Abstract

Future quantum networks will need flying qubits and stationary nodes. As for the generation of single photons which may act as flying qubits, resonantly excited single-semiconductor quantum dots are ideal in terms of their on-demand single-photon emission, indistinguishability, and brightness. Atomic systems can effectively act as mediators for photon–photon interactions, storage media, or building blocks for stationary qubits. Here, we hybridize these two systems and investigate the non-classical interference of spectral Lorentzian-shaped photons, fine-tuned between the cesium (Cs)-D1 hyperfine resonances. The temporal delay in the dispersive hot atomic cesium vapor amounts up to 50 times the photons’ initial width and reveals beats on the single quanta. The photons’ indistinguishability is preserved even after atomic-enabled delay. This proves that the interaction with the Cs vapor conserves the photons’ coherence. The role of spectral diffusion in the solid-state emitter is studied in single- and two-photon experiments in light of the strong frequency dependence of the atomic medium. Our results pave the way for efficient hybrid interfaces between quantum dots and hot atomic vapors as storage media in future quantum networks.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Establishing future photonic quantum networks is a challenging task due to the requirements of the underlying hardware, such as single-photon sources [1], efficient transmitters and photon delay lines [2], quantum memories, and repeaters [35].

These individual building blocks have been optimized over the past decades: quantum dots (QDs) have been established as bright, robust, and fast emitters of indistinguishable single photons [611], and atomic systems are ideal as a platform for photon storage [3,1216]. However, the two systems have remained unconnected for a long time. Therefore, hybrid quantum systems are attractive as they merge the strengths of complementary systems [1721]. Several systems provide in principle an opportunity for the realization of quantum memories. Based on their spin states, solid-state systems such as quantum dots [22], color centers in diamonds [23,24], and rare-earth doped crystals [25,26] are prominent candidates. In the current state, all systems appear to be of interest, given that atoms set the most universal wavelength reference, thus allowing for mutual agreement among several quantum nodes and their independent integration.

The first investigations on the QD alkali–vapor interface focused on a spectral match between solid-state emitters and atomic absorbers [2729]. This was followed by the demonstration of slow light for the QD photons at high dispersion between atomic hyperfine resonances [17,30]. Moreover, the entanglement between a biexciton–exciton photon pair is preserved after being slowed down in the vapor [31].

While photonic entanglement is a crucial resource for quantum communication and teleportation, a quantum network requires optical quantum gates, which are based on the effect of two-photon interference [4,5]. While QDs can provide near-unity indistinguishable single photons [810], it has to be proven that the presented hybrid systems allow these record values to be kept. The spectral diffusion of the quantum dot [10,32,33] limits the visibility of the two-photon interference; additionally, the atomic filtering and interaction with a highly dispersive medium might influence experiments which are performed after an atomic storage step. Therefore, a detailed understanding of the underlying physics is essential for the design and implementation of efficient hybrid quantum devices.

Here, we present the delay of single and indistinguishable photons performed in the high-dispersion region in proximity to the cesium (Cs)-D1 transitions. The non-trivial temporal behavior of the single photons interacting with the Cs vapor is investigated experimentally and theoretically. An extensive study on the effects of the delay on the two-photon interference is reported, utilizing two experimental configurations. In the first case, both photons are delayed before interfering on the beamsplitter, while in the second case the Cs vapor is used as a variable delay for only one of the two photons.

The spectral match to interface a single QD and alkali atoms [Fig. 1(a)] is realized by a strain-tunable QD. A charged exciton transition is addressed via a resonant π-pulse laser excitation. Figure 1(b) shows a high-resolution resonance fluorescence spectrum of such a charged exciton emission. The resulting spectrum is well approximated by a Gaussian distribution with ΔνQD=3.0±0.1GHz linewidth. On the other hand, the natural linewidth is determined as ΔνNL=0.30±0.01GHz from lifetime measurements. This indicates inhomogeneous broadening of the emission caused by spectral diffusion. The origin is on one hand charge noise in the vicinity of the QD, and an influence on the line via the Stark effect [35, 36]. On the other hand, fluctuations in the local magnetic field induce Zeeman splitting of the resonance [37]. The entire spectrum of the zero-phonon line is sent to the atomic-vapor cell without any filtering.

 figure: Fig. 1.

Fig. 1. (a) Pictorial sketch of the hybrid quantum system: single QD photons interact with hot Cs vapor. (b) High-resolution resonance fluorescence spectrum of the investigated QD charged exciton state: for sake of clarity, the natural linewidth and effect of spectral diffusion are also schematized. (c) Measured (dotted lines) and calculated (dashed lines) [34] Cs-D1 absorption spectra for a 250 mm long vapor cell at various temperatures.

Download Full Size | PPT Slide | PDF

In our studies, the delay line for the QD photons is realized by hot Cs vapor. Figure 1(c) shows the transmission spectra of a 250 mm long vapor cell for various vapor temperatures. An increase of the temperature results in an approximately exponential increase of the atomic density, followed by a corresponding growth of the absorption. This causes a spectral narrowing of the transmission window while the dispersion is increased simultaneously, as described by the Kramers–Kronig relation within the linear response theory [38]. The group velocity of a photon propagating into a dispersive medium is described by

vg=cn(ν)+νdndν,
where c is the speed of light in vacuum, ν the photon’s frequency, and n(ν) is the frequency-dependent refractive index. From this equation, it is evident that the rising slope of the refractive index over frequency results in a decrease of the group velocity. Consequently, the propagating single photons are slowed down.

2. SINGLE PHOTON DELAY LINE

Based on these premises, we present here a temperature-dependent delay for the QD single photons. Figure 2 shows the simultaneously recorded time-correlated single-photon counting (TCSPC) and intensity auto-correlation measurements (g(2)(τ)) for several vapor temperatures.

 figure: Fig. 2.

Fig. 2. (a) TCSPC measurements at various vapor temperatures (solid lines) and theoretical predictions (dashed lines). The inset shows all achieved delays depending on the vapor temperature. (b) Simultaneously recorded intensity auto-correlations of delayed single photons. For completeness, the curve for highest temperature and strongest absorption is indicated after background subtraction and enlarged binning (right-hand side, bottom curve only). Otherwise, raw data are presented.

Download Full Size | PPT Slide | PDF

Figure 2(a) shows the arrival time of the single photons emerging from the atomic vapor. The acquired photon delay follows an approximately exponential dependence over temperature corresponding to the dependence of vapor pressure and absorption in the cell. Furthermore, with a rising temperature, an increased temporal broadening of the photon decays is observed. This starts from an exponential decay with time constant τ=0.53±0.01ns to an exponential-like decay with time constant of τ2.6ns. The photons reach a maximum delay of 27ns, which is 50 times the initial pulse width, for a vapor temperature of 133°C.

Since the QD linewidth matches the transmission window of the hyperfine split Cs-D1 line, and moreover the spectral matching has been precisely tuned, all transmitted photons are strongly delayed by the dispersion of the atomic vapor. This means, in addition, that no background signal from undelayed photons is observed. In conclusion, the Cs vapor cell is an excellent tool as a delay line and allows for synchronization without any photon post-selection.

Figure 2(b) shows the intensity auto-correlation for the previously described measurements. The coincidence graphs show peaks which are separated by the inverse of the excitation pulse rate. Single-photon emission from the single quantum dot is proven by second-order correlation function at zero time delay to be g(2)(0)=0.013±0.007. This single-photon purity is fully preserved upon vapor-based delay, as shown in Fig. 2(b). However, at higher vapor temperatures, the signal-to-noise ratio suffers from absorption. An advantage of the presented delay-based storage is that it does not require additional complex laser-based storage schemes [3]. Accordingly, here we do not risk affecting the single-photon nature via residual laser admixing. Hence, the signal reveals direct insight into the dispersion effects for the single photons.

To theoretically investigate the pulse broadening of the photons, we consider as an example the measurement with acquired delay of 17 ns. As displayed in Fig. 3(a), the temporal profile possesses a modulation on the falling transient. This is fully explained in terms of the photon propagation through the dispersive medium and QD spectral diffusion. We introduce that in a linear-response medium [here, Cs vapor], the propagation of a photon with wavenumber k along the distance L changes the phase of the wave-packet as

χ(ν)Cs-vaporχout(ν)=χ(ν)einckL=χ(ν)ei2πLcn(ν)νeL2α(ν),withnc=n(ν)+i2kα(ν).

 figure: Fig. 3.

