Abstract

Efficient coupling of III–V light sources to silicon photonic circuits is one of the key challenges of integrated optics. Important requirements are low coupling losses, as well as a small footprint and a high yield of the overall assembly, along with the ability to use automated processes for large-scale production. In this paper, we demonstrate that photonic wire bonding addresses these challenges by exploiting direct-write two-photon lithography for in situ fabrication of three-dimensional freeform waveguides between optical chips. In a series of proof-of-concept experiments, we connect indium phosphide (InP)-based horizontal-cavity surface-emitting lasers to passive silicon photonic circuits with insertion losses down to 0.4 dB. To the best of our knowledge, this is the most efficient interface between an InP light source and a silicon photonic chip that has so far been demonstrated. Our experiments represent a key step in advancing photonic wire bonding to a universal integration platform for hybrid photonic multi-chip assemblies that combine known-good dies of different materials to high-performance hybrid multi-chip modules.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

The silicon photonic (SiP) platform has evolved into a mainstay of high-density photonic integration [1], exploiting advanced CMOS processes for high-yield mass fabrication [2,3] of a wide variety of passive photonic devices [4,5], electro-optic modulators [6,7], or photodetectors [8,9]. Cost-efficient and technically viable integration of high-performance light sources into SiP circuits, however, still remains a challenge [10]. Such light sources should combine low power consumption and high efficiency with a small footprint and good thermal coupling to package-level heat sinks while still maintaining good manufacturability and the potential for automated large-scale production. Moreover, as system complexity increases, testing of active components prior to integration into the final system is becoming more and more important to achieve a high fabrication yield. Although substantial progress has been made toward realizing light sources by direct epitaxial [11,12] or heteroepitaxial [1315] growth of direct-bandgap compound semiconductors on silicon (Si) substrates, wafer-level [1618] or die-level [1921] transfer of III–V layer stacks or even complete devices [2226] to Si substrates is still considered the most practical path toward efficient light-source integration. In this context, two main approaches have been pursued, which are often referred to as heterogeneous integration and hybrid integration [2730].

Heterogeneous integration is based on the bonding of unpatterned III–V dies onto pre-processed SiP wafers such that light generated in the epitaxial layers of the III–V die is evanescently coupled to the SiP waveguides (WGs) [1621]. III–V devices are then fabricated by wafer-scale processing of the dies, where all structures are lithographically aligned with the highest precision. High-precision positioning of dies is hence not necessary—a key advantage compared with hybrid integration. However, although heterogeneous integration is particularly well suited for large-scale mass fabrication of III–V light sources on SiP circuits, the associated technical complexity is still considerable, in particular with respect to the stringent requirements of ultraclean and extremely smooth surfaces. Moreover, heterogeneous integration does not permit testing of light sources prior to integration into more complex systems and, hence, requires tight process control to maintain a high yield. As a consequence, heterogeneous integration is mainly suited for high-volume applications that justify the associated technological overhead, e.g., in the context of optical on-chip networks that require integration of tens of light sources onto a single chip [31]. Moreover, heterogeneously integrated light sources may consume considerable real estate on the SiP chip, and heat sinking is challenging due to the high thermal resistance introduced by the III–V-to-Si bonding layer and by the buried oxide [32].

Hybrid integration [2226], in contrast, relies on optically connecting readily processed III–V lasers [2224], gain chips [25,26], or even photodiodes [27] to SiP circuits, where the III–V device may be mounted either on top of the Si substrate [2225,27] or next to it [26]. Hybrid integration maintains the superior performance characteristics of native III–V light sources and allows testing of devices prior to system assembly, but comes with fabrication challenges. In particular, efficient optical coupling of the III–V to the SiP WGs usually relies on alignment with precision in the lower micrometer or even sub-micrometer range. This often requires slow and expensive [33] active alignment techniques, where the coupling efficiency is continuously monitored while optimizing the position of the devices [10,34]. Moreover, additional devices such as microlenses, prisms, or micro-mechanical carriers are needed to adapt the mode field size and the emission direction of the III–V light source to that of the SiP circuit [22], leading to comparatively big assemblies. In many cases, the III–V devices are mounted on top of the SiP die. This approach does not only consume substantial on-chip real estate, but also poses challenges with respect to heat sinking of the III–V devices through the underlying silicon-on-insulator (SOI) substrate, due to the relatively poor heat conductivity of the buried oxide [23,28,35]. In hybrid integration, optical coupling losses of 2.3 dB have been demonstrated previously for butt coupling of a III–V laser diode (LD) array to an array of SiP WGs equipped with trident spot-size converters [36] that relax alignment tolerances to ±0.7μm.

In this paper, we demonstrate that the technique of photonic wire bonding [3742] enables highly flexible low-loss coupling of indium phosphide (InP) light sources to SiP chips, maintaining all performance and flexibility advantages of hybrid integration approaches while offering a path toward highly scalable automated mass production. Photonic wire bonding exploits in situ additive nanofabrication of freeform polymer WGs between pre-positioned photonic chips. The three-dimensional (3D) shape of the photonic wire bonds can be adapted to the exact positions of the chips such that high-precision alignment of chips becomes obsolete, rendering the technique amenable to automated mass production. Building upon our previous results [3742], we demonstrate highly efficient coupling between InP-based horizontal-cavity surface-emitting lasers (HCSELs) and SiP chips with coupling losses down to 0.4 dB. In these assemblies, the laser source is placed side-by-side to the SiP chip, thus allowing good thermal coupling to an underlying chip-level heat sink without consuming any on-chip real estate. We experimentally confirm that the emission performance of the lasers is not impaired by the photonic wire bonding process. Combined with previously demonstrated chip-to-chip [39] and fiber-to-chip [40] connections, our experiments represent a key step in advancing photonic wire bonding to a universal integration platform for hybrid photonic multi-chip assemblies that combine known-good dies of different materials while maintaining their individual high-performance characteristics.

2. CONCEPT AND BACKGROUND

A vision of a hybrid photonic multi-chip module (MCM) enabled by photonic wire bonds (PWBs) is illustrated in Fig. 1(a) using a wavelength-division multiplexing (WDM) transmitter as an example. The system combines the distinct advantages of different photonic integration platforms: distributed-feedback (DFB) lasers are used as optical sources for the various wavelength channels and are implemented on InP substrates, whereas SiP chips are used to realize densely integrated electro-optic IQ modulators, which encode information on the various optical carriers. For dense packing of WDM channels, high-quality optical filters, such as arrayed waveguide gratings (AWGs), are needed. These devices are best realized on the basis of a medium-index-contrast material system such as the commercial integration platform TriPleX [43]. Hybrid multi-chip integration allows on-chip subsystems to be tested prior to integration, which significantly increases yield as compared with monolithic or heterogeneous integration approaches, where failure of a single component impairs the functionality of the entire system. In previous experiments [39,40], we have shown PWBs to enable particularly efficient single-mode chip-to-chip and fiber-to-chip connections [Figs. 1(c) and 1(d), respectively], and the viability of the concept has been demonstrated recently by realizing multi-chip transmitter modules for high-speed communications [44,45]. The focus of this paper is on low-loss coupling of InP-based light sources to SiP chips as one of the most important interfaces for practical applications [Fig. 1(b)].

 figure: Fig. 1.

Fig. 1. Vision of a photonic multi-chip transmitter for WDM communications. (a) The system exploits PWBs to combine the distinct advantages of different photonic integration platforms: DFB lasers are realized based on direct-bandgap InP substrates, whereas SiP chips lend themselves to implement electro-optic modulators. For dense packing of optical channels, high-quality AWGs are needed, which are best realized on medium-index-contrast material systems such as TriPleX [43]. The functionality of the multi-chip system depends vitally on efficient chip-to-chip and chip-to-fiber interconnects, which are realized by PWBs. The focus of this work is on low-loss PWB links between InP lasers and SiP chips (red). (b) SEM image of a laser–chip interface. (c) Chip-to-chip-connection between two SiP dies [39]. (d) Fiber-to-chip interface using a PWB to connect the individual cores of a multi-core fiber (MCF) to an array of planar SOI WGs [40].

Download Full Size | PPT Slide | PDF

3. REALIZATION OF MULTI-CHIP MODULES

A. Assembly

In our experiment, we realize simple MCMs that use PWBs to connect passive SiP circuits to InP light sources [see Fig. 2(a)]. The assembly of the MCM requires a common carrier where a laser and SiP chips are mounted first with medium precision, e.g., by adhesive bonding. Height differences between the chips are compensated for by the carrier to roughly align the top surfaces. The output port of the InP chip is then connected to a Si nanowire on the SiP chip by a 3D freeform PWB. At the end of the Si nanowire, a grating coupler (GC) is used to direct the light out of the substrate plane into a single-mode fiber (SMF). Reference nanowires with GCs at both ends are also located on the same SiP chip for calibration. The PWB is fabricated in situ by two-photon lithography [39] and comprises two tapered sections to minimize mode-field mismatch at both interfaces. The shape of the PWB is adapted to the position of these interfaces, thereby compensating for tolerances in chip placement.

 figure: Fig. 2.

