Abstract

Optical singularities have attracted much interest in the past decades, enabling advancements in nano-manipulation, bio-sensing, and quantum optics, owing to their ability to carry and transfer angular momentum on the nano scale. Optical vortices (OVs), in this respect, are phase singularities useful for many applications, such as particle trapping and manipulation, optical communication, and super-resolution. Vectorial OVs also exhibit polarization singularities, known as C-points, which have been used in recent years to control emission from quantum emitters. Here, we present continuous nanoscale spatial control over optical singularities on a metal–air interface by varying the polarization state of the light exciting surface plasmon polaritons through a spiral slit. We demonstrate our method using phase-resolved near-field microscopy. Such control over optical singularities opens up exciting possibilities for light in two dimensions, ranging from new light–matter interactions on a chip to efficiently controlled nanomotors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Optical vortices (OVs) [1] are phase singularities in electromagnetic fields which, with proper circular symmetry, can carry an orbital angular momentum (OAM). This OAM can be converted into mechanical torque [2] and be used to trap and manipulate nanometer-sized particles [3,4]; transfer information via optical communication [5]; enable high-capacity wireless [6], fiber-optical [7], and quantum communication [8]; generate spatial resolution beyond the diffraction limit [9,10]; and contribute in small scale optical communication between chips [11]. Vector electromagnetic fields can also have an undefined orientation of their polarization ellipse, giving rise to polarization singularities called C-points. Recent developments have shown that polarization singularities in nano-photonic structures can be used, for example, to control the directionality [12,13] and intrinsic properties [14] of quantum dot emission.

Such applications typically require high field amplitude as close as possible to the optical singularity. Creating the optical singularities in two dimensions, e.g., using polaritonic [1518] vortices gives rise to smaller OVs and allows their generation by specifically designed coupling slits, paving the way to new schemes for OAM light–matter interactions [19,20] and Fano resonance phenomena [21]. Creation of such optical singularity points is typically achieved using structurally generated OVs or polarization singularities controlled by nanofabrication and scattering [22]. However, optimal light–matter interaction of this kind requires precise control of the singularity properties, especially its location.

Interestingly, such degree of control can be achieved by utilizing the inherent instability of high-order OVs, which are sensitive to imperfections and tend to break under perturbations into a series of low-order vortices [23]. While this property is often considered a drawback to be contended with (see, e.g., [24]), a specifically designed perturbation may lead to precise control of the newly created singularities.

Here, we demonstrate continuous nanoscale control of optical singularities by engineering the splitting of high-order plasmonic Bessel modes. We vary the polarization state of a plane wave coupled to surface plasmon polaritons (SPPs) through a spiral slit which, in turn, results in controlled interplay between two Bessel modes of different orders. These two degrees of freedom stem from the two-dimensional (2D) polarization state (best expressed by the Poincaré sphere, as portrayed in Fig. 1), generating phase singularities in the out-of-plane field and polarization singularities in the in-plane field, while determining their exact position with deep subwavelength precision. Such precise positioning of optical singularities can be the key to enabling new on-chip light–matter interactions [25], with potential contributions in quantum information processing and communications; and can also greatly increase the range of abilities in particle nano-manipulation [26,27], with important consequences in biology [28] and chemistry [29].

 figure: Fig. 1.

Fig. 1. Control over phase singularities. Coupling plane waves into surface plasmon polaritons by a spiral slit allows the mapping of any polarization state, represented by the Poincaré sphere, into the location of plasmonic phase singularities in a 2D plane. The amplitude of the out-of-plane electric field resulting from coupling plane waves of different polarization states is shown along with their position on the Poincaré sphere. The black spots correspond to the phase singularities, with their separation and rotation angle controlled by varying only the polarization state of the incident light. Polarization variation along the longitudinal lines of the Poincaré sphere results in a control over the separation of the OVs, while along the latitudinal lines it results in a rotation of their shared axis. The super-oscillatory nature of OVs enables such control in precision much higher than allowed by the diffraction limit.

Download Full Size | PPT Slide | PDF

2. METHODS

A. Sample Fabrication

The sample is a thin gold layer, 200 nm thick, deposited atop a 1 mm thick glass substrate using an e-gun (EVATEC ltd). As adhesion coating, we use a 3 nm thick titanium layer deposited below the gold layer. The coupling slit was fabricated using focused ion beam milling (FEI Strata 400s) from the metal side. For example, Fig. 2(b) features a coupling slit with topological charge of l=2, where λspp=633  nm is the wavelength of SPPs in the gold–air interface and the diameter of the slit is 16 μm.

B. Near-Field Measurements

We used a scattering (aperture-less) near-field scanning optical microscope (s-NSOM, Neaspec ltd.) for the measurement of the near-field signal, both amplitude and phase [30]. The measurement setup is illustrated in Fig. 2. A 660-nm continuous wave (CW) semiconductor laser (Cobalt) beam was weakly focused to a 50-μm-diameter spot and thus illuminates the sample from the glass side (aka, transmission mode measurement). The sample was placed on a moving stage, where a silicon atomic force microscope (AFM) tip coated with platinum scattered predominantly the out-of-plane electric field component into a detector. The tip vibrates at a frequency of about 250 MHz. The incoming laser beam was split into two optical paths for an interferometric pseudo-heterodyne detection; a beam modulated by a vibrating mirror with a frequency of 600 Hz interfered with the signal scattered from the sample to reconstruct the full electric field information, including the phase. Therefore, the detected signal is demodulated at higher harmonics in order to suppress the background signal scattered from the tip [30]. The resolution ability of the s-NSOM is determined by the size of the tip apex, which is, in our case, 8–15 nm.

3. RESULTS

A. Concept Description

OVs can be created either at the focal plane of helical beams or by propagating surface or guided modes on a 2D plane [15,17,18,31]. OVs of the first type are usually regarded as Laguerre–Gaussian (LG) beams [2], which are a solution of the paraxial wave equation. The second type are 2D Bessel beams, decaying exponentially in the direction normal to the interface. Such 2D OVs were demonstrated in plasmonic structures [15,17,18,31] and silicon-plasmonic high-index waveguides [10,16].

The electric field of such 2D OVs is comprised of the component perpendicular to the surface: Ez(ρ,θ) and the parallel to it: Eρ(ρ,θ)ρ^+Eθ(ρ,θ)θ^ (also known as the out-of-plane field and in-plane field, respectively),

E(ρ,θ,z)=eikzz(Ez(ρ,θ)z^+Eρ(ρ,θ)ρ^+Eθ(ρ,θ)θ^),
where ρ,θ,z are the cylindrical coordinates, and kz is the perpendicular component of the wavenumber, which is imaginary for surface waves. As both components equally decay exponentially in z, we will omit the z-dependence of the field from now on. Being a 2D Bessel beam, the out-of-plane component takes the form of cylindrical harmonics,
Ez(ρ,θ)=Jm(ksppρ)eimθ,
where Jm is the mth-order Bessel function of the first kind, kspp is the wave number of the surface plasmon, and the order m is the number of periods the phase completes in the azimuthal direction within a closed loop. For any m0, the field will have a node in r=0, which makes it an OV. m is also known as the topological charge (TC) of the vortex.