Fig. 3. (a) TCSPC measurement of delayed photons (17 ns, dotted line) and the corresponding simulation (dashed line). For clarity, only parts of the inhomogeneously broadened emission are highlighted, revealing the composition of the detected overall shape. (b) Corresponding spectral shapes after vapor transmission. The color codes of the individual components match between the figure parts (a) and (b); e.g., the purple curve represents the spectral position of vanishing GVD with the smoothest temporal profile. Detuned curves from the vanishing GVD position result in substantially distorted temporal profiles. The QD transmission profile is obtained by a multiplication of the Cs-transmission spectrum and the incoming QD spectral profile as measured in Fig. 1(b).

Download Full Size | PPT Slide | PDF

The medium is described by the complex refractive index nc that consists of dispersion n(ν) (ordinary refractive index) and absorption α(ν). We consider the observed photon’s intrinsic decay time of τ=0.53ns, and infer a Lorentzian lineshape in the frequency domain of width ΔνNL=0.3GHz, assuming Fourier-limited photons generated by the emitter. Under the presence of spectral diffusion, these photons are emitted at different carrier frequencies following a Gaussian probability distribution, as reflected in the measured spectrum [Fig. 1(a)]. When the photons propagate through the atomic medium, the perceived dispersion will highly depend on the spectral detuning over the Cs resonances. Different phases acquired by each of this Lorentzian-shaped components subsequently lead to various temporal shapes (cf. Supplement 1).

A selection of simulated Lorentzian-shaped photons is presented in Fig. 3. The color coding of individual selected lines matches between the figure parts (a) and (b). The smoothest temporal shape (purple) is identified with a carrier frequency at the highest transmittance and simultaneously vanishing group velocity dispersion (GVD). The closer the carrier frequency is to the Cs-D1 absorption transitions—thus experiencing stronger dispersion—the more the temporal shape is elongated and delayed. It is worth noting that the effect of the vapor absorption on the reshaping of the Lorentzians in the frequency domain is negligible; conversely, the atomic dispersion leads to distortion of the photon pulses in the time domain. In conclusion, the different temporal shapes add up to the delayed and broadened profile and excellently match the measured data. This proves that spectral diffusion is the main origin of the observed broadening and undulation.

3. TWO-PHOTON INTERFERENCE AFTER PHOTON–VAPOR INTERACTION

To better understand the implications of atom–photon interaction in view of quantum networking applications, we perform two complementary experiments of two-photon interference: First, we delay both consecutively emitted photons with the Cs vapor and perform Hong–Ou–Mandel (HOM) interference on these affected photons. Second, we investigate the more application-oriented scenario of two-photon interference of vapor-synchronized photons. In this case, the arrival times are adjusted by the delay of only one photon in the vapor whereas the other one remains unaffected.

When a double pulse excitation scheme is applied to the QD, two consecutively emitted photons with separation of 4.3 ns are launched into an unbalanced Mach–Zehnder interferometer (MZI). Its path-length difference exactly compensates for the temporal separation of the double pulses [see Fig. 4(a)].

 figure: Fig. 4.

Fig. 4. (a) Sketch of the two-photon interference. Configurations: (b) without vapor cell, with cell (c) before and (d) inside the MZI. The relative time delay between the two paths is always kept at 4.3 ns (gray arrow). (b) Baseline of the HOM interference of the selected QD-transition. Light blue lines represent experimental data; shaded areas are theoretically calculated coincidences. The theoretically calculated curves for non-interfering photons are shown as red curves. (c) HOM measurement when both photons have acquired Δt=2.5ns of delay in the vapor (configuration c). (d) HOM measurement when only one photon is vapor-delayed by Δt=1.7ns (configuration d).

Download Full Size | PPT Slide | PDF

As a reference for all further experiments, the two-photon interference of the QD without any vapor interaction is measured. Figure 4(b) shows the result of this interference measurement. The reduced central peak with respect to the situation of cross-polarized, non-interfering photons is a clear indication of coalescence for simultaneously impinging photons. Moreover, the dip in this central peak once again reveals frequency jitter [39] between the consecutively emitted photons and leads to an interference visibility of VHOM=0.52±0.04. Taking into account the measured inhomogeneously broadened QD linewidth, a visibility of Vmin=0.18 is expected [39]. The measured visibility value VHOM, which exceeds the aforementioned calculated number Vmin, suggests a spectral diffusion on timescales larger than the photon separation [10,32,33].

In the following, a vapor cell is placed into the optical path at the entrance of the MZI [configuration c in Fig. 4(a)]. In this configuration, all photons are delayed in the same manner and then brought to interfere. Figure 4(c) shows the two-photon interference for an acquired delay of 2.5 ns (see Supplement 1 for further delays of 3.7 and 5.8 ns delays). The area of the zero-delay peak as well as the presence of a central dip is preserved after interaction with the vapor. The extracted visibility is unchanged for the investigated delays. This proves that photon–vapor interaction does not add any dephasing to the propagating single-photon wavepackets. The only observable difference concerns the broadening of all coincidence peaks related to the temporal wavepacket distortion, as observed in the one-photon experiments (Fig. 3).

Finally, by inserting the 250 mm long vapor cell in one arm of the MZI (configuration d in Fig. 4) we synchronize two single photons in a quantum-network scenario. For this purpose, two-photon interference is performed among delayed and undelayed photons. In order to be consistent with the previous studies, the path-length difference in the unbalanced MZI is set to 4.3 ns. This is achieved by combining vapor-based delays with fiber-based ones. Two different experimental settings have been studied, i.e., vapor-based delay of 1.7 ns with additional fiber delay of 2.6 ns [Fig. 4(c)] and 3.5 ns with 0.8 ns fiber delay. In both cases, we observe a clear photon coalescence and extract visibilities of VHOM=0.38±0.06 and VHOM=0.33±0.06, respectively. As previously demonstrated, the photon propagation inside the vapor does not add any dephasing but results in a photon temporal wavepacket distortion. This increases with the acquired delay, and hence decreases the two-photon interference visibility. Despite this wavepacket distortion, the capability of the single photons to interfere is mostly conserved. This makes the presented scheme an excellent tool in a quantum network scenario.

To determine the interference visibility despite the increased overlap of peaks, we adapt the Smoluchowski diffusion model in a harmonic potential [40] for the QD frequency diffusion. Based on this, a simulation of the QD photon emission and interference under the utilized experimental conditions is performed. According to this model, the emission of one photon is followed by a subsequent emission at a different spectral detuning, such that the carrier frequency is not simply random within the overall inhomogeneously broadened spectrum but also within a frequency distribution in spectral proximity to the previously emitted photon. This distribution gets broadened with the photon’s time separation, asymptotically rendering the Gaussian spectrum of Fig. 1(b). Temporally closer emitted photons therefore will show a higher correlation in their frequency, while their spectral mismatch is increased with increasing temporal separation. This explains (i) the dip and coalescence of the central peaks in all measurements; (ii) the incremental broadening of the side peaks with increased time separation in the coincidence histograms after interaction with the vapor; and (iii) the Gaussian broadening of the QD emission. The histograms according to this model are shown as filled areas along with the experimental data (see Fig. 4 and Supplement 1). In order to distinguish between the effects of spectral diffusion and wavepacket distortion (induced by the interaction with the atoms) on the two-photon interference visibility, the overall time difference between consecutive photons has been kept constant (4.3 ns). In this way, the QD spectral diffusion turns out to be the same for all experimental configurations, which allows us to incorporate the same diffusion dynamics in all simulations.

In conclusion, we have experimentally and theoretically proven that two-photon interference visibility for vapor-delayed photons is conserved despite the presence of spectral diffusion. The two-photon coalescence is only slightly reduced in the case of the emulated quantum network scenario: this shows the applicability of such a scheme in real-world technology.

As a final remark, we present theoretically achievable efficiencies for the present hybrid system when state-of-the-art QD emitters are considered [810,37]. These rely on ideal photon indistinguishabilities, i.e., VHOM1, while spectral diffusion is negligible. As a general approach to achieve that and further obtain high brightness, photonic cavities are exploited [9,10,32]. The reduction of the radiative lifetime, however, results in a broadening of the natural linewidth. From the previous findings, it becomes clear that the photon’s bandwidth will drastically influence wavepacket distortion and interference visibility if propagated through the vapor.

