct. Mater. (1)

Y. Wang, X. Li, V. Nalla, H. Zeng, and H. Sun, “Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals,” Adv. Funct. Mater. 27, 1605088 (2017).
[Crossref]

Adv. Mater. (5)

X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, and H. Fu, “Patterning multicolored microdisk laser arrays of cesium lead halide perovskite,” Adv. Mater. 29, 1604510 (2017).
[Crossref]

S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, “High-Q, low-threshold monolithic perovskite thin-film vertical-cavity lasers,” Adv. Mater. 29, 1604781 (2017).
[Crossref]

N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen, A. Marianovich, W. Kowalsky, R. Heiderhoff, H. C. Scheer, and T. Riedl, “Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites,” Adv. Mater. 29, 1605003 (2017).
[Crossref]

C. Wehrenfenning, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites,” Adv. Mater. 26, 1584–1589 (2014).
[Crossref]

Z. Wang, D. P. McMeekin, N. Sakai, S. V. Reenen, K. Wojciechowski, J. B. Patel, M. B. Johnston, and H. J. Snaith, “Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers,” Adv. Mater. 29, 1604186 (2017).
[Crossref]

Adv. Opt. Mater. (2)

R. Saran, A. H. Jungemann, A. G. Kanaras, and R. J. Curry, “Giant bandgap renormalization and exciton-phonon scattering in perovskite nanocrystals,” Adv. Opt. Mater. 5, 1700231 (2017).
[Crossref]

T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, “Continuous-wave lasing in cesium lead bromide perovskite nanowires,” Adv. Opt. Mater. 6, 1700982 (2018).
[Crossref]

Appl. Phys. Lett. (3)

H. Cha, S. Bae, M. Lee, and H. Jeon, “Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain,” Appl. Phys. Lett. 108, 181104 (2016).
[Crossref]

J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71, 2572–2574 (1997).
[Crossref]

P. Brenner, M. Stulz, D. Kapp, T. Abzieher, U. W. Paetzold, A. Quintilla, I. A. Howard, H. Kalt, and U. Lemmer, “Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures,” Appl. Phys. Lett. 109, 141106 (2016).
[Crossref]

Chem. Phys. Lett. (1)

I. G. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, “Charge-separation energy in films of π-conjugated organic molecules,” Chem. Phys. Lett. 327, 181–188 (2000).
[Crossref]

Chem. Rev. (1)

J. S. Manser, J. A. Christians, and P. V. Kamat, “Intriguing optoelectronic properties of metal halide perovskites,” Chem. Rev. 116, 12956–13008 (2016).
[Crossref]

Energy Environ. Sci. (1)

K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E. Eperon, J. T. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors,” Energy Environ. Sci. 9, 962–970 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Chen and A. Nurmikko, “Coherent light emitters from solution chemistry: inorganic II-VI nanocrystals and organometallic perovskites,” IEEE J. Sel. Top. Quantum Electron. 23, 1–14 (2017).
[Crossref]

J. Appl. Phys. (1)

J. Nanda, S. A. Ivanov, H. Htoon, I. Bezel, A. Piryatinski, S. Tretiak, and V. I. Klimov, “Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: implications for lasing performance,” J. Appl. Phys. 99, 034309 (2006).
[Crossref]

J. Phys. Chem. B (1)

C. A. Leatherdale, W. K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
[Crossref]

J. Phys. Chem. C (1)

E. A. Dias, J. I. Saari, P. Tyagi, and P. Kambhampati, “Improving optical gain performance in semiconductor quantum dots via coupled quantum shells,” J. Phys. Chem. C 116, 5407–5413 (2012).
[Crossref]

J. Phys. Chem. Lett. (7)

K. Zheng, Q. Zhu, M. Abdellah, M. E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S. E. Canton, and T. N. Pullerits, “Exciton binding energy and the nature of emissive states in organometal halide perovskites,” J. Phys. Chem. Lett. 6, 2969–2975 (2015).
[Crossref]

