Abstract

While compact and low-loss optical coupling to ultrahigh-quality-factor (Q) crystalline resonators is important for a wide range of applications, the major challenge for achieving this coupling stems from the relatively low refractive index of the crystalline resonator host material compared to those of the standard waveguide coupling materials. We report the first demonstration of a single-mode waveguide structure (prism-waveguide coupler) integrated on a low-loss compact silicon nitride platform resulting in low-loss and efficient coupling to magnesium fluoride crystalline resonators by achieving the phase-matched and the mode-matched evanescent wave coupling. The coupling is characterized with 1 dB loss at 1550 nm wavelength. We further present a photonic integrated chip containing a pair of waveguides successfully coupling light into and out of the resonator, demonstrating a planar-waveguide-coupled crystalline resonator with a loaded Q of 1.9×109. We assemble this waveguide-coupled resonator and a distributed-feedback-laser chip into a butterfly package to realize a miniature Kerr optical frequency comb source using self-injection locking of the distributed feedback laser to the waveguide-coupled crystalline resonator.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Kerr optical frequency combs [15], based on high-Q whispering-gallery-mode (WGM) resonators [610], have significantly stimulated the applications in optical clocks, optical synthesis, optical communications, optical sensing, cavity quantum electrodynamics, and precision navigation [1119]. Dielectric resonators on various platforms (e.g., silica, silicon nitride, lithium niobate) have been monolithically integrated with on-chip waveguides, achieving loaded Q as high as 100 million [2025]. On the other hand, crystalline resonators [26,27], suffering less from intrinsic and surface Rayleigh scattering, reported with record high-Q of 300 billion [28], have not yet been implemented with low-loss on-chip optical couplers. Such optical coupling to crystalline resonators should be based on a phase- and mode-matched power exchange between a resonator mode and a wave propagating in a specially engineered coupler (a waveguide or a prism). An ideal coupler should ensure phase synchronization, the optimal spatial overlap between the resonator and the coupler modes, mode selectivity, and criticality of the coupling [2931]. Mode selectivity is important for multi-mode structures as it allows interaction with a particular mode without disturbing the other modes of the structure. Previous demonstrations of optical coupling to ultrahigh-Q crystalline resonators utilized either free-space prisms, angle-cut fibers, or tapered fibers, suffering from the complexity of implementation onto a photonic platform that frequently calls for an active optical alignment [3235]. Primary challenges have been the material incompatibility between the crystalline resonator and the commonly used photonic platforms (e.g., silicon nitride, silica, silicon) [36,37], the low refractive index (e.g., 1.37) of the typical crystalline resonator [e.g., magnesium fluoride (MgF2)] compared to that of the conventional waveguide materials at telecommunication bands (e.g., 1.98 for silicon nitride, 3.48 for silicon), and the incompatible fabrication processes between traditional photonic platforms and the mechanically polished crystalline resonators.

Planar optical coupling is proved to be a robust and practical approach to implement WGM resonators with on-chip waveguides [3841]. Specifically, on-chip waveguides have been vertically coupled to crystalline resonators providing loaded Q exceeding 108 [4244]. In this work, we exploit the principle of evanescent wave coupling under total internal reflection (TIR) condition in traditional prism elements [4548] and demonstrate, for the first time to our knowledge, a compact prism-waveguide coupler on a silicon nitride platform. This prism-waveguide coupler laterally couples light into and out of an ultrahigh-Q crystalline MgF2 resonator with 1 dB loss and 1.9×109 loaded Q, realizing a new method for integration between crystalline resonators and on-chip waveguides [49]. We further present a packaged module containing the prism-waveguide-coupled ultrahigh-Q MgF2 resonator to generate a stable and low-noise optical frequency comb at the 26 GHz repetition rate.

2. DESIGN AND SIMULATIONS

A. Ultrahigh-QMgF2 Resonator

We used MgF2 resonators [shown in Fig. 1(a)] with an intrinsic finesse of one million following the fabrication technique in the Method section. MgF2 is characterized with excellent mechanical stability, relatively large hardness, as well as high optical transparency. The anomalous group velocity dispersion (GVD) at the communications band and a small thermo-refractive constant of this material are optimal for generation of optical mode-locked Kerr frequency combs. The anomalous GVD phase matches the nonlinear process. The small thermo-refractive constant increases the threshold of low-frequency thermo-optical instabilities, which often hinders mode locking of the comb harmonics.

 figure: Fig. 1.

Fig. 1. (a) Camera photo of a transparent ultrahigh-Q MgF2 resonator on the holding pedestal. (b) Geometric dimension of the cross-section view of a half-resonator with 1330 μm radius, 150 μm height, and 20-μm-high wedge region for the WGM shown in red.

Download Full Size | PPT Slide | PDF

Figures 1(a) and 1(b) show the photograph and the design of the resonator fabricated for the Kerr frequency comb oscillator. The final diameter and thickness of the resonator were 2.66 mm and 150 μm, respectively. Thickness (20 μm) of the mode localization area was designed for a 10μm×15μm wedge-shaped WGM profile [simulation shown in Fig. 2(a)] for an optimal mode matching toward the prism-waveguide coupler mode. The loaded Q-factor was measured using the ring-down technique [28]. The fabricated resonator was coupled nearly critically using a standard BK7 prism coupler to measure its Q-factor. The measured amplitude ring-down time was τ=10μs [shown in Fig. 2(b)] at the 1.55 μm wavelength, which corresponds to 6×109 loaded Q-factor.

 figure: Fig. 2.

Fig. 2. (a) Lowest-order WGM profile within the resonator with approximate 10μm×15μm (xaxis×yaxis) mode size. (b) Ring-down measurement of the resonator indicating intrinsic Q-factor of 6×109.

Download Full Size | PPT Slide | PDF

B. Prism-Waveguide Couplers

The Si3N4 material platform on silicon is attractive because of its relatively low loss and compact size, convenient for further integration of the laser and photodiode chips [5055]. In designing the Si3N4/SiO2 waveguide platform suitable for the coupling to an ultrahigh-Q MgF2 resonator, we considered the waveguide mode size and propagation loss as the most important parameters. The waveguide mode size at the interaction area [at the reflection normal line shown in Fig. 3(a)] should match that of the WGM [shown in Fig. 2(a)] in the resonator to maximize the mode overlap integral and thus reduce the coupling loss resulting from mode mismatch. Si3N4 waveguide core thickness at 50 nm has the lowest mode-confinement factor (below 5%) at the core region compare to those with thicker cores, providing the largest mode size to match the designed resonator mode (10μm×15μm). Besides, ultralow propagation loss has been achieved with a Si3N4 waveguide platform with core thickness around 50 nm [56,57] utilizing wafer bonding and high-temperature annealing. We directly deposited a thick SiO2 over-cladding layer via the low-pressure chemical vapor deposition technique, which is free of the complexity arising from wafer bonding. (Fabrication details are shown in Section 3 (Methods).

 figure: Fig. 3.

Fig. 3. (a) Geometric configuration of prism-waveguide couplers maintaining phase synchronized coupling toward the resonator (used in FDTD simulation): G denotes the gap distance between the photonic integrated chip (PIC) and resonator; D denotes the distance between the tip of prism-waveguide coupler and the reflection surface normal; d denotes the distance between the tip of the prism-waveguide coupler and the edge of PIC; tw denotes the tip core width; θ denotes the reflection angle; L denotes the length of the taper structure. (b) Testing PIC (10mm×4.5mm) containing individual prism-waveguide couplers with variations in θ, d, and tw. (c) PIC (3.6mm×0.42mm) containing a pair of prism-waveguide couplers (single prism-waveguide coupler with the best performance tested through mask shown in (b) and an end-to-end waveguide for alignment assistance). (d) Add–drop resonator system, analogy to our testing setup for single prism-waveguide coupler: bottom red dashed rectangular region represents prism-waveguide-to-resonator coupling area with self-coupling ratio r1, cross-coupling ratio k1, and additional loss γ; top red dashed rectangular region represents free-space prism to resonator coupling area with self-coupling ratio r2, cross-coupling ratio k2, and no additional loss (ideal prism) (e) The semi-numerical simulation results of the drop port transmission power at different gap values [G in (a)] between the prism-waveguide chip and the resonator at 1550 nm.