Fig. 2. Multi-chip assembly demonstrating a PWB between an InP laser and a SiP chip. (a) Assembly concept: the laser and the SiP die are mounted on a common carrier by adhesive bonding. The carrier compensates for differences in die thickness. Precise alignment between the laser emission window and the Si nanowire is not required. Tapers are utilized at the interfaces at both ends of the PWB for low-loss transitions between the PWB WG section and the attached components. A GC is used to interface the SiP WG to a standard SMF. The WG section is designed to have a rectangular cross section of 2.0μm×1.4μm. (b) HCSEL interface: the HCSEL consists of an in-plane InGaAsP DFB laser cavity and an etched 45° mirror to deflect the light (λ1550nm) to the surface-normal direction. The light is then captured with a (rectangular) polymer PWB taper. At the HCSEL emission window, the taper cross section corresponds to a square with a side length of 4 µm, which is linearly converted to a rectangular cross section with a size of 2.0μm×1.4μm at the transition to the PWB WG section. Panels (c) and (d) show, respectively, the side and top views of the transition to the SiP nanowire waveguide. The polymer PWB taper starts with a rectangular 2.0μm×1.4μm cross section of the PWB WG section, which is linearly converted to a final width of 0.8 µm and a height of 0.5 µm along a length of 60 µm. Alignment markers are used to exactly locate the position of the coupling interface.

Download Full Size | PPT Slide | PDF

B. Photoresist Materials and Devices

PWBs are fabricated from a commercially available negative-tone photoresist (IP-Dip, Nanoscribe GmbH; unexposed refractive index, nPWB=1.52 at 780 nm [46]). The MCMs are built with so-called HCSELs [47], which combine an in-plane InGaAsP-based buried heterostructure DFB laser with an etched 45° mirror to deflect the emitted light (λ1550nm) to the surface-normal direction [Fig. 2(b)]. At the HCSEL facet, the 1/e2 diameter of the modal intensity profile amounts to 3 µm, extracted from a measurement of the far-field intensity distribution by using a scanning-slit optical beam profiler (BP209-IR/M, Thorlabs). The HCSEL deflection mirror is fabricated by chemically assisted ion-beam etching [47]. Note that the mirror inclination is subject to fabrication tolerances such that the direction of light emission might not be perpendicular to the chip surface, i.e., θ90°, as in Fig. 2(b).

The PWB consists of a WG section, which is connected to the HCSEL and the SiP chip through dedicated tapers [Fig. 2(a)]. On the HCSEL side, a taper with a rectangular cross section is used to convert the mode of the laser to the fundamental mode of the PWB WG section. At the HCSEL emission window [Fig. 2(b)], the taper cross section corresponds to a square with a side length of 4 µm, which is then converted linearly into a rectangular cross section of 2.0μm×1.4μm at the transition to the PWB WG section. At the interfaces to the SiP circuit, low-loss coupling is achieved by a tapered Si nanowire, which is embedded into the polymer PWB taper [39] [see Figs. 2(c) and 2(d)]. The Si nanowires (nSi=3.48) were produced on a CMOS pilot line using 193 nm deep-ultraviolet lithography with a 220-nm-thick silicon device layer. The thickness of the buried oxide (SiO2, nSiO2=1.44) amounts to 2 µm. The Si nanowire starts with a tip width of 0.13 µm, which then is tapered up to the final SiP WG width of 0.5 µm along a length of 60 µm. The polymer PWB taper starts with the rectangular 2.0μm×1.4μm cross section of the PWB WG section, which is linearly converted to a final width of 0.8 µm and a height of 0.5 µm along the same length of 60 µm. The smallest radius of curvature typically used in the WG section of the PWB is 40 µm.

C. Photonic Wire Bond Fabrication

Several steps are required for fabricating the PWB [3740]. After mounting the components on a common carrier with typical pick-and-place accuracies of 10 µm, the negative-tone photoresist is drop-cast onto the MCM, covering both the HCSEL emission window and the coupling region of the targeted Si nanowire. The positions of the coupling interfaces are then detected in the volume of the resist through the observation camera of the 3D lithography system (Photonic Professional GT, Nanoscribe GmbH). These positions may be derived from dedicated alignment markers [see Fig. 2(d)]. The start and end points of the PWB allow defining its trajectory along with its 3D shape, and the structure is then fabricated through two-photon polymerization by exposing the photoresist. The lithography laser has an emission wavelength of λ=780nm and emits pulses with a full width at half-maximum (FWHM) below 100 fs and with a repetition frequency of 80 MHz. In our current experiments, we have not yet optimized the writing speed, leading to an exposure time of approximately 3 min for a single PWB, with vast potential for further acceleration. A low-refractive-index matching liquid (Cargille Laser Liquid 3421; noil=1.3 at 1550 nm) is drop-cast onto the assembly to emulate the low-refractive-index cladding of the PWB. The liquid can be easily replaced with a long-term protective cladding material.

In the course of our experiments, we found that PWBs exhibit remarkable stability with respect to mechanical shocks and vibrations. This was, e.g., observed from samples that were dropped on the floor from heights of approximately 1 m: the PWB structures remained intact, except for the rare cases in which a direct physical impact occurred, caused, e.g., by the wire bond mechanically touching the ground. This observation may be qualitatively explained by a simplified physical consideration: when scaling down the dimension d of a given physical structure, the force Fa=ma acting on the structure as a result of certain acceleration a is reduced in proportion to the mass m and, hence, to the volume Vd3. At the same time, the forces Fd leading to the destruction of the structure roughly reduce in proportion to the relevant cross section Ad2. Hence, nanoscale structures such as PWBs feature greatly improved resilience with respect to shocks and vibrations as compared with macroscopic or mesoscopic coupling assemblies. On the other hand, PWBs are very sensitive regarding mechanical collisions with macroscopic structures. This can be overcome by embedding the structures into a solid low-refractive-index cladding such as a fluorinated polymer, which, at the same time, acts as an encapsulation for protection against dirt or environmental influences. More systematic shock tests and stability study aspects are subject to future research activities.

4. RESULTS AND DISCUSSION

A. Photonic Wire Bonding of a Laser Array

To demonstrate the viability of the photonic wire bonding approach, we fabricate a hybrid MCM that combines passive SiP WGs with an array of DFB lasers that feature different wavelengths. A SEM micrograph of the assembly is shown in Fig. 3(a). Note that due to the fabrication tolerances of the inclination of the HCSEL deflection mirror, the angle θ between the light emission direction and the chip surface is not exactly 90°, and, hence, the direction of the PWB trajectory has to be adapted accordingly [see Figs. 3(b) and 3(c)]. Using a goniometric radiometer (LD 8900, Ophir Spiricon Europe GmbH), we find that the actual emission angle amounts to θair=(83±1)° when measured in air (nair=1) [Fig. 3(b)]. For coupling into the polymer taper of the PWB (nPWB=1.52), this changes to approximately θPWB=85° according to Snell’s law, and the axes of the polymer tapers have to be adapted accordingly [Fig. 3(c)].

 figure: Fig. 3.

Fig. 3. Hybrid MCM combining passive SiP WGs with an InP DFB laser array. (a) A SEM micrograph of the MCM, comprising four LDs (LD1…LD4), each connected to a SiP on-chip WG via a PWB (PWB1…PWB4). The ILs of the PWBs are denoted in the figure. PWB2 shows an IL of (0.4±0.3)dB, including the coupling losses of both the HCSEL–PWB interface and the transition to the SiP nanowire, as well as the propagation loss in the freeform WG. Slightly higher losses of (1.3±0.4)dB, (0.6±0.3)dB, and (0.6±0.3)dB are observed for PWB 1, 3, and 4, respectively. The variations are attributed to uncertainties of the HCSEL emission spot size, the emission direction, and the PWB shape. Still, these losses are well below the 2.3 dB that were obtained for other concepts that rely on active alignment [36]. (b) Measurement of the emission direction of a HCSEL before photonic wire bonding. The measurement was taken using a goniometric radiometer for three HCSEL chips. The Gaussian fit (red) reveals an emission angle of θair=(83±1)°, which deviates from the ideal 90° due to the fabrication tolerances of the HCSEL deflection mirror. (c) Side-view of PWB1. For efficient coupling into the PWB taper (nPWB=1.52), the taper axis has to be inclined by approximately θPWB=85°, according to Snell’s law.

