Abstract

Mid-infrared (MIR) silicon photonic systems show great promise for miniaturizing a variety of sensing and detection technologies. Rapid progress has been made in recent years, and numerous passive and active MIR devices have now been constructed on various silicon-based platforms. We previously reported the heterogeneous integration on silicon of Fabry–Perot and distributed feedback quantum cascade lasers (QCLs) operating at 4.8 μm. Interband cascade lasers (ICLs) will be preferred for many on-chip sensing technologies because they operate in the 3–6 μm range with threshold drive powers 1–2 orders of magnitude lower than QCLs. In this work, we demonstrate the integration of ICLs on a silicon substrate. These lasers emit 3.6 μm light into silicon-on-insulator waveguides in pulsed mode at temperatures up to 50°C. This represents an important step toward MIR photonic integrated circuits on silicon that operate with much lower drive power and therefore an even smaller footprint.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Investigations of the broad mid-infrared (MIR) wavelength band spanning 220  μm are being driven by a diverse array of potential applications. For example, numerous chemicals in gas form exhibit strong fundamental absorption features in the MIR [1]. Therefore, a variety of laser-based techniques are being developed to exploit the unique spectral signatures that allow trace amounts of a given species to be identified and quantified. Spectroscopic chemical sensing is now used in a broad range of scenarios that include medical sensing, biochemical analysis, environmental monitoring, industrial process control, and astronomy.

Integrated optics can address these sensing applications at the chip scale to provide ultracompact devices and systems. Because silicon is transparent to wavelengths as long as λ8  μm, the silicon-based photonic integrated circuit (PIC) provides a promising low-cost platform for future integrated MIR sensors. The high-index contrast of silicon with dielectric materials such as Si3N4 and SiO2 is favorable for small devices and high-Q resonators formed by low-loss waveguides. While the optimal silicon waveguiding platforms for each spectral band and application are still under investigation, MIR devices have already been demonstrated using silicon-on-insulator (SOI), silicon-on-nitride (SON), silicon-on-nitride-on-insulator (SONOI), silicon-on-sapphire (SOS), and germanium-on-silicon (GOS) waveguides [2,3].

The optimal on-chip chemical sensing system will fully integrate one or more light sources in the PIC. However, the most appropriate MIR emitter depends on the wavelength range chosen for the given application, since no single semiconductor laser technology provides high performance throughout the MIR. In particular, interband GaSb- and InP-based diode lasers can operate with low threshold drive powers at MIR wavelengths as long as 6  μm [46], whereas InP-based quantum cascade lasers (QCLs), which derive gain from intersubband optical transitions, are capable of providing high output powers with high wall-plug efficiencies at wavelengths extending from 3 μm to the terahertz regime [7].

The interband cascade laser (ICL) derives gain from band-to-band electron-hole recombination, as in a conventional diode laser, but with multiple cascading stages to recycle the electrons as in a QCL [8,9]. These lasers function from 2.9–7 μm (where the longest wavelength results are integrated on InAs substrates) [10], with threshold drive powers 1–2 orders of magnitude lower than for QCLs [11], while still generating up to 500 mW of continuous wave (cw) output power [12]. GaSb-based ICLs are ideal for MIR spectroscopy in 3–6 μm applications that rarely require watt-level optical power. An ICL-based system with far lower energy demand will have a much smaller spatial footprint, for ready deployment in a hand-held or remotely deployed sensor powered by batteries or solar energy.

Heterogeneous integration, in which III-V wafer material is bonded to a prepatterned silicon waveguide platform, has enabled active III-V optoelectronic elements to be integrated with silicon photonic devices for PICs operating at both near-infrared [13,14] and MIR wavelengths [15]. Previously, we have heterogeneously integrated InP-based lasers on Si for wavelengths near 2.0 μm and 4.8 μm. When type-I laser diodes with InGaAs quantum wells were integrated with SOI waveguides, more than 8 mW of cw power were emitted at λ=2.01  μm at room temperature [15,16]. Integrated semiconductor optical amplifiers (SOAs) with the same active material also provided >13  dB of peak gain at this wavelength [17]. More recently, QCLs designed for emission at λ=4.8  μm were integrated on the broadband SONOI waveguide platform to provide the longest wavelength source yet available on silicon. Fabry–Perot lasers emitted 31 mW into silicon waveguides and operated in pulsed mode up to 60°C [18]. An advantage of heterogeneous integration is that multiple laser systems can be integrated on the same chip to achieve broadband operation [19].

Wavelength-selective feedback elements such as gratings or loop mirrors can also be implemented with heterogeneous integration [20]. By patterning first-order gratings on SONOI waveguides, we demonstrated distributed feedback (DFB) QCLs with threshold currents as low as 80 mA and threshold current densities below 1  kA/cm2. These devices emitted >200  mW from polished III-V/Si facets and operated in pulsed mode up to 100°C [15,21].

Other demonstrations of MIR lasers fabricated above Si waveguides have also been reported. Type-II InP-based Fabry–Perot [22] and DFB [23] lasers were integrated on silicon for operation at wavelengths near 2.3 μm. A transfer-printing approach was quite recently used to integrate InP-based QCLs on SOS for operation at 4.7 μm [24].

While preliminary measurements of GaSb-based lasers operating in pulsed mode near 2.38 μm have been reported [25], the III-V active elements in the vast majority of lasers integrated on silicon have been grown on InP and GaAs substrates. GaSb-based device integration introduces additional fabrication and design challenges, because the selective etch chemistries required to define and pattern active antimonide devices are much less mature. The III-V layers of an ICL on silicon must be engineered to produce a high-gain optical mode and efficient III-V tapers to couple the hybrid and silicon waveguide sections with high yield.

In this work, we demonstrate the first integration of ICLs with silicon waveguides. These lasers emit at λ=3.65  μm and operate in pulsed mode up to 50°C. To better understand the laser performance, each device was characterized both before and after the III-V taper was removed from one end of the laser.

2. DESIGN

The waveguide design of the heterogeneously integrated ICL is similar to that we used previously to integrate Fabry–Perot QCLs on silicon [18]. Figure 1(a) schematically shows a tilted top view of the device. The III-V mesa bonded to the silicon waveguide forms a 3100-μm-long hybrid III-V/Si gain region bounded by 320- and 350-μm-long passive silicon waveguide regions. Both ends of the III-V mesa narrow in 50-μm-long tapers, which are designed to adiabatically transfer the hybrid III-V/Si optical mode to the passive silicon waveguide. The silicon waveguide is terminated on both ends by polished silicon facets, which are designed to reflect light and form a Fabry–Perot laser cavity.

 

Fig. 1. (a) 3D schematic of the ICL heterogeneously integrated with a silicon waveguide; (b) cross-sectional schematic of the hybrid III-V/Si active region; (c) active region cross section of Device A, overlaid with contour plots of the electric field profiles |Ex| for the first two optical modes.

Download Full Size | PPT Slide | PDF

The lasers were constructed on the SOI platform. While a SONOI platform was used in our previous integration of QCLs, SOI waveguides have been shown to maintain propagation losses as low as 1.5 dB/cm at wavelengths up to 3.73 μm [2,26].

Figure 1(b) shows a cross section of the hybrid III-V/Si active region. A narrow, partially etched silicon rib waveguide sits underneath the wider III-V mesa. The thin n-InAs/AlSb bottom contact layer extends laterally to both sides of the mesa, where metal is placed to form anodes. Lasers were fabricated with silicon waveguide widths of 1, 2, or 3 μm, while the III-V mesa widths ranged from 5 to 11 μm. This paper focuses on the performance of three specific lasers, with the dimensions specified in Table 1.

Tables Icon

Table 1. Laser Geometries

The ICL wafer was grown by molecular beam epitaxy (MBE) on a GaSb substrate at the Naval Research Laboratory (NRL). Table 2 summarizes the III-V layer stack. The seven-stage “W” active region, which is similar to those employed in Refs. [27,12], is designed for emission near 3.6 μm. As in other heterogeneously integrated lasers, the surrounding layers are modified for integration on silicon. An etch stop layer and sacrificial layer are included to allow removal of the GaSb substrate. Alternating GaSb and AlSb layers comprise a bonding superlattice (SL) to prevent defects at the bonding interface from propagating into the bottom contact and active region, although the potential for such defect propagation has not been investigated thoroughly for this type of heterogeneous laser. The n-InAs/AlSb SL bottom contact layer is thin to allow the optical mode residing partly in the active ICL stages to also overlap the silicon waveguide and to minimize free-carrier absorption in the heavily doped contact layer.

The III–V layering design of the heterogeneously integrated laser presents a trade-off between sufficient modal overlap with the active stages to provide high gain, against high overlap with the silicon in the hybrid mesa and tapered regions to efficiently transfer light from the hybrid waveguide to the passive silicon waveguides at each end of the mesa. Thicker bottom separate confinement heterostructure (SCH) and bottom contact layers also increase the fabrication tolerances, as discussed in the fabrication section below. In the trade-off between net gain, taper performance, electrical performance, and fabrication difficulty, our first-generation integrated ICL design emphasized high optical overlap with the ICL stages and minimum fabrication difficulty. In particular, the 600 nm thickness of the high-index (n3.77) GaSb SCH layers facilitated the anode metal deposition and increased the active-region mode confinement. However, it also reduced overlap with the silicon waveguide, which appears to have compromised the taper performance, as will be discussed below in the results section. The epilayer thicknesses in the next generations of these lasers will be adjusted to address the taper efficiency.