J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, “Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots,” J. Phys. Chem. Lett. 8, 2316–2321 (2017).
[Crossref]

M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and S. Cahen, “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” J. Phys. Chem. Lett. 7, 167–172 (2016).
[Crossref]

F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atature, R. T. Phillip, and R. H. Friend, “High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors,” J. Phys. Chem. Lett. 5, 1421–1426 (2014).
[Crossref]

T. J. Savenije, C. S. Ponseca, L. Kunneman, M. Abdellah, K. Zheng, Y. Tian, Q. Zhu, S. E. Canton, I. G. Scheblykin, T. Pullerits, A. Yartsev, and V. Sundstrom, “Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite,” J. Phys. Chem. Lett. 5, 2189–2194 (2014).
[Crossref]

L. Q. Phuong, Y. Yamada, M. Nagai, N. Maruyama, A. Wakamiya, and Y. Kanemitsu, “Free carriers versus excitons in CH3NH3PbI3 perovskite thin films at low temperatures: charge transfer from the orthorhombic phase to the tetragonal phase,” J. Phys. Chem. Lett. 7, 2316–2321 (2016).
[Crossref]

P. Piatkowski, B. Cohen, C. S. Ponseca, M. Salado, S. Kazim, S. Ahmad, V. Sundstrom, and A. Douhal, “Unravelling charge carriers generation, diffusion, and recombination in formamidinium lead triiodide perovskite polycrystalline thin film,” J. Phys. Chem. Lett. 7, 204–210 (2016).
[Crossref]

Nano Lett. (1)

Y. Jia, R. A. Kerner, A. J. Grede, A. N. Brigeman, B. P. Rand, and N. C. Giebink, “Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator,” Nano Lett. 16, 4624–4629 (2016).
[Crossref]

Nat. Commun. (6)

M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, “Correlated electron-hole plasma in organometal perovskites,” Nat. Commun. 5, 5049 (2014).
[Crossref]

V. D’innocenzo, G. Grancini, M. J. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5, 3586 (2014).
[Crossref]

J. M. Richter, F. Branchi, F. V. A. Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8, 376 (2017).
[Crossref]

M. Li, S. Bhaumik, T. W. Goh, M. S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals,” Nat. Commun. 8, 14350 (2017).
[Crossref]

A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Perez-Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, and L. M. Herz, “Electron-phonon coupling in hybrid lead halide perovskites,” Nat. Commun. 7, 11755 (2016).
[Crossref]

S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, “Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites,” Nat. Commun. 6, 8056 (2015).
[Crossref]

Nat. Mater. (1)

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14, 636–642 (2015).
[Crossref]

Nat. Nanotechnol. (2)

S. D. Stranks and H. J. Snaith, “Metal-halide perovskites for photovoltaic and light-emitting devices,” Nat. Nanotechnol. 10, 391–402 (2015).
[Crossref]

C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7, 335–339 (2012).
[Crossref]

Nat. Photonics (3)

Y. Yang, D. P. Ostrowski, R. M. France, K. Zhu, J. Lagemaat, J. M. Luther, and M. C. Beard, “Observation of a hot-phonon bottleneck in lead-iodide perovskites,” Nat. Photonics 10, 53–59 (2016).
[Crossref]

Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T. Koh, G. D. Scholes, and B. P. Rand, “Efficient perovskite light-emitting diodes featuring nanometer-sized crystallites,” Nat. Photonics 11, 108–115 (2017).
[Crossref]

Y. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N. C. Giebink, “Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor,” Nat. Photonics 11, 784–788 (2017).
[Crossref]

Nat. Phys. (2)

A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, “Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites,” Nat. Phys. 11, 582–587 (2015).
[Crossref]

H. Altug, E. Dirk, and V. Jenela, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

Nature (1)

H. Chen, F. Ye, W. Tang, J. He, M. Yin, Y. Wang, F. Xie, E. Bi, X. Yang, M. Gratzel, and L. Han, “A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules,” Nature 550, 92–95 (2017).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (2)