The surface modes can be excited by means of momentum matching between free propagating light and the guided mode (e.g., plasmons on a metal–dielectric interface [32]) or by either grating or slit coupling. When the slit width is much smaller than the wavelength of the incident light, it practically acts as a polarizer, which couples the electric field components normal to the slit/grating into the surface mode. This leads to an interplay between the polarization states of the incident light and the phase variations along the slit (“source” for the guided modes), which depends on both the shape of the slit and the illumination’s polarization, providing an important degree of freedom in determining the order of surface Bessel modes [15,17].

Consider a spiral slit carved in metal to couple incident radiation into SPP modes [Fig. 2(b)]. This slit is identified by the separation distance between successive turnings which, for plasmons, is d=lλspp. Here λspp is the wavelength of the SPP and l is an integer, which can be considered the topological charge of the slit. Coupling circularly polarized light (i.e., angular momentum of σ=±1) into the guided modes by such a slit results in a Bessel mode whose order (“topological charge”) is the sum of the light’s OAM and l, respectively,

Ez(ρ,θ)=J(l±1)(ksppρ)ei(l±1)θ.

This property has been demonstrated in numerous works, from an l=1 slit resulting in Bessel modes of orders 0 and 2 [15] up to higher-order OAM modes [1618]. These observations have indeed shown a ring whose radius increases with the Bessel order, but at the same time, did not provide evidence to a perfect high-order OV. They either lacked the phase information or showed that close to their center, high-order OVs tend to break into a series of single-unity OVs [18,23]. This breakdown is attributed to the lack of a pure state, namely, the high-order Bessel modes are “contaminated” by noise, far-field radiation from the slit, disorder [33], or unwantedly excited lower-order Bessel modes. In plasmonic Bessel modes, low-order modes may be excited due to fabrication imperfections but also because of an impure polarization state. As this phenomenon occurs close to the singularity where the intensity is low, it is typically overlooked by the intensity pattern and can mostly be observed only in the phase structure (see simulation in [15] and phase-resolved measurement in [18]).

 figure: Fig. 2.

Fig. 2. Experimental setup. (a) A linearly polarized laser beam propagates through λ/2 and λ/4 plates which provide complete control over the polarization state. The beam is then incident upon a metal–dielectric interface and is coupled to the interface via a spiral slit [for example, a scanning electron microscope image of a l=2 slit is presented in (b)]. The polarization state is translated to two Bessel modes of different orders, creating a controlled interference pattern. The full field distribution is mapped by phase-resolved s-NSOM showing both the amplitude and phase at 15 nm resolution.

Download Full Size | PPT Slide | PDF

Surprisingly, this drawback can be utilized to control the splitting of the higher-order Bessel modes, i.e., the location of the newly generated single-unity OVs, by merely controlling the polarization state of the excitation beam, which can be achieved using half- and quarter-wave plates.

A general polarization state can be expressed as a superposition of the two circular polarizations,

σ+1+|a0|eiϕ0σ1,
where a0 and ϕ0 represent the relative amplitude ratio and the phase between the two circular polarizations, respectively. The naturally polarizing slit couplers directly transform the polarization state to a superposition of two Bessel modes of orders l+1 and l1,
Ez(ρ,θ)=Jl+1(ksppρ)ei(l+1)θ+|a0|eiϕ0Jl1(ksppρ)ei(l1)θ,
where a0 and ϕ0 (the same coefficients of the polarization state) now correspond to the relative amplitude ratio and phase difference between the two Bessel modes, respectively. The amplitude ratio controls the separation between the OVs, while the phase difference determines the azimuthal location of the OVs. As the slit couplers preserve the superposition parameters, full spatial control of OVs in two dimensions can be achieved by varying the polarization state of the excitation.

B. Experimental Setup

The experimental system is described in Fig. 2. Light at polarization state determined by a quarter- (λ/4) and half- (λ/2) wave plates is coupled through an Archimedean spiral slit to plasmonic Bessel modes with relative amplitude and phase

|a0|=fa0(ϑλ/4,ϑλ/2);ϕ0=fϕ0(ϑλ/4,ϑλ/2),
where ϑλ/4,ϑλ/2 are the orientation angles of the quarter-wave plate and half-wave plate, respectively (see Supplement 1 for more details).

C. Control over Phase Singularities

We map the plasmonic waves using a scattering near-field scanning optical microscope (s-NSOM) that enables phase-resolved mapping of the out-of-plane near field on the metal surface via pseudo-heterodyne interferometric detection [30]. We demonstrate control over the distance between the singularities (radial position) by changing the relative amplitude between circular polarizations, i.e., mainly changing the orientation of the λ/4 plate. Control over the rotation axis (azimuthal position) is achieved by changing the relative phase between circular polarizations, i.e., mainly changing the orientation of the λ/2 plate.

Our main results, summarized in Figs. 3 and 4, show the plasmonic field generated by coupling through slits of l=1,2, where l=1 generates plasmonic Bessel modes of orders 0 and 2 while l=2 creates orders 1 and 3. Both amplitude and phase are shown for different ratios between the high- and low-order Bessel beams, obtained for different orientations of the wave plates. The phase singularities are marked by black circles and correspond to the dark spots in the amplitude. Evidently, the polarization state controlled by the wave plates is directly translated to a two-dimensional position of the optical (plasmonic) dislocations with nanoscale precision. Irrespective of the total number of singularities, the two polarization degrees of freedom allow control of only two optical singularities at a time, where the central vortices [e.g., in Figs. 3(g)3(l) and 4(g)4(l)] are stationary.

 figure: Fig. 3.

Fig. 3. Controlling the distance between OVs. Amplitude (upper row) and phase (lower row) of near-field mapping for l=1(left columns) and l=2(right columns). The orientations of the λ/4 and λ/2 plates are indicated above the amplitude images. The singularities are marked by black circles in the phase maps. The distance between the singularities is indicated above the phase images.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4.

Fig. 4. Controlling the rotation angle of the OVs. Amplitude (upper row) and phase (lower row) of near-field mapping for l=1 (left columns) and l=2 (right columns). The orientations of the λ/4 and λ/2 plates are indicated above the amplitude images. The singularities are marked by black circles in the phase maps. The rotation angle of the singularities is indicated above the phase images.

