Abstract

Applications of quantum science to computing, cryptography, and imaging are on their way to becoming key next-generation technologies. Owing to the high-speed transmission and exceptional noise properties of photons, quantum photonic architectures are likely to play a central role. A long-standing hurdle, however, has been the realization of robust, device-compatible single-photon sources that can be activated and controlled on demand. Here we demonstrate large arrays of room-temperature quantum emitters in two-dimensional hexagonal boron nitride (hBN). The large energy gap inherent to this van der Waals material stabilizes the emitters at room temperature within nanoscale regions defined by substrate-induced deformation of few-atomic-layer hBN. Combining analytical and numerical modeling, we show that emitter activation is the result of carrier trapping in deformation potential wells localized near the points where the hBN film reaches the highest curvature. Through the control of pillar geometry, we demonstrate an average of 2 emitters per site for the smallest pillars (75 nm diameter). These findings set the stage for realizing arrays of room-temperature single-photon sources through the combined control of strain and external electrostatic potentials.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Emerging quantum technologies for cryptography, computing, and metrology exploit quantum mechanical effects for enhanced information processing and nanoscale sensing. Although different platform systems are currently being explored, light-based quantum technologies using single-photon emitters as the basic building blocks are among the frontrunners [1]. Several strategies have been used to realize deterministic single-photon emitters (SPEs) in the solid state [2], including quantum dots [3], single molecules [4], and point defects in wide bandgap materials such as diamond and silicon carbide [59]. Single-photon emitters in novel van der Waals materials have garnered recent attention due to their potential for integration with waveguides, microcavities, and other passive components typical in photonic devices. Example 2D systems hosting quantum emitters include WSe2 and MoS2 as well as other transition metal dichalcogenides (TMDs) [1014]. Owing to the smaller bandgap of TMDs (1.52eV), these quantum emitters operate at cryogenic temperatures. More recently, hexagonal boron nitride (hBN), a wide bandgap (6eV) van der Waals semiconductor, has been shown to have sub-bandgap defect states in the form of SPEs that are tunable and robust at room temperature [1522] and above [23]. Adding to the known advantages of 2D materials, hBN also has the potential for spin-optic manipulations, making these defects highly attractive for quantum information processing. While hBN-based SPEs have shown highly desirable optical properties, one challenge has been the deterministic placement of the SPEs and control over the emission wavelength. Here we report deterministic activation of point defects in hBN resulting in an array of room-temperature quantum emitters with a small distribution in the emission wavelength. We exploit nanoscale strain engineering of the few-atomic-layer hBN films (20nm thick) via patterned nanopillar substrates to activate the defects. Due to van der Waals forces, the hBN film conforms to the surface topography of the nanopillars, resulting in significant local strain near the edges. Using large structured arrays of different sizes and geometries, we find nearly perfect correspondence between the strained areas of the film and SPEs. Our modeling supports the notion of defect activation via charge trapping in deformation potential wells at these highly strained locations. The physics at play is very different from the localized exciton-based SPEs realized recently at cryogenic temperatures in WSe2 monolayers on patterned substrates [24,25]. Owing to the very wide bandgap in hBN, here the activated SPEs originate from mid-gap defect states in striking contrast to TMDs (WSe2), where the localized excitonic states are close to the band edge and hence can only operate at very low temperatures.

A schematic drawing of the nanopillar with the hBN film draped over it is shown in Fig. 1(a). In our experiments, we patterned SiO2 nanopillars on Si substrates followed by transfer of 20-nm-thick hBN film grown via chemical vapor deposition onto the pillars (see Methods for further details of the fabrication and transfer process). This technique takes advantage of the van der Waals forces to make the hBN film conform to the surface topography as indicated by the atomic force microscopy (AFM) image shown in Fig. 1(b); this figure also reveals regions with a single layer (1L) and two layers (2L) of the hBN film as well as the bare substrate (0L). 2L corresponds to a part of the film that has folded onto itself during the transfer process, and the 0L region provides a direct view of the underlying nanopillar structure. The height and diameter ranges of the nanopillars studied were 100–155 nm and 75–2 μm, respectively.

 figure: Fig. 1.

Fig. 1. Strain-induced activation of single-photon emitters in hBN. (a) We use a wet transfer protocol to overlay a 20nm-thick flake of hBN on a nanostructured silica substrate. For the present experiments, we fabricate an e-beam-defined array of silica nanopillars of variable height h, diameter d, and spacing s. (b) Three-dimensional rendering of an AFM image from folded, 20nm-thick hBN. Labels indicate the number of layers, one on the left (1L) and two at the center (2L); bare silica pillars (0L) can be seen on the lower right corner. (c) Room-temperature confocal (main) and optical (inset) images of example nanopillar structures for spacings of 2 μm (left and center arrays) and 3 μm (far right); for all pillars the height is 155 nm, while the pillar diameter varies from 250 nm for the lower left-hand array to 500 nm for the top center array in increments of 50 nm. The left and right arrays have identical diameters for each row. During confocal scanning, the laser excitation wavelength and intensity are 460 nm and 600μW/μm2, respectively. No fluorescence is detected from areas where the hBN sample is missing (upper left corner in the confocal image).

Download Full Size | PPT Slide | PDF

2. EXPERIMENTAL SETUP AND RESULTS

We used confocal microscopy to investigate the photoluminescence (PL) of the strain-activated defects in the hBN film. A confocal image of the PL emanating from the hBN under 460 nm continuous-wave excitation is shown in Fig. 1(c). Unlike prior work in hBN, where SPEs are activated randomly via high-temperature annealing [15], ion irradiation, or surface etching [22], here we find light emission selectively originating from the nanopillar sites without any further processing. Comparison with an optical image of the substrate [Fig. 1(c), inset] shows a one-to-one correspondence with the underlying structure, independent of the spacing between pillars. Since the defects are already present in the hBN flake and can be rendered bright via annealing (see Fig. S1 of Supplement 1), our observations suggest a localized defect activation process at the pillar sites, making the mechanism nearly deterministic. Fluorescence is also observed along highly strained wrinkles in the hBN, which form during the chemical vapor deposition (CVD) growth process due to the copper substrate [26,27]. We observe an average brightness contrast of 100 between pillar sites versus inter-pillar sites. A detailed analysis of the electromagnetic modes of the structure using the refractive indices of silicon dioxide, silicon [28], and hBN [29] shows that the observed confocal pattern does not originate from pillar-enhanced photon scattering or antenna effects (see Fig. S2 of Supplement 1). To understand the quantum optical properties of the emitters observed in hBN, we carried out steady-state, time-resolved, and correlation optical spectroscopies. Figure 2(a) shows the spectrum from an example site: similar to prior reports [15,16,19], we identify well-defined zero-phonon lines (ZPL) accompanied by multiple phonon replicas separated by about 165 meV. The spectrum also displays a broad, near-featureless background, possibly the result of spectral diffusion. Figure 2(b) presents the emission spectra from a typical nanopillar site (75 nm diameter) over an extended period of time. The photo-blinking seen in emission is characteristic of SPEs in hBN. We assign the ZPL to the peak at 548 nm. Though the number of emitters per site varies, 80% of the 75-nm-diameter pillars show emission from 4 emitters as determined by Hanbury Brown–Twiss (HBT) correlation measurements. As an illustration, Fig. 2(c) presents the results from a pulsed HBT measurement displaying photon antibunching at zero-delay times. Dividing the area under the central peak by the average area of all other ten peaks, we calculate a zero-delay correlation, g(2)(t=0)=0.27±0.02, indicating single-photon emission (see Supplement 1 for more information). Lifetime measurement using ultrafast pulses indicates an exponential fluorescence decay with time constant of τ=2.13±0.01ns [Fig. 2(d)]. The PL lifetimes of the emitters were found to vary anywhere between 2 and 3 ns in the pillar array. The site in Fig. 2 was excited via a femtosecond pulsed laser (500 fs pulse width, 80 MHz repetition rate) at 510 nm with an average power of 300 μW.

 figure: Fig. 2.

Fig. 2. Photoluminescence spectroscopy of strain-activated defects. (a) Photoluminescence spectrum from an active pillar site. The relatively sharp ZPL and phonon replica suggest the emission originates from a single defect. (b) Time trace of the photoluminescence spectra in (a) showing the intermittent blinking characteristic of SPEs. (c) Photon correlation data determined from a pulsed Hanbury Brown–Twiss measurement of the same pillar site. The red curve is a floating average of the data points denoted by the gray curve. By calculating the ratio between the area of the peak at zero time delay and the average area of the other ten peaks, we calculate g(2)(t=0)=0.27±0.02. (d) Fluorescence lifetime measurement from a typical SPE. The solid red line indicates an exponential decay fit, giving a lifetime of τ=2.13±0.01ns.