Download Full Size | PPT Slide | PDF

B. Insertion Loss of a PWB

In order to precisely measure the insertion loss (IL) of each PWB, we first determine the current-dependent output power at each HCSEL facet before and after photonic wire bonding [see Fig. 4(a)]. This is done by electrically pumping each LD with an adjustable current ILD, derived from a LD driver (LDX 3620, ILX Lightwave). In a first measurement, we record the total output power of the bare HCSEL before photonic wire bonding. To this end, we bring an integrating sphere (IS; S145C, Thorlabs) in close proximity to the HCSEL facet such that the entire emitted power, P0, is captured. In a second measurement, which we perform after photonic wire bonding, we use the same IS to determine the optical power after propagation through the SiP chip, the corresponding GC, and a SMF patch cord. In this measurement, we simply insert the SMF end facet into the IS to measure the power. For this measurement, we also consider 4% back-reflection at the SMF end facet. Taking into account the on-chip propagation losses of the 472-µm-long SiP nanowire, the GC losses, and the connector losses of the SMF, we can then estimate the power P1 delivered to the SiP nanowire. The wavelength-dependent GC losses and the on-chip propagation losses are obtained from SiP reference WGs on the same chip. The transmission spectra of these WGs are measured using a tunable laser and a synchronously swept optical spectrum analyzer. We investigate WGs of different lengths, leading to on-chip propagation losses of approximately 3 dB/cm and GC losses of 4.1 dB for the optimum wavelength of 1550 nm. For calculating the ILs of the PWB, we use the IL of the GC at the emission wavelength of the respective HCSEL.

 figure: Fig. 4.

Fig. 4. PWB performance characterization. (a) Experimental setup for measuring the ILs of the PWB as well as the laser linewidth. The electrical path (green) consists of a current source to drive the LD. The optical path comprises the PWB (orange) as well as a SiP nanowire, a grating coupler, and an SMF (all black). At the end of the SMF, the light is coupled into a calibrated IS to precisely measure the optical power. Alternatively, the emitted light can be coupled to a heterodyne coherent receiver, which is connected to a highly stable external-cavity laser (ECL, not depicted) as a LO for linewidth measurements. A polarization controller (Pol. Contr.) is used for optimizing the beat signal between the recorded light and the LO reference. (b) Power–current characteristic of LD2 and LD3, measured at the laser facet before photonic wire bonding (P0, blue squares), and inside the respective SiP nanowire after photonic wire bonding (P1, red squares). The power level P1 was corrected by taking into account the losses caused by propagation through the SiP chip, the corresponding GC, and the SMF patch cord. The dashed lines represent linear fits. The PWB ILs amount to 0.4 and to 0.6 dB. The HCSEL threshold is not affected by the process of photonic wire bonding. (c) Optical linewidth of LD5 measured before and after photonic wire bonding. The FWHM of the power spectrum amounts to Δf=2.7MHz without and Δf=3.4MHz with a PWB. Within the measurement accuracy, we do not see a significant increase of laser linewidth. These findings were confirmed using a variety of other devices.

Download Full Size | PPT Slide | PDF

Figure 4(b) shows the measurement results for the emitted HCSEL power P0 (blue, without PWB) and P1 (red, with PWB) for LD2 and LD3. From the ratio of P0 and P1, we estimate the IL of the PWB to be (0.4±0.3)dB and (0.6±0.3)dB, respectively. Comparing the thresholds from both curves with and without PWB in Fig. 4(b), we confirm that the HCSEL thresholds stay at 10 mA before and after photonic wire bonding. Using the same method, we estimate the remaining PWB IL of LD1 and LD4 to be (1.3±0.3)dB and (0.6±0.3)dB, respectively [see Fig. 3(a)]. The differences in IL are attributed to uncertainties of the HCSEL emission spot size and the emission direction, as well as to slight variations of the shape of the PWB. Note that these losses are well below the 2.3 dB, which were obtained for other concepts that rely on active alignment [36].

C. Laser Performance without and with PWB

When connecting InP lasers to SiP chips, the use of intermediate optical isolators is not practical. An important question then is whether back-reflection of optical power into the laser cavity will degrade the emission performance, in particular, with respect to the optical linewidth. This is investigated by first measuring the emission spectra to confirm that the lasers continue to emit in a single longitudinal mode after wire bonding. In a second step, we measure and compare the linewidths of the HCSEL without and with PWB. The laser linewidth measurement relies on superimposing the emitted LD light with light from a highly stable external-cavity reference laser acting as a local oscillator (LO). The beat signal is then detected using a heterodyne coherent receiver (N4391A, Keysight Technologies GmbH) [see Fig. 4(a)] and recorded with an oscilloscope (not shown). We record the intermediate-frequency signal, evaluate the corresponding variance of the phase increments, and retrieve the Lorentzian linewidth [48]. The LO linewidth amounts to 14 kHz and can be safely neglected compared with the linewidth of the HCSEL, which is specified between 3 and 5 MHz.

Figure 4(c) shows the power spectrum of the beat signal obtained from another LD (LD5) without (blue) and with PWB (red). The optical linewidth Δf of this laser can be inferred from the variance of the phase increments for small time delays and amounts to 2.7 MHz without and 3.4 MHz with PWB. This measurement was repeated for the other three devices (LD6…LD8), leading to comparable results—the measured linewidths changed from (2.9, 5.8, 4.2) MHz without PWB to (3.5, 3.1, 5.7) MHz with PWB. Note that the linewidth measurements of LD5…LD8 were obtained from a previous MCM generation, in which the IL of the PWB amounted to 4 dB since the erroneous inclination of the HCSEL deflection mirror was yet not taken into account. This IL is significantly higher than that of the low-loss MCM depicted in Fig. 3(a) for which we missed measuring the linewidth prior to photonic wire bonding. However, to confirm that the laser performance is also maintained for low-loss bonds, we also measure the linewidth of LD1…LD4 after photonic wire bonding, leading to values of (1.9, 3.4, 2.8, 2.3) MHz. All these values are in the same range as the linewidths obtained for LD5…LD8, which were fabricated on the same wafer. Based on these results, we conclude that the performance of the HCSEL is not altered by photonic wire bonding.

D. Numerical Verification of Measurements

To benchmark and support our experimental results, we also performed a simulation of a complete PWB structure, including the transition to the Si nanowire, using a commercially available numerical solver (CST Microwave Studio [49]). We consider a simple case of a PWB with a fully planar trajectory [Fig. 5(a)]. Note that, in general, the positioning of the HCSEL chip with respect to the SiP chip is subject to mechanical tolerances that might, e.g., lead to a lateral offset. In this case, the axes of the HCSEL emission beam and of the Si nanowire WG do not lie in the same plane, and the PWB trajectory is non-planar.

 figure: Fig. 5.

Fig. 5. Numerical verification and benchmarking of PWB. (a) Calculated normalized intensity of the PWB. Simulations were performed using a vectorial finite-integration technique (CST Microwave Studio [49]). Light is launched into Port 1, which is located at the bottom of the PWB input taper connected to the HCSEL, and Port 2 extracts the power guided by the fundamental mode of the SiP WG. Losses are mainly caused by the transition between the PWB and the Si nanowire, indicated by field portions that are radiated away from the WG structure (see inset). (b) Transmission spectrum obtained for the propagation from Port 1 to Port 2. The IL amounts to approximately 0.3 dB and is flat over the entire frequency range. This is in good agreement with the measured ILs that range from (0.4±0.3)dB to (1.3±0.4)dB.

Download Full Size | PPT Slide | PDF

In the simulation, we use the refractive indices and device dimensions specified in the previous section along with a cladding of refractive index noil=1.3. We consider a frequency range between 190 and 196 THz. Waves are launched and detected at two simulation ports, which are located at the bottom of the PWB input taper connected to the HCSEL and at the end of Si nanowire. The ports are marked with red lines in Fig. 5(a). The field launched at Port 1 corresponds to the fundamental mode calculated for the starting cross section of the HCSEL taper. At Port 2, the power guided by the fundamental mode of the SiP WG is extracted to determine the coupling efficiency. The polarization of the launch field was chosen along y-direction, leading to the excitation of a quasi-TE mode in the SiP nanowire WG. Note that this simulation does not take into account any scattering loss caused by surface roughness or any mode mismatch between the mode field at the HCSEL facet and the launched excitation field. Using the measured 1/e2 diameter of 3 µm for the rotational intensity profile of the HCSEL emission, we find a loss of only 0.03 dB for the transition to the square PWB input taper.