Download Full Size | PPT Slide | PDF

The minimal distance between two singularities is limited by the purity of the circular polarization, the quality of fabrication, and an intrinsic separation (λ/17) caused by the circular asymmetry of the spiral slit (which we verified using simulations–see Supplement 1). The maximal distance between singularities, however, is only limited by the first node of the low-order Bessel mode. Even though Figs. 3 shows specific distances between the optical singularities, it is crucial to emphasize that the control is continuous, with the precision determined by the resolution of the waveplates’ rotation. Namely, the precision can potentially be far better than the λ/12 demonstrated here and is, in fact, not limited by the wavelength. The underlying reason for this virtually unlimited resolution is that optical vortices are a super-oscillation phenomenon [34,35] and as such, can possess features much smaller than the diffraction limit. The rotational resolution, depicted in Fig. 4, is also limited only by the λ/2 plate precision.

Experimental results of continuous control over OVs of order l=1 and l=2 are attached as Visualization 1 and Visualization 2, respectively.

D. Control over Polarization Singularities

The results above were obtained by measuring the evanescent tail of the electric field component normal to the interface, Ez, comprised of two different order plasmonic Bessel modes. Being transverse-magnetic (TM) vectorial waves, these modes also contain two field components parallel to the interface, best represented by the radial and tangential in-plane field components Eρ,Eθ, which can be derived directly from Maxwell’s equations using the out-of-plane field,

Eρ=ξρEz;Eθ=ξ1ρθEz,
where ξϵd/ϵmkspp; ϵm,ϵd are the permittivities of the metal and dielectric, respectively (see Supplement 1 for the full derivation).

The three TM electric field components Ez (measured) and Eρ,Eθ (derived) are shown in Fig. 5 for a representative separation between singularity points in Ez. Evidently, the singularity points in Ez are at the same positions as the maximal intensity in Eρ. Namely, the control over the OVs is translated to controlling 2D hot spots via polarization control. These results are in quite a good agreement with the simulations shown in Figs. 6(a)6(f) and 6(i)6(n), from which one can extract the polarization singularities in the in-plane field, known as C-points (see Visualization 3 for simulation of the in-plane field).

 figure: Fig. 5.

Fig. 5. Experimental in-plane field. In-plane field components Eρ, Eθ (c)–(f), (i)–(l) derived out of the measured out-of-plane field component Ez (a), (b), (g), (h) for l=1. Two polarization states examined: ϑλ/2=160, ϑλ/4=0 (a)–(f) and ϑλ/2=175, ϑλ/4=0 (g)–(l). Amplitude (upper row) and phase (bottom row) presented.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6.

Fig. 6. Analytical in-plane field and control over C-points location. Numerical simulations fitted to two polarization states depicted in Fig. 5 respectively. Amplitude (upper row) and phase (bottom row) of the out-of-plane field component Ez and the in-plain field component Eρ, Eθ are presented. The polarization states expressed by the polarization ellipse orientation α and handedness ϵ of the two states have also been calculated [(g), (h) and (o), (p), respectively]. The distance between the C-points, marked by black circles, is indicated above the α image.

Download Full Size | PPT Slide | PDF

The polarization state of a three-dimensional vectorial field is defined on a plane, and therefore can be described by two parameters, creating, in the general case, an ellipse. One may characterize this polarization ellipse using its handedness ϵ (the eccentricity of the ellipse) and its orientation angle α, both of which can be expressed using the in-plane electric fields [36] (see Supplement 1). C-points are created in the special case where the orientation of the polarization ellipse is undefined (circular polarization, also called a singularity in polarization space).

Similarly to phase singularities, C-points also carry a topological charge, defined as the times it takes the orientation angle α to accumulate 2π in a closed path around the C-point in a counterclockwise manner. The allowed values are at multiples of 12 [37].

Figures 6(g), 6(h), 6(o), 6(p) exemplify the control over the C-points’ positions by deriving the polarization ellipse orientation α and handedness ϵ from the simulations fitted to experimental results. Points of undefined orientation α can be seen in Figs. 6(h) and 6(p), which feature polarization handedness ϵ=1 (that is, circular polarization) and TC of 12. The two measurements differ by a slight shift in rotation axis and a λ/5 shift in separation. The resolution with which the position of C-points can be controlled is the same as the out-of-plane field singularities.

4. CONCLUSIONS

In conclusion, we demonstrated continuous control over the location of both phase and polarization optical singularities in 2D space at deep subwavelength resolution by simply changing the polarization state of light incident on a fairly common plasmonic structure. Depending on the sensitivity of the setup (precision of wave plate rotation), our method can allow control with sub-10-nm resolution. This method is relatively simple, since it does not employ wavefront shaping techniques [38] or require multiple wavelengths [26].

The concept demonstrated here can find applications in many fields, e.g., super-resolution and localization microscopy (by scanning the optical singularities over emitting objects) and particle nano-manipulation (defining specific trajectories by generating and moving optical vortices in different locations [27] and controlling the velocity of trapped particles as a means to create optically driven nanomotors).

Coupled with tight light confinement (for example, via short-wavelength hybrid Si-plasmonic waveguides [18]), it could become a useful tool for manipulation of sub-100-nm particles and even for engineering new light–matter interactions on a chip, potentially beyond the dipole approximation [25]. Another advantage of using such a platform is the large in-plane field (relative to that of surface plasmons), enabling a much stronger influence of the C-points in controlling radiation from quantum emitters.

Funding

“Circle of Light,” Israeli Centers for Research Excellence (I-CORE); Israel Science Foundation (ISF) (1802/12).

Acknowledgment

The authors thank M. V. Berry for insightful and fruitful discussions.

 

See Supplement 1 for supporting content.

REFERENCES

1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. A 336, 165–190 (1974). [CrossRef]  

2. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]  

3. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef]  

4. Z. Shen, Z. J. Hu, G. H. Yuan, C. J. Min, H. Fang, and X.-C. Yuan, “Visualizing orbital angular momentum of plasmonic vortices,” Opt. Lett. 37, 4627–4629 (2012). [CrossRef]  

5. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004). [CrossRef]  

6. Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014). [CrossRef]  

7. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Hang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012). [CrossRef]  

8. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001). [CrossRef]  

9. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006). [CrossRef]  

10. A. David, B. Gjonaj, Y. Blau, S. Dolev, and G. Bartal, “Nanoscale shaping and focusing of visible light in planar metal-oxide–silicon waveguides,” Optica 2, 1045–1048 (2015). [CrossRef]  

11. X. Cai, J. Wang, M. J. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012). [CrossRef]  

12. B. le Feber, N. Rotenberg, and L. Kuiper, “Nanophotonic control of circular dipole emission,” Nat. Commun. 6, 6695 (2015). [CrossRef]  

13. R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016). [CrossRef]  

14. P. Lodahl, A. F. V. Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004). [CrossRef]  

15. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101, 043903 (2008). [CrossRef]  

16. G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F.-J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017). [CrossRef]  