Download Full Size | PPT Slide | PDF

To elucidate the interplay between defect activation and local geometry, we extend the experiments above to a set of structures of variable shape and size. Two examples are presented in Fig. 3, where we study substrates containing large (2μm) pillars with circular and triangular cross sections. Similar to the observations in Fig. 1, AFM imaging shows that the hBN film deforms elastically to reproduce the substrate topography. Interestingly, confocal microscopy reveals nearly uniform defect activation along the pillar edges, regardless of the orientation of the hBN lattice relative to the substrate geometry. Further, for the triangular structure, we measure light emission of comparable intensity throughout the contour, an intriguing finding because strain at the corners is expected to be substantially larger than at the edges. Given the differing local topologies, this behavior suggests a threshold for the process of defect activation, wherein all defects become bright to optical excitation once a minimum strain threshold is met. As shown in Fig. S3 of Supplement 1 for the case of a long, 500-nm-wide ridge, there is virtually no limit in the length of the hBN contour that can be activated.

 figure: Fig. 3.

Fig. 3. Confocal microscopy and micro-spectroscopy of strain-activated emitters in 1D contours. (a) We transfer a 20-nm-thick hBN flake on a silica substrate featuring 2-μm-diameter pillars; from confocal microscopy (main) we observe preferential emitter activation along the edges of the pillars. The upper inserts show zoomed AFM (left) and confocal (images) of the circled pillar. In the confocal images the integration time per pixel is 2 ms, and the laser excitation power and wavelength are 1.7 mW and 460 nm, respectively. (b) Emission spectra as a function of time for sites S5 and S6 along the contour of the circled pillar in (a). (c) Same as in (a) but for pillars with a triangular contour. (d) Integrated emission spectra at sites S7 through S11 along the triangular contour of pillar circled in (a); the integration time is 10 s. Spectra have been displaced vertically for clarity. All silica structures on the substrate in (a) through (d) are 142 nm tall.

Download Full Size | PPT Slide | PDF

The ability to interrogate adjacent but distinguishable (i.e., diffraction-resolved) emitter sites in large-diameter (2 μm) structures gives us the opportunity to further gauge the role of strain in the observed ZPL dispersion. The multi-peaked structure of most spectra combined with the intermittent blinking of the PL at most locations [Fig. 3(b)] hints at the presence of spectral diffusion between discrete, well-defined configurations of the local charge, consistent with prior observations [19]. Further, integrated spectra from neighboring positions retain common features including the overall structure and center wavelength of the main peaks [spectra in Fig. 3(d)]. Rather than transforming abruptly from one location to the next, changes are gradual, confirming that the strain is key to defining the emitters’ ZPL.

We also carried out detailed statistics on an array of 80 pillars with a diameter of 75 nm to substantiate the claim of deterministic defect activation. Shown in Fig. 4 are the statistics of the measurements carried out in an 8×10 array of 75-nm-diameter pillars. Figure 4(a) shows a scanning confocal image of the emitter array along with the number of emitters per pillar site determined spectrally by the number of ZPLs present, where the greater-than-one peaks correspond to multiple emitters. Shown in Fig. 4(b) is the distribution in the emission wavelength showing a higher probability for emission to be observed at 540nm with the spread in emission wavelength significantly smaller than in prior observations [16,19]. Figure 4(c) shows the histogram of the maximum number of emitters per pillar site determined by HBT measurements [g(2)(0)] [30]. These measurements show an average of 2emitters per pillar site, clearly showing the success of the approach we are using to activate defects on demand. Figure S4 of Supplement 1 provides sample spectra and correlation measurements at pillar locations with one or more emitters.

 figure: Fig. 4.

Fig. 4. Emitter statistics. (a) Confocal PL image of an 8×10 array of strain-activated emitters in 75-nm-diameter pillars along with the number of emitters at each pillar site (left and right, respectively). (b) Average peak wavelength of the emitters in the array, showing preferential emission at 540nm with a narrow distribution with a long tail in the emission wavelength. Here, bin size is 3 nm. (c) Number of emitters per pillar site determined using HBT measurements [g(2)(0)] show a distribution peaked at an average of 2 emitters per pillar site where the dotted line is the fitted Poissonian distribution. Excitation at 510 nm, 300 uW. UD, undetermined (signal too weak to quantify).

Download Full Size | PPT Slide | PDF

3. MODEL AND DISCUSSION

Although the physical nature of the point defects at play in hBN still remains the subject of ongoing research [31], one possible activation route to a bright state entails the capture or loss of one or more charge carriers. Charge localization can take place via various mechanisms. Substrate-induced electrostatic effects is one such mechanism. However, we observe similar defect activation on a patterned Si3N4, which is less electronically active than SiO2, and hence the role of the substrate electrostatics appears to be minimal. Another mechanism of charge confinement arises from a strain-induced potential, which, in turn, can emerge as the combined result of a deformation potential and the piezoelectric effect. Bulk hBN has inversion symmetry and therefore exhibits no piezoelectricity, but weak contributions may still be present in thin flakes if the number of atomic layers is odd. Owing to the trigonal symmetry of the hBN crystal structure, a piezoelectric-induced potential in the presence of cylindrical strain must lead to a trigonal distribution of emitters. Since our pillar structures do not display such patterns [see, e.g., Figs. 3(a) and 3(c)], we conclude that the piezoelectric-induced potential is negligible.

To assess the impact of the strain-induced deformation potential on charge localization, we investigate in detail the emission from a 2-μm-diameter pillar. The high-resolution confocal PL image is shown in Fig. 5(a) along with the AFM image showing perfect folding of the hBN film around the pillars. Using the AFM data, we determine the average shape the flake takes in the vicinity of a pillar [Fig. 5(b)]. We then make use of the Kirchoff–Love (KL) theory in the limit of thin plates [3235] to calculate the strain from the second derivative of the deformation relative to the radial distance r to the pillar center; finally, we determine the deformation potential VD(r) through its proportionality with strain [see Fig. S5 of Supplement 1]. Using a polynomial fit to reproduce the local topography [red trace in Fig. 5(c)], we determine via the KL theory confining potentials of up to 75meV for electrons and 25meV for holes, indicative of robust charge carrier trapping at room temperature. As expected, the radial locations of the extrema are found near the top and base edges of the pillar, where the film curvature is highest. Comparison with the fluorescence pattern from the same pillar site [Fig. 5(a)] shows a reasonable correspondence with the prediction of the KL model where the emission maximum is occurring in the vicinity of maximum strain. Based on the average number of emitters found in the 75-nm-diameter pillars and the calculated area of the strain potential around the pillar, we estimate approximately 27±3emitters/μm2. The number of activated emitters is found to be proportional to the strained area. Although strain at the pillar locations introduces potential deformations in both the TMDs [24,25] and the hBN, the physics at play in the wide-bandgap hBN is starkly different since it is the mid-gap defects that result in the SPEs rather than localized excitons trapped in the potential minima of the conduction and valance bands as in TMDs.

 figure: Fig. 5.

Fig. 5. Deformation potential in strained hexagonal boron nitride thin films. (a) Confocal microscopy image of the PL observed from a 2-μm-diameter pillar along with the (b) AFM image showing perfect folding of the hBN film around the pillar edges. (c) Calculated deformation potential for electrons (orange) and holes (blue) as a function of the radial distance r to the center of the pillar. For comparison, the solid green trace is the cross section of the fluorescence pattern in (a), and the solid red trace is a polynomial fit to the hBN deformation in (b).

Download Full Size | PPT Slide | PDF

4. CONCLUSIONS

In summary, we report an attractive approach for realizing deterministic SPEs at room temperature using a combination of nanoscale strain engineering and charge trapping. Our findings open interesting opportunities for manipulating defect emission in hBN via the local control of strain and charge, for example, through the use of external gate nano-electrodes to create local electrostatic potentials [36], which should controllably activate emitters on demand. Also intriguing is the use of surface chemistry to control defect emission through selective surface functionalization; this approach should prove useful for sensing applications, e.g., to optically herald molecular binding events on the hBN surface.