The plot in Fig. 5(a) shows the normalized intensity distribution obtained from the simulation at a frequency of 193 THz. The main losses originate from the transition of the PWB to the Si nanowire, indicated by radiated field patterns that propagate away from the Si nanowire [Fig. 5(a), see inset]. In contrast to that, the bends of the PWB WG section do not cause much loss. The simulated IL from Port 1 to Port 2 amounts to approximately 0.3 dB over the entire frequency range [see Fig. 5(b)]. The simulated losses are slightly smaller than their measured counterparts, which range from (0.4±0.3)dB to (1.3±0.4)dB.

5. SUMMARY

We have demonstrated that photonic wire bonding enables highly efficient coupling between InP-based HCSELs and SiP chips. We achieve very low coupling losses down to (0.4±0.3)dB, which are in very good agreement with numerical simulations. To the best of our knowledge, this is the most efficient interface between an InP light source and a SiP chip that has so far been demonstrated. We further confirm experimentally that the PWB introduces no detrimental effect on the linewidth or the threshold of the DFB laser. The photonic wire bonding approach enables flexible hybrid integration of best-in-class known-good devices with high density in a fully automated fabrication process. The technique lends itself to both rapid prototyping of small batch sizes and fully automated large-scale production. Combined with previously demonstrated chip-to-chip [39] and fiber-to-chip [40] connections, we expect photonic wire bonding to evolve into a universal integration platform for hybrid photonic multi-chip assemblies.

Funding

Bundesministerium für Bildung und Forschung (BMBF) (PRIMA, 13N12574, PHOIBOS, 13N14630); Deutsche Forschungsgemeinschaft (DFG) (WavePhenomena, CRC 1173); H2020 European Research Council (ERC) (‘EnTeraPIC’, 280145, ‘TeraSHAPE’, 773248); Horizon 2020 Framework Programme (H2020) (PIXAPP, 731954); FP7 Information and Communication Technologies (ICT) (BIGPIPES, 619591); Alfried Krupp von Bohlen und Halbach-Stiftung; Helmholtz International Research School for Teratronics (HIRST); Karlsruhe School of Optics & Photonics (KSOP); Karlsruhe Nano-Micro Facility (KNMF).

Acknowledgment

We acknowledge the support by Florian Rupp for the SEM micrographs, Marco Hummel for the mechanical carrier, and Oswald Speck for the electric wire bonds.

REFERENCES

1. C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 1–16 (2015). [CrossRef]  

2. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016). [CrossRef]  

3. A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014). [CrossRef]  

4. M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014). [CrossRef]  

5. K. Yamada, Silicon Photonics II (2011), Vol. 119, pp. 1–29.

6. G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014). [CrossRef]  

7. D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013). [CrossRef]  

8. M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photon. Rev. 10, 895–921 (2016). [CrossRef]  

9. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010). [CrossRef]  

10. P. O. Brien, L. Carrol, C. Eason, and J. S. Lee, Silicon Photonics III, Topics in Applied Physics (Springer, 2016), Vol. 122.

11. N. Higashitarumizu and Y. Ishikawa, “Enhanced direct-gap light emission from Si-capped n+-Ge epitaxial layers on Si after post-growth rapid cyclic annealing: impact of non-radiative interface recombination toward Ge/Si double heterostructure lasers,” Opt. Express 25, 21286–21300 (2017). [CrossRef]  

12. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015). [CrossRef]  

13. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016). [CrossRef]  

14. J. Wang, X. Ren, C. Deng, H. Hu, Y. He, Z. Cheng, H. Ma, Q. Wang, and Y. Huang, “Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon,” J. Lightwave Technol. 33, 3163–3169 (2015). [CrossRef]  

15. S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3 µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

16. G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016). [CrossRef]  

17. A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43 Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017). [CrossRef]  

18. M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017). [CrossRef]  

19. J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012). [CrossRef]  

20. X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015). [CrossRef]  

21. A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters,” Opt. Express 24, 13754–13762 (2016). [CrossRef]  

22. B. Snyder, B. Corbett, and P. Obrien, “Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit,” J. Lightwave Technol. 31, 3934–3942 (2013). [CrossRef]  

23. H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24, 16258–16266 (2016). [CrossRef]  

24. S. Lin, X. Zheng, J. Yao, S. S. Djordjevic, J. E. Cunningham, J.-H. Lee, I. Shubin, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, K. Raj, and A. V. Krishnamoorthy, “Efficient, tunable flip-chip-integrated III–V/Si hybrid external-cavity laser array,” Opt. Express 24, 21454–21462 (2016). [CrossRef]  

25. B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

26. G. de Valicourt, C.-M. Chang, M. S. Eggleston, A. Melikyan, C. Bolle, N. Kaneda, M. P. Earnshaw, Y.-K. Chen, A. Maho, R. Brenot, and P. Dong, “Hybrid-integrated wavelength and reflectivity tunable III–V/silicon transmitter,” J. Lightwave Technol. 35, 1376–1382 (2017). [CrossRef]  

27. A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017). [CrossRef]  

28. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015). [CrossRef]  

29. Y. Urino, T. Nakamura, and Y. Arakawa, Silicon Photonics III, Topics in Applied Physics (Springer, 2016), Vol. 122.

30. Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017). [CrossRef]  

31. M. J. R. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014). [CrossRef]  

32. I. Lucci, M. Bahri, Y. Leger, and C. Cornet, “Thermal management of monolithic and heterogeneous integrated lasers,” in Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)] (IEEE, 2016), Vol. 22, pp. 1.

33. J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016). [CrossRef]  

34. B. Pezeshki, J. Heanue, D. Ton, T. Schrans, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” J. Lightwave Technol. 32, 2796–2799 (2014). [CrossRef]  

35. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010). [CrossRef]  

36. N. Hatori, T. Shimizu, M. Okano, M. Ishizaka, T. Yamamoto, Y. Urino, M. Mori, T. Nakamura, and Y. Arakawa, “A hybrid integrated light source on a silicon platform using a trident spot-size converter,” J. Lightwave Technol. 32, 1329–1336 (2014). [CrossRef]  

37. N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.

38. A. Nesic, M. Blaicher, T. Hoose, M. Lauermann, Y. Kutuvantavida, W. Freude, and C. Koos, “Hybrid 2D/3D photonic integration for non-planar circuit topologies,” in 42nd European Conference on Optical Communication (2016), paper W.3.F.4.

39. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012). [CrossRef]  

40. N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015). [CrossRef]  

41. M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

42. T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March 20–24, (2016), paper M2I.7.

43. K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

44. M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

45. M. R. Billah, J. N. Kemal, M. Blaicher, Y. Kutuvantavida, and C. Kieninger, “Four-channel 784 Gbit/s transmitter module enabled by photonic wire bonding and silicon-organic hybrid modulators,” in 43rd European Conference on Optical Communication (ECOC), Gothenburg, Sweden, September 17–21, 2017, paper Th.PDP.C.1.

46. “IP-Photoresists,” http://www.nanoscribe.de/files/1814/0662/4393/IP-Resist_IP-Dip_web.pdf.

47. M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490 nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.

48. K. Kikuchi, “Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers,” Opt. Express 20, 5291–5302 (2012). [CrossRef]  

49. “CST—Computer simulation technology,” https://www.cst.com/.

References

  • View by:

  1. C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 1–16 (2015).
    [Crossref]
  2. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
    [Crossref]
  3. A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
    [Crossref]
  4. M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
    [Crossref]
  5. K. Yamada, Silicon Photonics II (2011), Vol. 119, pp. 1–29.
  6. G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
    [Crossref]
  7. D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
    [Crossref]
  8. M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photon. Rev. 10, 895–921 (2016).
    [Crossref]
  9. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
    [Crossref]
  10. P. O. Brien, L. Carrol, C. Eason, and J. S. Lee, Silicon Photonics III, Topics in Applied Physics (Springer, 2016), Vol. 122.
  11. N. Higashitarumizu and Y. Ishikawa, “Enhanced direct-gap light emission from Si-capped n+-Ge epitaxial layers on Si after post-growth rapid cyclic annealing: impact of non-radiative interface recombination toward Ge/Si double heterostructure lasers,” Opt. Express 25, 21286–21300 (2017).
    [Crossref]
  12. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
    [Crossref]
  13. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  14. J. Wang, X. Ren, C. Deng, H. Hu, Y. He, Z. Cheng, H. Ma, Q. Wang, and Y. Huang, “Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon,” J. Lightwave Technol. 33, 3163–3169 (2015).
    [Crossref]
  15. S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.
  16. G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
    [Crossref]
  17. A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
    [Crossref]
  18. M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
    [Crossref]
  19. J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
    [Crossref]
  20. X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
    [Crossref]
  21. A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters,” Opt. Express 24, 13754–13762 (2016).
    [Crossref]
  22. B. Snyder, B. Corbett, and P. Obrien, “Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit,” J. Lightwave Technol. 31, 3934–3942 (2013).
    [Crossref]
  23. H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24, 16258–16266 (2016).
    [Crossref]
  24. S. Lin, X. Zheng, J. Yao, S. S. Djordjevic, J. E. Cunningham, J.-H. Lee, I. Shubin, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, K. Raj, and A. V. Krishnamoorthy, “Efficient, tunable flip-chip-integrated III–V/Si hybrid external-cavity laser array,” Opt. Express 24, 21454–21462 (2016).
    [Crossref]
  25. B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.
  26. G. de Valicourt, C.-M. Chang, M. S. Eggleston, A. Melikyan, C. Bolle, N. Kaneda, M. P. Earnshaw, Y.-K. Chen, A. Maho, R. Brenot, and P. Dong, “Hybrid-integrated wavelength and reflectivity tunable III–V/silicon transmitter,” J. Lightwave Technol. 35, 1376–1382 (2017).
    [Crossref]
  27. A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
    [Crossref]
  28. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
    [Crossref]
  29. Y. Urino, T. Nakamura, and Y. Arakawa, Silicon Photonics III, Topics in Applied Physics (Springer, 2016), Vol. 122.
  30. Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
    [Crossref]
  31. M. J. R. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
    [Crossref]
  32. I. Lucci, M. Bahri, Y. Leger, and C. Cornet, “Thermal management of monolithic and heterogeneous integrated lasers,” in Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)] (IEEE, 2016), Vol. 22, pp. 1.
  33. J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
    [Crossref]
  34. B. Pezeshki, J. Heanue, D. Ton, T. Schrans, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” J. Lightwave Technol. 32, 2796–2799 (2014).
    [Crossref]
  35. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
    [Crossref]
  36. N. Hatori, T. Shimizu, M. Okano, M. Ishizaka, T. Yamamoto, Y. Urino, M. Mori, T. Nakamura, and Y. Arakawa, “A hybrid integrated light source on a silicon platform using a trident spot-size converter,” J. Lightwave Technol. 32, 1329–1336 (2014).
    [Crossref]
  37. N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.
  38. A. Nesic, M. Blaicher, T. Hoose, M. Lauermann, Y. Kutuvantavida, W. Freude, and C. Koos, “Hybrid 2D/3D photonic integration for non-planar circuit topologies,” in 42nd European Conference on Optical Communication (2016), paper W.3.F.4.
  39. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
    [Crossref]
  40. N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
    [Crossref]
  41. M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.
  42. T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.
  43. K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).
  44. M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.
  45. M. R. Billah, J. N. Kemal, M. Blaicher, Y. Kutuvantavida, and C. Kieninger, “Four-channel 784  Gbit/s transmitter module enabled by photonic wire bonding and silicon-organic hybrid modulators,” in 43rd European Conference on Optical Communication (ECOC), Gothenburg, Sweden, September17–21, 2017, paper Th.PDP.C.1.
  46. “IP-Photoresists,” http://www.nanoscribe.de/files/1814/0662/4393/IP-Resist_IP-Dip_web.pdf .
  47. M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.
  48. K. Kikuchi, “Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers,” Opt. Express 20, 5291–5302 (2012).
    [Crossref]
  49. “CST—Computer simulation technology,” https://www.cst.com/ .

2017 (6)

N. Higashitarumizu and Y. Ishikawa, “Enhanced direct-gap light emission from Si-capped n+-Ge epitaxial layers on Si after post-growth rapid cyclic annealing: impact of non-radiative interface recombination toward Ge/Si double heterostructure lasers,” Opt. Express 25, 21286–21300 (2017).
[Crossref]

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
[Crossref]

G. de Valicourt, C.-M. Chang, M. S. Eggleston, A. Melikyan, C. Bolle, N. Kaneda, M. P. Earnshaw, Y.-K. Chen, A. Maho, R. Brenot, and P. Dong, “Hybrid-integrated wavelength and reflectivity tunable III–V/silicon transmitter,” J. Lightwave Technol. 35, 1376–1382 (2017).
[Crossref]

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

2016 (8)

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24, 16258–16266 (2016).
[Crossref]

S. Lin, X. Zheng, J. Yao, S. S. Djordjevic, J. E. Cunningham, J.-H. Lee, I. Shubin, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, K. Raj, and A. V. Krishnamoorthy, “Efficient, tunable flip-chip-integrated III–V/Si hybrid external-cavity laser array,” Opt. Express 24, 21454–21462 (2016).
[Crossref]

A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters,” Opt. Express 24, 13754–13762 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photon. Rev. 10, 895–921 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

2015 (7)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 1–16 (2015).
[Crossref]

J. Wang, X. Ren, C. Deng, H. Hu, Y. He, Z. Cheng, H. Ma, Q. Wang, and Y. Huang, “Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon,” J. Lightwave Technol. 33, 3163–3169 (2015).
[Crossref]

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

2014 (6)

N. Hatori, T. Shimizu, M. Okano, M. Ishizaka, T. Yamamoto, Y. Urino, M. Mori, T. Nakamura, and Y. Arakawa, “A hybrid integrated light source on a silicon platform using a trident spot-size converter,” J. Lightwave Technol. 32, 1329–1336 (2014).
[Crossref]

B. Pezeshki, J. Heanue, D. Ton, T. Schrans, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” J. Lightwave Technol. 32, 2796–2799 (2014).
[Crossref]

M. J. R. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
[Crossref]

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
[Crossref]

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

2013 (2)

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

B. Snyder, B. Corbett, and P. Obrien, “Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit,” J. Lightwave Technol. 31, 3934–3942 (2013).
[Crossref]

2012 (3)

2010 (2)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Abbasi, A.

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Abolghasem, P.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Arakawa, Y.

Badihi, A.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Baets, R.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters,” Opt. Express 24, 13754–13762 (2016).
[Crossref]

Bahri, M.

I. Lucci, M. Bahri, Y. Leger, and C. Cornet, “Thermal management of monolithic and heterogeneous integrated lasers,” in Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)] (IEEE, 2016), Vol. 22, pp. 1.

Balthasar, G.

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
[Crossref]

Bauwelinck, J.

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Behfar, A.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Benamara, M.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Bernabe, S.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

Bickel, N.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Billah, M.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Billah, M. R.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

M. R. Billah, J. N. Kemal, M. Blaicher, Y. Kutuvantavida, and C. Kieninger, “Four-channel 784  Gbit/s transmitter module enabled by photonic wire bonding and silicon-organic hybrid modulators,” in 43rd European Conference on Optical Communication (ECOC), Gothenburg, Sweden, September17–21, 2017, paper Th.PDP.C.1.

Blaicher, M.

M. R. Billah, J. N. Kemal, M. Blaicher, Y. Kutuvantavida, and C. Kieninger, “Four-channel 784  Gbit/s transmitter module enabled by photonic wire bonding and silicon-organic hybrid modulators,” in 43rd European Conference on Optical Communication (ECOC), Gothenburg, Sweden, September17–21, 2017, paper Th.PDP.C.1.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

A. Nesic, M. Blaicher, T. Hoose, M. Lauermann, Y. Kutuvantavida, W. Freude, and C. Koos, “Hybrid 2D/3D photonic integration for non-planar circuit topologies,” in 42nd European Conference on Optical Communication (2016), paper W.3.F.4.

Boeuf, F.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Bolle, C.

Bonk, R.

N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.

Bovington, J.

Bower, C.

A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters,” Opt. Express 24, 13754–13762 (2016).
[Crossref]

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Bowers, J. E.

M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
[Crossref]

M. J. R. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

Bowker, J.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Brenot, R.

G. de Valicourt, C.-M. Chang, M. S. Eggleston, A. Melikyan, C. Bolle, N. Kaneda, M. P. Earnshaw, Y.-K. Chen, A. Maho, R. Brenot, and P. Dong, “Hybrid-integrated wavelength and reflectivity tunable III–V/silicon transmitter,” J. Lightwave Technol. 35, 1376–1382 (2017).
[Crossref]

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Brien, P. O.

P. O. Brien, L. Carrol, C. Eason, and J. S. Lee, Silicon Photonics III, Topics in Applied Physics (Springer, 2016), Vol. 122.

Buca, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Buffolo, M.

M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
[Crossref]

Cao, Y.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Cardile, P.

Carrol, L.

P. O. Brien, L. Carrol, C. Eason, and J. S. Lee, Silicon Photonics III, Topics in Applied Physics (Springer, 2016), Vol. 122.