Figure 1(c) illustrates the simulated electric field profile |Ex| for the TE00 and TE10 optical modes overlaid on the active-region cross section of Device A. The simulated transverse confinement factor for the active stages including the injectors, Γ, in all three devices ranges from 0.17 to 0.18 for both modes. While Γ for the TE10 mode slightly exceeds that for the TE00 mode, the difference of <0.01 should not meaningfully impact the mode selection. In all three lasers, the silicon waveguide with 2 μm width in the taper region narrows to 1.5 μm beyond the tapers. Since the passive silicon waveguide supports only the fundamental TE00 mode, it should act as a mode filter. However, misalignment or imperfections in the taper fabrication may potentially couple TE00 light from the passive silicon region into higher-order modes within the hybrid III-V/Si region, as will be discussed below.

3. FABRICATION

Figure 2(a) shows an optical microscope image of the bar containing five integrated ICLs with various geometries (following all the fabrication). The 200-μm-wide by 70-μm-tall gold rectangles in between lasers are probe pads that are contacted by needle probes or wire bonds for testing. Figure 2(b) shows scanning electron microscope (SEM) images of the tapered III-V region of a representative device in the middle (left) and at the end (right) of the fabrication.

 

Fig. 2. (a) Top-down optical microscope image of five fully fabricated ICLs integrated on silicon; (b) SEM images of the III-V taper tip of a representative device. Left, before SiN encapsulation; right, after deposition of the probe metal.

Download Full Size | PPT Slide | PDF

Figure 3 schematically illustrates the fabrication steps. Processing begins with an SOI wafer consisting of a 1500-nm-thick silicon device layer above 1 μm of buried SiO2 (BOX) on a silicon substrate. First, silicon waveguides are patterned and partially etched to a depth of 750  nm with a C4F8/SF6/Ar inductively coupled plasma (ICP) reactive ion etch (RIE). Vertical outgassing channels (VOCs) are fully etched through the Si device layer to aid the diffusion of molecules formed at the bonding interface [28].

 

Fig. 3. Simplified fabrication process flow for the integrated ICLs. Hard masks, via etches, and probe metals are not shown. (a) Beginning with an SOI wafer with 1.5 μm of silicon on top, silicon waveguides are partially etched and VOCs (not shown) are fully etched. (b) The ICL chip is flip-chip die-bonded to the silicon wafer. (c) The GaSb substrate is removed by mechanical lapping, followed by chemical etching. (d) The upper cladding, top SCH layer, and active ICL stages are etched to form mesas above the silicon waveguides. (e) The bottom SCH layer is selectively chemically etched to reveal the bottom contact layer. (f) Ti/Pt/Au is deposited for bottom metal contacts. (g) The remaining III-V layers are etched. (h) Ti/Pt/Au is deposited for top metal contacts after SiN deposition and via etches.

Download Full Size | PPT Slide | PDF

After the silicon processing is complete, the III-V epilayer is bonded above the silicon waveguides with a hydrophilic plasma-assisted bonding process similar to that used to heterogeneously integrate InP-based devices [29]. The surfaces of the silicon and III-V chips are subjected to an O2 plasma and manually fused together. The bonded chip is then placed in a graphite bonding fixture and annealed overnight in an oven. While the anneal for heterogeneously integrating InP-based active materials with Si is typically at 300°C for 1 h, a lower temperature of 200°C was used for the ICL integration because the thermal expansion coefficient of GaSb is nearly 3 times larger than that of silicon. The GaSb substrate was then thinned by mechanical lapping to a thickness <100  μm. The remaining substrate material was chemically etched in a CrO3:HF:H2O solution that selectively stopped on the n-InAsSb etch stop layer. This etch stop layer was removed with a C6H8O7:H2O2 solution, after which the underlying GaSb sacrificial layer was removed with a tetramethylammonium hydroxide (TMAH)-based developer.

A primary challenge in the fabrication of any heterogeneously integrated laser is to etch the III-V mesa, but then stop precisely and uniformly within the thin bottom contact layer prior to deposition of the bottom metal. The desired etch depth can be reached using a slower ICP dry etch, either timed or with a laser endpoint detection monitor. However, uniformity is a challenge, since plasma etch rates often vary by as much as ±20% across a die. To achieve the necessary uniformity, a selective dry or wet etch can be used to planarize the etch field. Although a variety of highly selective wet chemical etches are available for processing InP-based devices, options for the GaSb material system are more limited.

The III-V mesas were defined with an SiO2 hard mask. The upper contact, cladding, SCH, and a portion of the active region were removed with a first BCl3 ICP etch step, using a laser endpoint detection monitor. After the etch depth was confirmed, the exposed sidewalls were passivated with a 3s H3PO4:H2O2:Tartaric acid etch, 15 nm atomic layer deposition (ALD) of Al2O3, and plasma-enhanced chemical vapor deposition (PECVD) of SiN. The remainder of the active region was removed with a second ICP etch step, which stopped within the 600-nm-thick bottom GaSb SCH layer. Prior to metallization, the remainder of the bottom SCH layer was removed with a TMAH-based developer that stopped at the top of the n-InAs/AlSb bottom contact layer. Ti/Pt/Au (20/150/1000 nm) was deposited for both bottom and top metal contacts. After the bottom metallization, the remaining III-V material was etched with a CH4/H2/Ar RIE to isolate individual devices, after which the lasers were encapsulated with 1125 nm of SiN deposited by PECVD. Finally, individual laser bars were diced, and the silicon waveguide facets were mechanically polished.

4. CHARACTERIZATION RESULTS

After fabrication, the laser bar on silicon was bonded with GE varnish to a copper submount, and the probe pads were contacted with wire bonds to inject current. The drive current source produced 250 ns pulses at a 1 kHz repetition rate. Digitized scope readings were averaged from 150–200 ns to measure the detector voltage. The output power emitted from the polished silicon waveguide facet was collected by an f/1 lens and imaged to overfill a fast 2×2  mm2 HgCdTe detector element, which was not calibrated for quantitative determination of the peak powers of <1  mW.

Figure 4 shows the light intensity (in arbitrary units) and voltage versus drive current (L-I-V) characteristics of Devices A and B when operated at room temperature (20°C). Note first that the I-V curves show a rather soft turn-on. Although the precise output power could not be determined, the maximum output power collected from Devices A and B in this configuration was estimated to be near 0.5 and 0.1 mW, respectively, based on measurements performed on a different setup. Device A had a threshold current of 423 mA (1.20  kA/cm2), while Device B had a slightly lower threshold current of 359 mA (1.45  kA/cm2). The threshold current for Device C was 561 mA (3.01  kA/cm2). These threshold current densities are substantially higher than typical room-temperature values of 150300  A/cm2 for narrow-ridge ICLs processed on native GaSb substrates [6,27], although the results for Devices A and B are comparable to those observed previously for Fabry–Perot QCLs on silicon [18]. Devices A and B both operated to above 40°C.

 

Fig. 4. Output power (in arbitrary units, left axis) and voltage (right axis) versus drive current at 20°C for Devices (a) A and (b) B.

Download Full Size | PPT Slide | PDF

Figure 5 shows the spectral characteristics for Devices A (green) and B (blue) with both tapers intact, as measured by a 0.5-m-long Digikrom monochromator with a resolution of 1.9 nm. Both spectra, with centroid wavelengths 3.64  μm, display a pronounced longitudinal mode spacing of 5  nm. This relatively large free spectral range (FSR) indicates the presence of a cavity much shorter than the 3770-μm-long Fabry–Perot cavity formed by the two polished silicon facets, and also much shorter than the 3100 μm length of the hybrid gain region bounded by the two tapers. However, it corresponds closely to the calculated FSRs of 5.3/5.8 nm for the 350/320-μm-long passive silicon waveguide regions on opposite ends of the device (with simulated ng=3.58). Apparently, a coupled cavity that includes one or both of these passive waveguides forms due to reflections between the III-V tapers and the polished silicon facets.

 

Fig. 5. Emission spectra of Devices A and B with both tapers intact at 20°C.

Download Full Size | PPT Slide | PDF

In studying the first generation of QCLs integrated on silicon, we observed that even though the active gain region was surrounded on both sides by III-V tapers, the primary lasing cavity was formed by reflections from the tapers rather than the silicon end facets [18]. The conjecture that the tapers in the present devices similarly display high reflection is consistent with the formation of a cavity between the taper and the end facet as well as with other observations that will be discussed below.

The same lasers were recharacterized after one taper was removed by mechanical polishing. This reduced the length of the active gain region (including the other taper) from 3100 to 2530 μm and allowed light to be collected from the polished hybrid III-V/Si facet. A 4-mm-diameter InSb detector with 5 μs time constant collected all the light transmitted by the f/1 imaging lens. In this configuration, the total output powers were reliably calibrated by analyzing the angular profile determined from far-field characterization of each output (Fig. 8, below). The reported total power is adjusted to account for light not collected by the f/1 lens.

Figure 6(a) shows the room-temperature L-I characteristics for emission from the hybrid III-V/Si facets of all three devices. The slope efficiencies for Devices A/B/C (ridge widths 11/8/6 μm) are 13.7/10.1/6.6 mW/A, while the maximum (unsaturated) output powers are 6.6/4.6/2.0 mW. These powers and efficiencies are dramatically increased over the same devices before one taper was removed but still much lower than the typical efficiencies of >500  mW/A for seven-stage ICL ridges processed on native GaSb substrates [27].

 

Fig. 6. (a) Single-side peak output power versus drive current for all three devices at 20°C, as collected from a polished hybrid III-V/Si facet after one taper was removed. (b) Voltage versus drive current density for the three devices, along with analogous data for a 32-μm-wide seven-stage ICL ridge fabricated on a native GaSb substrate (for reference).