5. EXPERIMENTAL METHODS

A. Sample Preparation

The silica nano-pillars were made by masked etching of a 300-nm-thick thermal oxide layer on a Si wafer via electron beam lithography. The desired geometry of the SiO2 pillars was first written into a 300-nm layer of negative resist (Ma-N 2403) on top of the thermal oxide wafer via electron beam lithography (Eliox ELS-G100). Then, after development in MIF 726, deep reactive ion etching (DRIE) was utilized to anisotropically etch the patterned wafer. The polymerized resist masks the SiO2 layer from the etchant gas (CHF3) and enables the SiO2 pillars to form from the protected silica. Finally, the excess resist is removed via a two-step process; first, the majority of the resist is dissolved by the solvent Remover PG, and then the pillar substrate is subjected to an O2 plasma for 10 min to fully remove any leftover resist. It was found that the O2 plasma etches the silica a further 15nm, which is attributed to contaminants present on the DRIE chamber walls.

The hBN sample studied herein was purchased from Graphene Supermarket as a 20-nm-thick flake, grown by CVD on a 25-μm-thick Cu substrate. The flake was transferred to the patterned silica wafer by a polymethyl methacrylate (PMMA) transfer method [37]. First, a 200-nm layer of PMMA was spin-coated onto the hBN/Cu substrate. After a 90 s prebake at 180°C, the Cu substrate was removed in a bath of ferric chloride at 60°C. The hBN/PMMA film was then placed in a Radio Corporation of America (RCA) 2 bath to remove any excess Cu and subsequently in an RCA 1 bath to remove any organic impurities. After rinsing with deionized (DI) water, the film was lifted from the water bath with a nanopillar sample and allowed to dry. The sample was then heated to 180°C for 20 min to remove any trapped gas and subsequently placed in an acetone bath for 90 min at 52°C to remove the majority of the PMMA film.

The pillar substrates were patterned in arrays with various pillar diameters, which ranged from 75 to 2 μm, and varying pitches from 2 to 6 μm. We found that the hBN was supported by the pillars for pillar heights below 155nm while pillars with heights above 155 nm showed evidence the hBN was pierced by the pillars. We also find that a 2-μm pitch is a sufficient distance to allow the hBN to drape over the pillar and contact the substrate between pillars. Pillars of other shapes such as triangles and squares were also fabricated.

B. Optical Measurements

All photoluminescent measurements reported herein were collected at room temperature via a custom-built confocal microscope with an infinity-corrected 50× (.83 numerical objective) Olympus objective. The spatial resolution of the confocal microscope is 450 nm. The excitation source had a spot size of 1 μm and varied between two different lasers: a continuous-wave (cw) laser operating at 460 nm (Thorlabs L462P1400MM) and a 500-fs pulse fiber laser with a repetition rate of 80 Mhz operating at 510 nm (Toptica FemtoFiber pro TVIS). A 500-nm and a 550-nm long-pass filter (Thorlabs FELO500 and FELO550, respectively) and a 532-nm laserline filter (Thorlabs FL532-10) with an angle-tuned 529 to 625nm bandpass filter (Semrock TSP01) were used to cut off the reflected laser for 460-nm excitation and 510-nm excitation, respectively, along the collection arm of the microscope. Correlation measurements were conducted via a free-space Hanbury Brown and Twist interferometer, where a pair of time-synced (Picoquant—Picoharp 300) avalanche photodiodes (APDs) (micro-photon devices photon detection modules) detected the quantum emission. An 80/20 splitter provided real-time spectral analysis; the 20% arm of the emission was steered into an iHR-320 Horiba spectrometer.

Funding

National Science Foundation (NSF) (1401632, 1547830, 1619896, EFMA-1542863); Research Corporation for Science Advancement (RCSA) (FRED); Australian Research Council (ARC) (DE170100169); Research council of Lithuania (M-ERA.NET-1/2015).

Acknowledgment

N. P. acknowledges support from CREST IDEALS (NSF 1547830). Z. S., M. D., and V. M. M. acknowledge support from the National Science Foundation (USA) through the EFRI 2DARE program. H. J. and C. A. M. acknowledge support from the National Science Foundation (USA) through grants 1619896 and 1401632, and from the Research Corporation through a FRED award. M. W. D. acknowledges support from the Australian Research Council (DE170100169). A. A. acknowledges support from the Research Council of Lithuania.

 

See Supplement 1 for supporting content.

REFERENCES

1. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009). [CrossRef]  

2. I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016). [CrossRef]  

3. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000). [CrossRef]  

4. B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407, 491–493 (2000). [CrossRef]  

5. V. Acosta and P. Hemmer, “Nitrogen-vacancy centers: physics and applications,” MRS Bull. 38, 127–130 (2013). [CrossRef]  

6. L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014). [CrossRef]  

7. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013). [CrossRef]  

8. D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, “Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide,” Phys. Rev. Lett. 109, 226402 (2012). [CrossRef]  

9. W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011). [CrossRef]  

10. Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015). [CrossRef]  

11. C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015). [CrossRef]  

12. A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015). [CrossRef]  

13. M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015). [CrossRef]  

14. P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015). [CrossRef]  

15. T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2015). [CrossRef]  

16. T. T. Tran, C. Zachreson, A. M. Berhane, K. Bray, R. G. Sandstrom, L. H. Li, T. Taniguchi, K. Watanabe, I. Aharonovich, and M. Toth, “Quantum emission from defects in single-crystalline hexagonal boron nitride,” Phys. Rev. Appl. 5, 2–6 (2016). [CrossRef]  

17. N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatté, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016). [CrossRef]  

18. A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, and L. C. Bassett, “Optical signatures of quantum emitters in suspended hexagonal boron nitride,” ACS Nano 11, 3328–3336 (2017). [CrossRef]  

19. Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016). [CrossRef]  

20. G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high purity room-temperature single photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017). [CrossRef]  

21. T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016). [CrossRef]  

22. N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Fávaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J. H. Smet, and J. Wrachtrup, “Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride,” Nano Lett. 16, 7037–7045 (2016). [CrossRef]  

23. M. Kianinia, B. Regan, S. Abdulkader, T. T. Tran, M. J. Ford, I. Aharonovich, and M. Toth, “Robust solid-state quantum system operating at 800 K,” ACS Photon. 4, 768–773 (2017). [CrossRef]  

24. C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017). [CrossRef]  

25. A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 15053 (2017). [CrossRef]  

26. K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis of monolayer boron nitride on Cu foil using chemical vapor deposition,” Nano Lett. 12, 161–166 (2011). [CrossRef]  

27. L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Lett. 10, 3209–3215 (2010). [CrossRef]  

28. J. Sik, J. Hora, and J. Humlicek, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 84, 6291–6298 (1998). [CrossRef]  

29. D. Golla, K. Chattrakun, K. Watanabe, T. Taniguchi, B. J. Leroy, and A. Sandhu, “Optical thickness determination of hexagonal boron nitride flakes,” Appl. Phys. Lett. 102, 161906 (2013). [CrossRef]  

30. C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University, 2005).

31. S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First principles investigation of defect emission from hBN,” Nanoscale 9, 13575–13582 (2017).

32. J. N. Reddy, Theory and Analysis of Elastic Plates and Shells (CRC Press, 2006).

33. A. Bosak, J. Serrano, M. Krisch, K. Watanabe, T. Taniguchi, and H. Kanda, “Elasticity of hexagonal boron nitride: inelastic x-ray scattering measurements,” Phys. Rev. B 73, 041402 (2006). [CrossRef]  

34. J. Wiktor and A. Pasquarello, “Absolute deformation potentials of two-dimensional materials,” Phys. Rev. B 94, 245411 (2016). [CrossRef]  

35. A. Love and E. Hough, A Treatise on the Mathematical Theory of Elasticity (Cambridge University, 2013).

36. B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer, T. C. G. Reusch, D. L. Thompson, W. C. T. Lee, G. Klimeck, L. C. L. Hollenberg, and M. Y. Simmons, “Ohm’s law survives to the atomic scale,” Science 335, 64–67 (2012). [CrossRef]  