M. de Jong, L. Seijo, A. Meijerink, and F. T. Rabouw, “Resolving the ambiguity in the relation between Stokes shift and Huang-Rhys parameter,” Phys. Chem. Chem. Phys. 17, 16959–16969 (2015).
[Crossref]

A. M. A. Leguy, A. R. Goni, J. M. Frost, J. Skelton, F. Brivio, X. Rodrigues, O. J. Weber, A. Pallipurath, M. I. Alonso, M. Campoy, M. T. Weller, J. Nelson, A. Walsh, and P. R. F. Barnes, “Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites,” Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).
[Crossref]

Phys. Rev. (1)

R. Elliott, “Intensity of optical absorption by excitons,” Phys. Rev. 108, 1384–1389 (1957).
[Crossref]

Phys. Rev. B (1)

S. Rudin, T. L. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors,” Phys. Rev. B 42, 11218–11231 (1990).
[Crossref]

Phys. Rev. Lett. (4)

W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegmann, “Femtosecond dynamics of resonantly excited excitons in room-temperature GaAs quantum wells,” Phys. Rev. Lett. 54, 1306–1309 (1985).
[Crossref]

J. Ding, H. Jeon, T. Ishihara, M. Hagerott, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and laser emission in ZnSe-based quantum wells,” Phys. Rev. Lett. 69, 1707–1710 (1992).
[Crossref]

I. H. Campbell, T. W. Hagler, D. L. Smith, and J. P. Ferraris, “Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures,” Phys. Rev. Lett. 76, 1900–1903 (1996).
[Crossref]

R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures,” Phys. Rev. Lett. 33, 827–830 (1974).
[Crossref]

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]

Proc. R. Soc. London Ser. A (1)

K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centers,” Proc. R. Soc. London Ser. A 204, 406–423 (1950).
[Crossref]

Sci. Rep. (1)

J. R. Harwell, G. L. Whitworth, G. A. Turnbull, and I. D. W. Samuel, “Green perovskite distributed feedback lasers,” Sci. Rep. 7, 11727 (2017).
[Crossref]

Science (3)

W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science 348, 1234–1237 (2015).
[Crossref]

H. Cho, S. Jeong, M. Park, Y. Kim, C. Wolf, C. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,” Science 350, 1222–1225 (2015).
[Crossref]

D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, “A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells,” Science 351, 151–155 (2016).
[Crossref]

Surf. Sci. (1)

J. Ding, H. Jeon, T. Ishihara, A. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, “Excitonic gain and stimulated emission in ZnSe-based quantum wells up to room temperature,” Surf. Sci. 267, 616–622 (1992).
[Crossref]

Other (3)

“Research Cell Efficiency Records,” National Renewable Energy Laboratory, http://www.nrel.gov/ncpv , accessed June 2018.

S. Chen, W. K. Chong, J. Lee, K. Roh, E. Sari, N. Mathews, T. C. Sum, and A. Nurmikko, “Optically pumped distributed feedback laser from organo-lead iodide perovskite thin films,” in CLEO: Science and Innovations (Optical Society of America, 2015), p. SM2F.6.

Y. Guo, O. Yaffe, T. D. Hull, J. S. Owen, D. R. Reichman, and L. E. Brus, “Liquid-like free carrier solvation and band edge luminescence in lead-halide perovskites,” arXiV:1804.01509 (2018).