Download Full Size | PPT Slide | PDF

The most striking aspect of the L-I characteristics in Fig. 6(a) is that the threshold current is nominally independent of ridge width, i.e., all three values fall within the narrow range 0.31–0.36 A. This implies that the high thresholds are dominated by current leakage at the ridge sidewalls (the same for any ridge width), rather than by the current required to invert the carrier populations in the active quantum wells (increases linearly with ridge width). Sidewall leakage will be discussed further below.

It follows that the threshold current density increases rapidly with decreasing ridge width, with samples A/B/C displaying values of 1.1/1.7/1.9  kA/cm2. The threshold current densities after one taper was polished off differ from the devices with both tapers by 7%/+19%/40%, respectively. That is, the variation was minimal for Devices A and B, whereas the threshold for Device C decreased more significantly (because its more marginal operation at room temperature was more sensitive to the magnitude of the loss), implying a nonnegligible loss induced by the taper. Again, these threshold current densities are much higher than typical values for seven-stage ICLs fabricated on native GaSb substrates [6,27].

Figure 6(b) shows I-V characteristics for all three lasers, along with analogous data for a seven-stage ICL reference laser with 32-μm-ridge width and similar emission wavelength (3.45 μm) that was fabricated on a native GaSb substrate (black curve). That the integrated ICLs show a noticeably softer turn-on than the reference device is again consistent with the presence of severe current leakage at the ridge sidewalls. This leakage may be attributed to the BCl3 ICP used to etch through the active stages of the III-V mesas. Although native-substrate ICLs processed with the alternative CH4:H2:Cl2 RIE usually display minimal sidewall leakage (as in the reference device) [27,30], that dry-etch chemistry was currently unavailable for the fabrication of these integrated devices at the University of California, Santa Barbara (UCSB). Previous ICL ridges fabricated at NRL on native substrates using the BCl3 ICP etch chemistry have sometimes displayed minimal sidewall leakage [30], although on other occasions the sidewall currents have been quite substantial, as in the present devices. When NRL characterized native-substrate ICL test devices, which were processed by UCSB using the BCl3 ICP etch chemistry prior to processing the integrated devices on silicon, the results confirmed sidewall leakage currents much lower than those indicated by the present data for integrated devices.

The slopes of the three I-V curves above threshold correspond to series resistances in the range 3.1–3.8 Ω, which are clearly higher than for the reference device. Transmission line measurements during fabrication estimated that the bottom metal contact resistivity and sheet resistance are 4×104  Ωcm2 and 340 Ω/sq, respectively. These values correspond to 1.0 Ω of series resistance added by the contacts and lateral current path in the bottom n-InAs/AlSb layer. However, the top contact resistivity of 4×106  Ωcm2 adds <0.1  Ω to the series resistance.

Figure 7 shows the emission spectra at 20°C for all three devices with one taper removed. Note that the mode spacing of 5  nm is preserved, meaning that there is still coupling to the remaining passive silicon cavity at the other end of the laser. A widely separated grouping of modes (e.g., emission from Device A around 3.57 and 3.65 μm) also appears, both before and after the taper is removed. One possibility is an additional very short cavity with long FSR, such as a cavity formed by multiple reflections within the 50-μm-long tapering regions. More generally, the result may be explained by a wavelength-dependent taper reflectivity.

 

Fig. 7. Emission spectra for all three devices at 20°C after one taper was removed.

Download Full Size | PPT Slide | PDF

Figure 8 shows measured (solid) and simulated (dashed) far-field profiles along the slow axis, for emission from the hybrid III-V/Si facets of all three devices. The dual lobes indicate emission primarily in the higher-order TE10 mode. The profile for the narrowest ridge (Device C), with its symmetric shape and deepest central null, agrees well with the simulated TE10 profile. The contrasting absence of a complete central null for Devices A and B may indicate additional emission in the TE00 mode (approximately Gaussian with a single lobe). The notable horizontal asymmetry of the data for Devices A and B may be due to an offset of the emission angle of the two modes with different effective indices. This could result from a slight angle in the polished facet with respect to the waveguide ridge, or to an asymmetry in the waveguide’s refractive index profile at the facet associated with residue or the generally low quality of the polished facet.

 

Fig. 8. Far-field intensity as a function of angle normal to the facet along the slow (horizontal) axes devices (a) A, (b) B, and (c) C. Solid lines are the measured profiles, while the dashed lines are simulations assuming the TE10 mode. The measurements were taken at 20°C and drive currents of 640 mA for Devices A and C and 700 mA for Device B.

Download Full Size | PPT Slide | PDF

A SEM examination of the III-V/Si hybrid facets after one taper was polished off revealed a high degree of roughness, and even some separation between the III-V and silicon layers. This is likely to have contributed additional loss at the polished facet, although apparently not as much as the loss at the tapers, because the lasing threshold for Device C decreased substantially when one taper was replaced by a polished facet. It will be seen below that Devices A and B also lased to a higher temperature after the taper was removed.

These data imply a mismatch of the dominant modes on opposite sides of the tapers, since the far-field data show primarily a TE10 mode in the hybrid gain region, whereas the simulations indicate that only the TE00 mode is supported on the silicon waveguide side of the tapers. Due to the mode mismatch, we expect the tapers to reflect most of the light reaching them (in addition to scattering and absorption losses) rather than transmitting it. This is consistent with the very low differential efficiencies observed for emission from the silicon waveguide before a taper was removed. In this context, it seems somewhat surprising that the FSRs in the spectral data show evidence for coupling between the two cavities. It may be that mode mixing in the intermediate tapered regions induces the coupling.

A further question is why the TE10 mode is selected for lasing according to the far-field data, when the TE00 mode should have lower sidewall scattering loss as well as greater feedback from the silicon waveguides beyond the tapers (we pointed out above that the calculated optical confinement factors are effectively equal). This may be related to the excessive sidewall leakage that causes a large fraction of the current to flow down the edge of the ridge rather than within its interior. It is well known the surface of an InAs-rich epitaxial layer pins within the conduction band, which induces band bending and strong surface conduction. The surface conduction is quite sensitive to the etching and/or passivation procedures used to form the mesa [31]. Both the active electron wells and electron injector in each active stage of an ICL contain InAs layers [6] that are prone to surface conduction. With much more current flowing at the ridge sidewalls, gain may occur at the outer edges of the ridge before sufficient current to produce gain flows within the interior (where there may still be a net loss). This double-lobed gain profile would favor lasing in the TE10 rather than TE00 mode, and the effect may be greatest in the narrowest ridge, where sidewall leakage is the most prominent.

All three devices were characterized in the thermoelectric-cooler range of 10–50°C, while Device A was also measured down to 100°C in a liquid-nitrogen-cooled cryostat. Figure 9(a) shows the pulsed L-I characteristics of Device A over the entire temperature range. Lasing was observed to 50°C, which is 10°C higher than before the taper was removed. At 100°C, it produced up to 12.0 mW before any appreciable rollover. For T=60°C, the decreasing output at the highest current is probably associated with an optical mode hop rather than thermal rollover, since no analogous rollover is observed at either higher or lower temperatures in the same current range.

 

Fig. 9. (a) Single-side peak output power versus drive current at temperatures ranging from 100°C to 50°C for Device A after one taper was removed. (b) Threshold current density versus temperature from the same data.

Download Full Size | PPT Slide | PDF

Using the threshold current density as a function of temperature in Fig. 9(b), we extract a characteristic temperature of T0=43°C from an exponential fit to the higher-temperature data (0–50°C). At cryogenic temperatures, there is less improvement in the threshold with decreasing T. Devices B and C lased up to 50°C and 40°C, respectively, and showed similar characteristic temperatures of T0=43°C and 37°C, respectively. These values are only slightly lower than the typical results of 4550  K for optimized ICLs fabricated on native substrates. A fit to the slope efficiency versus temperature for Device A over the range 10°C–50°C yields T1=71  K. These characteristic temperatures indicate that cw operation should be feasible once the threshold current density is reduced.

Figure 10 plots the threshold voltage of Device A as a function of temperature. Vth in an ICL typically increases at lower temperatures, where the minimum voltage per stage (the photon energy) is higher and there is also less thermally assisted transport. An increase is also expected at higher temperatures, where the increasing threshold current drops across the series resistance. However, the minimum Vth of 4.1  V at intermediate temperatures is somewhat higher than the more typical value of 3.6  V for a seven-stage ICL emitting at this wavelength. The series resistance of the bottom contacts is higher, combined with the elevated threshold current density associated with sidewall leakage.

 

Fig. 10. Threshold voltage versus temperature for Device A.

Download Full Size | PPT Slide | PDF

The spectral characteristics of Device A were also measured at temperatures from 100°C to 50°C. The results shown in Fig. 11(a) indicate the usual redshift with increasing temperature, which is quantified in the plot of centroid wavelength versus temperature in Fig. 11(b). The tuning rate of 2.4 nm/°C is consistent with the expected shift of the gain peak, as governed by the bandgap. The periodic longitudinal modes with FSR5  nm are observed at all temperatures, with individual modes shifting at the thermo-optic rate of <1  nm/°C. We also note an apparent systematic clumping of the modes, which becomes more obvious when the spectra for T=10°C50°C are presented over a finer grid of temperatures in Fig. 11(c). The clump spacing of 4050  nm is consistent with the possibility that reflections at multiple points within the tapering region form an additional short cavity of length 20–50 μm. The spectra for Sample B show a similar clumping, with period 40  nm.