17. H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10, 529–536 (2010). [CrossRef]  

18. A. David, B. Gjonaj, and G. Bartal, “Two-dimensional optical nanovortices at visible light,” Phys. Rev. B 93, 121302 (2016). [CrossRef]  

19. I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. E. Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015). [CrossRef]  

20. N. Rivera, I. Kaminer, B. Zhen, J. D. Joannopoulos, and M. Soljačić, “Shrinking light to allow forbidden transitions on the atomic scale,” Science 353, 263–269 (2016). [CrossRef]  

21. B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Fano resonances and topological optics: an interplay of far- and near-field interference phenomena,” J. Opt. 15, 073001 (2013). [CrossRef]  

22. A. de Hoogh, L. Kuipers, T. D. Visser, and N. Rotenberg, “Creating and controlling polarization singularities in plasmonic fields,” Photonics 2, 553–567 (2015). [CrossRef]  

23. M. V. Berry and M. R. Dennis, “Knotted and linked phase singularities in monochromatic waves,” Proc. R. Soc. A 457, 2251–2263 (2001). [CrossRef]  

24. R. Neo, S. J. Tan, X. Z. Puyalto, S. L. Saval, J. B. Hawthorn, and G. M. Terriza, “Correcting vortex splitting in higher order vortex beams,” Opt. Express 22, 9920–9931 (2014). [CrossRef]  

25. F. Machado, N. Rivera, H. Buljan, M. Soljačić, and I. Kaminer, “Shaping polaritons to reshape selection rules,” arXiv:1610.01668 (2016).

26. M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5, 570–573 (2010). [CrossRef]  

27. W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral,” Nano Lett. 14, 547–552 (2014). [CrossRef]  

28. J. Gore, Z. Bryant, M. Nöllmann, M. U. Le, N. R. Cozzarelli, and C. Bustamante, “DNA overwinds when stretched,” Nature 442, 836–839 (2006). [CrossRef]  

29. R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Nanomotor rotates microscale objects,” Nature 440, 163 (2006). [CrossRef]  

30. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006). [CrossRef]  

31. N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett. 12, 1620–1623 (2012). [CrossRef]  

32. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

33. E. Maguid, M. Yannai, A. Faerman, I. Yulevich, V. Kleiner, and E. Hasman, “Disorder-induced optical transition from spin Hall to random Rashba effect,” Science 358, 1411–1415 (2017).

34. M. V. Berry, “A note on superoscillations associated with Bessel beams,” J. Opt. 15, 044006 (2013). [CrossRef]  

35. M. R. Dennis, “Rows of optical vortices from elliptically perturbing a high-order beam,” Opt. Lett. 31, 1325–1327 (2006). [CrossRef]  

36. A. de Hoogh, “Optical singularities and nonlinear effects near plasmonic nanostructures,” Ph.D. dissertation (Delft University of Technology, 2016), pp. 13–14.

37. J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (CRC Press, 1999).

38. B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5, 360–363 (2011). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. A 336, 165–190 (1974).
    [Crossref]
  2. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [Crossref]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [Crossref]
  4. Z. Shen, Z. J. Hu, G. H. Yuan, C. J. Min, H. Fang, and X.-C. Yuan, “Visualizing orbital angular momentum of plasmonic vortices,” Opt. Lett. 37, 4627–4629 (2012).
    [Crossref]
  5. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
    [Crossref]
  6. Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
    [Crossref]
  7. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Hang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
    [Crossref]
  8. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
    [Crossref]
  9. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
    [Crossref]
  10. A. David, B. Gjonaj, Y. Blau, S. Dolev, and G. Bartal, “Nanoscale shaping and focusing of visible light in planar metal-oxide–silicon waveguides,” Optica 2, 1045–1048 (2015).
    [Crossref]
  11. X. Cai, J. Wang, M. J. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
    [Crossref]
  12. B. le Feber, N. Rotenberg, and L. Kuiper, “Nanophotonic control of circular dipole emission,” Nat. Commun. 6, 6695 (2015).
    [Crossref]
  13. R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
    [Crossref]
  14. P. Lodahl, A. F. V. Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
    [Crossref]
  15. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101, 043903 (2008).
    [Crossref]
  16. G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F.-J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
    [Crossref]
  17. H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10, 529–536 (2010).
    [Crossref]
  18. A. David, B. Gjonaj, and G. Bartal, “Two-dimensional optical nanovortices at visible light,” Phys. Rev. B 93, 121302 (2016).
    [Crossref]
  19. I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. E. Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
    [Crossref]
  20. N. Rivera, I. Kaminer, B. Zhen, J. D. Joannopoulos, and M. Soljačić, “Shrinking light to allow forbidden transitions on the atomic scale,” Science 353, 263–269 (2016).
    [Crossref]
  21. B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Fano resonances and topological optics: an interplay of far- and near-field interference phenomena,” J. Opt. 15, 073001 (2013).
    [Crossref]
  22. A. de Hoogh, L. Kuipers, T. D. Visser, and N. Rotenberg, “Creating and controlling polarization singularities in plasmonic fields,” Photonics 2, 553–567 (2015).
    [Crossref]
  23. M. V. Berry and M. R. Dennis, “Knotted and linked phase singularities in monochromatic waves,” Proc. R. Soc. A 457, 2251–2263 (2001).
    [Crossref]
  24. R. Neo, S. J. Tan, X. Z. Puyalto, S. L. Saval, J. B. Hawthorn, and G. M. Terriza, “Correcting vortex splitting in higher order vortex beams,” Opt. Express 22, 9920–9931 (2014).
    [Crossref]
  25. F. Machado, N. Rivera, H. Buljan, M. Soljačić, and I. Kaminer, “Shaping polaritons to reshape selection rules,” arXiv:1610.01668 (2016).
  26. M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5, 570–573 (2010).
    [Crossref]
  27. W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral,” Nano Lett. 14, 547–552 (2014).
    [Crossref]
  28. J. Gore, Z. Bryant, M. Nöllmann, M. U. Le, N. R. Cozzarelli, and C. Bustamante, “DNA overwinds when stretched,” Nature 442, 836–839 (2006).
    [Crossref]
  29. R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Nanomotor rotates microscale objects,” Nature 440, 163 (2006).
    [Crossref]
  30. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
    [Crossref]
  31. N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett. 12, 1620–1623 (2012).
    [Crossref]
  32. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  33. E. Maguid, M. Yannai, A. Faerman, I. Yulevich, V. Kleiner, and E. Hasman, “Disorder-induced optical transition from spin Hall to random Rashba effect,” Science 358, 1411–1415 (2017).
  34. M. V. Berry, “A note on superoscillations associated with Bessel beams,” J. Opt. 15, 044006 (2013).
    [Crossref]
  35. M. R. Dennis, “Rows of optical vortices from elliptically perturbing a high-order beam,” Opt. Lett. 31, 1325–1327 (2006).
    [Crossref]
  36. A. de Hoogh, “Optical singularities and nonlinear effects near plasmonic nanostructures,” Ph.D. dissertation (Delft University of Technology, 2016), pp. 13–14.
  37. J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (CRC Press, 1999).
  38. B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5, 360–363 (2011).
    [Crossref]

2017 (2)

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F.-J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref]

E. Maguid, M. Yannai, A. Faerman, I. Yulevich, V. Kleiner, and E. Hasman, “Disorder-induced optical transition from spin Hall to random Rashba effect,” Science 358, 1411–1415 (2017).