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental document

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Scanning electron microscope image of surface morphology of a Cs 0.17 FA 0.83 PbBr 3 film on a planar quartz substrate. (b) Grain size distribution of the mixed-cation perovskite film, with Gaussian fit (black line) yielding mean value of 79 nm and standard deviation of 51 nm. (c) X-ray diffraction pattern comparison between Cs 0.17 FA 0.83 PbBr 3 and control FAPbBr 3 films, with zoom-in of (001) peak shown on the right.
Fig. 2.
Fig. 2. Pseudo-color maps of (a) excitonic absorbance and (b) normalized PL emission of mixed-cation Cs 0.17 FA 0.83 PbBr 3 films at different temperatures. (c) Positions of absorption excitonic peak and PL peak across the measured temperature range. (d) Temperature-dependent emission Stokes shift of the mixed-cation Cs 0.17 FA 0.83 PbBr 3 perovskite films.
Fig. 3.
Fig. 3. (a) Spectral lineshapes of absorbance and (b) normalized PL spectra of Cs 0.17 FA 0.83 PbBr 3 films at different temperatures. (c) Theoretical fit of measured absorption spectrum at room temperature according to Elliott’s model of Wannier excitons, yielding an estimate of exciton binding energy E b = 43.8 meV . (d) Theoretical fit of PL FWHM linewidth at different temperatures, which includes contributions from inhomogeneous broadening and electron–LO-phonon coupling (Fröhlich interaction).
Fig. 4.
Fig. 4. (a) Nonlinear absorption spectra of Cs 0.17 FA 0.83 PbBr 3 films under various excitation levels at room temperature with probe pulse arrival delay time Δ t = 2 ps . Linear absorption spectrum obtained in the absence of photoexcitation ( 0 μJ / cm 2 ) is also included (black line). The inset shows the transient absorption spectrum at pump energy density of 36.8 μJ / cm 2 . The onset for optical gain occurs when α + Δ α = 0 (black arrow) at 2.233 eV . (b) Time-resolved transient absorption measured at 2.233 eV (where optical gain first occurs). Here the onset for optical gain is defined when Δ α / α = 1 .
Fig. 5.
Fig. 5. (a) Schematic structure of mixed-cation PeVCSEL. The sputtered dielectric DBR stack consists of 10 pairs of HfO 2 / SiO 2 . (b) Measured reflectivity spectrum of a standalone HfO 2 / SiO 2 DBR showing a reasonably good match with pre-deposition design simulation. (c) Zoom-in view of the high-reflection band showing peak reflectivity of 99.5%, and a broad spectral window covering from 2.145 eV to 2.398 eV (517–578 nm) wherein reflectivity exceeds 99%. (d) Spontaneous emission from the PeVCSEL device under excitation well below the lasing threshold with a cavity mode peak at 2.244 eV ( λ = 552.6 nm ). A Lorentzian profile is used to fit the cavity mode, which leads to a FWHM linewidth of 1.665 meV ( Δ λ = 0.41 nm ).
Fig. 6.
Fig. 6. (a) Schematic structure of a vertically pumped PeVCSEL with a long-pass filter to block the pump residue. The pulsed pump source is a compact diode-pumped solid state laser (3.493 eV, τ pulse = 0.34 ns , 1 kHz repetition rate). (b) Device light output with increasing pump fluence expressed in a log–log plot with threshold energy density of 13.5 ± 1.4 μJ / cm 2 . The empty circles record the FWHM linewidth of the emission spectrum. (c) Emission spectra under different excitation levels. Spectrally coherent single-mode lasing at 2.244 eV ( λ = 552.5 nm ) with FWHM linewidth of 0.996 meV ( Δ λ = 0.245 nm ) is observed. (d) Pseudo-color plot of PeVCSEL emission under different levels of excitation in a logarithmic scale demonstrating the single mode operation and large background suppression ratio ( > 20 dB ). (e) Near-field images of a device with pump energy densities near and above the threshold. (f) Far-field pattern of PeVCSEL emission, with 5 ° divergence in the transverse plane. (g) PeVCSEL device (longevity) lifetime measured under the same subnanosecond pumping source at E pump 1.5 E th . Green squares monitor the lasing output intensity, while the orange circles track the FWHM linewidth of the emission, indicating persistent lasing operation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α ( ω ) μ c v 2 ω [ 4 π E b 3 sech ( ω E g + E b Γ ) + E g sech ( ω E Γ ) 2 π E b 1 e 2 π E b / ( E E g ) d E ] .
Γ ( T ) = Γ inh + Γ LO e ω LO / k T 1 .

Metrics