 

Fig. 11. (a) Emission spectra of Device A over the broad temperature range 100°C50°C; (b) temperature dependence of the centroid wavelength; (c) spectra over a narrow temperature range (10°C–50°C) on a finer grid.

Download Full Size | PPT Slide | PDF

5. CONCLUSION

We have demonstrated the first ICLs integrated on a silicon substrate. The heterogeneously integrated devices with ridge widths of 6–11 μm emit at λ3.65  μm and operate up to 50°C in pulsed mode. At 20°C, the threshold current density is as low as 1.1  kA/cm2, and up to 6.6 mW (unsaturated) of peak power is emitted from a hybrid III-V/Si facet. For the widest ridge at temperatures above 10°C, the characteristic temperatures for threshold and slope efficiency are T0=43°C and T1=71°C, respectively. Based on the minimum threshold power density of 5  kW/cm2 and these characteristic temperatures, it appears likely that cw operation will be possible once more robust thermal dissipation is provided by flip-chip bonding.

These promising results are obtained despite issues that will be mitigated in future generations of integrated devices. Most obvious is the fundamental mismatch between the TE10 optical mode that dominates the lasing-in in the hybrid III-V/Si gain region, and the TE00 mode supported in the silicon waveguides that ideally form part of the cavity. Because of the mode mismatch, the tapers induce reflection and loss rather than efficiently coupling light between the hybrid and silicon waveguide sections. When one of the tapers is removed and the emission is from a polished hybrid facet, the efficiency increases by more than an order of magnitude, despite very poor facet quality. The maximum pulsed operating temperature also increases, by 10°C–20°C.

The mode mismatch may be induced in part by the presence of severe sidewall leakage currents, which are evident in both the invariance of the threshold current with ridge width and the very soft turn-on in the I-V characteristics of all three devices. The much higher current density at and near the outer edges of the ridge appears to favor lasing in the TE10 mode rather than the fundamental (which has less intensity near the ridge sidewalls). Presumably, the BCl3 ICP dry etch used to define the mesas produced an unfavorable surface quality that induced the leakage. In the next generation of integrated ICLs, this etch will be modified or replaced with CH4:H2:Cl2 RIE. A much lower threshold current density will naturally make cw operation much more straightforward to attain.

Once the emitted light is primarily in the TE00 mode, it may be possible to further enhance the III-V taper coupling efficiency by engineering the optical mode to reside more in the silicon portion of the hybrid III-V/Si waveguide. This can be accomplished by reducing the separate confinement layer thickness in the ICL design. The gain in an ICL is high enough that a reduced optical confinement factor is acceptable, as long as the loss in the silicon is sufficiently low.

There appears to be no fundamental reason why ICLs integrated on silicon, with flip-chip bonding to provide cw operation, should not exhibit performance rivaling that of the optimized devices fabricated on native substrates. The first QCLs on silicon already operate at threshold current densities of 1  kA/cm2 [18,21], which is roughly at the state of the art for native-substrate devices, although the slope and wall-plug efficiencies still require improvement.

Heterogeneous integration has now been applied successfully to MIR gain materials grown on both InP and GaSb substrates, with MIR diode lasers, QCLs, and ICLs all being integrated with silicon waveguides. As these technologies mature, future MIR PICs will flexibly combine lasers emitting in multiple spectral bands, along with other optical components such as detectors and sensors. This will lead to new capabilities such as multispecies chemical sensing on the same silicon chip.

Funding

Air Force Research Laboratory (AFRL) (FA8650-17-C-5402); Office of Naval Research (ONR) (N00014-13-C-0147); National Science Foundation (NSF) (DGE 1144085).

REFERENCES

1. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013). [CrossRef]  

2. T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5, 417–430 (2017). [CrossRef]  

3. Y. Zou, S. Chakravarty, C.-J. Chung, X. Xu, and R. T. Chen, “Mid-infrared silicon photonic waveguides and devices [Invited],” Photon. Res. 6, 254–276 (2018). [CrossRef]  

4. A. Salhi, P. C. Chi, A. Alharbi, G. S. Petrich, A. Al-Muhanna, and L. A. Kolodziejski, “Temperature dependence of optical gain and loss in 2-μm InP lasers,” IEEE Photon. Technol. Lett. 23, 1523–1525 (2011). [CrossRef]  

5. K. Vizbaras and M. C. Amann, “3.6  μm GaSb-based type-I lasers with quinternary barriers, operating at room temperature,” Electron. Lett. 47, 980–981 (2011). [CrossRef]  

6. I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015). [CrossRef]  

7. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012). [CrossRef]  

8. R. Q. Yang, “Infrared laser based on intersubband transitions in quantum wells,” Superlatt. Microstruct. 17, 77–83 (1995). [CrossRef]  

9. J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and Type-I interband cascade lasers,” Electron. Lett. 32, 45–46 (1996). [CrossRef]  

10. J. Scheuermann, M. von Edlinger, R. Weih, S. Becker, L. Nähle, M. Fischer, J. Koeth, M. Kamp, and S. Höfling, “Single-mode interband cascade laser sources for mid-infrared spectroscopic applications,” Proc. SPIE 9855, 98550G (2016). [CrossRef]  

11. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011). [CrossRef]  

12. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013). [CrossRef]  

13. T. Komljenovic, M. L. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2015). [CrossRef]  

14. M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 3100111 (2016). [CrossRef]  

15. A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017). [CrossRef]  

16. A. Spott, M. L. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. R. Meyer, and J. Bowers, “Heterogeneously integrated 2.0  μm CW hybrid silicon lasers at room temperature,” Opt. Lett. 40, 1480–1483 (2015). [CrossRef]  

17. N. Volet, A. Spott, E. J. Stanton, M. L. Davenport, L. Chang, J. D. Peters, T. C. Briles, I. Vurgaftman, J. R. Meyer, and J. E. Bowers, “Semiconductor optical amplifiers at 2.0-μm wavelength on silicon,” Laser Photon. Rev. 11, 1600165 (2017). [CrossRef]  

18. A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016). [CrossRef]  

19. A. De Groote, J. D. Peters, M. L. Davenport, M. J. R. Heck, R. Baets, G. Roelkens, and J. E. Bowers, “Heterogeneously integrated III-V-on-silicon multibandgap superluminescent light-emitting diode with 290 nm optical bandwidth,” Opt. Lett. 39, 4784–4787 (2014). [CrossRef]  

20. T. Komljenovic, S. Srinivasan, E. Norberg, M. L. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 1501909 (2015). [CrossRef]  

21. A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016). [CrossRef]  

22. R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3 μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016). [CrossRef]  

23. R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016). [CrossRef]  

24. S. Jung, J. Kirch, J. H. Kim, L. J. Mawst, D. Botez, and M. A. Belkin, “Quantum cascade lasers transfer-printed on silicon-on-sapphire,” Appl. Phys. Lett. 111, 211102 (2017). [CrossRef]  

25. G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014). [CrossRef]  

26. M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012). [CrossRef]  

27. C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014). [CrossRef]  

28. D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008). [CrossRef]  

29. D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103, 213–218 (2010). [CrossRef]  

30. M. Kim, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade lasers with high CW power and brightness,” Proc. SPIE 9370, 937029 (2015). [CrossRef]  

31. J. A. Nolde, E. M. Jackson, M. F. Bennett, C. A. Affouda, E. R. Cleveland, C. L. Canedy, I. Vurgaftman, G. G. Jernigan, J. R. Meyer, and E. H. Aifer, “Reticulated shallow etch mesa isolation for controlling surface leakage in GaSb-based infrared detectors,” Appl. Phys. Lett. 111, 051102 (2017). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
    [Crossref]
  2. T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5, 417–430 (2017).
    [Crossref]
  3. Y. Zou, S. Chakravarty, C.-J. Chung, X. Xu, and R. T. Chen, “Mid-infrared silicon photonic waveguides and devices [Invited],” Photon. Res. 6, 254–276 (2018).
    [Crossref]
  4. A. Salhi, P. C. Chi, A. Alharbi, G. S. Petrich, A. Al-Muhanna, and L. A. Kolodziejski, “Temperature dependence of optical gain and loss in 2-μm InP lasers,” IEEE Photon. Technol. Lett. 23, 1523–1525 (2011).
    [Crossref]
  5. K. Vizbaras and M. C. Amann, “3.6  μm GaSb-based type-I lasers with quinternary barriers, operating at room temperature,” Electron. Lett. 47, 980–981 (2011).
    [Crossref]
  6. I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).
    [Crossref]
  7. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
    [Crossref]
  8. R. Q. Yang, “Infrared laser based on intersubband transitions in quantum wells,” Superlatt. Microstruct. 17, 77–83 (1995).
    [Crossref]
  9. J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and Type-I interband cascade lasers,” Electron. Lett. 32, 45–46 (1996).
    [Crossref]
  10. J. Scheuermann, M. von Edlinger, R. Weih, S. Becker, L. Nähle, M. Fischer, J. Koeth, M. Kamp, and S. Höfling, “Single-mode interband cascade laser sources for mid-infrared spectroscopic applications,” Proc. SPIE 9855, 98550G (2016).
    [Crossref]
  11. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
    [Crossref]
  12. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).
    [Crossref]
  13. T. Komljenovic, M. L. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2015).
    [Crossref]
  14. M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 3100111 (2016).
    [Crossref]
  15. A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
    [Crossref]
  16. A. Spott, M. L. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. R. Meyer, and J. Bowers, “Heterogeneously integrated 2.0  μm CW hybrid silicon lasers at room temperature,” Opt. Lett. 40, 1480–1483 (2015).
    [Crossref]
  17. N. Volet, A. Spott, E. J. Stanton, M. L. Davenport, L. Chang, J. D. Peters, T. C. Briles, I. Vurgaftman, J. R. Meyer, and J. E. Bowers, “Semiconductor optical amplifiers at 2.0-μm wavelength on silicon,” Laser Photon. Rev. 11, 1600165 (2017).
    [Crossref]
  18. A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
    [Crossref]
  19. A. De Groote, J. D. Peters, M. L. Davenport, M. J. R. Heck, R. Baets, G. Roelkens, and J. E. Bowers, “Heterogeneously integrated III-V-on-silicon multibandgap superluminescent light-emitting diode with 290 nm optical bandwidth,” Opt. Lett. 39, 4784–4787 (2014).
    [Crossref]
  20. T. Komljenovic, S. Srinivasan, E. Norberg, M. L. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 1501909 (2015).
    [Crossref]
  21. A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
    [Crossref]
  22. R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3 μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016).
    [Crossref]
  23. R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016).
    [Crossref]
  24. S. Jung, J. Kirch, J. H. Kim, L. J. Mawst, D. Botez, and M. A. Belkin, “Quantum cascade lasers transfer-printed on silicon-on-sapphire,” Appl. Phys. Lett. 111, 211102 (2017).
    [Crossref]
  25. G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
    [Crossref]
  26. M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
    [Crossref]
  27. C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
    [Crossref]
  28. D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
    [Crossref]
  29. D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103, 213–218 (2010).
    [Crossref]
  30. M. Kim, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade lasers with high CW power and brightness,” Proc. SPIE 9370, 937029 (2015).
    [Crossref]
  31. J. A. Nolde, E. M. Jackson, M. F. Bennett, C. A. Affouda, E. R. Cleveland, C. L. Canedy, I. Vurgaftman, G. G. Jernigan, J. R. Meyer, and E. H. Aifer, “Reticulated shallow etch mesa isolation for controlling surface leakage in GaSb-based infrared detectors,” Appl. Phys. Lett. 111, 051102 (2017).
    [Crossref]

