Abstract

The classical Wiener–Khinchin theorem (WKT), which can extract spectral information by classical interferometers through Fourier transform, is a fundamental theorem used in many disciplines. However, there is still a need for a quantum version of WKT, which could connect correlated biphoton spectral information by quantum interferometers. Here, we extend the classical WKT to its quantum counterpart [i.e., extended WKT (e-WKT)], which is based on two-photon quantum interferometry. According to the e-WKT, the difference–frequency distribution of the biphoton wavefunctions can be extracted by applying a Fourier transform on the time-domain Hong–Ou–Mandel interference (HOMI) patterns, while the sum-frequency distribution can be extracted by applying a Fourier transform on the time-domain NOON state interference (NOONI) patterns. We also experimentally verified the WKT and e-WKT in a Mach–Zehnder interference (MZI), a HOMI, and a NOONI. This theorem can be directly applied to quantum spectroscopy, where the spectral correlation information of biphotons can be obtained from time-domain quantum interferences by Fourier transform. This may open a new path for the study of light–matter interaction at the single photon level.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

The Wiener–Khinchin theorem (WKT), which expresses the power spectrum in terms of the autocorrelation function by Fourier transformation, was proven by Wiener [1] and by Khintchine (an alternate spelling of Khinchin) [2] in the 1930s. The WKT is a fundamental theorem used in many disciplines, including statistics, signal analysis, and optics. Especially in modern optics, thanks to the Wiener–Khinchin theorem, the interferometric spectrometer technology (also called Fourier transform spectrometry) has been well established [3]. For example, it is possible to extract the spectral information of light by making a Fourier transform on its time-domain Mach–Zehnder interference (MZI) or Michelson interference (MI) patterns. Such interferometric spectrometers are especially useful for simultaneously collecting high spectral resolution data over a wide spectral range. This provides a significant advantage over a dispersive spectrometer, which measures intensity over a narrow range of wavelengths at a time. The Fourier transform infrared spectroscopy (FTIR) has been commercially used in applications such as chemical analysis, polymer testing, and pharmaceutical analysis. [4].

With the development of quantum optics in the last several decades, several new interferometries have been demonstrated, such as the Hong–Ou–Mandel interference (HOMI) [5] and the NOON state interference (NOONI) [6] using biphotons from spontaneous parametric down conversion (SPDC). The HOMI has been widely used in quantum optical coherence tomography [7], dispersion cancellation [8,9], tests of the indistinguishability of two incoming photons [1016], measurement of the biphoton wave function [17], frequency conversion [18], and discrete frequency modes generation [19]. The NOONI has been widely used in quantum lithography [6,20], quantum high-precision measurement [21], quantum microscopy [2224], and error correction [25]. These two kinds of biphoton interferometry are totally quantum effect [26], which is different from the classical one-photon MZI patterns. This naturally gives rise to the question: Is it possible to construct a quantum interferometric spectrometer based on quantum interference patterns? In other words, what kind of spectral information can be extracted from the time-domain biphoton HOMI and NOONI patterns?

To answer this question in this work, we first provide a multimode theory for the MZI, HOMI, and NOONI, with the model shown in Figs. 1(a)1(c). Then, we expand the classical WKT based on MZI into an extended WKT (e-WKT) based on HOMI and NOONI. Using this e-WKT, it is possible to extract the difference- or sum-frequency information between the constituent photons from the time-domain HOMI and NOONI patterns. Finally, we verified our theory experimentally by measuring the MZI/HOMI/NOONI patterns and two-photon spectral intensity distribution.

 figure: Fig. 1.

Fig. 1. Model of the experimental setup. (a) Mach–Zehnder interferometer (MZI), (b) Hong–Ou–Mandel interferometer (HOMI), and (c) NOON-state interferometer (NOONI). s and i indicate the signal and idler photons. Both the signal and idler photons from SPDC are used for HOMI and NOONI, while only the signal photons are used for MZI.

Download Full Size | PPT Slide | PDF

2. THEORY

In this paper, we expanded the traditional WKT to its quantum version. First, let us consider the classical WKT in the scenario of an MZI, as shown in Fig. 1(a).

As calculated in Supplement 1, in an MZI, the one-photon detection probability is determined by

P1(τ)=12[1+dω|f1(ω)|2cos(ωτ)],
where f1(ω) is the one-photon spectral amplitude. The conventional WKT can be written in the form of Fourier transform,
F1(ω)|f1(ω)|2=12πdτG1(τ)eiωτ,
where F1(ω)|f1(ω)|2 is the one-photon spectral intensity, and G1(τ)dω|f1(ω)|2eiωτ denotes the first-order correlation function. Here we adopt the definition of P(τ)=12[1+Re{G1(τ)}], which is identical to that in [27]. Based on this WKT, we can extract the frequency information of the photon source from the time-domain MZ interference pattern.