Download Full Size | PPT Slide | PDF

The mode shape of the single-mode 50-nm-thick Si3N4 core waveguide (6 μm in width) is approximately 5μm×2μm, much smaller and elongated compared to that of the WGM in the resonator. Thus, we utilized the 200-μm-long adiabatic taper structure [shown in green in Fig. 3(a)] to expand the mode to nearly a round shape with approximately 10 μm diameter where the waveguide core width tapers down to 200 nm, which is close to the resolution of the lithography tool used in the fabrication process. This achieves nearly ideal mode-matching to the fundamental WGM in the resonator. We determined the 200 μm length to be the optimized adiabatic length for the taper structure by simulating the output power to preserve near 100% power transmission. The adiabatic taper structure also ensures the single-mode power transmission to provide better mode coupling selectivity toward the lowest-order WGM within the resonator compared to traditional free-space prisms that excite multimodes at the reflection surface.

To satisfy the prism-like evanescent wave coupling toward the resonator under the TIR condition, we selected a specific incident angle [θ, defined as an angle formed by the reflection surface normal and the center-line of the prism-waveguide coupler tip, shown in Fig. 3(a)] to fulfill the phase-matching condition at the chip–air interface. The effective index of the optical mode out of the prism-waveguide coupler tip is close to that of the SiO2 cladding material (nwaveguide=1.44) at 1.55 μm wavelength, and the effective index of the fundamental WGM inside the resonator is approximately 1.37 (nresonator=1.37). The analytical phase-matching condition for evanescent coupling requires that the propagation constant of the optical mode inside the resonator matches that of the prism-waveguide coupler tip along the lateral direction at the reflection surface; this leads to a relationship: θ=arcsin(nresonator/nwaveguide). Thus the angle value is calculated to be approximately 71.5°. The TIR condition is automatically satisfied at this reflection angle, since the TIR critical angle for the material is 44°.

Figures 3(a) and 3(d) explain the model we used for numerical simulation of our prism-waveguide coupling system (see Supplement 1). The first step shown in Fig. 3(a) presents the finite-difference time-domain (FDTD) simulation setup at the coupling region from the prism-waveguide toward the resonator. We used an estimated-channel MgF2 waveguide ring resonator to represent the ultrahigh-Q wedge disk resonator used in the experiment with a similar mode shape (10μm×15μm) and kept the incident angle to be 71.5°. The air-gap distance [value G in Fig. 3(a)] between the prism-waveguide chip and the resonator is the most critical parameter to determine the self-coupling coefficient (r1) and the cross-coupling coefficient (k1) in the coupling region. The critical coupling condition for an add–drop resonator system [Fig. 3(d)] (our measurement setup analogy) requires r2a=r1, where a denotes the single-trip amplitude transmission coefficient within the resonator. The a value of our ultrahigh-Q MgF2 resonator is close to 1 (ultralow scattering loss), which requires the gap value (G) to be finely tuned until the k1 value is close to 0 to maintain critical coupling. The simulated results from Fig. 3(a) are used in the stable-state add–drop resonator model [58] shown in Fig. 3(d) to further derive the transmitted power at the drop port, assuming no loss at the second coupling region (free-space prism in our experiment). Figure 3(e) shows the normalized transmission power simulated at the drop port of the system utilizing prism-waveguide couplers for the ultrahigh-Q MgF2 resonator. We could achieve the maximum transmission at the center wavelength at the gap value around 1 μm, which confirmed our expectation and the principle for prism-waveguide evanescent wave coupling to ultrahigh-Q crystalline resonators.

We taped out the first type of single prism-waveguide mask shown in Fig. 3(b) with variations in the incidence angle (θ), distance (d) between the tip of the single prism-waveguide and the edge of the chip, and the prism-waveguide tip width (tw) to mitigate the fabrication inaccuracy. Furthermore, to facilitate the power out-coupling from the resonator, we designed the second type of the paired prism-waveguide coupler masks [shown in Fig. 3(c)] containing mirror-positioned single prism-waveguide couplers (with the best configuration tested shown in the following Results section) with separation distance (2D) based on a trigonometric relationship between the incidence angle (θ) and the distance (d). This separation distance is set to achieve the best phase-matching condition between both prism-waveguide coupler arms with the resonator. The combination of both input and output prism-waveguide couplers should function as a single free-space prism element for the specific crystalline resonator. Besides, we particularly made the input/output beam angle of this paired prism-waveguide couplers PIC to be 20° to suppress the surface reflection at the input edge for achieving self-injection locking [59,60] toward a distributed feedback (DFB) laser chip using Rayleigh scattered light from the resonator.

3. METHODS

A. Ultrahigh-Q Magnesium Fluoride Resonator Fabrication Technique

We start with a high-quality crystalline MgF2 wafer and produce a thin cylindrical preform. The crystalline cylinder is then ground using a diamond slurry. The shape of the surface is set to be optimal for the waveguide platform (Si3N4) that the resonator is intended for. We have achieved ultrahigh finesse by careful selection of the parameters that control the mechanical shaping of the resonator utilizing the algorithm best for MgF2 at the specific crystal cut. The control of the surface quality is achieved when no Rayleigh scattering in the resonator is observed. Electron microscopy tests show that in this case, the roughness of the resonator surface is of the order of a crystalline lattice period.

B. Prism-Waveguide Coupler Fabrication Technique

Figure 4(a) illustrates the important fabrication steps for the prism-waveguide coupler PICs [Figs. 3(b) and 3(c)] using ASML 5500/300 DUV lithography tool on 6 in. (150 mm) p-type silicon wafers. We started with depositing 5-μm- thick low-temperature-oxide (LTO) at 450°C by low-pressure chemical vapor deposition (LPCVD) as the Si3N4 waveguide bottom cladding. We then deposited 50-nm-thick stoichiometric Si3N4 at 800°C by LPCVD as the waveguide core [shown in step 1 in Fig. 4(a)]. We defined the alignment marks for facet etching process on the Si3N4 layer followed by step 2 in Fig. 4(a) to pattern the Si3N4 waveguide core by inductively coupled plasma (ICP) etching. Another 5-μm-thick LTO oxide was deposited as the waveguide overcladding in step 3 in Fig. 4(a). We deposited 500-nm-thick amorphous silicon (a-Si) by LPCVD as the hard mask for facet etching through a 10-μm-thick SiO2 layer together with a 150-μm-thick silicon substrate. We performed lithography on 5-μm-thick DUV photoresist for the assistance of facet deep etching. In step 4 in Fig. 4(a), we conducted a xenon difluoride (XeF2) etching to remove an approximately 30-μm-thick silicon substrate underneath the tip of the prism-waveguide couplers [transparent regions in Fig. 4(b)]. Finally, dicing with ±5μm accuracy using a diamond saw was performed on the wafer to shape PICs into the exact 0.5mm×4mm rectangular die [Fig. 4(b)] to facilitate coupling to the resonator in a compact platform.

 figure: Fig. 4.