2016 (3)

A. David, B. Gjonaj, and G. Bartal, “Two-dimensional optical nanovortices at visible light,” Phys. Rev. B 93, 121302 (2016).
[Crossref]

N. Rivera, I. Kaminer, B. Zhen, J. D. Joannopoulos, and M. Soljačić, “Shrinking light to allow forbidden transitions on the atomic scale,” Science 353, 263–269 (2016).
[Crossref]

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref]

2015 (4)

A. David, B. Gjonaj, Y. Blau, S. Dolev, and G. Bartal, “Nanoscale shaping and focusing of visible light in planar metal-oxide–silicon waveguides,” Optica 2, 1045–1048 (2015).
[Crossref]

B. le Feber, N. Rotenberg, and L. Kuiper, “Nanophotonic control of circular dipole emission,” Nat. Commun. 6, 6695 (2015).
[Crossref]

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. E. Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

A. de Hoogh, L. Kuipers, T. D. Visser, and N. Rotenberg, “Creating and controlling polarization singularities in plasmonic fields,” Photonics 2, 553–567 (2015).
[Crossref]

2014 (3)

R. Neo, S. J. Tan, X. Z. Puyalto, S. L. Saval, J. B. Hawthorn, and G. M. Terriza, “Correcting vortex splitting in higher order vortex beams,” Opt. Express 22, 9920–9931 (2014).
[Crossref]

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral,” Nano Lett. 14, 547–552 (2014).
[Crossref]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

2013 (2)

M. V. Berry, “A note on superoscillations associated with Bessel beams,” J. Opt. 15, 044006 (2013).
[Crossref]

B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Fano resonances and topological optics: an interplay of far- and near-field interference phenomena,” J. Opt. 15, 073001 (2013).
[Crossref]

2012 (4)

N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett. 12, 1620–1623 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Hang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Z. Shen, Z. J. Hu, G. H. Yuan, C. J. Min, H. Fang, and X.-C. Yuan, “Visualizing orbital angular momentum of plasmonic vortices,” Opt. Lett. 37, 4627–4629 (2012).
[Crossref]

X. Cai, J. Wang, M. J. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

2011 (1)

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5, 360–363 (2011).
[Crossref]

2010 (2)

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5, 570–573 (2010).
[Crossref]

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10, 529–536 (2010).
[Crossref]

2008 (1)

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101, 043903 (2008).
[Crossref]

2006 (5)

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref]

M. R. Dennis, “Rows of optical vortices from elliptically perturbing a high-order beam,” Opt. Lett. 31, 1325–1327 (2006).
[Crossref]

J. Gore, Z. Bryant, M. Nöllmann, M. U. Le, N. R. Cozzarelli, and C. Bustamante, “DNA overwinds when stretched,” Nature 442, 836–839 (2006).
[Crossref]

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Nanomotor rotates microscale objects,” Nature 440, 163 (2006).
[Crossref]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
[Crossref]

2004 (2)

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[Crossref]

P. Lodahl, A. F. V. Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref]

2001 (2)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

M. V. Berry and M. R. Dennis, “Knotted and linked phase singularities in monochromatic waves,” Proc. R. Soc. A 457, 2251–2263 (2001).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

1974 (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. A 336, 165–190 (1974).
[Crossref]

Aeschlimann, M.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F.-J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref]

Ahmed, N.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Hang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Aulbach, J.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5, 360–363 (2011).
[Crossref]

Bao, C.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Barnett, S. M.

Bartal, G.

A. David, B. Gjonaj, and G. Bartal, “Two-dimensional optical nanovortices at visible light,” Phys. Rev. B 93, 121302 (2016).
[Crossref]

A. David, B. Gjonaj, Y. Blau, S. Dolev, and G. Bartal, “Nanoscale shaping and focusing of visible light in planar metal-oxide–silicon waveguides,” Optica 2, 1045–1048 (2015).
[Crossref]

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5, 570–573 (2010).
[Crossref]

Bastiaansen, C. W. M.

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Nanomotor rotates microscale objects,” Nature 440, 163 (2006).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Berry, M. V.

M. V. Berry, “A note on superoscillations associated with Bessel beams,” J. Opt. 15, 044006 (2013).
[Crossref]

M. V. Berry and M. R. Dennis, “Knotted and linked phase singularities in monochromatic waves,” Proc. R. Soc. A 457, 2251–2263 (2001).
[Crossref]

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. A 336, 165–190 (1974).
[Crossref]

Blau, Y.

Broer, D. J.

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Nanomotor rotates microscale objects,” Nature 440, 163 (2006).
[Crossref]

Bryant, Z.

J. Gore, Z. Bryant, M. Nöllmann, M. U. Le, N. R. Cozzarelli, and C. Bustamante, “DNA overwinds when stretched,” Nature 442, 836–839 (2006).
[Crossref]

Buljan, H.

F. Machado, N. Rivera, H. Buljan, M. Soljačić, and I. Kaminer, “Shaping polaritons to reshape selection rules,” arXiv:1610.01668 (2016).

Bustamante, C.

J. Gore, Z. Bryant, M. Nöllmann, M. U. Le, N. R. Cozzarelli, and C. Bustamante, “DNA overwinds when stretched,” Nature 442, 836–839 (2006).
[Crossref]

Cai, X.

X. Cai, J. Wang, M. J. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Cao, Y.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Cho, S. W.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10, 529–536 (2010).
[Crossref]

Clarke, E.

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref]

Coles, R. J.

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref]

Courtial, J.

Cozzarelli, N. R.

J. Gore, Z. Bryant, M. Nöllmann, M. U. Le, N. R. Cozzarelli, and C. Bustamante, “DNA overwinds when stretched,” Nature 442, 836–839 (2006).
[Crossref]

David, A.

de Hoogh, A.

A. de Hoogh, L. Kuipers, T. D. Visser, and N. Rotenberg, “Creating and controlling polarization singularities in plasmonic fields,” Photonics 2, 553–567 (2015).
[Crossref]

A. de Hoogh, “Optical singularities and nonlinear effects near plasmonic nanostructures,” Ph.D. dissertation (Delft University of Technology, 2016), pp. 13–14.

Dennis, M. R.