Next, we consider the quantum counterpart of WKT (i.e., the e-WKT), which is based on the HOMI shown in Fig. 1(b) and the NOONI shown in Fig. 1(c). As calculated in Supplement 1, the two-photon detection probability P2±(τ) is

P2±(τ)=12[1±dωsdωi|f2(ωs,ωi)|2cos[(ωs±ωi)τ]],
where f2(ωs,ωi) is the two-photon spectral amplitude for the signal photon with a frequency of ωs and idler photon with a frequency of ωi. P2+ is for NOONI, while P2 is for HOMI. The e-WKT can also be written in the form of a Fourier transform,
F2±(ω±)=12πdτG2±(τ)eiω±τ,
where ω±=ωs±ωi and F2±(ω±)12dω|f2(ωs,ωi)|2 is the sum- or difference-frequency spectrum intensity of the two-photon state (i.e., the projection of |f2(ωs,ωi)|2 onto the diagonal or antidiagonal axis). G2±(τ)dω±F2(ω±)eiω±τ is the second-order correlation function. G2+ is for NOONI, while G2 is for HOMI. P2±(τ)=12[1±Re{G2±(τ)}]. Based on this e-WKT, we can obtain the sum- or difference-frequency information of the two-photon source from the time-domain NOONI (HOMI) pattern.

3. EXPERIMENT AND RESULTS

Next, we experimentally compare the e-WKT in Eq. (4) with the WKT in Eq. (2). First, we carry out three types of interference experiments (i.e., MZI, HOMI, and NOONI) in the time domain. We perform Fourier transformation on the time domain data so as to obtain the spectral information, especially the spectral bandwidths. Second, we measure the two-photon spectral intensity (TSI) distribution of our biphotons from SPDC, and we project the TSI data onto the x-axis, the diagonal axis, and the antidiagonal axis, respectively, to obtain the spectral bandwidth on each axis. Finally, we verify the e-WKT and WKT by comparing the experimentally measured spectral bandwidths and those calculated using e-WKT or WKT.

The setups for measuring the MZI, HOMI, and NOONI are shown in Fig. 2, and are similar to the setups reported in previous studies [28,29]. Pulses of 120-fs in length at 792 nm are used to pump a 30-mm-long PPKTP crystal for a type-II collinear SPDC. The PPKTP crystal can satisfy the group-velocity-matching (GVM) condition at the telecom wavelength [3035]. Thanks to the GVM condition, we can manipulate two-photon spectral distributions and generate biphotons with positive spectral correlation. In practice, the full-width-at-half maximum (FWHM) of F2+ is determined by the pump laser spectrum while that of F2 is determined by the crystal length. The signal and idler photons generated from SPDC have degenerate wavelengths and orthogonal polarizations. To compensate for their different group velocities due to the birefringence of the nonlinear crystal, the downconverted biphotons pass through a timing compensator composed of a polarization beam splitter (PBS0), two quarter-wave plates (QWP, at 45°), and two mirrors. One of the mirrors is set on a stepping motor to prepare an optical path delay of ΔL1. Then, the polarizations of biphotons are mixed at a half-wave plate (HWP1, at 0° for HOMI, or at 22.5° for NOONI) before they are input into a Michelson interferometer that has the same configuration as the timing compensator. After that, the polarizations of biphotons are mixed again at HWP2 (fixed at 22.5°) and separated at PBS2. Finally, all the photons are coupled into two single-mode fibers (SMF) and detected by two InGaAs avalanche photodiodes (APDs), which are connected to a coincidence counter. This setup is versatile: By keeping HWP1 at 0°, the setup is for HOMI; by rotating HWP1 to 22.5°, the setup can measure NOONI; and by blocking one arm of the delay line (ΔL1), the setup is ready for a one-photon MZI. Therefore, this setup can realize all the models in Fig. 1.

 figure: Fig. 2.

Fig. 2. Experimental setup: M, mirror; QWP, quarter-wave plate; HWP, half-wave plate; PBS, polarization beam splitter; SMF, single-mode fiber; and APD, avalanche photodiode.

Download Full Size | PPT Slide | PDF

The measured interference patterns are shown in Figs. 3(a1)3(c1). The MZI pattern in Fig. 3(a1) is fitted by a Gaussian function with a FWHM of 405 fs and visibility of 97.5±0.5% for the upper and lower envelopes. The HOMI in Fig. 3(b1) has a triangle profile with an FWHM of 4 ps and a visibility of 94.8±0.8%. The NOONI in Fig. 3(c1) is fitted by a triangle function with an FWHM of 202 fs and a visibility of 89.7±2.4%. The uncertainties for the visibility were added by assuming Poissonian statistics of the coincidence counts. Although we can estimate a center frequency of the spectral peak from a fringe period, it is hard to determine the spectral peak position with high accuracy due to the instability of the interferometers over the long accumulation time in the photon-counting measurements. Thus, here we focus on extracting the spectral shape, and just adopt the envelope shape of the interference patterns.

 figure: Fig. 3.

Fig. 3. Time domain interference patterns and their Fourier transformed frequency distribution. The first row shows the experimentally measured interference patterns: (a1) Mach–Zehnder interference pattern, (b1) Hong–Ou–Mandel interference pattern, and (c1) NOON state interference pattern. The visibility and temporal FWHM (Δτ) are shown in each figure. The figures in the second row [(a2), (b2), (c2)] show the corresponding frequency distribution, calculated from the interference patterns (a1), (b1), and (c1) by the Fourier transformation. The spectral FWHM (Δν) is shown in each figure.

Download Full Size | PPT Slide | PDF

Figures 3(a2)3(c2) shows the corresponding frequency distribution, which is calculated from the interference patterns by the Fourier transformation. Figure 3(a2) shows the corresponding spectral information of Fig. 3(a1), with an FWHM of 2.2 THz in frequency. Figure 3(b2) has a sinc2 profile with an FWHM of 0.22 THz in frequency, which is determined by its Fourier transform pair [i.e., the triangle-profile data in Fig. 3(b1)]. Figure 3(c2) also has a Gaussian distribution with an FWHM of 4.4 THz.