To clarify the effect of the photon’s spectral width on the hybridization, we now simulate the configuration d in Fig. 4 for three commonly observed QD lifetimes τ. The emission is assumed to be Fourier-limited (VHOM=1) and with the carrier frequency at the most favorable spectral position of vanishing GVD. Figure 5 shows the interference visibilities as a function of vapor delay and absorption. The visibilities VHOM decrease exponentially with an increasing delay, asymptotically converging to a limit, while the absorption increases approximately in a linear manner. A slower decaying photon, with narrower natural linewidth, is found to have a substantially higher interference visibility. Conversely, a shorter radiative lifetime results in significantly reduced visibilities even for negligible acquired delays.

 figure: Fig. 5.

Fig. 5. Simulated two-photon interference visibilities (left scale) and experienced absorption (right scale) for three QD-transition lifetimes τ versus the acquired delay. Configuration d in Fig. 4 is considered. Red stars correspond to visibilities for an acquired fractional delay of 10 in the three cases.

Download Full Size | PPT Slide | PDF

When fractional delays are considered (red stars), the same conclusions apply. Shortening the radiative decay time via cavity quantum electrodynamics (CQED) effects can be detrimental to the realization of atom-based functionalities for quantum networking: these CQED effects then must be specifically tailored to the intended application.

In conclusion, a narrow linewidth is crucial for the implementation of an efficient QD–atom interface. This crucial dependence on the linewidth for achieving a good applicability after vapor storage is even more significant for more complicated electromagnetically induced transparency-based storage schemes [3,41,42]. Such schemes generally incorporate much larger dispersion when propagating single photons in the storage and retrieval process.

4. CONCLUSION

In summary, we have demonstrated a QD Cs vapor interface with the capability to delay single photons up to 50 times their initial width without residual signal which degrades the g(2)(0). In addition to that of previous pioneering works [17], the delay achieved in our work affects all transmitted photons. The propagation of Lorentzian-shaped photons inside a dispersive medium is deeply investigated, and our results give insight into the frequency-dependent pulse distortion of the QD emission. The developed theoretical model, which includes the linear response of the atomic vapor and an appropriate spectral diffusion model for the QD, fully resembles the acquired data. Here we prove that the two-photon interference, which is the fundamental building block for quantum operations, is clearly preserved when both first interact with the atomic vapor. This makes such a hybrid quantum system a suitable candidate for real-world quantum technology.

The introduced experiments are a key step towards future experiments which will introduce more sophisticated storage and retrieval schemes [42,43] that allow for the synchronization of more complex quantum networking tasks. A memory scheme based on electromagnetically induced transparency will largely benefit from our study; it gives a clear insight into the physics of single, indistinguishable Lorentzian photons propagating inside a dispersive medium, enabling the design of optimized storage sequences.

Funding

Deutsche Forschungsgemeinschaft (DFG) (GE 2737/55, MI 500/30-1); Max-Planck-Gesellschaft (MPG); Baden-Württemberg Stiftung Post-doc Eliteprogramm via the project “Hybride Quantensysteme für Quantensensorik.”

Acknowledgment

We thank U. Rengstl and M. Widmann for technical assistance, and M. Müller, J. Kettler, E. Schöll, and S. M. Ulrich for preparatory work for the experiment. H. Kammerlander is highly acknowledged for the production of high-quality cesium vapor cells. We finally acknowledge S. Kolatschek for preparing illustration figures.

 

See Supplement 1 for supporting content.

REFERENCES

1. B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005). [CrossRef]  

2. R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007). [CrossRef]  

3. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009). [CrossRef]  

4. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001). [CrossRef]  

5. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011). [CrossRef]  

6. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000). [CrossRef]  

7. C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002). [CrossRef]  

8. Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013). [CrossRef]  

9. N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016). [CrossRef]  

10. H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016). [CrossRef]  

11. P. Michler, ed., Quantum Dots for Quantum Information Technologies (Springer, 2017).

12. D. Grischkowsky, “Adiabatic following and slow optical pulse propagation in rubidium vapor,” Phys. Rev. A 7, 2096–2102 (1973). [CrossRef]  

13. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001). [CrossRef]  

14. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001). [CrossRef]  

15. Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013). [CrossRef]  

16. Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013). [CrossRef]  

17. N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5, 230–233 (2011). [CrossRef]  

18. P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014). [CrossRef]  

19. G. Schunk, U. Vogl, D. V. Strekalov, M. Förtsch, F. Sedlmeir, H. G. L. Schwefel, M. Göbelt, S. Christiansen, G. Leuchs, and C. Marquardt, “Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source,” Optica 2, 773–778 (2015). [CrossRef]  

20. P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, “Interfacing Ghz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015). [CrossRef]  

21. S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016). [CrossRef]  

22. M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004). [CrossRef]  

23. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009). [CrossRef]  

24. D. D. Sukachev, A. Sipahigil, C. T. Nguyen, M. K. Bhaskar, R. E. Evans, F. Jelezko, and M. D. Lukin, “Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett. 119, 223602 (2017). [CrossRef]  

25. M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010). [CrossRef]  

26. J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015). [CrossRef]  

27. N. Akopian, U. Perinetti, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Tuning single GaAs quantum dots in resonance with a rubidium vapor,” Appl. Phys. Lett. 97, 082103 (2010). [CrossRef]  

28. S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (In, Ga)As/GaAs quantum dot,” Phys. Rev. B 90, 125310 (2014). [CrossRef]  

29. J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial Rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015). [CrossRef]  

30. J. S. Wildmann, R. Trotta, J. Martín-Sánchez, E. Zallo, M. O’Steen, O. G. Schmidt, and A. Rastelli, “Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots,” Phys. Rev. B 92, 235306 (2015). [CrossRef]  

31. R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7, 10375 (2016). [CrossRef]  

32. A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016). [CrossRef]  

33. J. C. Loredo, N. A. Zakaria, N. Somaschi, C. Anton, L. de Santis, V. Giesz, T. Grange, M. A. Broome, O. Gazzano, G. Coppola, I. Sagnes, A. Lemaitre, A. Auffeves, P. Senellart, M. P. Almeida, and A. G. White, “Scalable performance in solid-state single-photon sources,” Optica 3, 433–440 (2016). [CrossRef]  

34. M. A. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, and I. G. Hughes, “ElecSus: a program to calculate the electric susceptibility of an atomic ensemble,” Comput. Phys. Commun. 189, 162–174 (2015). [CrossRef]  

35. J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012). [CrossRef]  

36. G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010). [CrossRef]  

37. A. V. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D. Reuter, A. D. Wieck, M. Poggio, and R. J. Warburton, “Charge noise and spin noise in a semiconductor quantum device,” Nat. Phys. 9, 570–575 (2013). [CrossRef]  

38. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

39. T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Characterization of single photons using two-photon interference,” in Advances in Atomic, Molecular, and Optical Physics (Elsevier, 2006), Vol. 53 (pp. 253–289).

40. G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the Brownian motion,” Phys. Rev. 36, 823–841 (1930). [CrossRef]  

41. S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990). [CrossRef]  

42. J. Wolters, G. Buser, A. Horsley, L. Béguin, A. Jöckel, J.-P. Jahn, R. J. Warburton, and P. Treutlein, “Simple atomic quantum memory suitable for semiconductor quantum dot single photons,” Phys. Rev. Lett. 119, 060502 (2017). [CrossRef]  