Fig. 4. (a) Important fabrication steps: 1. Si3N4 LPCVD deposition; 2. Si3N4 waveguide core patterning; 3. SiO2 overcladding deposition; 4. PIC facet deep etching followed by XeF2 release of substrate silicon at PIC edge. (b) Fabricated PIC picture at left, center, and right position based on mask shown in Fig. 3(c).

Download Full Size | PPT Slide | PDF

4. RESULTS

A. Demonstration of Single Prism-Waveguide Coupled to Ultrahigh-QMgF2 Resonator

We finalized the PIC facet by deep etching through the cladding material (SiO2) and 150 μm deep into the silicon substrate followed by an isotropic XeF2 etching, which removes the silicon substrate from the tip of the prism-waveguide coupler to avoid resonator WGM coupling into the high-refractive-index silicon substrate. We measured the transmission spectrum of the resonator using a tunable narrow linewidth laser. The resonator was overloaded, and the measurement had shown that the loaded Q-factor was on the order of a billion [Fig. 5(b)]. The transmission loss through the resonator did not exceed 3 dB. The low insertion loss suggests that the Q-factor of the resonator did not degrade noticeably during the packaging procedure. To evaluate the performance of the designed single prism-waveguide couplers, we prepared a setup [shown in Fig. 5(a)] allowing us to (1) estimate the efficiency of waveguide insertion; (2) qualify the waveguide transmission loss; (3) couple light into WGM of the resonator from the prism-waveguide coupler; (4) couple light out of WGM using a conventional prism; (5) measure the full power exiting the WGM; and (6) deconstruct the overall transmission loss of the full optical train, and estimate the efficiency of coupling between the prism-waveguide coupler to the WGM in the resonator. The insert in Fig. 5(a) depicts the actual interface between the angled tip of the prism-waveguide coupler and the adjacent MgF2 resonator. Light delivered by a single-mode fiber (SMF-28) was collimated and focused using Thorlabs aspheric lenses C230 and C280 with focal distances approximate 9 mm and 18 mm, respectively; the resulting system formed the focal spot with a full width at 1/e2 diameter of approximate 5 μm, well matched to the input mode of the silicon nitride waveguide. We used a straight waveguide [green straight line in Fig. 5(a)] to assess the insertion loss by comparing the optical power output of the waveguide (with light collected using integrating sphere), to the optical power in the input fiber. This comparison yielded the value of the overall insertion loss between the fiber and the output beam of the waveguide at the level 3.8 dB; this value included residual reflections, modal mismatches, and waveguide propagation losses. After that, the input launcher optics were aligned to send the light into the prism-waveguide coupler [green curved line shown in Fig. 5(a)]. The MgF2 resonator was positioned in the proximity of the waveguide chip edge with angled waveguide tips, and adjusted using Thorlabs NanoMax 302 three-axis translation stage with additional lead zirconate titanate (PZT) drives. An identical translation stage was used to bring the conventional glass coupling prism to couple the light out of the WGM of the resonator. The light exiting the prism was intercepted by a large area multimode fiber [“light pipe” in Fig. 5(a)] and sent into a photodetector for observation of the WGM, measurement of the loaded Q-factor using a tunable laser at 1550 nm (New Focus Velocity 6302), and evaluation of transmission losses. To validate the symmetry of input and output coupling, an additional optical launcher [“WG Launcher 2” in Fig. 5(a)] was used to match the WGM field at the TIR surface of the prism. By varying and equalizing the two gaps, we maximized the optical throughput of the setup and estimated the transmission loss of the prism-waveguide-to-resonator-to-outcoupling prism as a function of loaded bandwidth. The latter has been measured using calibration of the laser sweep assisted by a fiber interferometer. We measured the minimum coupling loss of 1 dB at a heavily loaded bandwidth of 3.2 MHz via the best single prism-waveguide coupler with the following geometric specs: incident angle θ=71.5°, distance d=2μm, and prism-waveguide tip width tw=200nm. While the intrinsic unloaded bandwidth of resonator, measured shown in Fig. 5(b), was 100 KHz (Q near 1.9 billion at 1.55 μm wavelength).

 figure: Fig. 5.

Fig. 5. (a) Measurement setup for single prism-waveguide coupler and straight calibration waveguides (shown in green lines). The insert is the microscope picture of the fabricated chip containing prism-waveguide couplers aligned to a resonator where silicon substrate released region [step 4 in Fig. 4(a)] is shown in blue dotted rectangle. (b) Normalized transmitted power received at the light pipe from (a) in weak loading regime, indicating the unloaded bandwidth of 100 kHz, Q-factor 1.9×109.

Download Full Size | PPT Slide | PDF

B. Demonstration of Prism-Waveguide-Assisted Optical Injection Locking of DFB Laser to Resonator

As the next step in the experimental evaluation of our novel prism-waveguide coupling system for MgF2 resonators, we performed and evaluated parameters of optical injection locking of a DFB laser. This was considered a crucial step to achieve waveguide-based optical frequency comb generator based on the ultrahigh-Q MgF2 resonator. To validate the quality of the coupler, we created an external DFB semiconductor laser utilizing the self-injection locking method for locking the laser to the WGM resonator [61,62]. The coupler loss impacts the back scattering significantly because it limits the amount of light both entering the mode and exiting the mode in the direction of the laser. To demonstrate the self-injection locking we used the setup depicted in Fig. 6, in which MgF2 resonator (1 in Fig. 6) was simultaneously coupled to two single prism-waveguide coupler chips (2 and 3 in Fig. 6). The best prism-waveguide coupler in PIC (2 in Fig. 6) was coupled to the powered DFB laser assembly (4 in Fig. 6) (Emcore 702) equipped with a two-lens beam transformer that provides mode matching between the laser beam and the waveguide mode. The focused DFB laser assembly was suspended on a mechanical extender tip mounted on the micro-positioner for active alignment. The second, weakly coupled, prism-waveguide PIC (3 in Fig. 6) was used for tapping the light output of the resonator, and a light pipe (5 in Fig. 6) was used for collection and transferring the light to the photodetector. An additional light pipe was used to monitor the input coupling at the reflection port of the first prism-waveguide coupler. With proper alignment and optimally chosen gaps, optical injection locking was achieved with optical resonance feedback from the resonator, and a locking range of 5 GHz was obtained with our prism-waveguide coupler. This observation confirmed the high quality of the prism-waveguide coupler, as the locking is usually not observed if the coupler loss exceeds 5 dB. These parameters are similar to those obtained in existing WGM-resonator-stabilized injection-locked lasers that use free-space optics and prism couplers [62].

 figure: Fig. 6.

Fig. 6. Photograph of the injection-locking setup illustrating two chips containing single prism-waveguide coupler implemented to a resonator. (1) is the resonator, (2) and (3) are the prism-waveguide coupler PIC, (4) and (5) are fiber launchers.