Second, we measured the TSI in an experiment using the same setup as reported in previous studies [28,30]. The TSI is measured by using two center-wavelength-tunable bandpass filters (BPF), which have a filter function of Gaussian shape with an FWHM of 0.56 nm and a tunable central wavelength from 1560 nm to 1620 nm [2830]. The two single photon detectors used in this measurement are two InGaAs avalanche photodiode (APD) detectors, which have a quantum efficiency of around 20% with a dark count around 2 kHz. To measure the TSI of the photon pairs, we scanned the central wavelength of the two BPFs, and recorded the coincidence counts. The two BPFs were moved 0.1 nm per step and 60 by 60 steps in all. The coincidence counts were accumulated for 5 s for each point. The measured TSI is shown in Fig. 4(a), and was obtained by scanning two center-wavelength-tunable bandpass filters. The projected spectral distribution onto the x-axis, antidiagonal direction, and diagonal direction are labeled in Fig. 4(a) and in Figs. 4(b)4(d), respectively. The corresponding FWHM values are 18.2 nm (2.18 THz), 1.9 nm (0.23 THz), and 24.6 nm (2.95 THz), respectively.

 figure: Fig. 4.

Fig. 4. Experimental TSI and its projections onto three axes. (a) The experimentally measured two-photon spectral intensity (TSI) of the signal and idler photons from SPDC. The projections of the TSI onto the x-axis (b), antidiagonal axis (c), and diagonal axis (d) are shown. The corresponding FWHM values are 18.2 nm (2.18 THz), 1.9 nm (0.23 THz), and 24.6 nm (2.95 THz), respectively.

Download Full Size | PPT Slide | PDF

Finally, we compared the spectrally measured FWHM values from the TSI data with the FWHM values calculated using e-WKT or WKT in Table 1. The first row in Table 1 shows the Δt, which is the FWHM of the MZI/HOMI/NOONI patterns in Figs. 3(a1)3(c1). The second row shows the corresponding frequency bandwidth in Figs. 3(a2)3(c2), as calculated from interference patterns by Fourier transformation. The third row shows the FWHM of the projection distributions in Figs. 4(b)4(d).

Tables Icon

Table 1. Comparison of the Time Domain Data and Spectral Domain Dataa

The classical WKT is well verified using the data in the first column of Table 1, since the 2.2 THz bandwidth from the MZI data corresponds well with the 2.18 THz bandwidth from the TSI data. The e-WKT values for differential frequency distribution are also well verified using data in the second column. The 0.22 THz bandwidth from the HOMI data corresponds well with the 2.23 THz bandwidth from the TSI data, proving the validity of our theory. The data in the third column also partially verified the e-WKT for the sum frequency distribution, since the 4.4 THz bandwidth from the NOONI data is a little bigger than the 2.95 THz using TSI data. This may have been due to the fact that the InGaAs APDs have a large dark count (around 2 kHz), a low detection efficiency (around 20%) and a strong wavelength dependency of the detection efficiency around 1600 nm. As a result, the large background counts decreased the FWHM along the diagonal-direction in the TSI measurement. The sum frequency bandwidth of 4.4 THz, obtained from e-WKT, is in good agreement with the theoretically expected value. This means that measurement through e-WKT provides accurate spectral information while the direct spectral measurements may suffer from the detector characteristics.

4. DISCUSSION

The e-WKT expressed in Eq. (4) and the traditional WKT [in Eq. (2)] are unified in form. Both the WKT and e-WKT correspond to a one-dimensional Fourier transform, which builds a bridge between the spectral distribution in intensity and time-domain interference patterns. However, the WKT deals with uncorrelated photons, while the e-WKT is used with correlated biphotons. In the e-WKT, the TSI (in intensity, not amplitude) is directly related to the time-domain interference patterns. This feature is of great importance, because there is no need to measure the amplitude information, which is usually phase-sensitive and difficult to measure experimentally.

It should be noted that, in the deduction of the e-WKT in Eq. (4), we assumed the SPDC source had a symmetric distribution [i.e., f(ωs,ωi)=f(ωi,ωs)]. Under this condition, the e-WKT has a simple, elegant form. If this condition is not satisfied, we can overcome the limitation by creating a superposition state, F(ωs,ωi)=f(ωs,ωi)+f(ωi,ωs), which satisfies the exchange symmetry condition. Experimentally, we can realize this condition by placing a nonlinear crystal inside an interferometer as reported [36]. Thus, the exchange symmetry condition for the e-WKT could be mitigated.

We can now answer the question posed in the introduction: It is possible to realize a quantum interferometric spectroscopy that can extract difference- or sum-frequency information between two photons from the time-domain HOMI and NOONI patterns? Based on the classical WKT, it is possible to reconstruct the spectral information of optical pulses by doing MZI. In other words, we built a classical interferometric spectroscopy technology based on WKT. Base in turn on this e-WKT, it is possible to establish quantum interferometric spectroscopy technology, and many promising applications become possible. One immediate application of the e-WKT is for nonlinear spectroscopy at the single photon level, such as for entangled photon generation using an excitonic system [37]. Although exciton physics has been well-studied by classical spectroscopy, a spectral entanglement of photons may contain rich information on excitonic properties, which never extract by classical spectroscopy and allow us to discuss a new type of light–matter interaction. The Fourier transform spectroscopy based on the e-WKT is expected to be a powerful tool for investigating nonlinear light–matter interactions at the single photon level. In the future, we may apply this technique not only for biphotons from condensed matter but also for faint emissions from biological samples.