2018 (1)

2017 (5)

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5, 417–430 (2017).
[Crossref]

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

N. Volet, A. Spott, E. J. Stanton, M. L. Davenport, L. Chang, J. D. Peters, T. C. Briles, I. Vurgaftman, J. R. Meyer, and J. E. Bowers, “Semiconductor optical amplifiers at 2.0-μm wavelength on silicon,” Laser Photon. Rev. 11, 1600165 (2017).
[Crossref]

S. Jung, J. Kirch, J. H. Kim, L. J. Mawst, D. Botez, and M. A. Belkin, “Quantum cascade lasers transfer-printed on silicon-on-sapphire,” Appl. Phys. Lett. 111, 211102 (2017).
[Crossref]

J. A. Nolde, E. M. Jackson, M. F. Bennett, C. A. Affouda, E. R. Cleveland, C. L. Canedy, I. Vurgaftman, G. G. Jernigan, J. R. Meyer, and E. H. Aifer, “Reticulated shallow etch mesa isolation for controlling surface leakage in GaSb-based infrared detectors,” Appl. Phys. Lett. 111, 051102 (2017).
[Crossref]

2016 (6)

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3 μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016).
[Crossref]

R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 3100111 (2016).
[Crossref]

J. Scheuermann, M. von Edlinger, R. Weih, S. Becker, L. Nähle, M. Fischer, J. Koeth, M. Kamp, and S. Höfling, “Single-mode interband cascade laser sources for mid-infrared spectroscopic applications,” Proc. SPIE 9855, 98550G (2016).
[Crossref]

2015 (5)

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).
[Crossref]

T. Komljenovic, M. L. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2015).
[Crossref]

A. Spott, M. L. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. R. Meyer, and J. Bowers, “Heterogeneously integrated 2.0  μm CW hybrid silicon lasers at room temperature,” Opt. Lett. 40, 1480–1483 (2015).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. L. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 1501909 (2015).
[Crossref]

M. Kim, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade lasers with high CW power and brightness,” Proc. SPIE 9370, 937029 (2015).
[Crossref]

2014 (3)

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

A. De Groote, J. D. Peters, M. L. Davenport, M. J. R. Heck, R. Baets, G. Roelkens, and J. E. Bowers, “Heterogeneously integrated III-V-on-silicon multibandgap superluminescent light-emitting diode with 290 nm optical bandwidth,” Opt. Lett. 39, 4784–4787 (2014).
[Crossref]

2013 (2)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).
[Crossref]

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

2012 (2)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

2011 (3)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

A. Salhi, P. C. Chi, A. Alharbi, G. S. Petrich, A. Al-Muhanna, and L. A. Kolodziejski, “Temperature dependence of optical gain and loss in 2-μm InP lasers,” IEEE Photon. Technol. Lett. 23, 1523–1525 (2011).
[Crossref]

K. Vizbaras and M. C. Amann, “3.6  μm GaSb-based type-I lasers with quinternary barriers, operating at room temperature,” Electron. Lett. 47, 980–981 (2011).
[Crossref]

2010 (1)

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103, 213–218 (2010).
[Crossref]

2008 (1)

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
[Crossref]

1996 (1)

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and Type-I interband cascade lasers,” Electron. Lett. 32, 45–46 (1996).
[Crossref]

1995 (1)

R. Q. Yang, “Infrared laser based on intersubband transitions in quantum wells,” Superlatt. Microstruct. 17, 77–83 (1995).
[Crossref]

Abell, J.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).
[Crossref]

M. Kim, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade lasers with high CW power and brightness,” Proc. SPIE 9370, 937029 (2015).
[Crossref]

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

Affouda, C. A.

J. A. Nolde, E. M. Jackson, M. F. Bennett, C. A. Affouda, E. R. Cleveland, C. L. Canedy, I. Vurgaftman, G. G. Jernigan, J. R. Meyer, and E. H. Aifer, “Reticulated shallow etch mesa isolation for controlling surface leakage in GaSb-based infrared detectors,” Appl. Phys. Lett. 111, 051102 (2017).
[Crossref]

Aifer, E. H.

J. A. Nolde, E. M. Jackson, M. F. Bennett, C. A. Affouda, E. R. Cleveland, C. L. Canedy, I. Vurgaftman, G. G. Jernigan, J. R. Meyer, and E. H. Aifer, “Reticulated shallow etch mesa isolation for controlling surface leakage in GaSb-based infrared detectors,” Appl. Phys. Lett. 111, 051102 (2017).
[Crossref]

Alharbi, A.

A. Salhi, P. C. Chi, A. Alharbi, G. S. Petrich, A. Al-Muhanna, and L. A. Kolodziejski, “Temperature dependence of optical gain and loss in 2-μm InP lasers,” IEEE Photon. Technol. Lett. 23, 1523–1525 (2011).
[Crossref]

Al-Muhanna, A.

A. Salhi, P. C. Chi, A. Alharbi, G. S. Petrich, A. Al-Muhanna, and L. A. Kolodziejski, “Temperature dependence of optical gain and loss in 2-μm InP lasers,” IEEE Photon. Technol. Lett. 23, 1523–1525 (2011).
[Crossref]

Amann, M. C.

K. Vizbaras and M. C. Amann, “3.6  μm GaSb-based type-I lasers with quinternary barriers, operating at room temperature,” Electron. Lett. 47, 980–981 (2011).
[Crossref]

Amann, M.-C.

R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3 μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016).
[Crossref]

R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016).
[Crossref]

Babikov, Y.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Baets, R.

R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016).
[Crossref]

R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3 μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016).
[Crossref]

A. De Groote, J. D. Peters, M. L. Davenport, M. J. R. Heck, R. Baets, G. Roelkens, and J. E. Bowers, “Heterogeneously integrated III-V-on-silicon multibandgap superluminescent light-emitting diode with 290 nm optical bandwidth,” Opt. Lett. 39, 4784–4787 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Bar, H.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103, 213–218 (2010).
[Crossref]

Barbe, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Becker, S.

J. Scheuermann, M. von Edlinger, R. Weih, S. Becker, L. Nähle, M. Fischer, J. Koeth, M. Kamp, and S. Höfling, “Single-mode interband cascade laser sources for mid-infrared spectroscopic applications,” Proc. SPIE 9855, 98550G (2016).
[Crossref]

Belkin, M. A.

S. Jung, J. Kirch, J. H. Kim, L. J. Mawst, D. Botez, and M. A. Belkin, “Quantum cascade lasers transfer-printed on silicon-on-sapphire,” Appl. Phys. Lett. 111, 211102 (2017).
[Crossref]

Ben Masaud, T. M.

M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Benner, D. C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Bennett, M. F.

J. A. Nolde, E. M. Jackson, M. F. Bennett, C. A. Affouda, E. R. Cleveland, C. L. Canedy, I. Vurgaftman, G. G. Jernigan, J. R. Meyer, and E. H. Aifer, “Reticulated shallow etch mesa isolation for controlling surface leakage in GaSb-based infrared detectors,” Appl. Phys. Lett. 111, 051102 (2017).
[Crossref]

Bernath, P. F.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Bewley, W.

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

Bewley, W. W.

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

M. Kim, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade lasers with high CW power and brightness,” Proc. SPIE 9370, 937029 (2015).
[Crossref]

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).
[Crossref]

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

Birk, M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Bizzocchi, L.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Boehm, G.

R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3 μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016).
[Crossref]

R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016).
[Crossref]

Botez, D.