Download Full Size | PPT Slide | PDF

C. Demonstration of Packaged Kerr Frequency Comb Source via Paired Prism-Waveguide Couplers

Based on the successful demonstration of laser injection locking with the MgF2 resonator via single prism-waveguide coupler PICs, we followed the design shown in Fig. 3(c) and the fabrication process in Section 3 (Methods) to deliver the paired prism-waveguide couplers PIC using the best single prism-waveguide coupler configuration tested above. Figure 4(b) shows photographs taken with the aid of a microscope of the fabricated 0.5mm×3.8mm paired prism-waveguide coupler PIC. The silicon substrate was removed (shown in the light-colored region around the PIC) to avoid unnecessary WGM power leakage. Figure 7(a) depicts the configuration of the packaged comb unit based on paired prism-waveguide coupler PIC coupling toward the MgF2 resonator. The PIC was rotated 20° to eliminate the input facet reflection for a stable laser injection-locking condition. A Kerr optical frequency comb is generated in the resonator when the laser light is efficiently coupled to the WGM, the power of the light exceeds the comb generation threshold, and the frequency of the pump is locked to the mode of the resonator. We increased the laser current to approximately 80 mA for self-injection locking with a WGM. Figures 7(b) and 7(c) show the schematic illustration and the actual photograph of the packaged Kerr frequency comb unit. The frequency comb was observed when the detuning value was properly selected and phase adjusted for positive optical feedback. The 26 GHz optical frequency comb was observed using an optical spectrum analyzer [Fig. 7(d)]. After confirmation of the optimal optical comb regime, the light was sent to a high-speed photodetector (U2t V2140), where we observed generation of a spectrally pure RF signal confirming coherence of the optical comb harmonics and utility of the device as a packaged photonic source of low-phase-noise microwave signals.

 figure: Fig. 7.

Fig. 7. (a) 3D schematic illustration of paired-prism-waveguide couplers coupled to the resonator for comb generation. (b) Illustration of the packaged Kerr frequency comb source. (c) Photo of packaged planar-waveguide coupled comb source. (d) Representative Kerr frequency comb output from the package.

Download Full Size | PPT Slide | PDF

5. CONCLUSION

We have demonstrated the first on-chip prism-waveguide couplers on a compact silicon nitride platform for phase- and mode-matched evanescent coupling to a low-index ultrahigh-Q crystalline resonator. This prism-waveguide-coupled MgF2 resonator achieves 1.9 billion loaded Q-factor with 1 dB coupling loss. We further realized a packaged planar-waveguide-coupled Kerr optical frequency comb source at 26 GHz repetition rate where the laser chip was self-injection-locked to this prism-waveguide-coupled MgF2 resonator.

Funding

Defense Advanced Research Projects Agency (DARPA) (HR0011-15-C-0054); National Aeronautics and Space Administration (NASA) Small Business Technology Transfer (STTR) (NNX17CC66P).

Acknowledgment

We acknowledge fabrication support from the Marvell Nanofabrication Laboratory (Berkeley, CA) and Center for Nano-MicroManufacturing (Davis, CA).

 

See Supplement 1 for supporting content.

REFERENCES

1. W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015). [CrossRef]  

2. T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011). [CrossRef]  

3. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013). [CrossRef]  

4. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007). [CrossRef]  

5. V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016). [CrossRef]  

6. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004). [CrossRef]  

7. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef]  

8. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006). [CrossRef]  

9. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006). [CrossRef]  

10. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003). [CrossRef]  

11. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014). [CrossRef]  

12. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008). [CrossRef]  

13. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014). [CrossRef]  

14. J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010). [CrossRef]  

15. B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–3982014. [CrossRef]  

16. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014). [CrossRef]  

17. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014). [CrossRef]  

18. S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002). [CrossRef]  

19. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008). [CrossRef]  

20. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010). [CrossRef]  

21. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010). [CrossRef]  

22. D. T. Spencer, J. F. Bauters, M. J. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1, 153–157 (2014). [CrossRef]  

23. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017). [CrossRef]  

24. P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011). [CrossRef]  

25. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009). [CrossRef]  

26. I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006). [CrossRef]  

27. I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006). [CrossRef]  

28. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007). [CrossRef]  

29. D. Farnesi, G. C. Righini, A. Barucci, S. Berneschi, F. Chiavaioli, F. Cosi, S. Pelli, S. Soria, C. Trono, D. Ristic, M. Ferrari, and G. Nunzi Conti, “Coupling light to whispering gallery mode resonators,” Proc. SPIE 9133, 913314 (2014). [CrossRef]  

30. S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003). [CrossRef]  

31. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999). [CrossRef]  

32. D. Rowland and J. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” IEE Proc. J. 140, 177–188 (1993). [CrossRef]  

33. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000). [CrossRef]  

34. V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett. 24, 723–725 (1999). [CrossRef]  

35. L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5, 728–730 (2011). [CrossRef]  

36. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on silicon chip,” Nature 431, 1081–1084 (2004). [CrossRef]  

37. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013). [CrossRef]  

38. B. Little, J.-P. Laine, D. Lim, H. Haus, L. Kimerling, and S. Chu, “Pedestal antiresonant reflecting waveguides for robust coupling to microsphere resonators and for microphotonic circuits,” Opt. Lett. 25, 73–75 (2000). [CrossRef]  

39. T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photon. Technol. Lett. 18, 859–861 (2006). [CrossRef]  

40. X. Zhang and A. M. Armani, “Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21, 23592–23603 (2013). [CrossRef]  

41. F. Blom, D. Van Dijk, H. Hoekstra, A. Driessen, and T. J. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997). [CrossRef]  

42. G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, M. Dispenza, and A. Secchi, “Planar coupling to high-Q lithium niobate disk resonators,” Opt. Express 19, 3651–3656 (2011). [CrossRef]  

43. A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photon. Technol. Lett. 29, 667–670 (2017). [CrossRef]  

44. M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013). [CrossRef]  

45. P. Tien and R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970). [CrossRef]  

46. R. Ulrich, “Theory of the prism-film coupler by plane-wave analysis,” J. Opt. Soc. Am. 60, 1337–1350 (1970). [CrossRef]  

47. M. Gorodetsky and V. Ilchenko, “High-Q optical whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun. 113, 133–143 (1994). [CrossRef]  

48. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908 (1973). [CrossRef]  

49. G. Liu, K. Shang, S. Li, T. Su, Y. Zhang, S. Feng, R. Proietti, S. J. B. Yoo, V. S. Ilchenko, W. Liang, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Low-loss on-chip prism-waveguide coupler to high-Q micro-resonator and optical frequency comb generation,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

50. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2010).

51. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004). [CrossRef]  

52. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009). [CrossRef]  

53. K. Shang, S. Pathak, B. Guan, G. Liu, and S. Yoo, “Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits,” Opt. Express 23, 21334–21342 (2015). [CrossRef]  

54. A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998). [CrossRef]  

55. K. Shang, S. Pathak, G. Liu, S. Feng, S. Li, W. Lai, and S. J. B. Yoo, “Silicon nitride tri-layer vertical Y-junction and 3D couplers with arbitrary splitting ratio for photonic integrated circuits,” Opt. Express 25, 10474–10483 (2017). [CrossRef]  

56. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011). [CrossRef]  

57. M. J. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014). [CrossRef]  

58. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012). [CrossRef]  

59. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982). [CrossRef]  

60. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000). [CrossRef]  

61. B. Dahmani, L. Hollberg, and R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Opt. Lett. 12, 876–878 (1987). [CrossRef]  