5. CONCLUSION

We theoretically and experimentally demonstrated an extended Wiener–Khinchin theorem (e-WKT). Unlike classical WKT, which can bridge the time-domain autocorrelation function and frequency-domain spectral intensity by Fourier transform for the classical uncorrelated photons, this theorem, which, to our knowledge, is a new concept, can establish such a bridge for the quantum-correlated biphotons. In other words, the sum- or difference-frequency information between the constituent photons can be extracted from the time-domain HOMI or NOONI patterns. This theorem can be directly applied to quantum spectroscopy, in which the spectral correlation information of biphotons can be obtained from time-domain quantum interference by Fourier transform.

Funding

Research Foundation for Opto-Science and Technology, Hamamatsu, Japan; Educational Department of Hubei Province, China (D20161504); National Natural Science Foundation of China (NSFC) (11704290); Matsuo Foundation, Tokyo, Japan.

Acknowledgment

We thank Zhen-Yu Wang and Wenxian Zhang for helpful discussions.

 

See Supplement 1 for supporting content.

REFERENCES

1. N. Wiener, “Generalized harmonic analysis,” Acta Math. 55, 117–258 (1930). [CrossRef]  

2. A. Khintchine, “Korrelationstheorie der stationären stochastischen prozesse,” Math. Ann. 109, 604–615 (1934).

3. S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic, 2001).

4. P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2007).

5. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987). [CrossRef]  

6. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000). [CrossRef]  

7. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003). [CrossRef]  

8. J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992). [CrossRef]  

9. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992). [CrossRef]  

10. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002). [CrossRef]  

11. J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquie, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779–782 (2006). [CrossRef]  

12. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008). [CrossRef]  

13. P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008). [CrossRef]  

14. R.-B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011). [CrossRef]  

15. V. Ansari, B. Brecht, G. Harder, and C. Silberhorn, “Probing spectral-temporal correlations with a versatile integrated source of parametric down-conversion states,” arXiv:1404.7725 (2014).

16. R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017). [CrossRef]  

17. P. Chen, C. Shu, X. Guo, M. M. T. Loy, and S. Du, “Measuring the biphoton temporal wave function with polarization-dependent and time-resolved two-photon interference,” Phys. Rev. Lett. 114, 010401 (2015). [CrossRef]  

18. T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10, 441–444 (2016). [CrossRef]  

19. R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016). [CrossRef]  

20. K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002). [CrossRef]  

21. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004). [CrossRef]  

22. T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4, 2426 (2013). [CrossRef]  

23. Y. Israel, S. Rosen, and Y. Silberberg, “Supersensitive polarization microscopy using NOON states of light,” Phys. Rev. Lett. 112, 103604 (2014). [CrossRef]  

24. R.-B. Jin, M. Fujiwara, R. Shimizu, R. J. Collins, G. S. Buller, T. Yamashita, S. Miki, H. Terai, M. Takeoka, and M. Sasaki, “Detection-dependent six-photon Holland–Burnett state interference,” Sci. Rep. 6, 36914 (2016). [CrossRef]  

25. M. Bergmann and P. van Loock, “Quantum error correction against photon loss using noon states,” Phys. Rev. A 94, 012311 (2016). [CrossRef]  

26. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002). [CrossRef]  

27. R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford Science Publications, 2000).

28. R. Shimizu and K. Edamatsu, “High-flux and broadband biphoton sources with controlled frequency entanglement,” Opt. Express 17, 16385–16393 (2009). [CrossRef]  

29. N. S. Bisht and R. Shimizu, “Spectral properties of broadband biphotons generated from PPMgSLT under a type-II phase-matching condition,” J. Opt. Soc. Am. B 32, 550–554 (2015). [CrossRef]  

30. R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013). [CrossRef]  

31. F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644–1646 (2004). [CrossRef]  

32. P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010). [CrossRef]  

33. T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express 19, 24434–24447 (2011). [CrossRef]  

34. A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011). [CrossRef]  

35. N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, and R. T. Thew, “Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths,” Opt. Express 22, 17246–17253 (2014). [CrossRef]  