S. Jung, J. Kirch, J. H. Kim, L. J. Mawst, D. Botez, and M. A. Belkin, “Quantum cascade lasers transfer-printed on silicon-on-sapphire,” Appl. Phys. Lett. 111, 211102 (2017).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

Boudon, V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Bovington, J.

Bowers, J.

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

A. Spott, M. L. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. R. Meyer, and J. Bowers, “Heterogeneously integrated 2.0  μm CW hybrid silicon lasers at room temperature,” Opt. Lett. 40, 1480–1483 (2015).
[Crossref]

Bowers, J. E.

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

N. Volet, A. Spott, E. J. Stanton, M. L. Davenport, L. Chang, J. D. Peters, T. C. Briles, I. Vurgaftman, J. R. Meyer, and J. E. Bowers, “Semiconductor optical amplifiers at 2.0-μm wavelength on silicon,” Laser Photon. Rev. 11, 1600165 (2017).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 3100111 (2016).
[Crossref]

T. Komljenovic, M. L. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2015).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. L. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 1501909 (2015).
[Crossref]

A. De Groote, J. D. Peters, M. L. Davenport, M. J. R. Heck, R. Baets, G. Roelkens, and J. E. Bowers, “Heterogeneously integrated III-V-on-silicon multibandgap superluminescent light-emitting diode with 290 nm optical bandwidth,” Opt. Lett. 39, 4784–4787 (2014).
[Crossref]

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103, 213–218 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
[Crossref]

Briles, T. C.

N. Volet, A. Spott, E. J. Stanton, M. L. Davenport, L. Chang, J. D. Peters, T. C. Briles, I. Vurgaftman, J. R. Meyer, and J. E. Bowers, “Semiconductor optical amplifiers at 2.0-μm wavelength on silicon,” Laser Photon. Rev. 11, 1600165 (2017).
[Crossref]

Brown, L. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Brubaker, C.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103, 213–218 (2010).
[Crossref]

Campargue, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Canedy, C. L.

J. A. Nolde, E. M. Jackson, M. F. Bennett, C. A. Affouda, E. R. Cleveland, C. L. Canedy, I. Vurgaftman, G. G. Jernigan, J. R. Meyer, and E. H. Aifer, “Reticulated shallow etch mesa isolation for controlling surface leakage in GaSb-based infrared detectors,” Appl. Phys. Lett. 111, 051102 (2017).
[Crossref]

M. Kim, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade lasers with high CW power and brightness,” Proc. SPIE 9370, 937029 (2015).
[Crossref]

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).
[Crossref]

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

Cerutti, L.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Chakravarty, S.

Chance, K.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Chang, L.

N. Volet, A. Spott, E. J. Stanton, M. L. Davenport, L. Chang, J. D. Peters, T. C. Briles, I. Vurgaftman, J. R. Meyer, and J. E. Bowers, “Semiconductor optical amplifiers at 2.0-μm wavelength on silicon,” Laser Photon. Rev. 11, 1600165 (2017).
[Crossref]

Chapman, D. C.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103, 213–218 (2010).
[Crossref]

Chen, R. T.

Chen, X.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Chi, P. C.

A. Salhi, P. C. Chi, A. Alharbi, G. S. Petrich, A. Al-Muhanna, and L. A. Kolodziejski, “Temperature dependence of optical gain and loss in 2-μm InP lasers,” IEEE Photon. Technol. Lett. 23, 1523–1525 (2011).
[Crossref]

Chong, H. M. H.

M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Chung, C.-J.

Cleveland, E. R.

J. A. Nolde, E. M. Jackson, M. F. Bennett, C. A. Affouda, E. R. Cleveland, C. L. Canedy, I. Vurgaftman, G. G. Jernigan, J. R. Meyer, and E. H. Aifer, “Reticulated shallow etch mesa isolation for controlling surface leakage in GaSb-based infrared detectors,” Appl. Phys. Lett. 111, 051102 (2017).
[Crossref]

Cohen, E. A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Coudert, L. H.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Dave, U.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Davenport, M. L.

N. Volet, A. Spott, E. J. Stanton, M. L. Davenport, L. Chang, J. D. Peters, T. C. Briles, I. Vurgaftman, J. R. Meyer, and J. E. Bowers, “Semiconductor optical amplifiers at 2.0-μm wavelength on silicon,” Laser Photon. Rev. 11, 1600165 (2017).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 3100111 (2016).
[Crossref]

A. Spott, M. L. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. R. Meyer, and J. Bowers, “Heterogeneously integrated 2.0  μm CW hybrid silicon lasers at room temperature,” Opt. Lett. 40, 1480–1483 (2015).
[Crossref]

T. Komljenovic, M. L. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2015).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. L. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 1501909 (2015).
[Crossref]

A. De Groote, J. D. Peters, M. L. Davenport, M. J. R. Heck, R. Baets, G. Roelkens, and J. E. Bowers, “Heterogeneously integrated III-V-on-silicon multibandgap superluminescent light-emitting diode with 290 nm optical bandwidth,” Opt. Lett. 39, 4784–4787 (2014).
[Crossref]

De Groote, A.

Devi, V. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Dong, B.

Drouin, B. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Emerson, N. G.

M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Fayt, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Fischer, M.

J. Scheuermann, M. von Edlinger, R. Weih, S. Becker, L. Nähle, M. Fischer, J. Koeth, M. Kamp, and S. Höfling, “Single-mode interband cascade laser sources for mid-infrared spectroscopic applications,” Proc. SPIE 9855, 98550G (2016).
[Crossref]

Fish, G.

T. Komljenovic, S. Srinivasan, E. Norberg, M. L. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 1501909 (2015).
[Crossref]

Flaud, J.-M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Gamache, R. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Gassenq, A.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Gencarelli, F.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Gordon, I. E.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Green, W. M. J.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Harrison, J. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Hartmann, J.-M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Hattasan, N.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Healy, N.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Heck, M. J. R.

Hens, Z.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Hill, C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Hodges, J. T.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Höfling, S.

J. Scheuermann, M. von Edlinger, R. Weih, S. Becker, L. Nähle, M. Fischer, J. Koeth, M. Kamp, and S. Höfling, “Single-mode interband cascade laser sources for mid-infrared spectroscopic applications,” Proc. SPIE 9855, 98550G (2016).
[Crossref]

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).
[Crossref]

Hu, C.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Hu, T.

Hulme, J.

Hulme, J. C.

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 3100111 (2016).
[Crossref]

Jaberansary, E.

M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Jackson, E. M.

J. A. Nolde, E. M. Jackson, M. F. Bennett, C. A. Affouda, E. R. Cleveland, C. L. Canedy, I. Vurgaftman, G. G. Jernigan, J. R. Meyer, and E. H. Aifer, “Reticulated shallow etch mesa isolation for controlling surface leakage in GaSb-based infrared detectors,” Appl. Phys. Lett. 111, 051102 (2017).
[Crossref]

Jacquemart, D.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Jernigan, G. G.

J. A. Nolde, E. M. Jackson, M. F. Bennett, C. A. Affouda, E. R. Cleveland, C. L. Canedy, I. Vurgaftman, G. G. Jernigan, J. R. Meyer, and E. H. Aifer, “Reticulated shallow etch mesa isolation for controlling surface leakage in GaSb-based infrared detectors,” Appl. Phys. Lett. 111, 051102 (2017).
[Crossref]

Jolly, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Jung, S.

S. Jung, J. Kirch, J. H. Kim, L. J. Mawst, D. Botez, and M. A. Belkin, “Quantum cascade lasers transfer-printed on silicon-on-sapphire,” Appl. Phys. Lett. 111, 211102 (2017).
[Crossref]

Juodawlkis, P. W.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103, 213–218 (2010).
[Crossref]

Kamp, M.

J. Scheuermann, M. von Edlinger, R. Weih, S. Becker, L. Nähle, M. Fischer, J. Koeth, M. Kamp, and S. Höfling, “Single-mode interband cascade laser sources for mid-infrared spectroscopic applications,” Proc. SPIE 9855, 98550G (2016).
[Crossref]

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).
[Crossref]

Kim, C. S.

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

M. Kim, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade lasers with high CW power and brightness,” Proc. SPIE 9370, 937029 (2015).
[Crossref]

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).
[Crossref]

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

Kim, J. H.

S. Jung, J. Kirch, J. H. Kim, L. J. Mawst, D. Botez, and M. A. Belkin, “Quantum cascade lasers transfer-printed on silicon-on-sapphire,” Appl. Phys. Lett. 111, 211102 (2017).
[Crossref]

Kim, M.

M. Kim, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade lasers with high CW power and brightness,” Proc. SPIE 9370, 937029 (2015).
[Crossref]

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).
[Crossref]

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

Kirch, J.

S. Jung, J. Kirch, J. H. Kim, L. J. Mawst, D. Botez, and M. A. Belkin, “Quantum cascade lasers transfer-printed on silicon-on-sapphire,” Appl. Phys. Lett. 111, 211102 (2017).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

Koeth, J.

J. Scheuermann, M. von Edlinger, R. Weih, S. Becker, L. Nähle, M. Fischer, J. Koeth, M. Kamp, and S. Höfling, “Single-mode interband cascade laser sources for mid-infrared spectroscopic applications,” Proc. SPIE 9855, 98550G (2016).
[Crossref]

Kolodziejski, L. A.

A. Salhi, P. C. Chi, A. Alharbi, G. S. Petrich, A. Al-Muhanna, and L. A. Kolodziejski, “Temperature dependence of optical gain and loss in 2-μm InP lasers,” IEEE Photon. Technol. Lett. 23, 1523–1525 (2011).
[Crossref]

Komljenovic, T.