37. K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices,” ACS Nano 6, 8583–8590 (2012). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
    [Crossref]
  2. I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
    [Crossref]
  3. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
    [Crossref]
  4. B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407, 491–493 (2000).
    [Crossref]
  5. V. Acosta and P. Hemmer, “Nitrogen-vacancy centers: physics and applications,” MRS Bull. 38, 127–130 (2013).
    [Crossref]
  6. L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
    [Crossref]
  7. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
    [Crossref]
  8. D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, “Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide,” Phys. Rev. Lett. 109, 226402 (2012).
    [Crossref]
  9. W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
    [Crossref]
  10. Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
    [Crossref]
  11. C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
    [Crossref]
  12. A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
    [Crossref]
  13. M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
    [Crossref]
  14. P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
    [Crossref]
  15. T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2015).
    [Crossref]
  16. T. T. Tran, C. Zachreson, A. M. Berhane, K. Bray, R. G. Sandstrom, L. H. Li, T. Taniguchi, K. Watanabe, I. Aharonovich, and M. Toth, “Quantum emission from defects in single-crystalline hexagonal boron nitride,” Phys. Rev. Appl. 5, 2–6 (2016).
    [Crossref]
  17. N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatté, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016).
    [Crossref]
  18. A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, and L. C. Bassett, “Optical signatures of quantum emitters in suspended hexagonal boron nitride,” ACS Nano 11, 3328–3336 (2017).
    [Crossref]
  19. Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
    [Crossref]
  20. G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high purity room-temperature single photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
    [Crossref]
  21. T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
    [Crossref]
  22. N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Fávaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J. H. Smet, and J. Wrachtrup, “Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride,” Nano Lett. 16, 7037–7045 (2016).
    [Crossref]
  23. M. Kianinia, B. Regan, S. Abdulkader, T. T. Tran, M. J. Ford, I. Aharonovich, and M. Toth, “Robust solid-state quantum system operating at 800 K,” ACS Photon. 4, 768–773 (2017).
    [Crossref]
  24. C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
    [Crossref]
  25. A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 15053 (2017).
    [Crossref]
  26. K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis of monolayer boron nitride on Cu foil using chemical vapor deposition,” Nano Lett. 12, 161–166 (2011).
    [Crossref]
  27. L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Lett. 10, 3209–3215 (2010).
    [Crossref]
  28. J. Sik, J. Hora, and J. Humlicek, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 84, 6291–6298 (1998).
    [Crossref]
  29. D. Golla, K. Chattrakun, K. Watanabe, T. Taniguchi, B. J. Leroy, and A. Sandhu, “Optical thickness determination of hexagonal boron nitride flakes,” Appl. Phys. Lett. 102, 161906 (2013).
    [Crossref]
  30. C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University, 2005).
  31. S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First principles investigation of defect emission from hBN,” Nanoscale 9, 13575–13582 (2017).
  32. J. N. Reddy, Theory and Analysis of Elastic Plates and Shells (CRC Press, 2006).
  33. A. Bosak, J. Serrano, M. Krisch, K. Watanabe, T. Taniguchi, and H. Kanda, “Elasticity of hexagonal boron nitride: inelastic x-ray scattering measurements,” Phys. Rev. B 73, 041402 (2006).
    [Crossref]
  34. J. Wiktor and A. Pasquarello, “Absolute deformation potentials of two-dimensional materials,” Phys. Rev. B 94, 245411 (2016).
    [Crossref]
  35. A. Love and E. Hough, A Treatise on the Mathematical Theory of Elasticity (Cambridge University, 2013).
  36. B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer, T. C. G. Reusch, D. L. Thompson, W. C. T. Lee, G. Klimeck, L. C. L. Hollenberg, and M. Y. Simmons, “Ohm’s law survives to the atomic scale,” Science 335, 64–67 (2012).
    [Crossref]
  37. K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices,” ACS Nano 6, 8583–8590 (2012).
    [Crossref]

2017 (6)

A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, and L. C. Bassett, “Optical signatures of quantum emitters in suspended hexagonal boron nitride,” ACS Nano 11, 3328–3336 (2017).
[Crossref]

M. Kianinia, B. Regan, S. Abdulkader, T. T. Tran, M. J. Ford, I. Aharonovich, and M. Toth, “Robust solid-state quantum system operating at 800 K,” ACS Photon. 4, 768–773 (2017).
[Crossref]

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 15053 (2017).
[Crossref]

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high purity room-temperature single photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First principles investigation of defect emission from hBN,” Nanoscale 9, 13575–13582 (2017).

2016 (7)

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Fávaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J. H. Smet, and J. Wrachtrup, “Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride,” Nano Lett. 16, 7037–7045 (2016).
[Crossref]

J. Wiktor and A. Pasquarello, “Absolute deformation potentials of two-dimensional materials,” Phys. Rev. B 94, 245411 (2016).
[Crossref]

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

T. T. Tran, C. Zachreson, A. M. Berhane, K. Bray, R. G. Sandstrom, L. H. Li, T. Taniguchi, K. Watanabe, I. Aharonovich, and M. Toth, “Quantum emission from defects in single-crystalline hexagonal boron nitride,” Phys. Rev. Appl. 5, 2–6 (2016).
[Crossref]

N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatté, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

2015 (6)

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

P. Tonndorf, R. Schmidt, R. Schneider, J. Kern, M. Buscema, G. A. Steele, A. Castellanos-Gomez, H. S. J. van der Zant, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Single-photon emission from localized excitons in an atomically thin semiconductor,” Optica 2, 347–352 (2015).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2015).
[Crossref]

2014 (1)

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

2013 (3)

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

V. Acosta and P. Hemmer, “Nitrogen-vacancy centers: physics and applications,” MRS Bull. 38, 127–130 (2013).
[Crossref]

D. Golla, K. Chattrakun, K. Watanabe, T. Taniguchi, B. J. Leroy, and A. Sandhu, “Optical thickness determination of hexagonal boron nitride flakes,” Appl. Phys. Lett. 102, 161906 (2013).
[Crossref]

2012 (3)

B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer, T. C. G. Reusch, D. L. Thompson, W. C. T. Lee, G. Klimeck, L. C. L. Hollenberg, and M. Y. Simmons, “Ohm’s law survives to the atomic scale,” Science 335, 64–67 (2012).
[Crossref]

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices,” ACS Nano 6, 8583–8590 (2012).
[Crossref]

D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, “Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide,” Phys. Rev. Lett. 109, 226402 (2012).
[Crossref]

2011 (2)

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis of monolayer boron nitride on Cu foil using chemical vapor deposition,” Nano Lett. 12, 161–166 (2011).
[Crossref]

2010 (1)

L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Lett. 10, 3209–3215 (2010).
[Crossref]

2009 (1)

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

2006 (1)

A. Bosak, J. Serrano, M. Krisch, K. Watanabe, T. Taniguchi, and H. Kanda, “Elasticity of hexagonal boron nitride: inelastic x-ray scattering measurements,” Phys. Rev. B 73, 041402 (2006).
[Crossref]

2000 (2)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407, 491–493 (2000).
[Crossref]

1998 (1)

J. Sik, J. Hora, and J. Humlicek, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 84, 6291–6298 (1998).
[Crossref]

Abdulkader, S.

M. Kianinia, B. Regan, S. Abdulkader, T. T. Tran, M. J. Ford, I. Aharonovich, and M. Toth, “Robust solid-state quantum system operating at 800 K,” ACS Photon. 4, 768–773 (2017).
[Crossref]

Acosta, V.

V. Acosta and P. Hemmer, “Nitrogen-vacancy centers: physics and applications,” MRS Bull. 38, 127–130 (2013).
[Crossref]

Aharonovich, I.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high purity room-temperature single photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

M. Kianinia, B. Regan, S. Abdulkader, T. T. Tran, M. J. Ford, I. Aharonovich, and M. Toth, “Robust solid-state quantum system operating at 800 K,” ACS Photon. 4, 768–773 (2017).
[Crossref]

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First principles investigation of defect emission from hBN,” Nanoscale 9, 13575–13582 (2017).

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

T. T. Tran, C. Zachreson, A. M. Berhane, K. Bray, R. G. Sandstrom, L. H. Li, T. Taniguchi, K. Watanabe, I. Aharonovich, and M. Toth, “Quantum emission from defects in single-crystalline hexagonal boron nitride,” Phys. Rev. Appl. 5, 2–6 (2016).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2015).
[Crossref]

Ajayan, P. M.

L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Lett. 10, 3209–3215 (2010).
[Crossref]

Ali, S.

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First principles investigation of defect emission from hBN,” Nanoscale 9, 13575–13582 (2017).

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high purity room-temperature single photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

Alkauskas, A.

A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, and L. C. Bassett, “Optical signatures of quantum emitters in suspended hexagonal boron nitride,” ACS Nano 11, 3328–3336 (2017).
[Crossref]

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

Allain, A. V.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Arora, A.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Astakhov, G. V.

D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, “Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide,” Phys. Rev. Lett. 109, 226402 (2012).
[Crossref]

Atatüre, M.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

Awschalom, D. D.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

Baranov, P. G.

D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, “Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide,” Phys. Rev. Lett. 109, 226402 (2012).
[Crossref]

Barbone, M.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

Bassett, L. C.