62. W. Liang, V. Ilchenko, A. Savchenkov, A. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
    [Crossref]
  2. T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref]
  3. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
    [Crossref]
  4. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  5. V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
    [Crossref]
  6. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
    [Crossref]
  7. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref]
  8. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
    [Crossref]
  9. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
    [Crossref]
  10. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref]
  11. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
    [Crossref]
  12. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
    [Crossref]
  13. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
    [Crossref]
  14. J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
    [Crossref]
  15. B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–3982014.
    [Crossref]
  16. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
    [Crossref]
  17. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
    [Crossref]
  18. S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
    [Crossref]
  19. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref]
  20. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
    [Crossref]
  21. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
    [Crossref]
  22. D. T. Spencer, J. F. Bauters, M. J. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1, 153–157 (2014).
    [Crossref]
  23. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
    [Crossref]
  24. P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
    [Crossref]
  25. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009).
    [Crossref]
  26. I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
    [Crossref]
  27. I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
    [Crossref]
  28. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
    [Crossref]
  29. D. Farnesi, G. C. Righini, A. Barucci, S. Berneschi, F. Chiavaioli, F. Cosi, S. Pelli, S. Soria, C. Trono, D. Ristic, M. Ferrari, and G. Nunzi Conti, “Coupling light to whispering gallery mode resonators,” Proc. SPIE 9133, 913314 (2014).
    [Crossref]
  30. S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
    [Crossref]
  31. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
    [Crossref]
  32. D. Rowland and J. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” IEE Proc. J. 140, 177–188 (1993).
    [Crossref]
  33. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
    [Crossref]
  34. V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett. 24, 723–725 (1999).
    [Crossref]
  35. L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5, 728–730 (2011).
    [Crossref]
  36. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on silicon chip,” Nature 431, 1081–1084 (2004).
    [Crossref]
  37. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  38. B. Little, J.-P. Laine, D. Lim, H. Haus, L. Kimerling, and S. Chu, “Pedestal antiresonant reflecting waveguides for robust coupling to microsphere resonators and for microphotonic circuits,” Opt. Lett. 25, 73–75 (2000).
    [Crossref]
  39. T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photon. Technol. Lett. 18, 859–861 (2006).
    [Crossref]
  40. X. Zhang and A. M. Armani, “Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21, 23592–23603 (2013).
    [Crossref]
  41. F. Blom, D. Van Dijk, H. Hoekstra, A. Driessen, and T. J. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).
    [Crossref]
  42. G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, M. Dispenza, and A. Secchi, “Planar coupling to high-Q lithium niobate disk resonators,” Opt. Express 19, 3651–3656 (2011).
    [Crossref]
  43. A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photon. Technol. Lett. 29, 667–670 (2017).
    [Crossref]
  44. M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
    [Crossref]
  45. P. Tien and R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970).
    [Crossref]
  46. R. Ulrich, “Theory of the prism-film coupler by plane-wave analysis,” J. Opt. Soc. Am. 60, 1337–1350 (1970).
    [Crossref]
  47. M. Gorodetsky and V. Ilchenko, “High-Q optical whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun. 113, 133–143 (1994).
    [Crossref]
  48. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908 (1973).
    [Crossref]
  49. G. Liu, K. Shang, S. Li, T. Su, Y. Zhang, S. Feng, R. Proietti, S. J. B. Yoo, V. S. Ilchenko, W. Liang, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Low-loss on-chip prism-waveguide coupler to high-Q micro-resonator and optical frequency comb generation,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.
  50. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2010).
  51. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
    [Crossref]
  52. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009).
    [Crossref]
  53. K. Shang, S. Pathak, B. Guan, G. Liu, and S. Yoo, “Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits,” Opt. Express 23, 21334–21342 (2015).
    [Crossref]
  54. A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).
    [Crossref]
  55. K. Shang, S. Pathak, G. Liu, S. Feng, S. Li, W. Lai, and S. J. B. Yoo, “Silicon nitride tri-layer vertical Y-junction and 3D couplers with arbitrary splitting ratio for photonic integrated circuits,” Opt. Express 25, 10474–10483 (2017).
    [Crossref]
  56. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
    [Crossref]
  57. M. J. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
    [Crossref]
  58. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [Crossref]
  59. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
    [Crossref]
  60. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
    [Crossref]
  61. B. Dahmani, L. Hollberg, and R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Opt. Lett. 12, 876–878 (1987).
    [Crossref]
  62. W. Liang, V. Ilchenko, A. Savchenkov, A. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
    [Crossref]

2017 (3)

2016 (1)

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

2015 (2)

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

K. Shang, S. Pathak, B. Guan, G. Liu, and S. Yoo, “Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits,” Opt. Express 23, 21334–21342 (2015).
[Crossref]

2014 (8)

M. J. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–3982014.
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

D. T. Spencer, J. F. Bauters, M. J. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1, 153–157 (2014).
[Crossref]

D. Farnesi, G. C. Righini, A. Barucci, S. Berneschi, F. Chiavaioli, F. Cosi, S. Pelli, S. Soria, C. Trono, D. Ristic, M. Ferrari, and G. Nunzi Conti, “Coupling light to whispering gallery mode resonators,” Proc. SPIE 9133, 913314 (2014).
[Crossref]

2013 (4)

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

X. Zhang and A. M. Armani, “Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21, 23592–23603 (2013).
[Crossref]

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

2012 (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

2011 (5)

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref]

G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, M. Dispenza, and A. Secchi, “Planar coupling to high-Q lithium niobate disk resonators,” Opt. Express 19, 3651–3656 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5, 728–730 (2011).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

2010 (4)

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

W. Liang, V. Ilchenko, A. Savchenkov, A. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[Crossref]

2009 (2)

2008 (2)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

2007 (2)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref]

2006 (5)

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photon. Technol. Lett. 18, 859–861 (2006).
[Crossref]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[Crossref]

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[Crossref]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

2004 (3)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[Crossref]

2003 (3)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref]

2002 (1)

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

2000 (3)

1999 (2)

1998 (1)

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).
[Crossref]

1997 (1)

F. Blom, D. Van Dijk, H. Hoekstra, A. Driessen, and T. J. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).
[Crossref]

1994 (1)

M. Gorodetsky and V. Ilchenko, “High-Q optical whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun. 113, 133–143 (1994).
[Crossref]

1993 (1)

D. Rowland and J. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” IEE Proc. J. 140, 177–188 (1993).
[Crossref]

1987 (1)

1982 (1)

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
[Crossref]

1973 (1)

1970 (2)

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Armani, A. M.

Armani, D.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Barton, J. S.

Barucci, A.

D. Farnesi, G. C. Righini, A. Barucci, S. Berneschi, F. Chiavaioli, F. Cosi, S. Pelli, S. Soria, C. Trono, D. Ristic, M. Ferrari, and G. Nunzi Conti, “Coupling light to whispering gallery mode resonators,” Proc. SPIE 9133, 913314 (2014).
[Crossref]

Bauters, J. F.

Bender, C. M.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–3982014.
[Crossref]

Berneschi, S.

D. Farnesi, G. C. Righini, A. Barucci, S. Berneschi, F. Chiavaioli, F. Cosi, S. Pelli, S. Soria, C. Trono, D. Ristic, M. Ferrari, and G. Nunzi Conti, “Coupling light to whispering gallery mode resonators,” Proc. SPIE 9133, 913314 (2014).
[Crossref]

G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, M. Dispenza, and A. Secchi, “Planar coupling to high-Q lithium niobate disk resonators,” Opt. Express 19, 3651–3656 (2011).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Blom, F.

F. Blom, D. Van Dijk, H. Hoekstra, A. Driessen, and T. J. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).
[Crossref]

Blumenthal, D. J.

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bowers, J. E.

Brasch, V.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Bruinink, C. M.

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref]

Cardenas, J.

Carusotto, I.

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

Chen, D.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Chen, L.

Cheng, R.

Chiavaioli, F.

D. Farnesi, G. C. Righini, A. Barucci, S. Berneschi, F. Chiavaioli, F. Cosi, S. Pelli, S. Soria, C. Trono, D. Ristic, M. Ferrari, and G. Nunzi Conti, “Coupling light to whispering gallery mode resonators,” Proc. SPIE 9133, 913314 (2014).
[Crossref]

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

B. Little, J.-P. Laine, D. Lim, H. Haus, L. Kimerling, and S. Chu, “Pedestal antiresonant reflecting waveguides for robust coupling to microsphere resonators and for microphotonic circuits,” Opt. Lett. 25, 73–75 (2000).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Conti, G. N.