43. S. E. Thomas, J. H. D. Munns, K. T. Kaczmarek, C. Qiu, B. Brecht, A. Feizpour, P. M. Ledingham, I. A. Walmsley, J. Nunn, and D. J. Saunders, “High efficiency Raman memory by suppressing radiation trapping,” New J. Phys. 19, 063034 (2017). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
    [Crossref]
  2. R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
    [Crossref]
  3. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
    [Crossref]
  4. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
    [Crossref]
  5. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
    [Crossref]
  6. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
    [Crossref]
  7. C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
    [Crossref]
  8. Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
    [Crossref]
  9. N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
    [Crossref]
  10. H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
    [Crossref]
  11. P. Michler, ed., Quantum Dots for Quantum Information Technologies (Springer, 2017).
  12. D. Grischkowsky, “Adiabatic following and slow optical pulse propagation in rubidium vapor,” Phys. Rev. A 7, 2096–2102 (1973).
    [Crossref]
  13. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [Crossref]
  14. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
    [Crossref]
  15. Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
    [Crossref]
  16. Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
    [Crossref]
  17. N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5, 230–233 (2011).
    [Crossref]
  18. P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
    [Crossref]
  19. G. Schunk, U. Vogl, D. V. Strekalov, M. Förtsch, F. Sedlmeir, H. G. L. Schwefel, M. Göbelt, S. Christiansen, G. Leuchs, and C. Marquardt, “Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source,” Optica 2, 773–778 (2015).
    [Crossref]
  20. P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, “Interfacing Ghz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
    [Crossref]
  21. S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
    [Crossref]
  22. M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
    [Crossref]
  23. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
    [Crossref]
  24. D. D. Sukachev, A. Sipahigil, C. T. Nguyen, M. K. Bhaskar, R. E. Evans, F. Jelezko, and M. D. Lukin, “Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett. 119, 223602 (2017).
    [Crossref]
  25. M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
    [Crossref]
  26. J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
    [Crossref]
  27. N. Akopian, U. Perinetti, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Tuning single GaAs quantum dots in resonance with a rubidium vapor,” Appl. Phys. Lett. 97, 082103 (2010).
    [Crossref]
  28. S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (In, Ga)As/GaAs quantum dot,” Phys. Rev. B 90, 125310 (2014).
    [Crossref]
  29. J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial Rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
    [Crossref]
  30. J. S. Wildmann, R. Trotta, J. Martín-Sánchez, E. Zallo, M. O’Steen, O. G. Schmidt, and A. Rastelli, “Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots,” Phys. Rev. B 92, 235306 (2015).
    [Crossref]
  31. R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7, 10375 (2016).
    [Crossref]
  32. A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
    [Crossref]
  33. J. C. Loredo, N. A. Zakaria, N. Somaschi, C. Anton, L. de Santis, V. Giesz, T. Grange, M. A. Broome, O. Gazzano, G. Coppola, I. Sagnes, A. Lemaitre, A. Auffeves, P. Senellart, M. P. Almeida, and A. G. White, “Scalable performance in solid-state single-photon sources,” Optica 3, 433–440 (2016).
    [Crossref]
  34. M. A. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, and I. G. Hughes, “ElecSus: a program to calculate the electric susceptibility of an atomic ensemble,” Comput. Phys. Commun. 189, 162–174 (2015).
    [Crossref]
  35. J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
    [Crossref]
  36. G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
    [Crossref]
  37. A. V. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D. Reuter, A. D. Wieck, M. Poggio, and R. J. Warburton, “Charge noise and spin noise in a semiconductor quantum device,” Nat. Phys. 9, 570–575 (2013).
    [Crossref]
  38. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  39. T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Characterization of single photons using two-photon interference,” in Advances in Atomic, Molecular, and Optical Physics (Elsevier, 2006), Vol. 53 (pp. 253–289).
  40. G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the Brownian motion,” Phys. Rev. 36, 823–841 (1930).
    [Crossref]
  41. S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
    [Crossref]
  42. J. Wolters, G. Buser, A. Horsley, L. Béguin, A. Jöckel, J.-P. Jahn, R. J. Warburton, and P. Treutlein, “Simple atomic quantum memory suitable for semiconductor quantum dot single photons,” Phys. Rev. Lett. 119, 060502 (2017).
    [Crossref]
  43. S. E. Thomas, J. H. D. Munns, K. T. Kaczmarek, C. Qiu, B. Brecht, A. Feizpour, P. M. Ledingham, I. A. Walmsley, J. Nunn, and D. J. Saunders, “High efficiency Raman memory by suppressing radiation trapping,” New J. Phys. 19, 063034 (2017).
    [Crossref]

2017 (3)

D. D. Sukachev, A. Sipahigil, C. T. Nguyen, M. K. Bhaskar, R. E. Evans, F. Jelezko, and M. D. Lukin, “Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett. 119, 223602 (2017).
[Crossref]

J. Wolters, G. Buser, A. Horsley, L. Béguin, A. Jöckel, J.-P. Jahn, R. J. Warburton, and P. Treutlein, “Simple atomic quantum memory suitable for semiconductor quantum dot single photons,” Phys. Rev. Lett. 119, 060502 (2017).
[Crossref]

S. E. Thomas, J. H. D. Munns, K. T. Kaczmarek, C. Qiu, B. Brecht, A. Feizpour, P. M. Ledingham, I. A. Walmsley, J. Nunn, and D. J. Saunders, “High efficiency Raman memory by suppressing radiation trapping,” New J. Phys. 19, 063034 (2017).
[Crossref]

2016 (6)

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7, 10375 (2016).
[Crossref]

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

J. C. Loredo, N. A. Zakaria, N. Somaschi, C. Anton, L. de Santis, V. Giesz, T. Grange, M. A. Broome, O. Gazzano, G. Coppola, I. Sagnes, A. Lemaitre, A. Auffeves, P. Senellart, M. P. Almeida, and A. G. White, “Scalable performance in solid-state single-photon sources,” Optica 3, 433–440 (2016).
[Crossref]

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

2015 (6)

G. Schunk, U. Vogl, D. V. Strekalov, M. Förtsch, F. Sedlmeir, H. G. L. Schwefel, M. Göbelt, S. Christiansen, G. Leuchs, and C. Marquardt, “Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source,” Optica 2, 773–778 (2015).
[Crossref]

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, “Interfacing Ghz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
[Crossref]

M. A. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, and I. G. Hughes, “ElecSus: a program to calculate the electric susceptibility of an atomic ensemble,” Comput. Phys. Commun. 189, 162–174 (2015).
[Crossref]

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial Rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

J. S. Wildmann, R. Trotta, J. Martín-Sánchez, E. Zallo, M. O’Steen, O. G. Schmidt, and A. Rastelli, “Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots,” Phys. Rev. B 92, 235306 (2015).
[Crossref]

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

2014 (2)

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref]

S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (In, Ga)As/GaAs quantum dot,” Phys. Rev. B 90, 125310 (2014).
[Crossref]

2013 (4)

A. V. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D. Reuter, A. D. Wieck, M. Poggio, and R. J. Warburton, “Charge noise and spin noise in a semiconductor quantum device,” Nat. Phys. 9, 570–575 (2013).
[Crossref]

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

2012 (1)

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

2011 (2)

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5, 230–233 (2011).
[Crossref]

2010 (3)

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[Crossref]

N. Akopian, U. Perinetti, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Tuning single GaAs quantum dots in resonance with a rubidium vapor,” Appl. Phys. Lett. 97, 082103 (2010).
[Crossref]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref]

2009 (2)

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

2007 (1)

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref]

2005 (1)

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[Crossref]

2004 (1)

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
[Crossref]

2002 (1)

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

2001 (3)

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

2000 (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[Crossref]

1973 (1)

D. Grischkowsky, “Adiabatic following and slow optical pulse propagation in rubidium vapor,” Phys. Rev. A 7, 2096–2102 (1973).
[Crossref]

1930 (1)

G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the Brownian motion,” Phys. Rev. 36, 823–841 (1930).
[Crossref]

Abstreiter, G.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
[Crossref]

Achard, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Adams, C. S.

M. A. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, and I. G. Hughes, “ElecSus: a program to calculate the electric susceptibility of an atomic ensemble,” Comput. Phys. Commun. 189, 162–174 (2015).
[Crossref]

Aichele, T.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[Crossref]

Akopian, N.

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5, 230–233 (2011).
[Crossref]

N. Akopian, U. Perinetti, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Tuning single GaAs quantum dots in resonance with a rubidium vapor,” Appl. Phys. Lett. 97, 082103 (2010).
[Crossref]

Almeida, M. P.

J. C. Loredo, N. A. Zakaria, N. Somaschi, C. Anton, L. de Santis, V. Giesz, T. Grange, M. A. Broome, O. Gazzano, G. Coppola, I. Sagnes, A. Lemaitre, A. Auffeves, P. Senellart, M. P. Almeida, and A. G. White, “Scalable performance in solid-state single-photon sources,” Optica 3, 433–440 (2016).
[Crossref]

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Andre, R.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[Crossref]

Anton, C.

Antón, C.

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Atatüre, M.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Auffeves, A.