T. Komljenovic, M. L. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2015).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. L. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 1501909 (2015).
[Crossref]

Kuyken, B.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Lamouroux, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Le Roy, R. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Lee, C.

Leo, F.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Li, G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Li, Y.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103, 213–218 (2010).
[Crossref]

Liang, D.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103, 213–218 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
[Crossref]

Lindle, J. R.

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

Liow, T.-Y.

Liu, A. Y.

Liu, X.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Lo, G.-Q.

Long, D. A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Loo, R.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Luo, X.

Lyulin, O. M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Mackie, C. J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Malik, A.

R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Mann, C.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103, 213–218 (2010).
[Crossref]

Mashanovich, G.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Mashanovich, G. Z.

M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Massie, S. T.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Mawst, L.

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

Mawst, L. J.

S. Jung, J. Kirch, J. H. Kim, L. J. Mawst, D. Botez, and M. A. Belkin, “Quantum cascade lasers transfer-printed on silicon-on-sapphire,” Appl. Phys. Lett. 111, 211102 (2017).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

Merritt, C.

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

Merritt, C. D.

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

M. Kim, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade lasers with high CW power and brightness,” Proc. SPIE 9370, 937029 (2015).
[Crossref]

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).
[Crossref]

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

Meyer, J. R.

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

N. Volet, A. Spott, E. J. Stanton, M. L. Davenport, L. Chang, J. D. Peters, T. C. Briles, I. Vurgaftman, J. R. Meyer, and J. E. Bowers, “Semiconductor optical amplifiers at 2.0-μm wavelength on silicon,” Laser Photon. Rev. 11, 1600165 (2017).
[Crossref]

J. A. Nolde, E. M. Jackson, M. F. Bennett, C. A. Affouda, E. R. Cleveland, C. L. Canedy, I. Vurgaftman, G. G. Jernigan, J. R. Meyer, and E. H. Aifer, “Reticulated shallow etch mesa isolation for controlling surface leakage in GaSb-based infrared detectors,” Appl. Phys. Lett. 111, 051102 (2017).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

M. Kim, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade lasers with high CW power and brightness,” Proc. SPIE 9370, 937029 (2015).
[Crossref]

A. Spott, M. L. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. R. Meyer, and J. Bowers, “Heterogeneously integrated 2.0  μm CW hybrid silicon lasers at room temperature,” Opt. Lett. 40, 1480–1483 (2015).
[Crossref]

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).
[Crossref]

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and Type-I interband cascade lasers,” Electron. Lett. 32, 45–46 (1996).
[Crossref]

Mikhailenko, S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Milosevic, M. M.

M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Müller, H. S. P.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Muneeb, M.

R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3 μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Nähle, L.

J. Scheuermann, M. von Edlinger, R. Weih, S. Becker, L. Nähle, M. Fischer, J. Koeth, M. Kamp, and S. Höfling, “Single-mode interband cascade laser sources for mid-infrared spectroscopic applications,” Proc. SPIE 9855, 98550G (2016).
[Crossref]

Napoleone, T.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103, 213–218 (2010).
[Crossref]

Naumenko, O. V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Nedeljkovic, M.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Nikitin, A. V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Nolde, J. A.

J. A. Nolde, E. M. Jackson, M. F. Bennett, C. A. Affouda, E. R. Cleveland, C. L. Canedy, I. Vurgaftman, G. G. Jernigan, J. R. Meyer, and E. H. Aifer, “Reticulated shallow etch mesa isolation for controlling surface leakage in GaSb-based infrared detectors,” Appl. Phys. Lett. 111, 051102 (2017).
[Crossref]

Norberg, E.

T. Komljenovic, S. Srinivasan, E. Norberg, M. L. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 1501909 (2015).
[Crossref]

Oakley, D. C.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103, 213–218 (2010).
[Crossref]

Orphal, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Osgood, R.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Peacock, A. C.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Perevalov, V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Perrin, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Peters, J.

Peters, J. D.

N. Volet, A. Spott, E. J. Stanton, M. L. Davenport, L. Chang, J. D. Peters, T. C. Briles, I. Vurgaftman, J. R. Meyer, and J. E. Bowers, “Semiconductor optical amplifiers at 2.0-μm wavelength on silicon,” Laser Photon. Rev. 11, 1600165 (2017).
[Crossref]

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

A. De Groote, J. D. Peters, M. L. Davenport, M. J. R. Heck, R. Baets, G. Roelkens, and J. E. Bowers, “Heterogeneously integrated III-V-on-silicon multibandgap superluminescent light-emitting diode with 290 nm optical bandwidth,” Opt. Lett. 39, 4784–4787 (2014).
[Crossref]

Petrich, G. S.

A. Salhi, P. C. Chi, A. Alharbi, G. S. Petrich, A. Al-Muhanna, and L. A. Kolodziejski, “Temperature dependence of optical gain and loss in 2-μm InP lasers,” IEEE Photon. Technol. Lett. 23, 1523–1525 (2011).
[Crossref]

Polovtseva, E. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Raday, O.

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103, 213–218 (2010).
[Crossref]

Ram-Mohan, L. R.

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and Type-I interband cascade lasers,” Electron. Lett. 32, 45–46 (1996).
[Crossref]

Reed, G. T.

M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Richard, C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Rodriguez, J.-B.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Roelkens, G.

R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016).
[Crossref]

R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3 μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016).
[Crossref]

A. De Groote, J. D. Peters, M. L. Davenport, M. J. R. Heck, R. Baets, G. Roelkens, and J. E. Bowers, “Heterogeneously integrated III-V-on-silicon multibandgap superluminescent light-emitting diode with 290 nm optical bandwidth,” Opt. Lett. 39, 4784–4787 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Rothman, L. S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Ryckeboer, E.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Salhi, A.

A. Salhi, P. C. Chi, A. Alharbi, G. S. Petrich, A. Al-Muhanna, and L. A. Kolodziejski, “Temperature dependence of optical gain and loss in 2-μm InP lasers,” IEEE Photon. Technol. Lett. 23, 1523–1525 (2011).
[Crossref]

Sanchez, D.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Santis, C. T.

Scheuermann, J.

J. Scheuermann, M. von Edlinger, R. Weih, S. Becker, L. Nähle, M. Fischer, J. Koeth, M. Kamp, and S. Höfling, “Single-mode interband cascade laser sources for mid-infrared spectroscopic applications,” Proc. SPIE 9855, 98550G (2016).
[Crossref]

Shen, L.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Shimura, Y.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Skendzic, S.

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 3100111 (2016).
[Crossref]

Smith, M. A. H.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Song, J.

Spott, A.

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

N. Volet, A. Spott, E. J. Stanton, M. L. Davenport, L. Chang, J. D. Peters, T. C. Briles, I. Vurgaftman, J. R. Meyer, and J. E. Bowers, “Semiconductor optical amplifiers at 2.0-μm wavelength on silicon,” Laser Photon. Rev. 11, 1600165 (2017).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

A. Spott, M. L. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. R. Meyer, and J. Bowers, “Heterogeneously integrated 2.0  μm CW hybrid silicon lasers at room temperature,” Opt. Lett. 40, 1480–1483 (2015).
[Crossref]

T. Komljenovic, M. L. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2015).
[Crossref]

Sprengel, S.

R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016).
[Crossref]

R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3 μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016).
[Crossref]

Srinivasan, S.

T. Komljenovic, S. Srinivasan, E. Norberg, M. L. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 1501909 (2015).
[Crossref]

T. Komljenovic, M. L. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2015).
[Crossref]

Stanton, E. J.

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

N. Volet, A. Spott, E. J. Stanton, M. L. Davenport, L. Chang, J. D. Peters, T. C. Briles, I. Vurgaftman, J. R. Meyer, and J. E. Bowers, “Semiconductor optical amplifiers at 2.0-μm wavelength on silicon,” Laser Photon. Rev. 11, 1600165 (2017).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

A. Spott, M. L. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. R. Meyer, and J. Bowers, “Heterogeneously integrated 2.0  μm CW hybrid silicon lasers at room temperature,” Opt. Lett. 40, 1480–1483 (2015).
[Crossref]

T. Komljenovic, M. L. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2015).
[Crossref]

Starikova, E.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Sung, K.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Tashkun, S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Tennyson, J.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Toon, G. C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Tournié, E.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Tyuterev, V. G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Uvin, S.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Van Campenhout, J.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Vasiliev, A.

R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016).
[Crossref]

Vincent, B.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Vizbaras, K.

K. Vizbaras and M. C. Amann, “3.6  μm GaSb-based type-I lasers with quinternary barriers, operating at room temperature,” Electron. Lett. 47, 980–981 (2011).
[Crossref]

Volet, N.

N. Volet, A. Spott, E. J. Stanton, M. L. Davenport, L. Chang, J. D. Peters, T. C. Briles, I. Vurgaftman, J. R. Meyer, and J. E. Bowers, “Semiconductor optical amplifiers at 2.0-μm wavelength on silicon,” Laser Photon. Rev. 11, 1600165 (2017).
[Crossref]

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 3100111 (2016).
[Crossref]

von Edlinger, M.

J. Scheuermann, M. von Edlinger, R. Weih, S. Becker, L. Nähle, M. Fischer, J. Koeth, M. Kamp, and S. Höfling, “Single-mode interband cascade laser sources for mid-infrared spectroscopic applications,” Proc. SPIE 9855, 98550G (2016).
[Crossref]

Vurgaftman, I.