A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, and L. C. Bassett, “Optical signatures of quantum emitters in suspended hexagonal boron nitride,” ACS Nano 11, 3328–3336 (2017).
[Crossref]

Beams, R.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Berhane, A. M.

T. T. Tran, C. Zachreson, A. M. Berhane, K. Bray, R. G. Sandstrom, L. H. Li, T. Taniguchi, K. Watanabe, I. Aharonovich, and M. Toth, “Quantum emission from defects in single-crystalline hexagonal boron nitride,” Phys. Rev. Appl. 5, 2–6 (2016).
[Crossref]

Binder, J. M.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

Bosak, A.

A. Bosak, J. Serrano, M. Krisch, K. Watanabe, T. Taniguchi, and H. Kanda, “Elasticity of hexagonal boron nitride: inelastic x-ray scattering measurements,” Phys. Rev. B 73, 041402 (2006).
[Crossref]

Branny, A.

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 15053 (2017).
[Crossref]

Bratschitsch, R.

Bray, K.

T. T. Tran, C. Zachreson, A. M. Berhane, K. Bray, R. G. Sandstrom, L. H. Li, T. Taniguchi, K. Watanabe, I. Aharonovich, and M. Toth, “Quantum emission from defects in single-crystalline hexagonal boron nitride,” Phys. Rev. Appl. 5, 2–6 (2016).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2015).
[Crossref]

Buckley, B. B.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

Buscema, M.

Calderon, B.

N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatté, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016).
[Crossref]

Calusine, G.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

Castellanos-Gomez, A.

Chakraborty, C.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

Chattrakun, K.

D. Golla, K. Chattrakun, K. Watanabe, T. Taniguchi, B. J. Leroy, and A. Sandhu, “Optical thickness determination of hexagonal boron nitride flakes,” Appl. Phys. Lett. 102, 161906 (2013).
[Crossref]

Chejanovsky, N.

N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Fávaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J. H. Smet, and J. Wrachtrup, “Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride,” Nano Lett. 16, 7037–7045 (2016).
[Crossref]

Chen, M.-C.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

Cherkez, V.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Ci, L.

L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Lett. 10, 3209–3215 (2010).
[Crossref]

Clark, G.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

Considine, C. R.

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

Delaney, P.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Denisenko, A.

N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Fávaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J. H. Smet, and J. Wrachtrup, “Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride,” Nano Lett. 16, 7037–7045 (2016).
[Crossref]

Ding, X.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

Doherty, M. W.

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Dresselhaus, M.

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices,” ACS Nano 6, 8583–8590 (2012).
[Crossref]

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis of monolayer boron nitride on Cu foil using chemical vapor deposition,” Nano Lett. 12, 161–166 (2011).
[Crossref]

Dyakonov, V.

D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, “Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide,” Phys. Rev. Lett. 109, 226402 (2012).
[Crossref]

Efetov, D. K.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high purity room-temperature single photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

Elbadawi, C.

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

Englund, D.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high purity room-temperature single photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

Englund, D. R.

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

Exarhos, A. L.

A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, and L. C. Bassett, “Optical signatures of quantum emitters in suspended hexagonal boron nitride,” ACS Nano 11, 3328–3336 (2017).
[Crossref]

Fávaro de Oliveira, F.

N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Fávaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J. H. Smet, and J. Wrachtrup, “Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride,” Nano Lett. 16, 7037–7045 (2016).
[Crossref]

Fedder, H.

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

Ferrari, A. C.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

Finkler, A.

N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Fávaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J. H. Smet, and J. Wrachtrup, “Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride,” Nano Lett. 16, 7037–7045 (2016).
[Crossref]

Flatté, M. E.

N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatté, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016).
[Crossref]

Ford, M. J.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high purity room-temperature single photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

M. Kianinia, B. Regan, S. Abdulkader, T. T. Tran, M. J. Ford, I. Aharonovich, and M. Toth, “Robust solid-state quantum system operating at 800 K,” ACS Photon. 4, 768–773 (2017).
[Crossref]

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First principles investigation of defect emission from hBN,” Nanoscale 9, 13575–13582 (2017).

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2015).
[Crossref]

Fronzi, M.

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First principles investigation of defect emission from hBN,” Nanoscale 9, 13575–13582 (2017).

Fuchs, F.

D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, “Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide,” Phys. Rev. Lett. 109, 226402 (2012).
[Crossref]

Fuchs, G. D.

N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatté, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016).
[Crossref]

Fuhrer, A.

B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer, T. C. G. Reusch, D. L. Thompson, W. C. T. Lee, G. Klimeck, L. C. L. Hollenberg, and M. Y. Simmons, “Ohm’s law survives to the atomic scale,” Science 335, 64–67 (2012).
[Crossref]

Furchi, M. M.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high purity room-temperature single photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Gerardot, B. D.

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 15053 (2017).
[Crossref]

Gerhardt, I.

N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Fávaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J. H. Smet, and J. Wrachtrup, “Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride,” Nano Lett. 16, 7037–7045 (2016).
[Crossref]

Gerry, C.

C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University, 2005).

Golla, D.

D. Golla, K. Chattrakun, K. Watanabe, T. Taniguchi, B. J. Leroy, and A. Sandhu, “Optical thickness determination of hexagonal boron nitride flakes,” Appl. Phys. Lett. 102, 161906 (2013).
[Crossref]

Goodfellow, K. M.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

Grosso, G.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high purity room-temperature single photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

Grote, R. R.

A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, and L. C. Bassett, “Optical signatures of quantum emitters in suspended hexagonal boron nitride,” ACS Nano 11, 3328–3336 (2017).
[Crossref]

He, Y.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

He, Y.-M.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

Hemmer, P.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

V. Acosta and P. Hemmer, “Nitrogen-vacancy centers: physics and applications,” MRS Bull. 38, 127–130 (2013).
[Crossref]

Heremans, F. J.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

Herlinger, P.

N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Fávaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J. H. Smet, and J. Wrachtrup, “Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride,” Nano Lett. 16, 7037–7045 (2016).
[Crossref]

Hofmann, M.

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis of monolayer boron nitride on Cu foil using chemical vapor deposition,” Nano Lett. 12, 161–166 (2011).
[Crossref]

Hollenberg, L. C. L.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer, T. C. G. Reusch, D. L. Thompson, W. C. T. Lee, G. Klimeck, L. C. L. Hollenberg, and M. Y. Simmons, “Ohm’s law survives to the atomic scale,” Science 335, 64–67 (2012).
[Crossref]

Hopper, D. A.

A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, and L. C. Bassett, “Optical signatures of quantum emitters in suspended hexagonal boron nitride,” ACS Nano 11, 3328–3336 (2017).
[Crossref]

Hora, J.

J. Sik, J. Hora, and J. Humlicek, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 84, 6291–6298 (1998).
[Crossref]

Hough, E.

A. Love and E. Hough, A Treatise on the Mathematical Theory of Elasticity (Cambridge University, 2013).

Hsu, A.

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices,” ACS Nano 6, 8583–8590 (2012).
[Crossref]

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis of monolayer boron nitride on Cu foil using chemical vapor deposition,” Nano Lett. 12, 161–166 (2011).
[Crossref]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Humlicek, J.

J. Sik, J. Hora, and J. Humlicek, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 84, 6291–6298 (1998).
[Crossref]

Ilyin, V. A.

D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, “Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide,” Phys. Rev. Lett. 109, 226402 (2012).
[Crossref]

Imamoglu, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Isoya, J.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

Jahnke, K. D.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

Jarillo-Herrero, P.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high purity room-temperature single photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

Jayakumar, H.

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

Jelezko, F.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Ji, Y.

N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatté, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016).
[Crossref]

Jia, X.

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices,” ACS Nano 6, 8583–8590 (2012).
[Crossref]

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis of monolayer boron nitride on Cu foil using chemical vapor deposition,” Nano Lett. 12, 161–166 (2011).
[Crossref]

Jin, C.

L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Lett. 10, 3209–3215 (2010).
[Crossref]

Jungwirth, N. R.

N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatté, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016).
[Crossref]

Kanda, H.

A. Bosak, J. Serrano, M. Krisch, K. Watanabe, T. Taniguchi, and H. Kanda, “Elasticity of hexagonal boron nitride: inelastic x-ray scattering measurements,” Phys. Rev. B 73, 041402 (2006).
[Crossref]

Kara, D. M.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

Kern, J.

Kianinia, M.