Carroll, L.

H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24, 16258–16266 (2016).
[Crossref]

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

Casalino, M.

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photon. Rev. 10, 895–921 (2016).
[Crossref]

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Chang, C.-M.

Charbonnier, B.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Chen, K. K.

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Chen, S. W.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Chen, Y.-K.

Cheng, Y.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Cheng, Z.

Chimot, N.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Chiussi, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Contu, P.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Coppola, G.

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photon. Rev. 10, 895–921 (2016).
[Crossref]

Corbett, B.

B. Snyder, B. Corbett, and P. Obrien, “Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit,” J. Lightwave Technol. 31, 3934–3942 (2013).
[Crossref]

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Cornet, C.

I. Lucci, M. Bahri, Y. Leger, and C. Cornet, “Thermal management of monolithic and heterogeneous integrated lasers,” in Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)] (IEEE, 2016), Vol. 22, pp. 1.

Cunningham, J. E.

Daly, A.

Dave, U.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Davenport, M. L.

M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
[Crossref]

De Groote, A.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters,” Opt. Express 24, 13754–13762 (2016).
[Crossref]

De La Rue, R. M.

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photon. Rev. 10, 895–921 (2016).
[Crossref]

De Santi, C.

M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
[Crossref]

de Valicourt, G.

Decobert, J.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Delbeke, D.

Deng, C.

Dietrich, P.

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

Dietrich, P.-I.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

Djordjevic, S. S.

Doerr, C. R.

C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 1–16 (2015).
[Crossref]

Dong, P.

Dorogan, V. G.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Dottermusch, S.

Duan, G.-H.

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Duan, N.

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Earnshaw, M. P.

Eason, C.

P. O. Brien, L. Carrol, C. Eason, and J. S. Lee, Silicon Photonics III, Topics in Applied Physics (Springer, 2016), Vol. 122.

Eggleston, M. S.

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Faist, J.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Fang, Q.

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Fecioru, A. M.

Fedeli, J. M.

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Fédéli, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Freude, W.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.

A. Nesic, M. Blaicher, T. Hoose, M. Lauermann, Y. Kutuvantavida, W. Freude, and C. Koos, “Hybrid 2D/3D photonic integration for non-planar circuit topologies,” in 42nd European Conference on Optical Communication (2016), paper W.3.F.4.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

Gardes, F.

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Gardes, F. Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Garreau, A.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Geiger, R.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Girard, N.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Glastre, G.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Goedecke, M. L.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Grote, N.

M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.

Grützmacher, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Gubbins, M. A.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Hartmann, J. M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Hartmann, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Hatori, N.

Hauck, J.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

He, Y.

Heanue, J.

Heck, M. J. R.

M. J. R. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
[Crossref]

Heideman, R. G.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Hens, Z.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Higashitarumizu, N.

Hillerkuss, D.

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.

Hoekman, M.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Hoffmann, J.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Hofmann, A.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

Hoose, T.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

A. Nesic, M. Blaicher, T. Hoose, M. Lauermann, Y. Kutuvantavida, W. Freude, and C. Koos, “Hybrid 2D/3D photonic integration for non-planar circuit topologies,” in 42nd European Conference on Optical Communication (2016), paper W.3.F.4.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

Hsu, S. S.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Hu, H.

Hu, X.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Hu, Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Huang, Y.

Ikonic, Z.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Ishikawa, Y.

Ishizaka, M.

Islamova, E.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Jany, C.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Jordan, M.

Justice, J.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Kaiser, I.

N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.

Kaneda, N.

Kemal, J. N.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

M. R. Billah, J. N. Kemal, M. Blaicher, Y. Kutuvantavida, and C. Kieninger, “Four-channel 784  Gbit/s transmitter module enabled by photonic wire bonding and silicon-organic hybrid modulators,” in 43rd European Conference on Optical Communication (ECOC), Gothenburg, Sweden, September17–21, 2017, paper Th.PDP.C.1.

Keyvaninia, S.

Kieninger, C.

M. R. Billah, J. N. Kemal, M. Blaicher, Y. Kutuvantavida, and C. Kieninger, “Four-channel 784  Gbit/s transmitter module enabled by photonic wire bonding and silicon-organic hybrid modulators,” in 43rd European Conference on Optical Communication (ECOC), Gothenburg, Sweden, September17–21, 2017, paper Th.PDP.C.1.

Kikuchi, K.

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Klamkin, J.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Koos, C.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

A. Nesic, M. Blaicher, T. Hoose, M. Lauermann, Y. Kutuvantavida, W. Freude, and C. Koos, “Hybrid 2D/3D photonic integration for non-planar circuit topologies,” in 42nd European Conference on Optical Communication (2016), paper W.3.F.4.

N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Kreissl, J.

M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.

Krishnamoorthy, A. V.

Kubicky, J.

Kumari, S.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Kunert, B.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Kutuvantavida, Y.

A. Nesic, M. Blaicher, T. Hoose, M. Lauermann, Y. Kutuvantavida, W. Freude, and C. Koos, “Hybrid 2D/3D photonic integration for non-planar circuit topologies,” in 42nd European Conference on Optical Communication (2016), paper W.3.F.4.

M. R. Billah, J. N. Kemal, M. Blaicher, Y. Kutuvantavida, and C. Kieninger, “Four-channel 784  Gbit/s transmitter module enabled by photonic wire bonding and silicon-organic hybrid modulators,” in 43rd European Conference on Optical Communication (ECOC), Gothenburg, Sweden, September17–21, 2017, paper Th.PDP.C.1.

Kuyken, B.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Lauermann, M.

A. Nesic, M. Blaicher, T. Hoose, M. Lauermann, Y. Kutuvantavida, W. Freude, and C. Koos, “Hybrid 2D/3D photonic integration for non-planar circuit topologies,” in 42nd European Conference on Optical Communication (2016), paper W.3.F.4.

Le Liepvre, A.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Lee, D. Y.

Lee, J. S.

H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24, 16258–16266 (2016).
[Crossref]

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

P. O. Brien, L. Carrol, C. Eason, and J. S. Lee, Silicon Photonics III, Topics in Applied Physics (Springer, 2016), Vol. 122.

Lee, J.-H.

Leger, Y.

I. Lucci, M. Bahri, Y. Leger, and C. Cornet, “Thermal management of monolithic and heterogeneous integrated lasers,” in Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)] (IEEE, 2016), Vol. 22, pp. 1.

Leinse, A.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Lelarge, F.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Leuthold, J.

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.

Levaufre, G.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Li, C.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Li, K.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

Lim, A. E. J.

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Lin, S.

Lindenmann, N.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Liow, T. Y.

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Liow, T.-Y.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Liu, A.

Liu, C.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Liu, S.

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Lo, G. Q.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Lo, P. G.-Q.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Logan, D. F.

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photon. Rev. 10, 895–921 (2016).
[Crossref]

Lu, H.

Lucci, I.

I. Lucci, M. Bahri, Y. Leger, and C. Cornet, “Thermal management of monolithic and heterogeneous integrated lasers,” in Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)] (IEEE, 2016), Vol. 22, pp. 1.

Ludwig, P.

Luo, X.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Luo, Y.

Luysberg, M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Ma, H.

Maho, A.

Make, D.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Malhouitre, S.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Mantl, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Marin, P.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Mashanovich, G.

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Mashanovich, G. Z.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Mazur, Y. I.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Meitl, M.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Melikyan, A.

Meneghesso, G.

M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
[Crossref]

Meneghini, M.

M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
[Crossref]

Menezo, S.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

Mentovich, E.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Merckling, C.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Merget, F.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

Michel, J.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Moehrle, M.

M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Moerl, L.

M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.

Möhrle, M.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

Molzow, W. D.

M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.

Mooney, M. B.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Mori, M.

Morthier, G.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

Moscoso-Mártir, A.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Müller, J.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Mussler, G.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Nakamura, T.

Nedeljkovic, M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Nesic, A.

A. Nesic, M. Blaicher, T. Hoose, M. Lauermann, Y. Kutuvantavida, W. Freude, and C. Koos, “Hybrid 2D/3D photonic integration for non-planar circuit topologies,” in 42nd European Conference on Optical Communication (2016), paper W.3.F.4.

Nielsen, M.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

O’Brien, P.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24, 16258–16266 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Obrien, P.

Okano, M.

Olivier, S.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Onanuga, T.

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

Onanuga, T. P.

Ortsiefer, M.

Pantouvaki, M.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Pavarelli, N.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

Petropoulos, P.

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Pezeshki, B.

Pinna, S.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Pommarede, X.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Porte, H.

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Przyrembel, G.

M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.