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

J. C. Loredo, N. A. Zakaria, N. Somaschi, C. Anton, L. de Santis, V. Giesz, T. Grange, M. A. Broome, O. Gazzano, G. Coppola, I. Sagnes, A. Lemaitre, A. Auffeves, P. Senellart, M. P. Almeida, and A. G. White, “Scalable performance in solid-state single-photon sources,” Optica 3, 433–440 (2016).
[Crossref]

Badolato, A.

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Balasubramanian, G.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Barbieri, M.

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, “Interfacing Ghz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
[Crossref]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Beck, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Béguin, L.

J. Wolters, G. Buser, A. Horsley, L. Béguin, A. Jöckel, J.-P. Jahn, R. J. Warburton, and P. Treutlein, “Simple atomic quantum memory suitable for semiconductor quantum dot single photons,” Phys. Rev. Lett. 119, 060502 (2017).
[Crossref]

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial Rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Besombes, L.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[Crossref]

Bhaskar, M. K.

D. D. Sukachev, A. Sipahigil, C. T. Nguyen, M. K. Bhaskar, R. E. Evans, F. Jelezko, and M. D. Lukin, “Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett. 119, 223602 (2017).
[Crossref]

Bichler, M.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
[Crossref]

Bougerol, C.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[Crossref]

Boyd, R. W.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref]

Brecht, B.

S. E. Thomas, J. H. D. Munns, K. T. Kaczmarek, C. Qiu, B. Brecht, A. Feizpour, P. M. Ledingham, I. A. Walmsley, J. Nunn, and D. J. Saunders, “High efficiency Raman memory by suppressing radiation trapping,” New J. Phys. 19, 063034 (2017).
[Crossref]

Broome, M. A.

Buser, G.

J. Wolters, G. Buser, A. Horsley, L. Béguin, A. Jöckel, J.-P. Jahn, R. J. Warburton, and P. Treutlein, “Simple atomic quantum memory suitable for semiconductor quantum dot single photons,” Phys. Rev. Lett. 119, 060502 (2017).
[Crossref]

Camacho, R. M.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref]

Carmele, A.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Champion, T. F. M.

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, “Interfacing Ghz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
[Crossref]

Chen, G.

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Chen, M.-C.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

Chen, S.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

Chen, Y.-C.

Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Chen, Y.-F.

Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Chen, Y.-H.

Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Christiansen, S.

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

Coppola, G.

Dalgarno, P. A.

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

de Riedmatten, H.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

de Santis, L.

Demory, J.

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Ding, F.

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial Rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Ding, X.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

Du, S.

Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Duan, L.-M.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

Duan, Z.-C.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

Ducommun, Y.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
[Crossref]

Dudin, Y. O.

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Edlinger, J.

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7, 10375 (2016).
[Crossref]

England, D. G.

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, “Interfacing Ghz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
[Crossref]

Evans, R. E.

D. D. Sukachev, A. Sipahigil, C. T. Nguyen, M. K. Bhaskar, R. E. Evans, F. Jelezko, and M. D. Lukin, “Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett. 119, 223602 (2017).
[Crossref]

Fattal, D.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Feizpour, A.

S. E. Thomas, J. H. D. Munns, K. T. Kaczmarek, C. Qiu, B. Brecht, A. Feizpour, P. M. Ledingham, I. A. Walmsley, J. Nunn, and D. J. Saunders, “High efficiency Raman memory by suppressing radiation trapping,” New J. Phys. 19, 063034 (2017).
[Crossref]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[Crossref]

Finley, J. J.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
[Crossref]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Förtsch, M.

Gazzano, O.

Gerardot, B. D.

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Gerhardt, I.

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref]

Giesz, V.

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

J. C. Loredo, N. A. Zakaria, N. Somaschi, C. Anton, L. de Santis, V. Giesz, T. Grange, M. A. Broome, O. Gazzano, G. Coppola, I. Sagnes, A. Lemaitre, A. Auffeves, P. Senellart, M. P. Almeida, and A. G. White, “Scalable performance in solid-state single-photon sources,” Optica 3, 433–440 (2016).
[Crossref]

Gisin, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

Göbelt, M.

Gómez, C.

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Grange, T.

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

J. C. Loredo, N. A. Zakaria, N. Somaschi, C. Anton, L. de Santis, V. Giesz, T. Grange, M. A. Broome, O. Gazzano, G. Coppola, I. Sagnes, A. Lemaitre, A. Auffeves, P. Senellart, M. P. Almeida, and A. G. White, “Scalable performance in solid-state single-photon sources,” Optica 3, 433–440 (2016).
[Crossref]

Greuter, L.

A. V. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D. Reuter, A. D. Wieck, M. Poggio, and R. J. Warburton, “Charge noise and spin noise in a semiconductor quantum device,” Nat. Phys. 9, 570–575 (2013).
[Crossref]

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Grischkowsky, D.

D. Grischkowsky, “Adiabatic following and slow optical pulse propagation in rubidium vapor,” Phys. Rev. A 7, 2096–2102 (1973).
[Crossref]

Gschrey, M.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Guo, G.-C.

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Harris, S. E.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[Crossref]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

He, D.-Y.

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

He, Y.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

He, Y.-M.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Hedges, M. P.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref]

Heindel, T.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Heiss, D.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
[Crossref]

Hemmer, P. R.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Höfling, S.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Hornecker, G.

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Horsley, A.

J. Wolters, G. Buser, A. Horsley, L. Béguin, A. Jöckel, J.-P. Jahn, R. J. Warburton, and P. Treutlein, “Simple atomic quantum memory suitable for semiconductor quantum dot single photons,” Phys. Rev. Lett. 119, 060502 (2017).
[Crossref]

Houel, J.

A. V. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D. Reuter, A. D. Wieck, M. Poggio, and R. J. Warburton, “Charge noise and spin noise in a semiconductor quantum device,” Nat. Phys. 9, 570–575 (2013).
[Crossref]

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Howell, J. C.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Hua, Y.-L.

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Hughes, I. G.

M. A. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, and I. G. Hughes, “ElecSus: a program to calculate the electric susceptibility of an atomic ensemble,” Comput. Phys. Commun. 189, 162–174 (2015).
[Crossref]

Huo, Y.

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial Rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[Crossref]

Isoya, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Jacques, V.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Jahn, J.-P.

J. Wolters, G. Buser, A. Horsley, L. Béguin, A. Jöckel, J.-P. Jahn, R. J. Warburton, and P. Treutlein, “Simple atomic quantum memory suitable for semiconductor quantum dot single photons,” Phys. Rev. Lett. 119, 060502 (2017).
[Crossref]

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial Rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Jelezko, F.

D. D. Sukachev, A. Sipahigil, C. T. Nguyen, M. K. Bhaskar, R. E. Evans, F. Jelezko, and M. D. Lukin, “Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett. 119, 223602 (2017).
[Crossref]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Jetter, M.

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (In, Ga)As/GaAs quantum dot,” Phys. Rev. B 90, 125310 (2014).
[Crossref]

Jin, X. M.

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, “Interfacing Ghz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
[Crossref]

Jöckel, A.

J. Wolters, G. Buser, A. Horsley, L. Béguin, A. Jöckel, J.-P. Jahn, R. J. Warburton, and P. Treutlein, “Simple atomic quantum memory suitable for semiconductor quantum dot single photons,” Phys. Rev. Lett. 119, 060502 (2017).
[Crossref]

Kaczmarek, K. T.

S. E. Thomas, J. H. D. Munns, K. T. Kaczmarek, C. Qiu, B. Brecht, A. Feizpour, P. M. Ledingham, I. A. Walmsley, J. Nunn, and D. J. Saunders, “High efficiency Raman memory by suppressing radiation trapping,” New J. Phys. 19, 063034 (2017).
[Crossref]

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, “Interfacing Ghz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
[Crossref]

Kamp, M.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Keaveney, J.

M. A. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, and I. G. Hughes, “ElecSus: a program to calculate the electric susceptibility of an atomic ensemble,” Comput. Phys. Commun. 189, 162–174 (2015).
[Crossref]

Kheng, K.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[Crossref]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Knorr, A.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Kolesov, R.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Kolthammer, W. S.

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, “Interfacing Ghz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
[Crossref]

Kroutvar, M.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
[Crossref]

Kuhlmann, A. V.