N. Volet, A. Spott, E. J. Stanton, M. L. Davenport, L. Chang, J. D. Peters, T. C. Briles, I. Vurgaftman, J. R. Meyer, and J. E. Bowers, “Semiconductor optical amplifiers at 2.0-μm wavelength on silicon,” Laser Photon. Rev. 11, 1600165 (2017).
[Crossref]

J. A. Nolde, E. M. Jackson, M. F. Bennett, C. A. Affouda, E. R. Cleveland, C. L. Canedy, I. Vurgaftman, G. G. Jernigan, J. R. Meyer, and E. H. Aifer, “Reticulated shallow etch mesa isolation for controlling surface leakage in GaSb-based infrared detectors,” Appl. Phys. Lett. 111, 051102 (2017).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

M. Kim, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade lasers with high CW power and brightness,” Proc. SPIE 9370, 937029 (2015).
[Crossref]

A. Spott, M. L. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. R. Meyer, and J. Bowers, “Heterogeneously integrated 2.0  μm CW hybrid silicon lasers at room temperature,” Opt. Lett. 40, 1480–1483 (2015).
[Crossref]

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).
[Crossref]

C. L. Canedy, J. Abell, C. D. Merritt, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, “Pulsed and CW performance of 7-stage interband cascade lasers,” Opt. Express 22, 7702–7710 (2014).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).
[Crossref]

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and Type-I interband cascade lasers,” Electron. Lett. 32, 45–46 (1996).
[Crossref]

Wagner, G.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Wang, R.

R. Wang, S. Sprengel, G. Boehm, M. Muneeb, R. Baets, M.-C. Amann, and G. Roelkens, “2.3 μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit,” Opt. Express 24, 21081–21089 (2016).
[Crossref]

R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

Weih, R.

J. Scheuermann, M. von Edlinger, R. Weih, S. Becker, L. Nähle, M. Fischer, J. Koeth, M. Kamp, and S. Höfling, “Single-mode interband cascade laser sources for mid-infrared spectroscopic applications,” Proc. SPIE 9855, 98550G (2016).
[Crossref]

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).
[Crossref]

Xu, X.

Yang, R. Q.

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and Type-I interband cascade lasers,” Electron. Lett. 32, 45–46 (1996).
[Crossref]

R. Q. Yang, “Infrared laser based on intersubband transitions in quantum wells,” Superlatt. Microstruct. 17, 77–83 (1995).
[Crossref]

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Zhang, C.

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

T. Komljenovic, M. L. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2015).
[Crossref]

Zou, Y.

Appl. Phys. A (1)

D. Liang, D. C. Chapman, Y. Li, D. C. Oakley, T. Napoleone, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, and J. E. Bowers, “Uniformity study of wafer-scale InP-to-silicon hybrid integration,” Appl. Phys. A 103, 213–218 (2010).
[Crossref]

Appl. Phys. Lett. (4)

J. A. Nolde, E. M. Jackson, M. F. Bennett, C. A. Affouda, E. R. Cleveland, C. L. Canedy, I. Vurgaftman, G. G. Jernigan, J. R. Meyer, and E. H. Aifer, “Reticulated shallow etch mesa isolation for controlling surface leakage in GaSb-based infrared detectors,” Appl. Phys. Lett. 111, 051102 (2017).
[Crossref]

R. Wang, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, R. Baets, M.-C. Amann, and G. Roelkens, “Heterogeneously integrated III-V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region,” Appl. Phys. Lett. 109, 221111 (2016).
[Crossref]

S. Jung, J. Kirch, J. H. Kim, L. J. Mawst, D. Botez, and M. A. Belkin, “Quantum cascade lasers transfer-printed on silicon-on-sapphire,” Appl. Phys. Lett. 111, 211102 (2017).
[Crossref]

M. M. Milosevic, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett. 101, 121105 (2012).
[Crossref]

Electron. Lett. (2)

K. Vizbaras and M. C. Amann, “3.6  μm GaSb-based type-I lasers with quinternary barriers, operating at room temperature,” Electron. Lett. 47, 980–981 (2011).
[Crossref]

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, “Type-II and Type-I interband cascade lasers,” Electron. Lett. 32, 45–46 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, and J. R. Meyer, “Interband cascade lasers with low threshold powers and high output powers,” IEEE J. Sel. Top. Quantum Electron. 19, 1200210 (2013).
[Crossref]

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 3100111 (2016).
[Crossref]

A. Spott, E. J. Stanton, N. Volet, J. D. Peters, J. R. Meyer, and J. E. Bowers, “Heterogeneous integration for mid-infrared silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 23, 1–10 (2017).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. L. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 1501909 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Salhi, P. C. Chi, A. Alharbi, G. S. Petrich, A. Al-Muhanna, and L. A. Kolodziejski, “Temperature dependence of optical gain and loss in 2-μm InP lasers,” IEEE Photon. Technol. Lett. 23, 1523–1525 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. D (1)

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband cascade lasers,” J. Phys. D 48, 123001 (2015).
[Crossref]

J. Quantum Spectrosc. Radiat. Transfer (1)

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

J. Vac. Sci. Technol. B (1)

D. Liang and J. E. Bowers, “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate,” J. Vac. Sci. Technol. B 26, 1560–1568 (2008).
[Crossref]

Laser Photon. Rev. (1)

N. Volet, A. Spott, E. J. Stanton, M. L. Davenport, L. Chang, J. D. Peters, T. C. Briles, I. Vurgaftman, J. R. Meyer, and J. E. Bowers, “Semiconductor optical amplifiers at 2.0-μm wavelength on silicon,” Laser Photon. Rev. 11, 1600165 (2017).
[Crossref]

Nat. Commun. (1)

I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, J. Abell, J. R. Lindle, and J. R. Meyer, “Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption,” Nat. Commun. 2, 585 (2011).
[Crossref]

Nat. Photonics (1)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Optica (1)

Photon. Res. (2)

Photonics (1)

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. Zhang, C. Merritt, W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. Mawst, D. Botez, and J. Bowers, “Heterogeneously integrated distributed feedback quantum cascade lasers on silicon,” Photonics 3, 35 (2016).
[Crossref]

Proc. SPIE (2)

M. Kim, C. S. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade lasers with high CW power and brightness,” Proc. SPIE 9370, 937029 (2015).
[Crossref]

J. Scheuermann, M. von Edlinger, R. Weih, S. Becker, L. Nähle, M. Fischer, J. Koeth, M. Kamp, and S. Höfling, “Single-mode interband cascade laser sources for mid-infrared spectroscopic applications,” Proc. SPIE 9855, 98550G (2016).
[Crossref]

Superlatt. Microstruct. (1)

R. Q. Yang, “Infrared laser based on intersubband transitions in quantum wells,” Superlatt. Microstruct. 17, 77–83 (1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) 3D schematic of the ICL heterogeneously integrated with a silicon waveguide; (b) cross-sectional schematic of the hybrid III-V/Si active region; (c) active region cross section of Device A, overlaid with contour plots of the electric field profiles | E x | for the first two optical modes.
Fig. 2.
Fig. 2. (a) Top-down optical microscope image of five fully fabricated ICLs integrated on silicon; (b) SEM images of the III-V taper tip of a representative device. Left, before SiN encapsulation; right, after deposition of the probe metal.
Fig. 3.
Fig. 3. Simplified fabrication process flow for the integrated ICLs. Hard masks, via etches, and probe metals are not shown. (a) Beginning with an SOI wafer with 1.5 μm of silicon on top, silicon waveguides are partially etched and VOCs (not shown) are fully etched. (b) The ICL chip is flip-chip die-bonded to the silicon wafer. (c) The GaSb substrate is removed by mechanical lapping, followed by chemical etching. (d) The upper cladding, top SCH layer, and active ICL stages are etched to form mesas above the silicon waveguides. (e) The bottom SCH layer is selectively chemically etched to reveal the bottom contact layer. (f) Ti/Pt/Au is deposited for bottom metal contacts. (g) The remaining III-V layers are etched. (h) Ti/Pt/Au is deposited for top metal contacts after SiN deposition and via etches.
Fig. 4.
Fig. 4. Output power (in arbitrary units, left axis) and voltage (right axis) versus drive current at 20°C for Devices (a) A and (b) B.
Fig. 5.
Fig. 5. Emission spectra of Devices A and B with both tapers intact at 20°C.
Fig. 6.
Fig. 6. (a) Single-side peak output power versus drive current for all three devices at 20°C, as collected from a polished hybrid III-V/Si facet after one taper was removed. (b) Voltage versus drive current density for the three devices, along with analogous data for a 32-μm-wide seven-stage ICL ridge fabricated on a native GaSb substrate (for reference).
Fig. 7.
Fig. 7. Emission spectra for all three devices at 20°C after one taper was removed.
Fig. 8.
Fig. 8. Far-field intensity as a function of angle normal to the facet along the slow (horizontal) axes devices (a) A, (b) B, and (c) C. Solid lines are the measured profiles, while the dashed lines are simulations assuming the TE 10 mode. The measurements were taken at 20°C and drive currents of 640 mA for Devices A and C and 700 mA for Device B.
Fig. 9.
Fig. 9. (a) Single-side peak output power versus drive current at temperatures ranging from 100 ° C to 50°C for Device A after one taper was removed. (b) Threshold current density versus temperature from the same data.
Fig. 10.
Fig. 10. Threshold voltage versus temperature for Device A.
Fig. 11.
Fig. 11. (a) Emission spectra of Device A over the broad temperature range 100 ° C 50 ° C ; (b) temperature dependence of the centroid wavelength; (c) spectra over a narrow temperature range (10°C–50°C) on a finer grid.

Tables (2)

Tables Icon

Table 1. Laser Geometries

Metrics