36. O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008). [CrossRef]  

37. K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431, 167–170 (2004). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. N. Wiener, “Generalized harmonic analysis,” Acta Math. 55, 117–258 (1930).
    [Crossref]
  2. A. Khintchine, “Korrelationstheorie der stationären stochastischen prozesse,” Math. Ann. 109, 604–615 (1934).
  3. S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic, 2001).
  4. P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2007).
  5. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref]
  6. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
    [Crossref]
  7. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
    [Crossref]
  8. J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
    [Crossref]
  9. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
    [Crossref]
  10. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
    [Crossref]
  11. J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquie, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779–782 (2006).
    [Crossref]
  12. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
    [Crossref]
  13. P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
    [Crossref]
  14. R.-B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
    [Crossref]
  15. V. Ansari, B. Brecht, G. Harder, and C. Silberhorn, “Probing spectral-temporal correlations with a versatile integrated source of parametric down-conversion states,” arXiv:1404.7725 (2014).
  16. R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017).
    [Crossref]
  17. P. Chen, C. Shu, X. Guo, M. M. T. Loy, and S. Du, “Measuring the biphoton temporal wave function with polarization-dependent and time-resolved two-photon interference,” Phys. Rev. Lett. 114, 010401 (2015).
    [Crossref]
  18. T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10, 441–444 (2016).
    [Crossref]
  19. R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
    [Crossref]
  20. K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002).
    [Crossref]
  21. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004).
    [Crossref]
  22. T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4, 2426 (2013).
    [Crossref]
  23. Y. Israel, S. Rosen, and Y. Silberberg, “Supersensitive polarization microscopy using NOON states of light,” Phys. Rev. Lett. 112, 103604 (2014).
    [Crossref]
  24. R.-B. Jin, M. Fujiwara, R. Shimizu, R. J. Collins, G. S. Buller, T. Yamashita, S. Miki, H. Terai, M. Takeoka, and M. Sasaki, “Detection-dependent six-photon Holland–Burnett state interference,” Sci. Rep. 6, 36914 (2016).
    [Crossref]
  25. M. Bergmann and P. van Loock, “Quantum error correction against photon loss using noon states,” Phys. Rev. A 94, 012311 (2016).
    [Crossref]
  26. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
    [Crossref]
  27. R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford Science Publications, 2000).
  28. R. Shimizu and K. Edamatsu, “High-flux and broadband biphoton sources with controlled frequency entanglement,” Opt. Express 17, 16385–16393 (2009).
    [Crossref]
  29. N. S. Bisht and R. Shimizu, “Spectral properties of broadband biphotons generated from PPMgSLT under a type-II phase-matching condition,” J. Opt. Soc. Am. B 32, 550–554 (2015).
    [Crossref]
  30. R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
    [Crossref]
  31. F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644–1646 (2004).
    [Crossref]
  32. P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
    [Crossref]
  33. T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express 19, 24434–24447 (2011).
    [Crossref]
  34. A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
    [Crossref]
  35. N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, and R. T. Thew, “Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths,” Opt. Express 22, 17246–17253 (2014).
    [Crossref]
  36. O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
    [Crossref]
  37. K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431, 167–170 (2004).
    [Crossref]

2017 (1)

R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017).
[Crossref]

2016 (4)

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

R.-B. Jin, M. Fujiwara, R. Shimizu, R. J. Collins, G. S. Buller, T. Yamashita, S. Miki, H. Terai, M. Takeoka, and M. Sasaki, “Detection-dependent six-photon Holland–Burnett state interference,” Sci. Rep. 6, 36914 (2016).
[Crossref]

M. Bergmann and P. van Loock, “Quantum error correction against photon loss using noon states,” Phys. Rev. A 94, 012311 (2016).
[Crossref]

2015 (2)

N. S. Bisht and R. Shimizu, “Spectral properties of broadband biphotons generated from PPMgSLT under a type-II phase-matching condition,” J. Opt. Soc. Am. B 32, 550–554 (2015).
[Crossref]

P. Chen, C. Shu, X. Guo, M. M. T. Loy, and S. Du, “Measuring the biphoton temporal wave function with polarization-dependent and time-resolved two-photon interference,” Phys. Rev. Lett. 114, 010401 (2015).
[Crossref]

2014 (2)

Y. Israel, S. Rosen, and Y. Silberberg, “Supersensitive polarization microscopy using NOON states of light,” Phys. Rev. Lett. 112, 103604 (2014).
[Crossref]

N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, and R. T. Thew, “Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths,” Opt. Express 22, 17246–17253 (2014).
[Crossref]

2013 (2)

2011 (3)

T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express 19, 24434–24447 (2011).
[Crossref]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref]

R.-B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
[Crossref]

2010 (1)

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[Crossref]

2009 (1)

2008 (3)

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

2006 (1)

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquie, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779–782 (2006).
[Crossref]

2004 (3)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004).
[Crossref]

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431, 167–170 (2004).
[Crossref]

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644–1646 (2004).
[Crossref]

2003 (1)

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

2002 (3)

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[Crossref]

2000 (1)

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref]

1992 (2)

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[Crossref]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[Crossref]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

1934 (1)

A. Khintchine, “Korrelationstheorie der stationären stochastischen prozesse,” Math. Ann. 109, 604–615 (1934).

1930 (1)

N. Wiener, “Generalized harmonic analysis,” Acta Math. 55, 117–258 (1930).
[Crossref]

Abrams, D. S.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref]

Abrams, M. C.

S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic, 2001).

Ansari, V.

V. Ansari, B. Brecht, G. Harder, and C. Silberhorn, “Probing spectral-temporal correlations with a versatile integrated source of parametric down-conversion states,” arXiv:1404.7725 (2014).

Baek, B.

Benichi, H.

Bennink, R. S.

Bergmann, M.

M. Bergmann and P. van Loock, “Quantum error correction against photon loss using noon states,” Phys. Rev. A 94, 012311 (2016).
[Crossref]

Beugnon, J.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquie, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779–782 (2006).
[Crossref]

Bisht, N. S.

Boto, A. N.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref]

Brault, J. W.

S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic, 2001).

Braunstein, S. L.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref]

Brecht, B.