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial Rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

A. V. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D. Reuter, A. D. Wieck, M. Poggio, and R. J. Warburton, “Charge noise and spin noise in a semiconductor quantum device,” Nat. Phys. 9, 570–575 (2013).
[Crossref]

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Kuhn, A.

T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Characterization of single photons using two-photon interference,” in Advances in Atomic, Molecular, and Optical Physics (Elsevier, 2006), Vol. 53 (pp. 253–289).

Kuzmich, A.

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

Lanco, L.

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Lanzillotti-Kimura, N. D.

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Ledingham, P. M.

S. E. Thomas, J. H. D. Munns, K. T. Kaczmarek, C. Qiu, B. Brecht, A. Feizpour, P. M. Ledingham, I. A. Walmsley, J. Nunn, and D. J. Saunders, “High efficiency Raman memory by suppressing radiation trapping,” New J. Phys. 19, 063034 (2017).
[Crossref]

Lee, M.-J.

Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Legero, T.

T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Characterization of single photons using two-photon interference,” in Advances in Atomic, Molecular, and Optical Physics (Elsevier, 2006), Vol. 53 (pp. 253–289).

Lemaitre, A.

Lemaítre, A.

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Leuchs, G.

Li, C.-F.

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Li, J.-P.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

Li, L.

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

Li, M.-F.

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Li, Y.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref]

Li, Y.-H.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

Li, Y.-L.

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Liu, X.

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Longdell, J. J.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref]

Loredo, J. C.

J. C. Loredo, N. A. Zakaria, N. Somaschi, C. Anton, L. de Santis, V. Giesz, T. Grange, M. A. Broome, O. Gazzano, G. Coppola, I. Sagnes, A. Lemaitre, A. Auffeves, P. Senellart, M. P. Almeida, and A. G. White, “Scalable performance in solid-state single-photon sources,” Optica 3, 433–440 (2016).
[Crossref]

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Lounis, B.

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[Crossref]

Löw, R.

S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (In, Ga)As/GaAs quantum dot,” Phys. Rev. B 90, 125310 (2014).
[Crossref]

Lu, C.-Y.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Ludwig, A.

A. V. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D. Reuter, A. D. Wieck, M. Poggio, and R. J. Warburton, “Charge noise and spin noise in a semiconductor quantum device,” Nat. Phys. 9, 570–575 (2013).
[Crossref]

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Lukin, M. D.

D. D. Sukachev, A. Sipahigil, C. T. Nguyen, M. K. Bhaskar, R. E. Evans, F. Jelezko, and M. D. Lukin, “Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett. 119, 223602 (2017).
[Crossref]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Lvovsky, A. I.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Markham, M.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Marquardt, C.

Martín-Sánchez, J.

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7, 10375 (2016).
[Crossref]

J. S. Wildmann, R. Trotta, J. Martín-Sánchez, E. Zallo, M. O’Steen, O. G. Schmidt, and A. Rastelli, “Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots,” Phys. Rev. B 92, 235306 (2015).
[Crossref]

Michelberger, P. S.

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, “Interfacing Ghz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
[Crossref]

Michler, P.

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (In, Ga)As/GaAs quantum dot,” Phys. Rev. B 90, 125310 (2014).
[Crossref]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Mizuochi, N.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Munns, J. H. D.

S. E. Thomas, J. H. D. Munns, K. T. Kaczmarek, C. Qiu, B. Brecht, A. Feizpour, P. M. Ledingham, I. A. Walmsley, J. Nunn, and D. J. Saunders, “High efficiency Raman memory by suppressing radiation trapping,” New J. Phys. 19, 063034 (2017).
[Crossref]

Munsch, M.

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial Rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Nawrath, C.

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

Neumann, P.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Nguyen, C. T.

D. D. Sukachev, A. Sipahigil, C. T. Nguyen, M. K. Bhaskar, R. E. Evans, F. Jelezko, and M. D. Lukin, “Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett. 119, 223602 (2017).
[Crossref]

Ni, H.-Q.

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Niu, Z.-C.

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Nunn, J.

S. E. Thomas, J. H. D. Munns, K. T. Kaczmarek, C. Qiu, B. Brecht, A. Feizpour, P. M. Ledingham, I. A. Walmsley, J. Nunn, and D. J. Saunders, “High efficiency Raman memory by suppressing radiation trapping,” New J. Phys. 19, 063034 (2017).
[Crossref]

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, “Interfacing Ghz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
[Crossref]

O’Steen, M.

J. S. Wildmann, R. Trotta, J. Martín-Sánchez, E. Zallo, M. O’Steen, O. G. Schmidt, and A. Rastelli, “Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots,” Phys. Rev. B 92, 235306 (2015).
[Crossref]

Ornstein, L. S.

G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the Brownian motion,” Phys. Rev. 36, 823–841 (1930).
[Crossref]

Orrit, M.

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[Crossref]

Oster, M.

S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (In, Ga)As/GaAs quantum dot,” Phys. Rev. B 90, 125310 (2014).
[Crossref]

Pack, M. V.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref]

Pan, J.-W.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Peng, C.-Z.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

Perinetti, U.

N. Akopian, U. Perinetti, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Tuning single GaAs quantum dots in resonance with a rubidium vapor,” Appl. Phys. Lett. 97, 082103 (2010).
[Crossref]

Petroff, P. M.

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Piredda, G.

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7, 10375 (2016).
[Crossref]

Poggio, M.

A. V. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D. Reuter, A. D. Wieck, M. Poggio, and R. J. Warburton, “Charge noise and spin noise in a semiconductor quantum device,” Nat. Phys. 9, 570–575 (2013).
[Crossref]

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Poizat, J.-P.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[Crossref]

Portalupi, S. L.

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Qiu, C.

S. E. Thomas, J. H. D. Munns, K. T. Kaczmarek, C. Qiu, B. Brecht, A. Feizpour, P. M. Ledingham, I. A. Walmsley, J. Nunn, and D. J. Saunders, “High efficiency Raman memory by suppressing radiation trapping,” New J. Phys. 19, 063034 (2017).
[Crossref]

Rastelli, A.

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7, 10375 (2016).
[Crossref]

J. S. Wildmann, R. Trotta, J. Martín-Sánchez, E. Zallo, M. O’Steen, O. G. Schmidt, and A. Rastelli, “Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots,” Phys. Rev. B 92, 235306 (2015).
[Crossref]

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial Rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5, 230–233 (2011).
[Crossref]

N. Akopian, U. Perinetti, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Tuning single GaAs quantum dots in resonance with a rubidium vapor,” Appl. Phys. Lett. 97, 082103 (2010).
[Crossref]

Reindl, M.

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7, 10375 (2016).
[Crossref]

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial Rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Reitzenstein, S.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Rempe, G.

T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Characterization of single photons using two-photon interference,” in Advances in Atomic, Molecular, and Optical Physics (Elsevier, 2006), Vol. 53 (pp. 253–289).

Renggli, M.

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial Rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Reuter, D.

A. V. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D. Reuter, A. D. Wieck, M. Poggio, and R. J. Warburton, “Charge noise and spin noise in a semiconductor quantum device,” Nat. Phys. 9, 570–575 (2013).
[Crossref]

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Richard, M.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[Crossref]

Rodt, S.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Sagnes, I.

J. C. Loredo, N. A. Zakaria, N. Somaschi, C. Anton, L. de Santis, V. Giesz, T. Grange, M. A. Broome, O. Gazzano, G. Coppola, I. Sagnes, A. Lemaitre, A. Auffeves, P. Senellart, M. P. Almeida, and A. G. White, “Scalable performance in solid-state single-photon sources,” Optica 3, 433–440 (2016).
[Crossref]

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Sallen, G.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[Crossref]

Sanders, B. C.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Sangouard, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

Santis, L. D.

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Santori, C.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Saunders, D. J.

S. E. Thomas, J. H. D. Munns, K. T. Kaczmarek, C. Qiu, B. Brecht, A. Feizpour, P. M. Ledingham, I. A. Walmsley, J. Nunn, and D. J. Saunders, “High efficiency Raman memory by suppressing radiation trapping,” New J. Phys. 19, 063034 (2017).
[Crossref]

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, “Interfacing Ghz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
[Crossref]

Schimpf, C.

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7, 10375 (2016).
[Crossref]

Schmidt, O. G.