M. R. Dennis, “Rows of optical vortices from elliptically perturbing a high-order beam,” Opt. Lett. 31, 1325–1327 (2006).
[Crossref]

M. V. Berry and M. R. Dennis, “Knotted and linked phase singularities in monochromatic waves,” Proc. R. Soc. A 457, 2251–2263 (2001).
[Crossref]

Dixon, J. E.

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref]

Dolev, S.

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Hang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Driel, A. F. V.

P. Lodahl, A. F. V. Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref]

Eelkema, R.

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Nanomotor rotates microscale objects,” Nature 440, 163 (2006).
[Crossref]

Ella, H. E.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. E. Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Faerman, A.

E. Maguid, M. Yannai, A. Faerman, I. Yulevich, V. Kleiner, and E. Hasman, “Disorder-induced optical transition from spin Hall to random Rashba effect,” Science 358, 1411–1415 (2017).

Fang, H.

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Hang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Feringa, B. L.

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Nanomotor rotates microscale objects,” Nature 440, 163 (2006).
[Crossref]

Fox, A. M.

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref]

Frank, B.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F.-J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref]

Franke-Arnold, S.

Gal, L.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F.-J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref]

Gibson, G.

Giessen, H.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F.-J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref]

Gjonaj, B.

A. David, B. Gjonaj, and G. Bartal, “Two-dimensional optical nanovortices at visible light,” Phys. Rev. B 93, 121302 (2016).
[Crossref]

A. David, B. Gjonaj, Y. Blau, S. Dolev, and G. Bartal, “Nanoscale shaping and focusing of visible light in planar metal-oxide–silicon waveguides,” Optica 2, 1045–1048 (2015).
[Crossref]

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5, 360–363 (2011).
[Crossref]

Gore, J.

J. Gore, Z. Bryant, M. Nöllmann, M. U. Le, N. R. Cozzarelli, and C. Bustamante, “DNA overwinds when stretched,” Nature 442, 836–839 (2006).
[Crossref]

Gorodetski, Y.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101, 043903 (2008).
[Crossref]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref]

Hang, H.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Hang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Hansen, S. L.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. E. Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Hasman, E.

E. Maguid, M. Yannai, A. Faerman, I. Yulevich, V. Kleiner, and E. Hasman, “Disorder-induced optical transition from spin Hall to random Rashba effect,” Science 358, 1411–1415 (2017).

N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett. 12, 1620–1623 (2012).
[Crossref]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101, 043903 (2008).
[Crossref]

Hawthorn, J. B.

Hell, S. W.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref]

Hillenbrand, R.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
[Crossref]

Hu, Z. J.

Huang, C. B.

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral,” Nano Lett. 14, 547–552 (2014).
[Crossref]

Huang, H.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Huang, J. S.

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral,” Nano Lett. 14, 547–552 (2014).
[Crossref]

Huber, A.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
[Crossref]

Irman, A.

P. Lodahl, A. F. V. Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref]

Jahn, R.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref]

Javadi, A.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. E. Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Joannopoulos, J. D.

N. Rivera, I. Kaminer, B. Zhen, J. D. Joannopoulos, and M. Soljačić, “Shrinking light to allow forbidden transitions on the atomic scale,” Science 353, 263–269 (2016).
[Crossref]

Johnson, P. M.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5, 360–363 (2011).
[Crossref]

Kahl, P.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F.-J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref]

Kaminer, I.

N. Rivera, I. Kaminer, B. Zhen, J. D. Joannopoulos, and M. Soljačić, “Shrinking light to allow forbidden transitions on the atomic scale,” Science 353, 263–269 (2016).
[Crossref]

F. Machado, N. Rivera, H. Buljan, M. Soljačić, and I. Kaminer, “Shaping polaritons to reshape selection rules,” arXiv:1610.01668 (2016).

Kang, M.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10, 529–536 (2010).
[Crossref]

Katsonis, N.

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Nanomotor rotates microscale objects,” Nature 440, 163 (2006).
[Crossref]

Kilbane, D.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F.-J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref]

Kim, H.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10, 529–536 (2010).
[Crossref]

Kiršanske, G.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. E. Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Kivshar, Y. S.

B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Fano resonances and topological optics: an interplay of far- and near-field interference phenomena,” J. Opt. 15, 073001 (2013).
[Crossref]

Kleiner, V.

E. Maguid, M. Yannai, A. Faerman, I. Yulevich, V. Kleiner, and E. Hasman, “Disorder-induced optical transition from spin Hall to random Rashba effect,” Science 358, 1411–1415 (2017).

N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett. 12, 1620–1623 (2012).
[Crossref]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101, 043903 (2008).
[Crossref]

Kok, P.

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref]

Kuiper, L.

B. le Feber, N. Rotenberg, and L. Kuiper, “Nanophotonic control of circular dipole emission,” Nat. Commun. 6, 6695 (2015).
[Crossref]

Kuipers, L.

A. de Hoogh, L. Kuipers, T. D. Visser, and N. Rotenberg, “Creating and controlling polarization singularities in plasmonic fields,” Photonics 2, 553–567 (2015).
[Crossref]

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5, 360–363 (2011).
[Crossref]

Lagendijk, A.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5, 360–363 (2011).
[Crossref]

Lavery, M. P. J.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Le, M. U.

J. Gore, Z. Bryant, M. Nöllmann, M. U. Le, N. R. Cozzarelli, and C. Bustamante, “DNA overwinds when stretched,” Nature 442, 836–839 (2006).
[Crossref]

le Feber, B.

B. le Feber, N. Rotenberg, and L. Kuiper, “Nanophotonic control of circular dipole emission,” Nat. Commun. 6, 6695 (2015).
[Crossref]

Lee, B.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10, 529–536 (2010).
[Crossref]

Lee, E. H.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. E. Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Lee, S. Y.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10, 529–536 (2010).
[Crossref]

Li, L.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Liu, M.

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5, 570–573 (2010).
[Crossref]

Liu, Y.

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5, 570–573 (2010).
[Crossref]

Lodahl, P.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. E. Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

P. Lodahl, A. F. V. Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref]

Luk’yanchuk, B. S.

B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Fano resonances and topological optics: an interplay of far- and near-field interference phenomena,” J. Opt. 15, 073001 (2013).
[Crossref]

Machado, F.

F. Machado, N. Rivera, H. Buljan, M. Soljačić, and I. Kaminer, “Shaping polaritons to reshape selection rules,” arXiv:1610.01668 (2016).

Maguid, E.

E. Maguid, M. Yannai, A. Faerman, I. Yulevich, V. Kleiner, and E. Hasman, “Disorder-induced optical transition from spin Hall to random Rashba effect,” Science 358, 1411–1415 (2017).

Mahmoodian, S.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. E. Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Mahro, A. K.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F.-J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Makhonin, M. N.

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref]

Mathias, S.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F.-J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref]

Meyer zu Heringdorf, F.-J.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F.-J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref]

Midolo, L.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. E. Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Min, C. J.