V. Ansari, B. Brecht, G. Harder, and C. Silberhorn, “Probing spectral-temporal correlations with a versatile integrated source of parametric down-conversion states,” arXiv:1404.7725 (2014).

Browaeys, A.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquie, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779–782 (2006).
[Crossref]

Bruno, N.

Buller, G. S.

R.-B. Jin, M. Fujiwara, R. Shimizu, R. J. Collins, G. S. Buller, T. Yamashita, S. Miki, H. Terai, M. Takeoka, and M. Sasaki, “Detection-dependent six-photon Holland–Burnett state interference,” Sci. Rep. 6, 36914 (2016).
[Crossref]

Calkins, B.

Chen, G.-Q.

R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017).
[Crossref]

Chen, P.

P. Chen, C. Shu, X. Guo, M. M. T. Loy, and S. Du, “Measuring the biphoton temporal wave function with polarization-dependent and time-resolved two-photon interference,” Phys. Rev. Lett. 114, 010401 (2015).
[Crossref]

Chiao, R. Y.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[Crossref]

Christ, A.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref]

Collins, R. J.

R.-B. Jin, M. Fujiwara, R. Shimizu, R. J. Collins, G. S. Buller, T. Yamashita, S. Miki, H. Terai, M. Takeoka, and M. Sasaki, “Detection-dependent six-photon Holland–Burnett state interference,” Sci. Rep. 6, 36914 (2016).
[Crossref]

Darquie, B.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquie, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779–782 (2006).
[Crossref]

Davis, S. P.

S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic, 2001).

De Haseth, J. A.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2007).

Dingjan, J.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquie, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779–782 (2006).
[Crossref]

Dorenbos, S.

Dowling, J. P.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref]

Du, S.

P. Chen, C. Shu, X. Guo, M. M. T. Loy, and S. Du, “Measuring the biphoton temporal wave function with polarization-dependent and time-resolved two-photon interference,” Phys. Rev. Lett. 114, 010401 (2015).
[Crossref]

Eckstein, A.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref]

Edamatsu, K.

R.-B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
[Crossref]

R. Shimizu and K. Edamatsu, “High-flux and broadband biphoton sources with controlled frequency entanglement,” Opt. Express 17, 16385–16393 (2009).
[Crossref]

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431, 167–170 (2004).
[Crossref]

K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002).
[Crossref]

Evans, P. G.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[Crossref]

Fattal, D.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Franson, J. D.

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[Crossref]

Fujiwara, M.

R.-B. Jin, M. Fujiwara, R. Shimizu, R. J. Collins, G. S. Buller, T. Yamashita, S. Miki, H. Terai, M. Takeoka, and M. Sasaki, “Detection-dependent six-photon Holland–Burnett state interference,” Sci. Rep. 6, 36914 (2016).
[Crossref]

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

Gerrits, T.

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express 19, 24434–24447 (2011).
[Crossref]

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[Crossref]

Glancy, S.

Grangier, P.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquie, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779–782 (2006).
[Crossref]

Grice, W. P.

Griffiths, P. R.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2007).

Guerreiro, T.

Guo, X.

P. Chen, C. Shu, X. Guo, M. M. T. Loy, and S. Du, “Measuring the biphoton temporal wave function with polarization-dependent and time-resolved two-photon interference,” Phys. Rev. Lett. 114, 010401 (2015).
[Crossref]

Hadfield, R. H.

Harder, G.

V. Ansari, B. Brecht, G. Harder, and C. Silberhorn, “Probing spectral-temporal correlations with a versatile integrated source of parametric down-conversion states,” arXiv:1404.7725 (2014).

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Humble, T. S.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[Crossref]

Ikuta, R.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

Imoto, N.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

Israel, Y.

Y. Israel, S. Rosen, and Y. Silberberg, “Supersensitive polarization microscopy using NOON states of light,” Phys. Rev. Lett. 112, 103604 (2014).
[Crossref]

Itoh, T.

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431, 167–170 (2004).
[Crossref]

K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002).
[Crossref]

Jin, R.-B.

R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017).
[Crossref]

R.-B. Jin, M. Fujiwara, R. Shimizu, R. J. Collins, G. S. Buller, T. Yamashita, S. Miki, H. Terai, M. Takeoka, and M. Sasaki, “Detection-dependent six-photon Holland–Burnett state interference,” Sci. Rep. 6, 36914 (2016).
[Crossref]

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
[Crossref]

R.-B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
[Crossref]

Jing, H.

R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017).
[Crossref]

Jones, M. P. A.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquie, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779–782 (2006).
[Crossref]

Khintchine, A.

A. Khintchine, “Korrelationstheorie der stationären stochastischen prozesse,” Math. Ann. 109, 604–615 (1934).

Klapwijk, T.

Knill, E.

Koashi, M.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

Kobayashi, T.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

Kok, P.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref]

König, F.

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644–1646 (2004).
[Crossref]

Kosaka, H.

R.-B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
[Crossref]

Kuzucu, O.

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
[Crossref]

Kwiat, P. G.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[Crossref]

Lita, A.

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004).
[Crossref]

Loudon, R.

R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford Science Publications, 2000).

Loy, M. M. T.

P. Chen, C. Shu, X. Guo, M. M. T. Loy, and S. Du, “Measuring the biphoton temporal wave function with polarization-dependent and time-resolved two-photon interference,” Phys. Rev. Lett. 114, 010401 (2015).
[Crossref]

Lu, P.-X.