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial Rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

J. S. Wildmann, R. Trotta, J. Martín-Sánchez, E. Zallo, M. O’Steen, O. G. Schmidt, and A. Rastelli, “Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots,” Phys. Rev. B 92, 235306 (2015).
[Crossref]

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5, 230–233 (2011).
[Crossref]

N. Akopian, U. Perinetti, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Tuning single GaAs quantum dots in resonance with a rubidium vapor,” Appl. Phys. Lett. 97, 082103 (2010).
[Crossref]

Schnauber, P.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Schneider, C.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Schuh, D.

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
[Crossref]

Schulze, J.-H.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Schunk, G.

Schwefel, H. G. L.

Schweinsberg, A.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref]

Sedlmeir, F.

Seifried, M.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Sellars, M. J.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref]

Senellart, P.

J. C. Loredo, N. A. Zakaria, N. Somaschi, C. Anton, L. de Santis, V. Giesz, T. Grange, M. A. Broome, O. Gazzano, G. Coppola, I. Sagnes, A. Lemaitre, A. Auffeves, P. Senellart, M. P. Almeida, and A. G. White, “Scalable performance in solid-state single-photon sources,” Optica 3, 433–440 (2016).
[Crossref]

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Simon, C.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

Sipahigil, A.

D. D. Sukachev, A. Sipahigil, C. T. Nguyen, M. K. Bhaskar, R. E. Evans, F. Jelezko, and M. D. Lukin, “Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett. 119, 223602 (2017).
[Crossref]

Siyushev, P.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref]

Solomon, G. S.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Somaschi, N.

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

J. C. Loredo, N. A. Zakaria, N. Somaschi, C. Anton, L. de Santis, V. Giesz, T. Grange, M. A. Broome, O. Gazzano, G. Coppola, I. Sagnes, A. Lemaitre, A. Auffeves, P. Senellart, M. P. Almeida, and A. G. White, “Scalable performance in solid-state single-photon sources,” Optica 3, 433–440 (2016).
[Crossref]

Sprague, M. R.

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, “Interfacing Ghz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
[Crossref]

Stein, G.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref]

Strekalov, D. V.

Strittmatter, A.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Stroj, S.

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7, 10375 (2016).
[Crossref]

Sukachev, D. D.

D. D. Sukachev, A. Sipahigil, C. T. Nguyen, M. K. Bhaskar, R. E. Evans, F. Jelezko, and M. D. Lukin, “Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett. 119, 223602 (2017).
[Crossref]

Sun, Y.-N.

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Tang, J.-S.

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Tatarenko, S.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[Crossref]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Thoma, A.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Thomas, S. E.

S. E. Thomas, J. H. D. Munns, K. T. Kaczmarek, C. Qiu, B. Brecht, A. Feizpour, P. M. Ledingham, I. A. Walmsley, J. Nunn, and D. J. Saunders, “High efficiency Raman memory by suppressing radiation trapping,” New J. Phys. 19, 063034 (2017).
[Crossref]

Tissler, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Tittel, W.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Treutlein, P.

J. Wolters, G. Buser, A. Horsley, L. Béguin, A. Jöckel, J.-P. Jahn, R. J. Warburton, and P. Treutlein, “Simple atomic quantum memory suitable for semiconductor quantum dot single photons,” Phys. Rev. Lett. 119, 060502 (2017).
[Crossref]

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial Rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Tribu, A.

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[Crossref]

Trotta, R.

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7, 10375 (2016).
[Crossref]

J. S. Wildmann, R. Trotta, J. Martín-Sánchez, E. Zallo, M. O’Steen, O. G. Schmidt, and A. Rastelli, “Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots,” Phys. Rev. B 92, 235306 (2015).
[Crossref]

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial Rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

Twitchen, D.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Uhlenbeck, G. E.

G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the Brownian motion,” Phys. Rev. 36, 823–841 (1930).
[Crossref]

Ulrich, S. M.

S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (In, Ga)As/GaAs quantum dot,” Phys. Rev. B 90, 125310 (2014).
[Crossref]

Urvoy, A.

S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (In, Ga)As/GaAs quantum dot,” Phys. Rev. B 90, 125310 (2014).
[Crossref]

Vogl, U.

Vuckovic, J.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Walmsley, I. A.

S. E. Thomas, J. H. D. Munns, K. T. Kaczmarek, C. Qiu, B. Brecht, A. Feizpour, P. M. Ledingham, I. A. Walmsley, J. Nunn, and D. J. Saunders, “High efficiency Raman memory by suppressing radiation trapping,” New J. Phys. 19, 063034 (2017).
[Crossref]

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, “Interfacing Ghz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
[Crossref]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Wang, H.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

Wang, I.-C.

Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Wang, L.

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5, 230–233 (2011).
[Crossref]

N. Akopian, U. Perinetti, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Tuning single GaAs quantum dots in resonance with a rubidium vapor,” Appl. Phys. Lett. 97, 082103 (2010).
[Crossref]

Wang, S.

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Wang, Y.-T.

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Warburton, R. J.

J. Wolters, G. Buser, A. Horsley, L. Béguin, A. Jöckel, J.-P. Jahn, R. J. Warburton, and P. Treutlein, “Simple atomic quantum memory suitable for semiconductor quantum dot single photons,” Phys. Rev. Lett. 119, 060502 (2017).
[Crossref]

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial Rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

A. V. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D. Reuter, A. D. Wieck, M. Poggio, and R. J. Warburton, “Charge noise and spin noise in a semiconductor quantum device,” Nat. Phys. 9, 570–575 (2013).
[Crossref]

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Wei, Y.-J.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Weiler, S.

S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (In, Ga)As/GaAs quantum dot,” Phys. Rev. B 90, 125310 (2014).
[Crossref]

Weller, L.

M. A. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, and I. G. Hughes, “ElecSus: a program to calculate the electric susceptibility of an atomic ensemble,” Comput. Phys. Commun. 189, 162–174 (2015).
[Crossref]

White, A. G.

J. C. Loredo, N. A. Zakaria, N. Somaschi, C. Anton, L. de Santis, V. Giesz, T. Grange, M. A. Broome, O. Gazzano, G. Coppola, I. Sagnes, A. Lemaitre, A. Auffeves, P. Senellart, M. P. Almeida, and A. G. White, “Scalable performance in solid-state single-photon sources,” Optica 3, 433–440 (2016).
[Crossref]

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Whiting, D. J.

M. A. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, and I. G. Hughes, “ElecSus: a program to calculate the electric susceptibility of an atomic ensemble,” Comput. Phys. Commun. 189, 162–174 (2015).
[Crossref]

Widmann, M.

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

Wieck, A. D.

A. V. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D. Reuter, A. D. Wieck, M. Poggio, and R. J. Warburton, “Charge noise and spin noise in a semiconductor quantum device,” Nat. Phys. 9, 570–575 (2013).
[Crossref]

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Wildmann, J. S.

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7, 10375 (2016).
[Crossref]

J. S. Wildmann, R. Trotta, J. Martín-Sánchez, E. Zallo, M. O’Steen, O. G. Schmidt, and A. Rastelli, “Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots,” Phys. Rev. B 92, 235306 (2015).
[Crossref]

Wilk, T.

T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Characterization of single photons using two-photon interference,” in Advances in Atomic, Molecular, and Optical Physics (Elsevier, 2006), Vol. 53 (pp. 253–289).

Wolters, J.

J. Wolters, G. Buser, A. Horsley, L. Béguin, A. Jöckel, J.-P. Jahn, R. J. Warburton, and P. Treutlein, “Simple atomic quantum memory suitable for semiconductor quantum dot single photons,” Phys. Rev. Lett. 119, 060502 (2017).
[Crossref]

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

Wrachtrup, J.

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Wu, D.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Xue, F.

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Yamamoto, Y.

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Yu, I. A.

Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Yu, Y.

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Zakaria, N. A.

Zallo, E.

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7, 10375 (2016).
[Crossref]

J. S. Wildmann, R. Trotta, J. Martín-Sánchez, E. Zallo, M. O’Steen, O. G. Schmidt, and A. Rastelli, “Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots,” Phys. Rev. B 92, 235306 (2015).
[Crossref]

Zentile, M. A.