M. Kianinia, B. Regan, S. Abdulkader, T. T. Tran, M. J. Ford, I. Aharonovich, and M. Toth, “Robust solid-state quantum system operating at 800 K,” ACS Photon. 4, 768–773 (2017).
[Crossref]

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First principles investigation of defect emission from hBN,” Nanoscale 9, 13575–13582 (2017).

Kim, K. K.

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices,” ACS Nano 6, 8583–8590 (2012).
[Crossref]

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis of monolayer boron nitride on Cu foil using chemical vapor deposition,” Nano Lett. 12, 161–166 (2011).
[Crossref]

Kim, S. M.

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices,” ACS Nano 6, 8583–8590 (2012).
[Crossref]

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis of monolayer boron nitride on Cu foil using chemical vapor deposition,” Nano Lett. 12, 161–166 (2011).
[Crossref]

Kim, Y.

N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Fávaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J. H. Smet, and J. Wrachtrup, “Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride,” Nano Lett. 16, 7037–7045 (2016).
[Crossref]

Kinnischtzke, L.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Kis, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Klimeck, G.

B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer, T. C. G. Reusch, D. L. Thompson, W. C. T. Lee, G. Klimeck, L. C. L. Hollenberg, and M. Y. Simmons, “Ohm’s law survives to the atomic scale,” Science 335, 64–67 (2012).
[Crossref]

Knight, P.

C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University, 2005).

Koehl, W. F.

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

Kong, J.

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices,” ACS Nano 6, 8583–8590 (2012).
[Crossref]

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis of monolayer boron nitride on Cu foil using chemical vapor deposition,” Nano Lett. 12, 161–166 (2011).
[Crossref]

Koperski, M.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Kossacki, P.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Kraus, H.

D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, “Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide,” Phys. Rev. Lett. 109, 226402 (2012).
[Crossref]

Krisch, M.

A. Bosak, J. Serrano, M. Krisch, K. Watanabe, T. Taniguchi, and H. Kanda, “Elasticity of hexagonal boron nitride: inelastic x-ray scattering measurements,” Phys. Rev. B 73, 041402 (2006).
[Crossref]

Kumar, S.

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 15053 (2017).
[Crossref]

Kvashnin, A. G.

L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Lett. 10, 3209–3215 (2010).
[Crossref]

Kvashnin, D. G.

L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Lett. 10, 3209–3215 (2010).
[Crossref]

Latawiec, P.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

Lee, S.

B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer, T. C. G. Reusch, D. L. Thompson, W. C. T. Lee, G. Klimeck, L. C. L. Hollenberg, and M. Y. Simmons, “Ohm’s law survives to the atomic scale,” Science 335, 64–67 (2012).
[Crossref]

Lee, W. C. T.

B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer, T. C. G. Reusch, D. L. Thompson, W. C. T. Lee, G. Klimeck, L. C. L. Hollenberg, and M. Y. Simmons, “Ohm’s law survives to the atomic scale,” Science 335, 64–67 (2012).
[Crossref]

Lembke, D. S.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Leroy, B. J.

D. Golla, K. Chattrakun, K. Watanabe, T. Taniguchi, B. J. Leroy, and A. Sandhu, “Optical thickness determination of hexagonal boron nitride flakes,” Appl. Phys. Lett. 102, 161906 (2013).
[Crossref]

Li, L. H.

T. T. Tran, C. Zachreson, A. M. Berhane, K. Bray, R. G. Sandstrom, L. H. Li, T. Taniguchi, K. Watanabe, I. Aharonovich, and M. Toth, “Quantum emission from defects in single-crystalline hexagonal boron nitride,” Phys. Rev. Appl. 5, 2–6 (2016).
[Crossref]

Lienhard, B.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high purity room-temperature single photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

Lobo, C. J.

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

Loncar, M.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

Lou, J.

L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Lett. 10, 3209–3215 (2010).
[Crossref]

Lounis, B.

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407, 491–493 (2000).
[Crossref]

Love, A.

A. Love and E. Hough, A Treatise on the Mathematical Theory of Elasticity (Cambridge University, 2013).

Lu, C.-Y.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

Lu, H.

L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Lett. 10, 3209–3215 (2010).
[Crossref]

Lukin, M. D.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

Mackoit, M.

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

Mahapatra, S.

B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer, T. C. G. Reusch, D. L. Thompson, W. C. T. Lee, G. Klimeck, L. C. L. Hollenberg, and M. Y. Simmons, “Ohm’s law survives to the atomic scale,” Science 335, 64–67 (2012).
[Crossref]

Mallet, P.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Manson, N. B.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Marcus, J.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Menon, V. M.

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

Meriles, C. A.

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

Metsch, M. H.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

Michaelis de Vasconcellos, S.

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Moerner, W. E.

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407, 491–493 (2000).
[Crossref]

Montblanch, A. R.-P.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

Moon, H.

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high purity room-temperature single photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

Nezich, D.

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis of monolayer boron nitride on Cu foil using chemical vapor deposition,” Nano Lett. 12, 161–166 (2011).
[Crossref]

Ni, J.

L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Lett. 10, 3209–3215 (2010).
[Crossref]

Nogajewski, K.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Ott, A. K.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

Palacios, T.

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices,” ACS Nano 6, 8583–8590 (2012).
[Crossref]

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis of monolayer boron nitride on Cu foil using chemical vapor deposition,” Nano Lett. 12, 161–166 (2011).
[Crossref]

Palacios-Berraquero, C.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

Pan, J.-W.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

Paolucci, F.

N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Fávaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J. H. Smet, and J. Wrachtrup, “Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride,” Nano Lett. 16, 7037–7045 (2016).
[Crossref]

Pasquarello, A.

J. Wiktor and A. Pasquarello, “Absolute deformation potentials of two-dimensional materials,” Phys. Rev. B 94, 245411 (2016).
[Crossref]

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Potemski, M.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Proux, R.

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 15053 (2017).
[Crossref]

Reddy, J. N.

J. N. Reddy, Theory and Analysis of Elastic Plates and Shells (CRC Press, 2006).

Regan, B.

M. Kianinia, B. Regan, S. Abdulkader, T. T. Tran, M. J. Ford, I. Aharonovich, and M. Toth, “Robust solid-state quantum system operating at 800 K,” ACS Photon. 4, 768–773 (2017).
[Crossref]

Rendler, T.

N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Fávaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J. H. Smet, and J. Wrachtrup, “Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride,” Nano Lett. 16, 7037–7045 (2016).
[Crossref]

Reusch, T. C. G.

B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer, T. C. G. Reusch, D. L. Thompson, W. C. T. Lee, G. Klimeck, L. C. L. Hollenberg, and M. Y. Simmons, “Ohm’s law survives to the atomic scale,” Science 335, 64–67 (2012).
[Crossref]

Rezai, M.

N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Fávaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J. H. Smet, and J. Wrachtrup, “Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride,” Nano Lett. 16, 7037–7045 (2016).
[Crossref]

Riedel, D.

D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, “Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide,” Phys. Rev. Lett. 109, 226402 (2012).
[Crossref]

Rodriguez-Nieva, J. F.

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis of monolayer boron nitride on Cu foil using chemical vapor deposition,” Nano Lett. 12, 161–166 (2011).
[Crossref]

Rogers, L. J.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

Rouabeh, W.

N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Fávaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J. H. Smet, and J. Wrachtrup, “Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride,” Nano Lett. 16, 7037–7045 (2016).
[Crossref]

Ryu, H.

B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer, T. C. G. Reusch, D. L. Thompson, W. C. T. Lee, G. Klimeck, L. C. L. Hollenberg, and M. Y. Simmons, “Ohm’s law survives to the atomic scale,” Science 335, 64–67 (2012).
[Crossref]

Sandhu, A.

D. Golla, K. Chattrakun, K. Watanabe, T. Taniguchi, B. J. Leroy, and A. Sandhu, “Optical thickness determination of hexagonal boron nitride flakes,” Appl. Phys. Lett. 102, 161906 (2013).
[Crossref]

Sandstrom, R. G.

T. T. Tran, C. Zachreson, A. M. Berhane, K. Bray, R. G. Sandstrom, L. H. Li, T. Taniguchi, K. Watanabe, I. Aharonovich, and M. Toth, “Quantum emission from defects in single-crystalline hexagonal boron nitride,” Phys. Rev. Appl. 5, 2–6 (2016).
[Crossref]

Schaibley, J. R.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

Schmidt, R.

Schneider, R.

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Serrano, J.

A. Bosak, J. Serrano, M. Krisch, K. Watanabe, T. Taniguchi, and H. Kanda, “Elasticity of hexagonal boron nitride: inelastic x-ray scattering measurements,” Phys. Rev. B 73, 041402 (2006).
[Crossref]

Shi, Y.