Raj, K.

Randel, S.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

Rangarajan, S.

Rasmussen, D. E.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Ren, X.

Ristic, S.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Rockman, S.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Roelkens, G.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters,” Opt. Express 24, 13754–13762 (2016).
[Crossref]

Romero-García, S.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Salamo, G. J.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Sandomirsky, A.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Scarcella, C.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24, 16258–16266 (2016).
[Crossref]

Schmid, J. H.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Schmogrow, R.

Schrans, T.

Seeds, A.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Setter, R.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Sharif Azadeh, S.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Shen, A.

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

Shen, B.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Sherback, M.

Shi, Y.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Shimizu, T.

Shubin, I.

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sigg, H.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Sigmund, A.

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.

Simon, P.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Snyder, B.

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Song, B.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Song, J.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Spencer, D. T.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
[Crossref]

Stagarescu, C.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

Stoica, T.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Subramanian, A. Z.

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Temporiti, E.

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

Tern, R. P. C.

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Thacker, H. D.

Thiel, M.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Thomson, D. J.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Tian, B.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Ton, D.

Troppenz, U.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

Tu, X.

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

Urino, Y.

Van Campenhout, J.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Van Gasse, K.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Van Thourhout, D.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Verbist, J.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

von den Driesch, N.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Wagner, C.

M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.

Wang, H.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Wang, J.

Wang, Q.

Wang, Q. J.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Wang, R.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Wang, Z.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Wilson, P. R.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Wingert, T.

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

Wirths, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Witzens, J.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

Wörhoff, K.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

Xie, W.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Xu, D.-X.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Yamada, K.

K. Yamada, Silicon Photonics II (2011), Vol. 119, pp. 1–29.

Yamamoto, T.

Yang, X.

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Yao, J.

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Yin, X.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

Yoffe, G. W.

Yu, M.

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Zanoni, E.

M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
[Crossref]

Zhang, J.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Zhao, Y.

Zheng, X.

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Zhu, Y.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Zimmermann, L.

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

Zou, S.

Zwickel, H.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

Adv. Opt. Technol. (1)

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Front. Mater. (1)

X. Luo, Y. Cao, J. Song, X. Hu, Y. Cheng, C. Li, C. Liu, T.-Y. Liow, M. Yu, H. Wang, Q. J. Wang, and P. G.-Q. Lo, “High-throughput multiple dies-to-wafer bonding technology and III/V-on-Si hybrid lasers for heterogeneous integration of optoelectronic integrated circuits,” Front. Mater. 2, 1–28 (2015).
[Crossref]

Front. Phys. (1)

C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 1–16 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Buffolo, M. Meneghini, C. De Santi, M. L. Davenport, J. E. Bowers, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of heterogeneous III–V/silicon 1.55-µm DBR laser diodes,” IEEE J. Quantum Electron. 53, 1–8 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

M. J. R. Heck and J. E. Bowers, “Energy efficient and energy proportional optical interconnects for multi-core processors: driving the need for on-chip sources,” IEEE J. Sel. Top. Quantum Electron. 20, 332–343 (2014).
[Crossref]

J. S. Lee, L. Carroll, C. Scarcella, N. Pavarelli, S. Menezo, S. Bernabe, E. Temporiti, and P. O’Brien, “Meeting the electrical, optical, and thermal design challenges of photonic-packaging,” IEEE J. Sel. Top. Quantum Electron. 22, 409–417 (2016).
[Crossref]

A. E. J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. C. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 8300112 (2014).
[Crossref]

D. Thomson, F. Gardes, S. Liu, H. Porte, L. Zimmermann, J. M. Fedeli, Y. Hu, M. Nedeljkovic, X. Yang, P. Petropoulos, and G. Mashanovich, “High performance Mach–Zehnder based silicon optical modulators,” IEEE J. Sel. Top. Quantum Electron. 19, 85–94 (2013).
[Crossref]

G.-H. Duan, S. Olivier, C. Jany, S. Malhouitre, A. Le Liepvre, A. Shen, X. Pommarede, G. Levaufre, N. Girard, D. Make, G. Glastre, J. Decobert, F. Lelarge, R. Brenot, and B. Charbonnier, “Hybrid III–V silicon photonic integrated circuits for optical communication applications,” IEEE J. Sel. Top. Quantum Electron. 22, 379–389 (2016).
[Crossref]

J. Lightwave Technol. (7)

A. Abbasi, S. Keyvaninia, J. Verbist, X. Yin, J. Bauwelinck, F. Lelarge, G.-H. Duan, G. Roelkens, and G. Morthier, “43  Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser,” J. Lightwave Technol. 35, 1235–1240 (2017).
[Crossref]

J. Wang, X. Ren, C. Deng, H. Hu, Y. He, Z. Cheng, H. Ma, Q. Wang, and Y. Huang, “Extremely low-threshold current density InGaAs/AlGaAs quantum-well lasers on silicon,” J. Lightwave Technol. 33, 3163–3169 (2015).
[Crossref]

B. Pezeshki, J. Heanue, D. Ton, T. Schrans, S. Rangarajan, S. Zou, G. W. Yoffe, A. Liu, M. Sherback, J. Kubicky, and P. Ludwig, “High performance MEMS-based micro-optic assembly for multi-lane transceivers,” J. Lightwave Technol. 32, 2796–2799 (2014).
[Crossref]

G. de Valicourt, C.-M. Chang, M. S. Eggleston, A. Melikyan, C. Bolle, N. Kaneda, M. P. Earnshaw, Y.-K. Chen, A. Maho, R. Brenot, and P. Dong, “Hybrid-integrated wavelength and reflectivity tunable III–V/silicon transmitter,” J. Lightwave Technol. 35, 1376–1382 (2017).
[Crossref]

B. Snyder, B. Corbett, and P. Obrien, “Hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit,” J. Lightwave Technol. 31, 3934–3942 (2013).
[Crossref]

N. Hatori, T. Shimizu, M. Okano, M. Ishizaka, T. Yamamoto, Y. Urino, M. Mori, T. Nakamura, and Y. Arakawa, “A hybrid integrated light source on a silicon platform using a trident spot-size converter,” J. Lightwave Technol. 32, 1329–1336 (2014).
[Crossref]

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lightwave Technol. 33, 755–760 (2015).
[Crossref]

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 73003 (2016).
[Crossref]

Laser Photon. Rev. (3)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
[Crossref]

M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photon. Rev. 10, 895–921 (2016).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel light source integration approaches for silicon photonics,” Laser Photon. Rev. 11, 1700063 (2017).
[Crossref]

Light Sci. Appl. (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4, e358 (2015).
[Crossref]

Nanophotonics (1)

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Nat. Photonics (5)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers,” Nat. Photonics 6, 610–614 (2012).
[Crossref]

Opt. Express (6)

A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters,” Opt. Express 24, 13754–13762 (2016).
[Crossref]

H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24, 16258–16266 (2016).
[Crossref]

S. Lin, X. Zheng, J. Yao, S. S. Djordjevic, J. E. Cunningham, J.-H. Lee, I. Shubin, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, K. Raj, and A. V. Krishnamoorthy, “Efficient, tunable flip-chip-integrated III–V/Si hybrid external-cavity laser array,” Opt. Express 24, 21454–21462 (2016).
[Crossref]

N. Higashitarumizu and Y. Ishikawa, “Enhanced direct-gap light emission from Si-capped n+-Ge epitaxial layers on Si after post-growth rapid cyclic annealing: impact of non-radiative interface recombination toward Ge/Si double heterostructure lasers,” Opt. Express 25, 21286–21300 (2017).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

K. Kikuchi, “Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers,” Opt. Express 20, 5291–5302 (2012).
[Crossref]

Sci. Rep. (1)

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon photonics transmitter with SOA and semiconductor mode-locked laser,” Sci. Rep. 7, 13857 (2017).
[Crossref]

Other (15)

Y. Urino, T. Nakamura, and Y. Arakawa, Silicon Photonics III, Topics in Applied Physics (Springer, 2016), Vol. 122.

I. Lucci, M. Bahri, Y. Leger, and C. Cornet, “Thermal management of monolithic and heterogeneous integrated lasers,” in Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)] (IEEE, 2016), Vol. 22, pp. 1.

B. Song, P. Contu, C. Stagarescu, S. Pinna, P. Abolghasem, S. Ristic, N. Bickel, J. Bowker, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” in European Conference on Optical Communication (ECOC) (IEEE, 2015), Vol. 2015, pp. 1–3.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3  µm InAs/GaAs quantum-dot laser monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” in International Semiconductor Laser Conference (ISLC) (2014), Vol. 22, pp. 88–89.