M. A. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, and I. G. Hughes, “ElecSus: a program to calculate the electric susceptibility of an atomic ensemble,” Comput. Phys. Commun. 189, 162–174 (2015).
[Crossref]

Zha, G.-W.

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Zhou, Z.-Q.

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

Zou, Y.

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

Zwiller, V.

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5, 230–233 (2011).
[Crossref]

N. Akopian, U. Perinetti, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Tuning single GaAs quantum dots in resonance with a rubidium vapor,” Appl. Phys. Lett. 97, 082103 (2010).
[Crossref]

Appl. Phys. Lett. (1)

N. Akopian, U. Perinetti, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Tuning single GaAs quantum dots in resonance with a rubidium vapor,” Appl. Phys. Lett. 97, 082103 (2010).
[Crossref]

Comput. Phys. Commun. (1)

M. A. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, and I. G. Hughes, “ElecSus: a program to calculate the electric susceptibility of an atomic ensemble,” Comput. Phys. Commun. 189, 162–174 (2015).
[Crossref]

Nat. Commun. (3)

R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, and A. Rastelli, “Wavelength-tunable sources of entangled photons interfaced with atomic vapours,” Nat. Commun. 7, 10375 (2016).
[Crossref]

J.-S. Tang, Z.-Q. Zhou, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, S. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, Z.-C. Niu, C.-F. Li, and G.-C. Guo, “Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory,” Nat. Commun. 6, 8652 (2015).
[Crossref]

S. L. Portalupi, M. Widmann, C. Nawrath, M. Jetter, P. Michler, J. Wrachtrup, and I. Gerhardt, “Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition,” Nat. Commun. 7, 13632 (2016).
[Crossref]

Nat. Mater. (1)

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Nat. Nanotechnol. (1)

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8, 213–217 (2013).
[Crossref]

Nat. Photonics (4)

N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5, 230–233 (2011).
[Crossref]

G. Sallen, A. Tribu, T. Aichele, R. Andre, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-P. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010).
[Crossref]

Nat. Phys. (1)

A. V. Kuhlmann, J. Houel, A. Ludwig, L. Greuter, D. Reuter, A. D. Wieck, M. Poggio, and R. J. Warburton, “Charge noise and spin noise in a semiconductor quantum device,” Nat. Phys. 9, 570–575 (2013).
[Crossref]

Nature (6)

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509, 66–70 (2014).
[Crossref]

M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, and J. J. Finley, “Optically programmable electron spin memory using semiconductor quantum dots,” Nature 432, 81–84 (2004).
[Crossref]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

New J. Phys. (2)

P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, “Interfacing Ghz-bandwidth heralded single photons with a warm vapour Raman memory,” New J. Phys. 17, 043006 (2015).
[Crossref]

S. E. Thomas, J. H. D. Munns, K. T. Kaczmarek, C. Qiu, B. Brecht, A. Feizpour, P. M. Ledingham, I. A. Walmsley, J. Nunn, and D. J. Saunders, “High efficiency Raman memory by suppressing radiation trapping,” New J. Phys. 19, 063034 (2017).
[Crossref]

Optica (2)

Phys. Rev. (1)

G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the Brownian motion,” Phys. Rev. 36, 823–841 (1930).
[Crossref]

Phys. Rev. A (2)

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

D. Grischkowsky, “Adiabatic following and slow optical pulse propagation in rubidium vapor,” Phys. Rev. A 7, 2096–2102 (1973).
[Crossref]

Phys. Rev. B (3)

S. M. Ulrich, S. Weiler, M. Oster, M. Jetter, A. Urvoy, R. Löw, and P. Michler, “Spectroscopy of the D1 transition of cesium by dressed-state resonance fluorescence from a single (In, Ga)As/GaAs quantum dot,” Phys. Rev. B 90, 125310 (2014).
[Crossref]

J.-P. Jahn, M. Munsch, L. Béguin, A. V. Kuhlmann, M. Renggli, Y. Huo, F. Ding, R. Trotta, M. Reindl, O. G. Schmidt, A. Rastelli, P. Treutlein, and R. J. Warburton, “An artificial Rb atom in a semiconductor with lifetime-limited linewidth,” Phys. Rev. B 92, 245439 (2015).
[Crossref]

J. S. Wildmann, R. Trotta, J. Martín-Sánchez, E. Zallo, M. O’Steen, O. G. Schmidt, and A. Rastelli, “Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots,” Phys. Rev. B 92, 235306 (2015).
[Crossref]

Phys. Rev. Lett. (9)

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments,” Phys. Rev. Lett. 116, 033601 (2016).
[Crossref]

D. D. Sukachev, A. Sipahigil, C. T. Nguyen, M. K. Bhaskar, R. E. Evans, F. Jelezko, and M. D. Lukin, “Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout,” Phys. Rev. Lett. 119, 223602 (2017).
[Crossref]

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98, 153601 (2007).
[Crossref]

Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[Crossref]

J. Wolters, G. Buser, A. Horsley, L. Béguin, A. Jöckel, J.-P. Jahn, R. J. Warburton, and P. Treutlein, “Simple atomic quantum memory suitable for semiconductor quantum dot single photons,” Phys. Rev. Lett. 119, 060502 (2017).
[Crossref]

J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton, “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot,” Phys. Rev. Lett. 108, 107401 (2012).
[Crossref]

Rep. Prog. Phys. (1)

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[Crossref]

Rev. Mod. Phys. (1)

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

Science (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Other (3)

P. Michler, ed., Quantum Dots for Quantum Information Technologies (Springer, 2017).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

T. Legero, T. Wilk, A. Kuhn, and G. Rempe, “Characterization of single photons using two-photon interference,” in Advances in Atomic, Molecular, and Optical Physics (Elsevier, 2006), Vol. 53 (pp. 253–289).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Pictorial sketch of the hybrid quantum system: single QD photons interact with hot Cs vapor. (b) High-resolution resonance fluorescence spectrum of the investigated QD charged exciton state: for sake of clarity, the natural linewidth and effect of spectral diffusion are also schematized. (c) Measured (dotted lines) and calculated (dashed lines) [34] Cs-D1 absorption spectra for a 250 mm long vapor cell at various temperatures.
Fig. 2.
Fig. 2. (a) TCSPC measurements at various vapor temperatures (solid lines) and theoretical predictions (dashed lines). The inset shows all achieved delays depending on the vapor temperature. (b) Simultaneously recorded intensity auto-correlations of delayed single photons. For completeness, the curve for highest temperature and strongest absorption is indicated after background subtraction and enlarged binning (right-hand side, bottom curve only). Otherwise, raw data are presented.
Fig. 3.
Fig. 3. (a) TCSPC measurement of delayed photons (17 ns, dotted line) and the corresponding simulation (dashed line). For clarity, only parts of the inhomogeneously broadened emission are highlighted, revealing the composition of the detected overall shape. (b) Corresponding spectral shapes after vapor transmission. The color codes of the individual components match between the figure parts (a) and (b); e.g., the purple curve represents the spectral position of vanishing GVD with the smoothest temporal profile. Detuned curves from the vanishing GVD position result in substantially distorted temporal profiles. The QD transmission profile is obtained by a multiplication of the Cs-transmission spectrum and the incoming QD spectral profile as measured in Fig. 1(b).
Fig. 4.
Fig. 4. (a) Sketch of the two-photon interference. Configurations: (b) without vapor cell, with cell (c) before and (d) inside the MZI. The relative time delay between the two paths is always kept at 4.3 ns (gray arrow). (b) Baseline of the HOM interference of the selected QD-transition. Light blue lines represent experimental data; shaded areas are theoretically calculated coincidences. The theoretically calculated curves for non-interfering photons are shown as red curves. (c) HOM measurement when both photons have acquired Δt=2.5ns of delay in the vapor (configuration c). (d) HOM measurement when only one photon is vapor-delayed by Δt=1.7ns (configuration d).
Fig. 5.
Fig. 5. Simulated two-photon interference visibilities (left scale) and experienced absorption (right scale) for three QD-transition lifetimes τ versus the acquired delay. Configuration d in Fig. 4 is considered. Red stars correspond to visibilities for an acquired fractional delay of 10 in the three cases.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

vg=cn(ν)+νdndν,
χ(ν)Cs-vaporχout(ν)=χ(ν)einckL=χ(ν)ei2πLcn(ν)νeL2α(ν),withnc=n(ν)+i2kα(ν).

Metrics