R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017).
[Crossref]

Lundeen, J. S.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[Crossref]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Martin, A.

Matsuda, N.

R.-B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
[Crossref]

Messin, G.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquie, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779–782 (2006).
[Crossref]

Miki, S.

R.-B. Jin, M. Fujiwara, R. Shimizu, R. J. Collins, G. S. Buller, T. Yamashita, S. Miki, H. Terai, M. Takeoka, and M. Sasaki, “Detection-dependent six-photon Holland–Burnett state interference,” Sci. Rep. 6, 36914 (2016).
[Crossref]

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

Mirin, R. P.

Mitsumori, Y.

R.-B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
[Crossref]

Mosley, P. J.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

Nam, S. W.

Nasr, M. B.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

Okamoto, R.

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4, 2426 (2013).
[Crossref]

Ono, T.

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4, 2426 (2013).
[Crossref]

Oohata, G.

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431, 167–170 (2004).
[Crossref]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Ren, C.

R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017).
[Crossref]

Rosen, S.

Y. Israel, S. Rosen, and Y. Silberberg, “Supersensitive polarization microscopy using NOON states of light,” Phys. Rev. Lett. 112, 103604 (2014).
[Crossref]

Saleh, B. E. A.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

Sanguinetti, B.

Santori, C.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Sasaki, M.

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

R.-B. Jin, M. Fujiwara, R. Shimizu, R. J. Collins, G. S. Buller, T. Yamashita, S. Miki, H. Terai, M. Takeoka, and M. Sasaki, “Detection-dependent six-photon Holland–Burnett state interference,” Sci. Rep. 6, 36914 (2016).
[Crossref]

R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
[Crossref]

Schaake, J.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[Crossref]

Sergienko, A. V.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

Shapiro, J. H.

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[Crossref]

Shimizu, R.

R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017).
[Crossref]

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

R.-B. Jin, M. Fujiwara, R. Shimizu, R. J. Collins, G. S. Buller, T. Yamashita, S. Miki, H. Terai, M. Takeoka, and M. Sasaki, “Detection-dependent six-photon Holland–Burnett state interference,” Sci. Rep. 6, 36914 (2016).
[Crossref]

N. S. Bisht and R. Shimizu, “Spectral properties of broadband biphotons generated from PPMgSLT under a type-II phase-matching condition,” J. Opt. Soc. Am. B 32, 550–554 (2015).
[Crossref]

R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
[Crossref]

R.-B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
[Crossref]

R. Shimizu and K. Edamatsu, “High-flux and broadband biphoton sources with controlled frequency entanglement,” Opt. Express 17, 16385–16393 (2009).
[Crossref]

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431, 167–170 (2004).
[Crossref]

K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002).
[Crossref]

Shu, C.

P. Chen, C. Shu, X. Guo, M. M. T. Loy, and S. Du, “Measuring the biphoton temporal wave function with polarization-dependent and time-resolved two-photon interference,” Phys. Rev. Lett. 114, 010401 (2015).
[Crossref]

Silberberg, Y.

Y. Israel, S. Rosen, and Y. Silberberg, “Supersensitive polarization microscopy using NOON states of light,” Phys. Rev. Lett. 112, 103604 (2014).
[Crossref]

Silberhorn, C.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

V. Ansari, B. Brecht, G. Harder, and C. Silberhorn, “Probing spectral-temporal correlations with a versatile integrated source of parametric down-conversion states,” arXiv:1404.7725 (2014).

Smith, B. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

Solomon, G. S.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Steinberg, A. M.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[Crossref]

Stevens, M. J.

Takeoka, M.

R.-B. Jin, M. Fujiwara, R. Shimizu, R. J. Collins, G. S. Buller, T. Yamashita, S. Miki, H. Terai, M. Takeoka, and M. Sasaki, “Detection-dependent six-photon Holland–Burnett state interference,” Sci. Rep. 6, 36914 (2016).
[Crossref]

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

Takeuchi, S.

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4, 2426 (2013).
[Crossref]

Teich, M. C.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

Terai, H.

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

R.-B. Jin, M. Fujiwara, R. Shimizu, R. J. Collins, G. S. Buller, T. Yamashita, S. Miki, H. Terai, M. Takeoka, and M. Sasaki, “Detection-dependent six-photon Holland–Burnett state interference,” Sci. Rep. 6, 36914 (2016).
[Crossref]

Thew, R. T.

U’Ren, A. B.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

van Loock, P.

M. Bergmann and P. van Loock, “Quantum error correction against photon loss using noon states,” Phys. Rev. A 94, 012311 (2016).
[Crossref]

Vuckovic, J.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Wakabayashi, R.

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

Wakui, K.

Walmsley, I. A.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

Wasylczyk, P.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

Wiener, N.

N. Wiener, “Generalized harmonic analysis,” Acta Math. 55, 117–258 (1930).
[Crossref]

Williams, C. P.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref]

Wong, F. N. C.

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
[Crossref]

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644–1646 (2004).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[Crossref]

Yamamoto, T.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

Yamamoto, Y.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

Yamashita, T.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

R.-B. Jin, M. Fujiwara, R. Shimizu, R. J. Collins, G. S. Buller, T. Yamashita, S. Miki, H. Terai, M. Takeoka, and M. Sasaki, “Detection-dependent six-photon Holland–Burnett state interference,” Sci. Rep. 6, 36914 (2016).
[Crossref]

Yasui, S.