Cosi, F.

D. Farnesi, G. C. Righini, A. Barucci, S. Berneschi, F. Chiavaioli, F. Cosi, S. Pelli, S. Soria, C. Trono, D. Ristic, M. Ferrari, and G. Nunzi Conti, “Coupling light to whispering gallery mode resonators,” Proc. SPIE 9133, 913314 (2014).
[Crossref]

G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, M. Dispenza, and A. Secchi, “Planar coupling to high-Q lithium niobate disk resonators,” Opt. Express 19, 3651–3656 (2011).
[Crossref]

Dahmani, B.

Davenport, M. L.

M. J. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Del’Haye, P.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Diddams, S.

T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Dispenza, M.

Driessen, A.

F. Blom, D. Van Dijk, H. Hoekstra, A. Driessen, and T. J. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).
[Crossref]

Drullinger, R.

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Eliyahu, D.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

Fan, S.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–3982014.
[Crossref]

Farnesi, D.

D. Farnesi, G. C. Righini, A. Barucci, S. Berneschi, F. Chiavaioli, F. Cosi, S. Pelli, S. Soria, C. Trono, D. Ristic, M. Ferrari, and G. Nunzi Conti, “Coupling light to whispering gallery mode resonators,” Proc. SPIE 9133, 913314 (2014).
[Crossref]

Feng, S.

K. Shang, S. Pathak, G. Liu, S. Feng, S. Li, W. Lai, and S. J. B. Yoo, “Silicon nitride tri-layer vertical Y-junction and 3D couplers with arbitrary splitting ratio for photonic integrated circuits,” Opt. Express 25, 10474–10483 (2017).
[Crossref]

G. Liu, K. Shang, S. Li, T. Su, Y. Zhang, S. Feng, R. Proietti, S. J. B. Yoo, V. S. Ilchenko, W. Liang, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Low-loss on-chip prism-waveguide coupler to high-Q micro-resonator and optical frequency comb generation,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

Ferrari, M.

D. Farnesi, G. C. Righini, A. Barucci, S. Berneschi, F. Chiavaioli, F. Cosi, S. Pelli, S. Soria, C. Trono, D. Ristic, M. Ferrari, and G. Nunzi Conti, “Coupling light to whispering gallery mode resonators,” Proc. SPIE 9133, 913314 (2014).
[Crossref]

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Foreman, M. R.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Freude, W.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Gavartin, E.

P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

Geiselmann, M.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Ghulinyan, M.

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

Gianfreda, M.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–3982014.
[Crossref]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[Crossref]

Gorodetsky, M.

P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

M. Gorodetsky and V. Ilchenko, “High-Q optical whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun. 113, 133–143 (1994).
[Crossref]

Gorodetsky, M. L.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
[Crossref]

M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
[Crossref]

Grudinin, I. S.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[Crossref]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

Guan, B.

Guider, R.

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

Hansch, T. W.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Hartinger, K.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Haus, H.

He, L.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Heck, M. J.

D. T. Spencer, J. F. Bauters, M. J. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1, 153–157 (2014).
[Crossref]

M. J. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
[Crossref]

Heck, M. J. R.

Heideman, R. G.

Herr, T.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

Hillerkuss, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Himeno, A.

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).
[Crossref]

Hoekstra, H.

F. Blom, D. Van Dijk, H. Hoekstra, A. Driessen, and T. J. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).
[Crossref]

Hofer, J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Hollberg, L.

Holzwarth, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Ilchenko, V.

W. Liang, V. Ilchenko, A. Savchenkov, A. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[Crossref]

M. Gorodetsky and V. Ilchenko, “High-Q optical whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun. 113, 133–143 (1994).
[Crossref]

Ilchenko, V. S.

A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photon. Technol. Lett. 29, 667–670 (2017).
[Crossref]

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[Crossref]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
[Crossref]

M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
[Crossref]

V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett. 24, 723–725 (1999).
[Crossref]

G. Liu, K. Shang, S. Li, T. Su, Y. Zhang, S. Feng, R. Proietti, S. J. B. Yoo, V. S. Ilchenko, W. Liang, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Low-loss on-chip prism-waveguide coupler to high-Q micro-resonator and optical frequency comb generation,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

John, D. D.

Jost, J. D.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Kato, K.

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).
[Crossref]

Kimerling, L.

Kippenberg, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref]

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Kippenberg, T. J.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

Kondratiev, N. M.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Koos, C.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Lai, W.

Laine, J.-P.

Lang, R.

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
[Crossref]

Lauermann, M.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Le, T.

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photon. Technol. Lett. 18, 859–861 (2006).
[Crossref]

Lei, F.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–3982014.
[Crossref]

Leinse, A.

Leuthold, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[Crossref]

Li, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Li, L.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Li, S.

K. Shang, S. Pathak, G. Liu, S. Feng, S. Li, W. Lai, and S. J. B. Yoo, “Silicon nitride tri-layer vertical Y-junction and 3D couplers with arbitrary splitting ratio for photonic integrated circuits,” Opt. Express 25, 10474–10483 (2017).
[Crossref]

G. Liu, K. Shang, S. Li, T. Su, Y. Zhang, S. Feng, R. Proietti, S. J. B. Yoo, V. S. Ilchenko, W. Liang, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Low-loss on-chip prism-waveguide coupler to high-Q micro-resonator and optical frequency comb generation,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

Liang, W.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

W. Liang, V. Ilchenko, A. Savchenkov, A. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[Crossref]

G. Liu, K. Shang, S. Li, T. Su, Y. Zhang, S. Feng, R. Proietti, S. J. B. Yoo, V. S. Ilchenko, W. Liang, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Low-loss on-chip prism-waveguide coupler to high-Q micro-resonator and optical frequency comb generation,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

Lihachev, G.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Lim, D.

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[Crossref]

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Little, B.

Little, B. E.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Liu, G.

K. Shang, S. Pathak, G. Liu, S. Feng, S. Li, W. Lai, and S. J. B. Yoo, “Silicon nitride tri-layer vertical Y-junction and 3D couplers with arbitrary splitting ratio for photonic integrated circuits,” Opt. Express 25, 10474–10483 (2017).
[Crossref]

K. Shang, S. Pathak, B. Guan, G. Liu, and S. Yoo, “Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits,” Opt. Express 23, 21334–21342 (2015).
[Crossref]

G. Liu, K. Shang, S. Li, T. Su, Y. Zhang, S. Feng, R. Proietti, S. J. B. Yoo, V. S. Ilchenko, W. Liang, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Low-loss on-chip prism-waveguide coupler to high-Q micro-resonator and optical frequency comb generation,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

Loncar, M.

Long, G. L.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–3982014.
[Crossref]

Love, J.

D. Rowland and J. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” IEE Proc. J. 140, 177–188 (1993).
[Crossref]

Mahalingam, H.

A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photon. Technol. Lett. 29, 667–670 (2017).
[Crossref]

Maleki, L.

A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photon. Technol. Lett. 29, 667–670 (2017).
[Crossref]

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5, 728–730 (2011).
[Crossref]

W. Liang, V. Ilchenko, A. Savchenkov, A. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[Crossref]

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photon. Technol. Lett. 18, 859–861 (2006).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett. 24, 723–725 (1999).
[Crossref]

G. Liu, K. Shang, S. Li, T. Su, Y. Zhang, S. Feng, R. Proietti, S. J. B. Yoo, V. S. Ilchenko, W. Liang, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Low-loss on-chip prism-waveguide coupler to high-Q micro-resonator and optical frequency comb generation,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Matsko, A.

Matsko, A. B.