Miroshnichenko, A. E.

B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Fano resonances and topological optics: an interplay of far- and near-field interference phenomena,” J. Opt. 15, 073001 (2013).
[Crossref]

Molisch, A. F.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Morris, B. J.

X. Cai, J. Wang, M. J. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Mosk, A. P.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5, 360–363 (2011).
[Crossref]

Nechayev, S.

N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett. 12, 1620–1623 (2012).
[Crossref]

Neo, R.

Nikolaev, I. S.

P. Lodahl, A. F. V. Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref]

Niv, A.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101, 043903 (2008).
[Crossref]

Nöllmann, M.

J. Gore, Z. Bryant, M. Nöllmann, M. U. Le, N. R. Cozzarelli, and C. Bustamante, “DNA overwinds when stretched,” Nature 442, 836–839 (2006).
[Crossref]

Nye, J. F.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. A 336, 165–190 (1974).
[Crossref]

J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (CRC Press, 1999).

O’Brien, J. L.

X. Cai, J. Wang, M. J. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Ocelic, N.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
[Crossref]

Orenstein, M.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F.-J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref]

Overgaag, K.

P. Lodahl, A. F. V. Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref]

Padgett, M. J.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[Crossref]

Park, J.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10, 529–536 (2010).
[Crossref]

Pas’ko, V.

Podbiel, D.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F.-J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref]

Pollard, M. M.

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Nanomotor rotates microscale objects,” Nature 440, 163 (2006).
[Crossref]

Pregnolato, T.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. E. Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Price, D. M.

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref]

Puyalto, X. Z.

Ramon, B. S.

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Nanomotor rotates microscale objects,” Nature 440, 163 (2006).
[Crossref]

Ren, Y.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Hang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Ristok, S.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F.-J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref]

Rivera, N.

N. Rivera, I. Kaminer, B. Zhen, J. D. Joannopoulos, and M. Soljačić, “Shrinking light to allow forbidden transitions on the atomic scale,” Science 353, 263–269 (2016).
[Crossref]

F. Machado, N. Rivera, H. Buljan, M. Soljačić, and I. Kaminer, “Shaping polaritons to reshape selection rules,” arXiv:1610.01668 (2016).

Rizzoli, S. O.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref]

Rotenberg, N.

B. le Feber, N. Rotenberg, and L. Kuiper, “Nanophotonic control of circular dipole emission,” Nat. Commun. 6, 6695 (2015).
[Crossref]

A. de Hoogh, L. Kuipers, T. D. Visser, and N. Rotenberg, “Creating and controlling polarization singularities in plasmonic fields,” Photonics 2, 553–567 (2015).
[Crossref]

Royall, B.

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref]

Saval, S. L.

Shen, Z.

Shitrit, N.

N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett. 12, 1620–1623 (2012).
[Crossref]

Skolnick, M. S.

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref]

Soljacic, M.

N. Rivera, I. Kaminer, B. Zhen, J. D. Joannopoulos, and M. Soljačić, “Shrinking light to allow forbidden transitions on the atomic scale,” Science 353, 263–269 (2016).
[Crossref]

F. Machado, N. Rivera, H. Buljan, M. Soljačić, and I. Kaminer, “Shaping polaritons to reshape selection rules,” arXiv:1610.01668 (2016).

Söllner, I.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. E. Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Song, J. D.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. E. Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Sorel, M.

X. Cai, J. Wang, M. J. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Spektor, G.

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F.-J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Stobbe, S.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. E. Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

Strain, M. J.

X. Cai, J. Wang, M. J. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Tan, S. J.

Terriza, G. M.

Thompson, M. G.

X. Cai, J. Wang, M. J. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Tsai, W. Y.

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral,” Nano Lett. 14, 547–552 (2014).
[Crossref]

Tur, M.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Hang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Vanmaekelbergh, D.

P. Lodahl, A. F. V. Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref]

Vasnetsov, M.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Vicario, J.

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Nanomotor rotates microscale objects,” Nature 440, 163 (2006).
[Crossref]

Visser, T. D.

A. de Hoogh, L. Kuipers, T. D. Visser, and N. Rotenberg, “Creating and controlling polarization singularities in plasmonic fields,” Photonics 2, 553–567 (2015).
[Crossref]

Vos, W. L.

P. Lodahl, A. F. V. Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref]

Wang, J.

X. Cai, J. Wang, M. J. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Hang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Westphal, V.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref]

Willig, K. I.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref]

Willner, A. E.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Hang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Xie, G.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Yan, Y.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Hang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Hang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Yannai, M.

E. Maguid, M. Yannai, A. Faerman, I. Yulevich, V. Kleiner, and E. Hasman, “Disorder-induced optical transition from spin Hall to random Rashba effect,” Science 358, 1411–1415 (2017).

Yu, S.

X. Cai, J. Wang, M. J. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Yuan, G. H.

Yuan, X.-C.

Yue, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Hang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Yulevich, I.

E. Maguid, M. Yannai, A. Faerman, I. Yulevich, V. Kleiner, and E. Hasman, “Disorder-induced optical transition from spin Hall to random Rashba effect,” Science 358, 1411–1415 (2017).

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Zentgraf, T.

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5, 570–573 (2010).
[Crossref]

Zhang, X.

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5, 570–573 (2010).
[Crossref]

Zhao, Z.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Zhen, B.

N. Rivera, I. Kaminer, B. Zhen, J. D. Joannopoulos, and M. Soljačić, “Shrinking light to allow forbidden transitions on the atomic scale,” Science 353, 263–269 (2016).
[Crossref]

Zhu, J.

X. Cai, J. Wang, M. J. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Appl. Phys. Lett. (1)

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89, 101124 (2006).
[Crossref]

J. Opt. (2)

M. V. Berry, “A note on superoscillations associated with Bessel beams,” J. Opt. 15, 044006 (2013).
[Crossref]

B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Fano resonances and topological optics: an interplay of far- and near-field interference phenomena,” J. Opt. 15, 073001 (2013).
[Crossref]

Nano Lett. (3)

W. Y. Tsai, J. S. Huang, and C. B. Huang, “Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral,” Nano Lett. 14, 547–552 (2014).
[Crossref]

N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett. 12, 1620–1623 (2012).
[Crossref]

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10, 529–536 (2010).
[Crossref]

Nat. Commun. (3)

B. le Feber, N. Rotenberg, and L. Kuiper, “Nanophotonic control of circular dipole emission,” Nat. Commun. 6, 6695 (2015).
[Crossref]

R. J. Coles, D. M. Price, J. E. Dixon, B. Royall, E. Clarke, P. Kok, M. S. Skolnick, A. M. Fox, and M. N. Makhonin, “Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer,” Nat. Commun. 7, 11183 (2016).
[Crossref]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref]