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices,” ACS Nano 6, 8583–8590 (2012).
[Crossref]

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis of monolayer boron nitride on Cu foil using chemical vapor deposition,” Nano Lett. 12, 161–166 (2011).
[Crossref]

Shotan, Z.

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

Sidler, M.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Sik, J.

J. Sik, J. Hora, and J. Humlicek, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 84, 6291–6298 (1998).
[Crossref]

Simmons, M. Y.

B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer, T. C. G. Reusch, D. L. Thompson, W. C. T. Lee, G. Klimeck, L. C. L. Hollenberg, and M. Y. Simmons, “Ohm’s law survives to the atomic scale,” Science 335, 64–67 (2012).
[Crossref]

Sipahigil, A.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

Smet, J. H.

N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Fávaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J. H. Smet, and J. Wrachtrup, “Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride,” Nano Lett. 16, 7037–7045 (2016).
[Crossref]

Soltamova, A. A.

D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, “Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide,” Phys. Rev. Lett. 109, 226402 (2012).
[Crossref]

Song, L.

L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Lett. 10, 3209–3215 (2010).
[Crossref]

Sorokin, P. B.

L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Lett. 10, 3209–3215 (2010).
[Crossref]

Spencer, M. G.

N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatté, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016).
[Crossref]

Sperlich, A.

D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, “Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide,” Phys. Rev. Lett. 109, 226402 (2012).
[Crossref]

Srivastava, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

Stampfl, C.

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First principles investigation of defect emission from hBN,” Nanoscale 9, 13575–13582 (2017).

Steele, G. A.

Sumiya, H.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

Taniguchi, T.

T. T. Tran, C. Zachreson, A. M. Berhane, K. Bray, R. G. Sandstrom, L. H. Li, T. Taniguchi, K. Watanabe, I. Aharonovich, and M. Toth, “Quantum emission from defects in single-crystalline hexagonal boron nitride,” Phys. Rev. Appl. 5, 2–6 (2016).
[Crossref]

D. Golla, K. Chattrakun, K. Watanabe, T. Taniguchi, B. J. Leroy, and A. Sandhu, “Optical thickness determination of hexagonal boron nitride flakes,” Appl. Phys. Lett. 102, 161906 (2013).
[Crossref]

A. Bosak, J. Serrano, M. Krisch, K. Watanabe, T. Taniguchi, and H. Kanda, “Elasticity of hexagonal boron nitride: inelastic x-ray scattering measurements,” Phys. Rev. B 73, 041402 (2006).
[Crossref]

Tawfik, S. A.

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First principles investigation of defect emission from hBN,” Nanoscale 9, 13575–13582 (2017).

Teraji, T.

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

Thompson, D. L.

B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer, T. C. G. Reusch, D. L. Thompson, W. C. T. Lee, G. Klimeck, L. C. L. Hollenberg, and M. Y. Simmons, “Ohm’s law survives to the atomic scale,” Science 335, 64–67 (2012).
[Crossref]

Tonndorf, P.

Toth, M.

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First principles investigation of defect emission from hBN,” Nanoscale 9, 13575–13582 (2017).

M. Kianinia, B. Regan, S. Abdulkader, T. T. Tran, M. J. Ford, I. Aharonovich, and M. Toth, “Robust solid-state quantum system operating at 800 K,” ACS Photon. 4, 768–773 (2017).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

T. T. Tran, C. Zachreson, A. M. Berhane, K. Bray, R. G. Sandstrom, L. H. Li, T. Taniguchi, K. Watanabe, I. Aharonovich, and M. Toth, “Quantum emission from defects in single-crystalline hexagonal boron nitride,” Phys. Rev. Appl. 5, 2–6 (2016).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2015).
[Crossref]

Totonjian, D.

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

Tran, T. T.

M. Kianinia, B. Regan, S. Abdulkader, T. T. Tran, M. J. Ford, I. Aharonovich, and M. Toth, “Robust solid-state quantum system operating at 800 K,” ACS Photon. 4, 768–773 (2017).
[Crossref]

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First principles investigation of defect emission from hBN,” Nanoscale 9, 13575–13582 (2017).

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

T. T. Tran, C. Zachreson, A. M. Berhane, K. Bray, R. G. Sandstrom, L. H. Li, T. Taniguchi, K. Watanabe, I. Aharonovich, and M. Toth, “Quantum emission from defects in single-crystalline hexagonal boron nitride,” Phys. Rev. Appl. 5, 2–6 (2016).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2015).
[Crossref]

Vamivakas, A. N.

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

van der Zant, H. S. J.

Väth, S.

D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, “Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide,” Phys. Rev. Lett. 109, 226402 (2012).
[Crossref]

Veuillen, J.-Y.

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Watanabe, K.

T. T. Tran, C. Zachreson, A. M. Berhane, K. Bray, R. G. Sandstrom, L. H. Li, T. Taniguchi, K. Watanabe, I. Aharonovich, and M. Toth, “Quantum emission from defects in single-crystalline hexagonal boron nitride,” Phys. Rev. Appl. 5, 2–6 (2016).
[Crossref]

D. Golla, K. Chattrakun, K. Watanabe, T. Taniguchi, B. J. Leroy, and A. Sandhu, “Optical thickness determination of hexagonal boron nitride flakes,” Appl. Phys. Lett. 102, 161906 (2013).
[Crossref]

A. Bosak, J. Serrano, M. Krisch, K. Watanabe, T. Taniguchi, and H. Kanda, “Elasticity of hexagonal boron nitride: inelastic x-ray scattering measurements,” Phys. Rev. B 73, 041402 (2006).
[Crossref]

Weber, B.

B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer, T. C. G. Reusch, D. L. Thompson, W. C. T. Lee, G. Klimeck, L. C. L. Hollenberg, and M. Y. Simmons, “Ohm’s law survives to the atomic scale,” Science 335, 64–67 (2012).
[Crossref]

Wei, Y.-J.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

Wiktor, J.

J. Wiktor and A. Pasquarello, “Absolute deformation potentials of two-dimensional materials,” Phys. Rev. B 94, 245411 (2016).
[Crossref]

Wrachtrup, J.

N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Fávaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J. H. Smet, and J. Wrachtrup, “Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride,” Nano Lett. 16, 7037–7045 (2016).
[Crossref]

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Xu, X.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

Yakobson, B. I.

L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Lett. 10, 3209–3215 (2010).
[Crossref]

Yang, S.

N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Fávaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J. H. Smet, and J. Wrachtrup, “Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride,” Nano Lett. 16, 7037–7045 (2016).
[Crossref]

Yao, W.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

Yoon, D.

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

Zachreson, C.

T. T. Tran, C. Zachreson, A. M. Berhane, K. Bray, R. G. Sandstrom, L. H. Li, T. Taniguchi, K. Watanabe, I. Aharonovich, and M. Toth, “Quantum emission from defects in single-crystalline hexagonal boron nitride,” Phys. Rev. Appl. 5, 2–6 (2016).
[Crossref]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Zhang, Q.

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

ACS Nano (3)

A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, and L. C. Bassett, “Optical signatures of quantum emitters in suspended hexagonal boron nitride,” ACS Nano 11, 3328–3336 (2017).
[Crossref]

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, and M. Toth, “Robust multicolor single photon emission from point defects in hexagonal boron nitride,” ACS Nano 10, 7331–7338 (2016).
[Crossref]

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices,” ACS Nano 6, 8583–8590 (2012).
[Crossref]

ACS Photon. (2)

M. Kianinia, B. Regan, S. Abdulkader, T. T. Tran, M. J. Ford, I. Aharonovich, and M. Toth, “Robust solid-state quantum system operating at 800 K,” ACS Photon. 4, 768–773 (2017).
[Crossref]

Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles, “Photoinduced modification of single-photon emitters in hexagonal boron nitride,” ACS Photon. 3, 2490–2496 (2016).
[Crossref]

Appl. Phys. Lett. (1)

D. Golla, K. Chattrakun, K. Watanabe, T. Taniguchi, B. J. Leroy, and A. Sandhu, “Optical thickness determination of hexagonal boron nitride flakes,” Appl. Phys. Lett. 102, 161906 (2013).
[Crossref]

J. Appl. Phys. (1)

J. Sik, J. Hora, and J. Humlicek, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 84, 6291–6298 (1998).
[Crossref]

MRS Bull. (1)

V. Acosta and P. Hemmer, “Nitrogen-vacancy centers: physics and applications,” MRS Bull. 38, 127–130 (2013).
[Crossref]

Nano Lett. (4)

N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatté, and G. D. Fuchs, “Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride,” Nano Lett. 16, 6052–6057 (2016).
[Crossref]

K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, “Synthesis of monolayer boron nitride on Cu foil using chemical vapor deposition,” Nano Lett. 12, 161–166 (2011).
[Crossref]

L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Lett. 10, 3209–3215 (2010).
[Crossref]

N. Chejanovsky, M. Rezai, F. Paolucci, Y. Kim, T. Rendler, W. Rouabeh, F. Fávaro de Oliveira, P. Herlinger, A. Denisenko, S. Yang, I. Gerhardt, A. Finkler, J. H. Smet, and J. Wrachtrup, “Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride,” Nano Lett. 16, 7037–7045 (2016).
[Crossref]

Nanoscale (1)

S. A. Tawfik, S. Ali, M. Fronzi, M. Kianinia, T. T. Tran, C. Stampfl, I. Aharonovich, M. Toth, and M. J. Ford, “First principles investigation of defect emission from hBN,” Nanoscale 9, 13575–13582 (2017).