A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photon. Technol. Lett. 29, 667–670 (2017).
[Crossref]

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref]

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[Crossref]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[Crossref]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

G. Liu, K. Shang, S. Li, T. Su, Y. Zhang, S. Feng, R. Proietti, S. J. B. Yoo, V. S. Ilchenko, W. Liang, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Low-loss on-chip prism-waveguide coupler to high-Q micro-resonator and optical frequency comb generation,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

McNab, S. J.

Miya, T.

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).
[Crossref]

Monifi, F.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–3982014.
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Nori, F.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–3982014.
[Crossref]

Nunzi Conti, G.

D. Farnesi, G. C. Righini, A. Barucci, S. Berneschi, F. Chiavaioli, F. Cosi, S. Pelli, S. Soria, C. Trono, D. Ristic, M. Ferrari, and G. Nunzi Conti, “Coupling light to whispering gallery mode resonators,” Proc. SPIE 9133, 913314 (2014).
[Crossref]

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2010).

Ozdemir, S. K.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–3982014.
[Crossref]

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Painter, O.

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

Pathak, S.

Pavesi, L.

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

Pelli, S.

D. Farnesi, G. C. Righini, A. Barucci, S. Berneschi, F. Chiavaioli, F. Cosi, S. Pelli, S. Soria, C. Trono, D. Ristic, M. Ferrari, and G. Nunzi Conti, “Coupling light to whispering gallery mode resonators,” Proc. SPIE 9133, 913314 (2014).
[Crossref]

G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, M. Dispenza, and A. Secchi, “Planar coupling to high-Q lithium niobate disk resonators,” Opt. Express 19, 3651–3656 (2011).
[Crossref]

Peng, B.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–3982014.
[Crossref]

Pfeiffer, M. H. P.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

Pfeifle, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Picque, N.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Pitanti, A.

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

Poitras, C. B.

Popma, T. J.

F. Blom, D. Van Dijk, H. Hoekstra, A. Driessen, and T. J. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).
[Crossref]

Preston, K.

Proietti, R.

G. Liu, K. Shang, S. Li, T. Su, Y. Zhang, S. Feng, R. Proietti, S. J. B. Yoo, V. S. Ilchenko, W. Liang, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Low-loss on-chip prism-waveguide coupler to high-Q micro-resonator and optical frequency comb generation,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

Prtljaga, N.

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

Pryamikov, A. D.

Pucker, G.

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

Ramiro-Manzano, F.

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

Righini, G. C.

D. Farnesi, G. C. Righini, A. Barucci, S. Berneschi, F. Chiavaioli, F. Cosi, S. Pelli, S. Soria, C. Trono, D. Ristic, M. Ferrari, and G. Nunzi Conti, “Coupling light to whispering gallery mode resonators,” Proc. SPIE 9133, 913314 (2014).
[Crossref]

G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, M. Dispenza, and A. Secchi, “Planar coupling to high-Q lithium niobate disk resonators,” Opt. Express 19, 3651–3656 (2011).
[Crossref]

Ristic, D.

D. Farnesi, G. C. Righini, A. Barucci, S. Berneschi, F. Chiavaioli, F. Cosi, S. Pelli, S. Soria, C. Trono, D. Ristic, M. Ferrari, and G. Nunzi Conti, “Coupling light to whispering gallery mode resonators,” Proc. SPIE 9133, 913314 (2014).
[Crossref]

Robinson, J. T.

Rowland, D.

D. Rowland and J. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” IEE Proc. J. 140, 177–188 (1993).
[Crossref]

Savchenkov, A.

Savchenkov, A. A.

A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photon. Technol. Lett. 29, 667–670 (2017).
[Crossref]

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref]

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[Crossref]

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photon. Technol. Lett. 18, 859–861 (2006).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

G. Liu, K. Shang, S. Li, T. Su, Y. Zhang, S. Feng, R. Proietti, S. J. B. Yoo, V. S. Ilchenko, W. Liang, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Low-loss on-chip prism-waveguide coupler to high-Q micro-resonator and optical frequency comb generation,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

Schindler, P.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Schliesser, A.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Schmogrow, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Secchi, A.

Seidel, D.

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

W. Liang, V. Ilchenko, A. Savchenkov, A. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[Crossref]

Shams-Ansari, A.

Shang, K.

K. Shang, S. Pathak, G. Liu, S. Feng, S. Li, W. Lai, and S. J. B. Yoo, “Silicon nitride tri-layer vertical Y-junction and 3D couplers with arbitrary splitting ratio for photonic integrated circuits,” Opt. Express 25, 10474–10483 (2017).
[Crossref]

K. Shang, S. Pathak, B. Guan, G. Liu, and S. Yoo, “Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits,” Opt. Express 23, 21334–21342 (2015).
[Crossref]

G. Liu, K. Shang, S. Li, T. Su, Y. Zhang, S. Feng, R. Proietti, S. J. B. Yoo, V. S. Ilchenko, W. Liang, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Low-loss on-chip prism-waveguide coupler to high-Q micro-resonator and optical frequency comb generation,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

Soria, S.

D. Farnesi, G. C. Righini, A. Barucci, S. Berneschi, F. Chiavaioli, F. Cosi, S. Pelli, S. Soria, C. Trono, D. Ristic, M. Ferrari, and G. Nunzi Conti, “Coupling light to whispering gallery mode resonators,” Proc. SPIE 9133, 913314 (2014).
[Crossref]

G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, M. Dispenza, and A. Secchi, “Planar coupling to high-Q lithium niobate disk resonators,” Opt. Express 19, 3651–3656 (2011).
[Crossref]

Spencer, D. T.

M. J. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
[Crossref]

D. T. Spencer, J. F. Bauters, M. J. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1, 153–157 (2014).
[Crossref]

Spillane, S.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref]

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Steier, W. H.

A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photon. Technol. Lett. 29, 667–670 (2017).
[Crossref]

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photon. Technol. Lett. 18, 859–861 (2006).
[Crossref]

Strekalov, D.

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[Crossref]

Su, T.

G. Liu, K. Shang, S. Li, T. Su, Y. Zhang, S. Feng, R. Proietti, S. J. B. Yoo, V. S. Ilchenko, W. Liang, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Low-loss on-chip prism-waveguide coupler to high-Q micro-resonator and optical frequency comb generation,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

Takahashi, S.

A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photon. Technol. Lett. 29, 667–670 (2017).
[Crossref]

Tazawa, H.

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photon. Technol. Lett. 18, 859–861 (2006).
[Crossref]

Tien, P.

Torge, R.

Trono, C.

D. Farnesi, G. C. Righini, A. Barucci, S. Berneschi, F. Chiavaioli, F. Cosi, S. Pelli, S. Soria, C. Trono, D. Ristic, M. Ferrari, and G. Nunzi Conti, “Coupling light to whispering gallery mode resonators,” Proc. SPIE 9133, 913314 (2014).
[Crossref]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Ulrich, R.

Vahala, K.

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref]

Van Dijk, D.

F. Blom, D. Van Dijk, H. Hoekstra, A. Driessen, and T. J. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Vlasov, Y. A.

Vollmer, F.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Wang, C.

Wang, C. Y.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Wegner, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Weimann, C.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Xiao, Y.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Yang, L.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–3982014.
[Crossref]

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Yao, X. S.

Yoo, S.

Yoo, S. J. B.