Nat. Nanotechnol. (2)

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G. Kiršanskė, T. Pregnolato, H. E. Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Deterministic photon-emitter coupling in chiral photonic circuits,” Nat. Nanotechnol. 10, 775–778 (2015).
[Crossref]

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5, 570–573 (2010).
[Crossref]

Nat. Photonics (2)

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photonics 5, 360–363 (2011).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Hang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Nature (6)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref]

P. Lodahl, A. F. V. Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).
[Crossref]

J. Gore, Z. Bryant, M. Nöllmann, M. U. Le, N. R. Cozzarelli, and C. Bustamante, “DNA overwinds when stretched,” Nature 442, 836–839 (2006).
[Crossref]

R. Eelkema, M. M. Pollard, J. Vicario, N. Katsonis, B. S. Ramon, C. W. M. Bastiaansen, D. J. Broer, and B. L. Feringa, “Nanomotor rotates microscale objects,” Nature 440, 163 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Optica (1)

Photonics (1)

A. de Hoogh, L. Kuipers, T. D. Visser, and N. Rotenberg, “Creating and controlling polarization singularities in plasmonic fields,” Photonics 2, 553–567 (2015).
[Crossref]

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Phys. Rev. B (1)

A. David, B. Gjonaj, and G. Bartal, “Two-dimensional optical nanovortices at visible light,” Phys. Rev. B 93, 121302 (2016).
[Crossref]

Phys. Rev. Lett. (1)

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101, 043903 (2008).
[Crossref]

Proc. R. Soc. A (2)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. A 336, 165–190 (1974).
[Crossref]

M. V. Berry and M. R. Dennis, “Knotted and linked phase singularities in monochromatic waves,” Proc. R. Soc. A 457, 2251–2263 (2001).
[Crossref]

Science (4)

E. Maguid, M. Yannai, A. Faerman, I. Yulevich, V. Kleiner, and E. Hasman, “Disorder-induced optical transition from spin Hall to random Rashba effect,” Science 358, 1411–1415 (2017).

X. Cai, J. Wang, M. J. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen, F.-J. Meyer zu Heringdorf, M. Orenstein, and M. Aeschlimann, “Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices,” Science 355, 1187–1191 (2017).
[Crossref]

N. Rivera, I. Kaminer, B. Zhen, J. D. Joannopoulos, and M. Soljačić, “Shrinking light to allow forbidden transitions on the atomic scale,” Science 353, 263–269 (2016).
[Crossref]

Other (4)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

A. de Hoogh, “Optical singularities and nonlinear effects near plasmonic nanostructures,” Ph.D. dissertation (Delft University of Technology, 2016), pp. 13–14.

J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (CRC Press, 1999).

F. Machado, N. Rivera, H. Buljan, M. Soljačić, and I. Kaminer, “Shaping polaritons to reshape selection rules,” arXiv:1610.01668 (2016).

Supplementary Material (4)

NameDescription
» Supplement 1       Supplemental document
» Visualization 1       Continuous control over optical vortices for plasmonic slit of topological charge of 2
» Visualization 2       Continuous control over optical vortices for plasmonic slit of topological charge of 1
» Visualization 3       Simulation of in-plane electrical field in time domain. C-points can be distinguished as points with circular polarization.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Control over phase singularities. Coupling plane waves into surface plasmon polaritons by a spiral slit allows the mapping of any polarization state, represented by the Poincaré sphere, into the location of plasmonic phase singularities in a 2D plane. The amplitude of the out-of-plane electric field resulting from coupling plane waves of different polarization states is shown along with their position on the Poincaré sphere. The black spots correspond to the phase singularities, with their separation and rotation angle controlled by varying only the polarization state of the incident light. Polarization variation along the longitudinal lines of the Poincaré sphere results in a control over the separation of the OVs, while along the latitudinal lines it results in a rotation of their shared axis. The super-oscillatory nature of OVs enables such control in precision much higher than allowed by the diffraction limit.
Fig. 2.
Fig. 2. Experimental setup. (a) A linearly polarized laser beam propagates through λ/2 and λ/4 plates which provide complete control over the polarization state. The beam is then incident upon a metal–dielectric interface and is coupled to the interface via a spiral slit [for example, a scanning electron microscope image of a l=2 slit is presented in (b)]. The polarization state is translated to two Bessel modes of different orders, creating a controlled interference pattern. The full field distribution is mapped by phase-resolved s-NSOM showing both the amplitude and phase at 15 nm resolution.
Fig. 3.
Fig. 3. Controlling the distance between OVs. Amplitude (upper row) and phase (lower row) of near-field mapping for l=1(left columns) and l=2(right columns). The orientations of the λ/4 and λ/2 plates are indicated above the amplitude images. The singularities are marked by black circles in the phase maps. The distance between the singularities is indicated above the phase images.
Fig. 4.
Fig. 4. Controlling the rotation angle of the OVs. Amplitude (upper row) and phase (lower row) of near-field mapping for l=1 (left columns) and l=2 (right columns). The orientations of the λ/4 and λ/2 plates are indicated above the amplitude images. The singularities are marked by black circles in the phase maps. The rotation angle of the singularities is indicated above the phase images.
Fig. 5.
Fig. 5. Experimental in-plane field. In-plane field components Eρ, Eθ (c)–(f), (i)–(l) derived out of the measured out-of-plane field component Ez (a), (b), (g), (h) for l=1. Two polarization states examined: ϑλ/2=160, ϑλ/4=0 (a)–(f) and ϑλ/2=175, ϑλ/4=0 (g)–(l). Amplitude (upper row) and phase (bottom row) presented.
Fig. 6.
Fig. 6. Analytical in-plane field and control over C-points location. Numerical simulations fitted to two polarization states depicted in Fig. 5 respectively. Amplitude (upper row) and phase (bottom row) of the out-of-plane field component Ez and the in-plain field component Eρ, Eθ are presented. The polarization states expressed by the polarization ellipse orientation α and handedness ϵ of the two states have also been calculated [(g), (h) and (o), (p), respectively]. The distance between the C-points, marked by black circles, is indicated above the α image.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E(ρ,θ,z)=eikzz(Ez(ρ,θ)z^+Eρ(ρ,θ)ρ^+Eθ(ρ,θ)θ^),
Ez(ρ,θ)=Jm(ksppρ)eimθ,
Ez(ρ,θ)=J(l±1)(ksppρ)ei(l±1)θ.
σ+1+|a0|eiϕ0σ1,
Ez(ρ,θ)=Jl+1(ksppρ)ei(l+1)θ+|a0|eiϕ0Jl1(ksppρ)ei(l1)θ,
|a0|=fa0(ϑλ/4,ϑλ/2);ϕ0=fϕ0(ϑλ/4,ϑλ/2),
Eρ=ξρEz;Eθ=ξ1ρθEz,

Metrics