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

Zhang, J.

R.-B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
[Crossref]

Zhao, P.

R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017).
[Crossref]

Zijlstra, T.

Zwiller, V.

Acta Math. (1)

N. Wiener, “Generalized harmonic analysis,” Acta Math. 55, 117–258 (1930).
[Crossref]

Appl. Phys. Lett. (1)

F. König and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644–1646 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Math. Ann. (1)

A. Khintchine, “Korrelationstheorie der stationären stochastischen prozesse,” Math. Ann. 109, 604–615 (1934).

Nat. Commun. (1)

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4, 2426 (2013).
[Crossref]

Nat. Photonics (1)

T. Kobayashi, R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, “Frequency-domain Hong–Ou–Mandel interference,” Nat. Photonics 10, 441–444 (2016).
[Crossref]

Nature (3)

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002).
[Crossref]

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquie, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779–782 (2006).
[Crossref]

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431, 167–170 (2004).
[Crossref]

New J. Phys. (1)

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[Crossref]

Opt. Express (4)

Phys. Rev. A (6)

M. Bergmann and P. van Loock, “Quantum error correction against photon loss using noon states,” Phys. Rev. A 94, 012311 (2016).
[Crossref]

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
[Crossref]

R.-B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A 83, 031805 (2011).
[Crossref]

R.-B. Jin, G.-Q. Chen, H. Jing, C. Ren, P. Zhao, R. Shimizu, and P.-X. Lu, “Monotonic quantum-to-classical transition enabled by positively correlated biphotons,” Phys. Rev. A 95, 062341 (2017).
[Crossref]

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[Crossref]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[Crossref]

Phys. Rev. Lett. (10)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).
[Crossref]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

P. Chen, C. Shu, X. Guo, M. M. T. Loy, and S. Du, “Measuring the biphoton temporal wave function with polarization-dependent and time-resolved two-photon interference,” Phys. Rev. Lett. 114, 010401 (2015).
[Crossref]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett. 100, 133601 (2008).
[Crossref]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref]

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105, 253601 (2010).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[Crossref]

Y. Israel, S. Rosen, and Y. Silberberg, “Supersensitive polarization microscopy using NOON states of light,” Phys. Rev. Lett. 112, 103604 (2014).
[Crossref]

K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002).
[Crossref]

Quantum Sci. Technol. (1)

R.-B. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Sci. Technol. 1, 015004 (2016).
[Crossref]

Sci. Rep. (1)

R.-B. Jin, M. Fujiwara, R. Shimizu, R. J. Collins, G. S. Buller, T. Yamashita, S. Miki, H. Terai, M. Takeoka, and M. Sasaki, “Detection-dependent six-photon Holland–Burnett state interference,” Sci. Rep. 6, 36914 (2016).
[Crossref]

Science (1)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004).
[Crossref]

Other (4)

R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford Science Publications, 2000).

V. Ansari, B. Brecht, G. Harder, and C. Silberhorn, “Probing spectral-temporal correlations with a versatile integrated source of parametric down-conversion states,” arXiv:1404.7725 (2014).

S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic, 2001).

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2007).

Supplementary Material (1)

NameDescription
» Supplement 1       supplementary Information

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Model of the experimental setup. (a) Mach–Zehnder interferometer (MZI), (b) Hong–Ou–Mandel interferometer (HOMI), and (c) NOON-state interferometer (NOONI). s and i indicate the signal and idler photons. Both the signal and idler photons from SPDC are used for HOMI and NOONI, while only the signal photons are used for MZI.
Fig. 2.
Fig. 2. Experimental setup: M, mirror; QWP, quarter-wave plate; HWP, half-wave plate; PBS, polarization beam splitter; SMF, single-mode fiber; and APD, avalanche photodiode.
Fig. 3.
Fig. 3. Time domain interference patterns and their Fourier transformed frequency distribution. The first row shows the experimentally measured interference patterns: (a1) Mach–Zehnder interference pattern, (b1) Hong–Ou–Mandel interference pattern, and (c1) NOON state interference pattern. The visibility and temporal FWHM (Δτ) are shown in each figure. The figures in the second row [(a2), (b2), (c2)] show the corresponding frequency distribution, calculated from the interference patterns (a1), (b1), and (c1) by the Fourier transformation. The spectral FWHM (Δν) is shown in each figure.
Fig. 4.
Fig. 4. Experimental TSI and its projections onto three axes. (a) The experimentally measured two-photon spectral intensity (TSI) of the signal and idler photons from SPDC. The projections of the TSI onto the x-axis (b), antidiagonal axis (c), and diagonal axis (d) are shown. The corresponding FWHM values are 18.2 nm (2.18 THz), 1.9 nm (0.23 THz), and 24.6 nm (2.95 THz), respectively.

Tables (1)

Tables Icon

Table 1. Comparison of the Time Domain Data and Spectral Domain Dataa

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P1(τ)=12[1+dω|f1(ω)|2cos(ωτ)],
F1(ω)|f1(ω)|2=12πdτG1(τ)eiωτ,
P2±(τ)=12[1±dωsdωi|f2(ωs,ωi)|2cos[(ωs±ωi)τ]],
F2±(ω±)=12πdτG2±(τ)eiω±τ,

Metrics