K. Shang, S. Pathak, G. Liu, S. Feng, S. Li, W. Lai, and S. J. B. Yoo, “Silicon nitride tri-layer vertical Y-junction and 3D couplers with arbitrary splitting ratio for photonic integrated circuits,” Opt. Express 25, 10474–10483 (2017).
[Crossref]

G. Liu, K. Shang, S. Li, T. Su, Y. Zhang, S. Feng, R. Proietti, S. J. B. Yoo, V. S. Ilchenko, W. Liang, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Low-loss on-chip prism-waveguide coupler to high-Q micro-resonator and optical frequency comb generation,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

Yu, Y.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

Zhang, M.

Zhang, X.

Zhang, Y.

G. Liu, K. Shang, S. Li, T. Su, Y. Zhang, S. Feng, R. Proietti, S. J. B. Yoo, V. S. Ilchenko, W. Liang, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Low-loss on-chip prism-waveguide coupler to high-Q micro-resonator and optical frequency comb generation,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

Zhu, J.

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. Blom, D. Van Dijk, H. Hoekstra, A. Driessen, and T. J. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997).
[Crossref]

IEE Proc. J. (1)

D. Rowland and J. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” IEE Proc. J. 140, 177–188 (1993).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).
[Crossref]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering gallery modes I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[Crossref]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (2)

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photon. Technol. Lett. 18, 859–861 (2006).
[Crossref]

A. A. Savchenkov, H. Mahalingam, V. S. Ilchenko, S. Takahashi, A. B. Matsko, W. H. Steier, and L. Maleki, “Polymer waveguide couplers for fluorite microresonators,” IEEE Photon. Technol. Lett. 29, 667–670 (2017).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (2)

M. J. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8, 667–686 (2014).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Nat. Commun. (2)

W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity Kerr frequency comb radio frequency photonic oscillator,” Nat. Commun. 6, 7957 (2015).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Nat. Nanotechnol. (1)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Nat. Photonics (7)

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

L. Maleki, “Sources: the optoelectronic oscillator,” Nat. Photonics 5, 728–730 (2011).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41–45 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8, 375–380 (2014).
[Crossref]

J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Nat. Phys. (1)

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–3982014.
[Crossref]

Nature (5)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref]

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Opt. Commun. (2)

I. S. Grudinin, A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Ultra high Q crystalline microcavities,” Opt. Commun. 265, 33–38 (2006).
[Crossref]

M. Gorodetsky and V. Ilchenko, “High-Q optical whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun. 113, 133–143 (1994).
[Crossref]

Opt. Express (9)

X. Zhang and A. M. Armani, “Silica microtoroid resonator sensor with monolithically integrated waveguides,” Opt. Express 21, 23592–23603 (2013).
[Crossref]

G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, M. Dispenza, and A. Secchi, “Planar coupling to high-Q lithium niobate disk resonators,” Opt. Express 19, 3651–3656 (2011).
[Crossref]

K. Shang, S. Pathak, G. Liu, S. Feng, S. Li, W. Lai, and S. J. B. Yoo, “Silicon nitride tri-layer vertical Y-junction and 3D couplers with arbitrary splitting ratio for photonic integrated circuits,” Opt. Express 25, 10474–10483 (2017).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref]

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[Crossref]

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17, 4752–4757 (2009).
[Crossref]

K. Shang, S. Pathak, B. Guan, G. Liu, and S. Yoo, “Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits,” Opt. Express 23, 21334–21342 (2015).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[Crossref]

Opt. Lett. (4)

Optica (2)

Phys. Rev. A (1)

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

Phys. Rev. Lett. (5)

S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[Crossref]

P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004).
[Crossref]

M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker, and L. Pavesi, “Oscillatory vertical coupling between a whispering-gallery resonator and a bus waveguide,” Phys. Rev. Lett. 110, 163901 (2013).
[Crossref]

Proc. SPIE (1)

D. Farnesi, G. C. Righini, A. Barucci, S. Berneschi, F. Chiavaioli, F. Cosi, S. Pelli, S. Soria, C. Trono, D. Ristic, M. Ferrari, and G. Nunzi Conti, “Coupling light to whispering gallery mode resonators,” Proc. SPIE 9133, 913314 (2014).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Science (3)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton Cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Other (2)

G. Liu, K. Shang, S. Li, T. Su, Y. Zhang, S. Feng, R. Proietti, S. J. B. Yoo, V. S. Ilchenko, W. Liang, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Low-loss on-chip prism-waveguide coupler to high-Q micro-resonator and optical frequency comb generation,” in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2017), pp. 1–3.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2010).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Camera photo of a transparent ultrahigh-Q MgF 2 resonator on the holding pedestal. (b) Geometric dimension of the cross-section view of a half-resonator with 1330 μm radius, 150 μm height, and 20-μm-high wedge region for the WGM shown in red.
Fig. 2.
Fig. 2. (a) Lowest-order WGM profile within the resonator with approximate 10 μm × 15 μm ( x axis × y axis ) mode size. (b) Ring-down measurement of the resonator indicating intrinsic Q-factor of 6 × 10 9 .
Fig. 3.
Fig. 3. (a) Geometric configuration of prism-waveguide couplers maintaining phase synchronized coupling toward the resonator (used in FDTD simulation): G denotes the gap distance between the photonic integrated chip (PIC) and resonator; D denotes the distance between the tip of prism-waveguide coupler and the reflection surface normal; d denotes the distance between the tip of the prism-waveguide coupler and the edge of PIC; tw denotes the tip core width; θ denotes the reflection angle; L denotes the length of the taper structure. (b) Testing PIC ( 10 mm × 4.5 mm ) containing individual prism-waveguide couplers with variations in θ , d, and tw. (c) PIC ( 3.6 mm × 0.42 mm ) containing a pair of prism-waveguide couplers (single prism-waveguide coupler with the best performance tested through mask shown in (b) and an end-to-end waveguide for alignment assistance). (d) Add–drop resonator system, analogy to our testing setup for single prism-waveguide coupler: bottom red dashed rectangular region represents prism-waveguide-to-resonator coupling area with self-coupling ratio r 1 , cross-coupling ratio k 1 , and additional loss γ ; top red dashed rectangular region represents free-space prism to resonator coupling area with self-coupling ratio r 2 , cross-coupling ratio k 2 , and no additional loss (ideal prism) (e) The semi-numerical simulation results of the drop port transmission power at different gap values [G in (a)] between the prism-waveguide chip and the resonator at 1550 nm.
Fig. 4.
Fig. 4. (a) Important fabrication steps: 1.  Si 3 N 4 LPCVD deposition; 2.  Si 3 N 4 waveguide core patterning; 3.  SiO 2 overcladding deposition; 4. PIC facet deep etching followed by XeF 2 release of substrate silicon at PIC edge. (b) Fabricated PIC picture at left, center, and right position based on mask shown in Fig. 3(c).
Fig. 5.
Fig. 5. (a) Measurement setup for single prism-waveguide coupler and straight calibration waveguides (shown in green lines). The insert is the microscope picture of the fabricated chip containing prism-waveguide couplers aligned to a resonator where silicon substrate released region [step 4 in Fig. 4(a)] is shown in blue dotted rectangle. (b) Normalized transmitted power received at the light pipe from (a) in weak loading regime, indicating the unloaded bandwidth of 100 kHz, Q-factor 1.9 × 10 9 .
Fig. 6.
Fig. 6. Photograph of the injection-locking setup illustrating two chips containing single prism-waveguide coupler implemented to a resonator. (1) is the resonator, (2) and (3) are the prism-waveguide coupler PIC, (4) and (5) are fiber launchers.
Fig. 7.
Fig. 7. (a) 3D schematic illustration of paired-prism-waveguide couplers coupled to the resonator for comb generation. (b) Illustration of the packaged Kerr frequency comb source. (c) Photo of packaged planar-waveguide coupled comb source. (d) Representative Kerr frequency comb output from the package.

Metrics