Nat. Commun. (3)

C. Palacios-Berraquero, D. M. Kara, A. R.-P. Montblanch, M. Barbone, P. Latawiec, D. Yoon, A. K. Ott, M. Loncar, A. C. Ferrari, and M. Atatüre, “Large-scale quantum-emitter arrays in atomically thin semiconductors,” Nat. Commun. 8, 15093 (2017).
[Crossref]

A. Branny, S. Kumar, R. Proux, and B. D. Gerardot, “Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor,” Nat. Commun. 8, 15053 (2017).
[Crossref]

G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, and D. Englund, “Tunable and high purity room-temperature single photon emission from atomic defects in hexagonal boron nitride,” Nat. Commun. 8, 705 (2017).
[Crossref]

Nat. Nanotech. (1)

Y.-M. He, G. Clark, J. R. Schaibley, Y. He, M.-C. Chen, Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” Nat. Nanotech. 10, 497–502 (2015).
[Crossref]

Nat. Nanotechnol. (4)

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, “Voltage-controlled quantum light from an atomically thin semiconductor,” Nat. Nanotechnol. 10, 507–511 (2015).
[Crossref]

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol. 10, 491–496 (2015).
[Crossref]

M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” Nat. Nanotechnol. 10, 503–506 (2015).
[Crossref]

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, “Quantum emission from hexagonal boron nitride monolayers,” Nat. Nanotechnol. 11, 37–41 (2015).
[Crossref]

Nat. Photonics (2)

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10, 631–641 (2016).
[Crossref]

Nature (2)

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407, 491–493 (2000).
[Crossref]

W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, “Room temperature coherent control of defect spin qubits in silicon carbide,” Nature 479, 84–87 (2011).
[Crossref]

Optica (1)

Phys. Rep. (1)

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Phys. Rev. Appl. (1)

T. T. Tran, C. Zachreson, A. M. Berhane, K. Bray, R. G. Sandstrom, L. H. Li, T. Taniguchi, K. Watanabe, I. Aharonovich, and M. Toth, “Quantum emission from defects in single-crystalline hexagonal boron nitride,” Phys. Rev. Appl. 5, 2–6 (2016).
[Crossref]

Phys. Rev. B (2)

A. Bosak, J. Serrano, M. Krisch, K. Watanabe, T. Taniguchi, and H. Kanda, “Elasticity of hexagonal boron nitride: inelastic x-ray scattering measurements,” Phys. Rev. B 73, 041402 (2006).
[Crossref]

J. Wiktor and A. Pasquarello, “Absolute deformation potentials of two-dimensional materials,” Phys. Rev. B 94, 245411 (2016).
[Crossref]

Phys. Rev. Lett. (2)

D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, “Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide,” Phys. Rev. Lett. 109, 226402 (2012).
[Crossref]

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder, T. Teraji, H. Sumiya, J. Isoya, M. D. Lukin, P. Hemmer, and F. Jelezko, “All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263602 (2014).
[Crossref]

Science (2)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer, T. C. G. Reusch, D. L. Thompson, W. C. T. Lee, G. Klimeck, L. C. L. Hollenberg, and M. Y. Simmons, “Ohm’s law survives to the atomic scale,” Science 335, 64–67 (2012).
[Crossref]

Other (3)

A. Love and E. Hough, A Treatise on the Mathematical Theory of Elasticity (Cambridge University, 2013).

J. N. Reddy, Theory and Analysis of Elastic Plates and Shells (CRC Press, 2006).

C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University, 2005).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Strain-induced activation of single-photon emitters in hBN. (a) We use a wet transfer protocol to overlay a 20 nm -thick flake of hBN on a nanostructured silica substrate. For the present experiments, we fabricate an e-beam-defined array of silica nanopillars of variable height h , diameter d , and spacing s . (b) Three-dimensional rendering of an AFM image from folded, 20 nm -thick hBN. Labels indicate the number of layers, one on the left (1L) and two at the center (2L); bare silica pillars (0L) can be seen on the lower right corner. (c) Room-temperature confocal (main) and optical (inset) images of example nanopillar structures for spacings of 2 μm (left and center arrays) and 3 μm (far right); for all pillars the height is 155 nm, while the pillar diameter varies from 250 nm for the lower left-hand array to 500 nm for the top center array in increments of 50 nm. The left and right arrays have identical diameters for each row. During confocal scanning, the laser excitation wavelength and intensity are 460 nm and 600 μW / μm 2 , respectively. No fluorescence is detected from areas where the hBN sample is missing (upper left corner in the confocal image).
Fig. 2.
Fig. 2. Photoluminescence spectroscopy of strain-activated defects. (a) Photoluminescence spectrum from an active pillar site. The relatively sharp ZPL and phonon replica suggest the emission originates from a single defect. (b) Time trace of the photoluminescence spectra in (a) showing the intermittent blinking characteristic of SPEs. (c) Photon correlation data determined from a pulsed Hanbury Brown–Twiss measurement of the same pillar site. The red curve is a floating average of the data points denoted by the gray curve. By calculating the ratio between the area of the peak at zero time delay and the average area of the other ten peaks, we calculate g ( 2 ) ( t = 0 ) = 0.27 ± 0.02 . (d) Fluorescence lifetime measurement from a typical SPE. The solid red line indicates an exponential decay fit, giving a lifetime of τ = 2.13 ± 0.01 ns .
Fig. 3.
Fig. 3. Confocal microscopy and micro-spectroscopy of strain-activated emitters in 1D contours. (a) We transfer a 20-nm-thick hBN flake on a silica substrate featuring 2-μm-diameter pillars; from confocal microscopy (main) we observe preferential emitter activation along the edges of the pillars. The upper inserts show zoomed AFM (left) and confocal (images) of the circled pillar. In the confocal images the integration time per pixel is 2 ms, and the laser excitation power and wavelength are 1.7 mW and 460 nm, respectively. (b) Emission spectra as a function of time for sites S5 and S6 along the contour of the circled pillar in (a). (c) Same as in (a) but for pillars with a triangular contour. (d) Integrated emission spectra at sites S7 through S11 along the triangular contour of pillar circled in (a); the integration time is 10 s. Spectra have been displaced vertically for clarity. All silica structures on the substrate in (a) through (d) are 142 nm tall.
Fig. 4.
Fig. 4. Emitter statistics. (a) Confocal PL image of an 8 × 10 array of strain-activated emitters in 75-nm-diameter pillars along with the number of emitters at each pillar site (left and right, respectively). (b) Average peak wavelength of the emitters in the array, showing preferential emission at 540 nm with a narrow distribution with a long tail in the emission wavelength. Here, bin size is 3 nm. (c) Number of emitters per pillar site determined using HBT measurements [ g ( 2 ) ( 0 ) ] show a distribution peaked at an average of 2 emitters per pillar site where the dotted line is the fitted Poissonian distribution. Excitation at 510 nm, 300 uW. UD, undetermined (signal too weak to quantify).
Fig. 5.
Fig. 5. Deformation potential in strained hexagonal boron nitride thin films. (a) Confocal microscopy image of the PL observed from a 2-μm-diameter pillar along with the (b) AFM image showing perfect folding of the hBN film around the pillar edges. (c) Calculated deformation potential for electrons (orange) and holes (blue) as a function of the radial distance r to the center of the pillar. For comparison, the solid green trace is the cross section of the fluorescence pattern in (a), and the solid red trace is a polynomial fit to the hBN deformation in (b).

Metrics