P. O. Brien, L. Carrol, C. Eason, and J. S. Lee, Silicon Photonics III, Topics in Applied Physics (Springer, 2016), Vol. 122.

K. Yamada, Silicon Photonics II (2011), Vol. 119, pp. 1–29.

“CST—Computer simulation technology,” https://www.cst.com/ .

M. R. Billah, T. Hoose, T. Onanuga, N. Lindenmann, P. Dietrich, T. Wingert, M. L. Goedecke, A. Hofmann, U. Troppenz, A. Sigmund, M. Möhrle, W. Freude, and C. Koos, “Multi-chip integration of lasers and silicon photonics by photonic wire bonding,” in Conference on Lasers and Electro-Optics (CLEO) (2015), Vol. 1, paper STu2F.2.

T. Hoose, M. Billah, M. Blaicher, P. Marin, P.-I. Dietrich, A. Hofmann, U. Troppenz, M. Moehrle, N. Lindenmann, M. Thiel, P. Simon, J. Hoffmann, M. L. Goedecke, W. Freude, and C. Koos, “Multi-chip integration by photonic wire bonding: connecting surface and edge emitting lasers to silicon chips,” in Optical Fiber Communication Conference (OFC), Anaheim, CA, March20–24, (2016), paper M2I.7.

N. Lindenmann, I. Kaiser, G. Balthasar, R. Bonk, D. Hillerkuss, W. Freude, J. Leuthold, and C. Koos, “Photonic waveguide bonds—a novel concept for chip-to-chip interconnects,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference (2011), paper PDPC1.

A. Nesic, M. Blaicher, T. Hoose, M. Lauermann, Y. Kutuvantavida, W. Freude, and C. Koos, “Hybrid 2D/3D photonic integration for non-planar circuit topologies,” in 42nd European Conference on Optical Communication (2016), paper W.3.F.4.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Möhrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448  Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference Postdeadline Papers (OSA, 2017), paper Th5D.6.

M. R. Billah, J. N. Kemal, M. Blaicher, Y. Kutuvantavida, and C. Kieninger, “Four-channel 784  Gbit/s transmitter module enabled by photonic wire bonding and silicon-organic hybrid modulators,” in 43rd European Conference on Optical Communication (ECOC), Gothenburg, Sweden, September17–21, 2017, paper Th.PDP.C.1.

“IP-Photoresists,” http://www.nanoscribe.de/files/1814/0662/4393/IP-Resist_IP-Dip_web.pdf .

M. Moehrle, J. Kreissl, W. D. Molzow, G. Przyrembel, C. Wagner, A. Sigmund, L. Moerl, and N. Grote, “Ultra-low threshold 1490  nm surface-emitting BH-DFB laser diode with integrated monitor photodiode,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2010), pp. 1–4.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Vision of a photonic multi-chip transmitter for WDM communications. (a) The system exploits PWBs to combine the distinct advantages of different photonic integration platforms: DFB lasers are realized based on direct-bandgap InP substrates, whereas SiP chips lend themselves to implement electro-optic modulators. For dense packing of optical channels, high-quality AWGs are needed, which are best realized on medium-index-contrast material systems such as TriPleX [43]. The functionality of the multi-chip system depends vitally on efficient chip-to-chip and chip-to-fiber interconnects, which are realized by PWBs. The focus of this work is on low-loss PWB links between InP lasers and SiP chips (red). (b) SEM image of a laser–chip interface. (c) Chip-to-chip-connection between two SiP dies [39]. (d) Fiber-to-chip interface using a PWB to connect the individual cores of a multi-core fiber (MCF) to an array of planar SOI WGs [40].
Fig. 2.
Fig. 2. Multi-chip assembly demonstrating a PWB between an InP laser and a SiP chip. (a) Assembly concept: the laser and the SiP die are mounted on a common carrier by adhesive bonding. The carrier compensates for differences in die thickness. Precise alignment between the laser emission window and the Si nanowire is not required. Tapers are utilized at the interfaces at both ends of the PWB for low-loss transitions between the PWB WG section and the attached components. A GC is used to interface the SiP WG to a standard SMF. The WG section is designed to have a rectangular cross section of 2.0 μm × 1.4 μm . (b) HCSEL interface: the HCSEL consists of an in-plane InGaAsP DFB laser cavity and an etched 45° mirror to deflect the light ( λ 1550 nm ) to the surface-normal direction. The light is then captured with a (rectangular) polymer PWB taper. At the HCSEL emission window, the taper cross section corresponds to a square with a side length of 4 µm, which is linearly converted to a rectangular cross section with a size of 2.0 μm × 1.4 μm at the transition to the PWB WG section. Panels (c) and (d) show, respectively, the side and top views of the transition to the SiP nanowire waveguide. The polymer PWB taper starts with a rectangular 2.0 μm × 1.4 μm cross section of the PWB WG section, which is linearly converted to a final width of 0.8 µm and a height of 0.5 µm along a length of 60 µm. Alignment markers are used to exactly locate the position of the coupling interface.
Fig. 3.
Fig. 3. Hybrid MCM combining passive SiP WGs with an InP DFB laser array. (a) A SEM micrograph of the MCM, comprising four LDs (LD1…LD4), each connected to a SiP on-chip WG via a PWB (PWB1…PWB4). The ILs of the PWBs are denoted in the figure. PWB2 shows an IL of ( 0.4 ± 0.3 ) dB , including the coupling losses of both the HCSEL–PWB interface and the transition to the SiP nanowire, as well as the propagation loss in the freeform WG. Slightly higher losses of ( 1.3 ± 0.4 ) dB , ( 0.6 ± 0.3 ) dB , and ( 0.6 ± 0.3 ) dB are observed for PWB 1, 3, and 4, respectively. The variations are attributed to uncertainties of the HCSEL emission spot size, the emission direction, and the PWB shape. Still, these losses are well below the 2.3 dB that were obtained for other concepts that rely on active alignment [36]. (b) Measurement of the emission direction of a HCSEL before photonic wire bonding. The measurement was taken using a goniometric radiometer for three HCSEL chips. The Gaussian fit (red) reveals an emission angle of θ air = ( 83 ± 1 ) ° , which deviates from the ideal 90° due to the fabrication tolerances of the HCSEL deflection mirror. (c) Side-view of PWB1. For efficient coupling into the PWB taper ( n PWB = 1.52 ), the taper axis has to be inclined by approximately θ PWB = 85 ° , according to Snell’s law.
Fig. 4.
Fig. 4. PWB performance characterization. (a) Experimental setup for measuring the ILs of the PWB as well as the laser linewidth. The electrical path (green) consists of a current source to drive the LD. The optical path comprises the PWB (orange) as well as a SiP nanowire, a grating coupler, and an SMF (all black). At the end of the SMF, the light is coupled into a calibrated IS to precisely measure the optical power. Alternatively, the emitted light can be coupled to a heterodyne coherent receiver, which is connected to a highly stable external-cavity laser (ECL, not depicted) as a LO for linewidth measurements. A polarization controller (Pol. Contr.) is used for optimizing the beat signal between the recorded light and the LO reference. (b) Power–current characteristic of LD2 and LD3, measured at the laser facet before photonic wire bonding ( P 0 , blue squares), and inside the respective SiP nanowire after photonic wire bonding ( P 1 , red squares). The power level P 1 was corrected by taking into account the losses caused by propagation through the SiP chip, the corresponding GC, and the SMF patch cord. The dashed lines represent linear fits. The PWB ILs amount to 0.4 and to 0.6 dB. The HCSEL threshold is not affected by the process of photonic wire bonding. (c) Optical linewidth of LD5 measured before and after photonic wire bonding. The FWHM of the power spectrum amounts to Δ f = 2.7 MHz without and Δ f = 3.4 MHz with a PWB. Within the measurement accuracy, we do not see a significant increase of laser linewidth. These findings were confirmed using a variety of other devices.
Fig. 5.
Fig. 5. Numerical verification and benchmarking of PWB. (a) Calculated normalized intensity of the PWB. Simulations were performed using a vectorial finite-integration technique (CST Microwave Studio [49]). Light is launched into Port 1, which is located at the bottom of the PWB input taper connected to the HCSEL, and Port 2 extracts the power guided by the fundamental mode of the SiP WG. Losses are mainly caused by the transition between the PWB and the Si nanowire, indicated by field portions that are radiated away from the WG structure (see inset). (b) Transmission spectrum obtained for the propagation from Port 1 to Port 2. The IL amounts to approximately 0.3 dB and is flat over the entire frequency range. This is in good agreement with the measured ILs that range from ( 0.4 ± 0.3 ) dB to ( 1.3 ± 0.4 ) dB .

Metrics